Spe 07921

download Spe 07921

of 5

Transcript of Spe 07921

  • 8/9/2019 Spe 07921

    1/10

    SPE79

    SPE

    of~

    3@_@mac AlME

    GASOCCURRENCENTHEDEVONI ANHALE

    by E. C. Smth, S. P. Cremean, and G. Kozai r,

    Col umbi a Gas SystemServi ce Corp.

    Copyri ht 1979, American Institute of Mining, Metallurgical and Petroleum Engirv?ers, Inc.

    f

    This paper was presented at the 1979 SPE Symposium on Low

    rmeabi it y Gas Reservoirs, B y 20-22, 1979. Denvar, Colorado.

    The material le subject to correction by the author.

    Permission to copy is restricted

    an abstract of not more than 300 words,

    Write; 6200 N. Centra~ Expy., Oallas, Texaa 75206.

    \

    ABSTRACT what f racti oncan be producedeconomcal l yw thin

    a reasonabl et i me fr ame. Si nce the shal e has a

    Esti matesof recoverabl ereserves i n the

    very l owpermeabi l i ty, economc producti onrequi re

    eastern Devoni anshal es range f roma fewt ri l l i on

    a fr acturenetwork to provi de suf fi ci ent fl ow

    cubi c f eet to several hundred tri l l i oncubi c feet.

    except whece the secti cnsontai ns permeabl e si l t-

    The most pessimsti cesti mates assume that al l

    stones or sandstones. Gas producti on rates w 11

    recoverabl egas occurs w thi n natural f racture

    depend upon the s ze, spaci ngand geometry of thes

    porosi ty. More opti msti c esti mates assume a

    f ractures.

    substanti al gas contr i buti onf romthe shal ematr i x

    close to fractures. Thi s paper presents the avai l -

    The extent of these control s i s the subj ect of

    abl e evi dence for both vi ews i ncl udi ngl ong- term

    a l i vel y debate whi ch focuses on the dynamcs of

    shal e producti oncharacteri sti cs, l aboratory

    shal e gas producti on. Two basi c school s of though

    measurements on shal e cores, and numeri cal model i ng exiW

    a) the bal k of the recoverabl egas deri ves

    studi es.”The wei ght of al l avai l abl eevi dence

    f romthe matr i x, but f ractures are necessary to

    favors the posi t i onthat the mat ri x provides a providerapid f l owto the wel1, and b) the bulk of

    maj or contri buti onof the recoverabl egas fromthe the recoverabl egas i s contai nedw thi n natural

    Devoni an shal es, w th a smal l er amount deri ved f rom

    fr actures i n the shal e secti onand the contri buti o

    the f racture voi d vol ume. fromthe matr ix over the l i fe of the wel l i s uni m

    portant.

    I NTRODUCTI ON

    Thi s debate on f racture vs. matr i x producti on

    For several years, the Col umbi aGas System

    began at l east 45years ago. The proceedi ngs@ a

    Servi ce Corporati onhas shown an i ncreasi ngi nterest

    1935 Devoni anshal e symposi ummenti onedboth con-

    i n promoti ngDevoni anshal e researchand devel opment

    ‘ 2‘ g) Each concept cl ai ms the support of pr

    i n the Appal achi anBasi n. A systemati cexpl oitati o

    n

    cepts.

    programwoul d hi nge upon the dri l l i ngofa l arge

    ducti on data and hi story matchi f i gof producti on

    number of test wel l s i n key parts of the Basi n.

    decl i ne curves. Both si des can account for the

    Thi s, i n turn, requi res pri or demonstrati onof the

    total gas producti on (usi ngappropri ate assumpti on

    basi n’ s potenti al gas suppl y. Our researchcan-

    and i nput data).

    Both have the support ofnumeri -

    ti nues to support estimates of 200 to 900 tri l l i on

    cal model s.

    cubi c f eet of potenti al gas suppl i es based on pro-

    ducti on records, core gas content measurements,

    Col umbi a’ s i nterest i n these producti onmodel

    wel l l ogs and wel l cutt i ngs descri pti ons.

    stems f romthei r i nf l uenceon reserve esti mati ons.

    We must resol vewhether matri x gas can be recovere

    before usi ng the matri x gas content as a basi s f or

    suppl y proj ecti ons.

    Thi s paper revi ews the assump

    Several reports publ i shedby the Of f i ce of

    ti ons, i nput data, and cal cul ati onsused i n each

    Technol ogyAssessment, Federal Power Cormni ssi on,

    approach.

    Al thoughwe may not def i ni tel y prove

    Federal Energy Regul atory Cormni ssi on,TRWand Lew n

    whi ch i s correct unti l after a w despreaddri l l i ng

    and Associ ates on the Appalachi anDevoni an shal e

    program we can compare the l i kel i hoodof each con

    provi de other resource esti mates usi ng di f f erent

    cept. Compari ngthe two arguments may hel p us

    assumpti ons.

    One very comprehensi vereport by the

    narrowthe range of val ues for the assumed i nput

    Nati onal Petr ol eumCounci l shoul d he i ssued i n the

    data and gai n some i nsi ght i nto f racture si ze and

    near future.

    spaci ng. These factors shoul d prove useful i n

    - -

    / “

    determni ngrecovery factors, wel l spaci ng and

    Al thoughwe knowthat the shal e matr i x contai ns

    f racture desi gns.

    a l arge vol ume of mobi l e gas, the questi on remai ns

    99==

  • 8/9/2019 Spe 07921

    2/10

    ?“

    HI STORICAL I NFORMATIONON SHALE GAS PRODUCTION

    Devoni anshal e expl oi tat i onhas endured si nce

    1820 when the fi rst gas wel l was dri l l ed i n

    Fredoni a, NewYork. By 1890, numerous very shal l ow

    wel l s were dri l l ed f romDunki rk, NewYork to

    ‘ Sandusky, Ohi o.

    Duri ng thi s century, mo j tshal e

    product i oncame f romeastern Kentucky, western

    West Vi rgi ni aand southernOhi o. To date, devel op-

    ment has concentr atedon onl y 4, 000 of the over

    110, 000square ml es of the Appal achi anBasi n under

    l ai n by t l e shal e.

    I n . he earl i er years, very shal l owwel l s w th

    pressurss barel y above atmospheri c provi dedan

    easy . S{J Urc( ?f smal l vol umes of gas for l ocal use.

    From1927- 1962, th[ economc cl i mate encouraged

    sha?e gas expl orati onas can be seen f romthe

    number of compl etedwel l s by Col umbi a (See

    Fi gure 1) .

    However, the i ndustry typi cal l y

    expl oredf or other targets, and i n some cases sti -

    mul ated the shal e i f the other targets fai l ed to

    produce. We knowof l arge shal e gas shows whi ch

    i nterrupteddri l l i ng, but whi ch were not expl oi ted.

    Product i onrecords(l G) showthat 40%of the

    Shal e wel l s had no measurabl enatural showand

    onl y 5%had shows of a commerci al si ze (Fi gure 2).

    Most gas shows occur w thi n the bl ack, organi c-

    ri ch sectionwhi ch contai ns an avera e of si x ti ms

    7

    ?s much matri x gas as the remai ni ng gray) shal es 6

    Af ter tr eatment w th gel l ed ni tr ogl yceri ne, 89%of

    the wel l s have producedgas commerci al l y. An addi -

    ti onc~

    fractionof the fi rywel l s Woi:ld

    have pro-

    duced gas but for mechani cal probl ems. Past wel l

    spaci ngpracti ces ref l ect no syst( :mat i cmethod, but

    showthe eff ects of 1) competi ti vedri l l i ngw th a

    hi gh wel l concentr ati onnear l ease boundari es,

    2) l ess dri l l i ngnear dry hol es, 3) avai l abi l i tyof

    proper l and ti tl es, 4) topographyand cul t

    features, and 5) company spaci ngpol i ci es.

    yf ’

    Consequentl y, on? must questi on the accuracy of

    drai nage vol umes, recovery factors or other

    cal cul at i onswhi ch assume that wel l spaci ng equal s

    the drai nage radi us.

    Duri ng the past si x years, Col umbi a and

    several tens of research, servi ceand support i ng

    compani es have studi ed the characteri sti csof the

    Devoni anshal e, recentl y i n cooperati onw th the

    U. S. Department of Energy. Several of these i nsti -

    tuti ons have provi deddata whi chw l l hel p us com

    pare the val i di ty of the two gas prodl : i . i onon-

    cepts.

    DI SCUSSION

    Matr i x Gas Model :

    Schett l er( l1) deri ved a numeri cs

    model fr omFi ck’ s fi rst and second l aws of

    di f fusi on(5) whi ch generateda successful hi story

    mat: h of actual shal e gas producti onf or hi gh,

    medi um and l owvol ume wel l s.( Fi gures3 and 4) .

    The model consi ders two separate cases:

    1) wherei n constri cti onsi n. thef racturenet-

    work (i . e. , mneral deposi ts or parti al cl osure)

    l i mt the f l owrate of gas di f fusi ngfromthe

    matr i x i nto w del y- spacedfr actures. The corres-

    pendi ngequati on accounts for al l but the hi ghest

    product i onrates:

    ‘=%ib)w~-it)

     

    2) wherein f ractures are so cl osel y- spacedth

    the drai nage zones of adj acent f racturesef fecti v

    overl ap or i nterf ere. Thi s rel ati ondescri bes th

    producti onof very hi gh vol ume wel l s:

    q=-+-b

    (

    Kuuskraaet al

    ‘ 8) claimed that di ff usi onf ro

    the shal e proceeds too slowy to account for the

    observedproduct i on.

    They cl ai med that Schett l er

    sampl e preparati onmethods ( i . e. , crushi ngand

    dryi ng) coul d have al tered hi s measured sorpti on/

    desorpti onrates yi el di ng an erroneousl y hi gh di f

    si on constant . The constant depends upon the rad

    or thi cknessof sorbi ng grai ns or sl abs. They

    rcesonedthat mcro- cracksand l amnae se arati on

     

    assumedto exi st i n the preparedsampl es coul d

    i ncreaset he val ue of the constant.

    However, Schett l er’ s earl i er studi es

    (11) sho

    that the parti cl e size has a smal l eff ect upon the

    di f fusi onconstant.

    I n fact. Schett l er’ smodel

    al ready consi deredthi s eff ect. Col umbi a’ s of f ga

    rates measuredon unprepared, whol e core sampl es

    l end further support to the d“ff usi on rel ease

    rates, or showthe constant to be conservati ve.

    Kuuskraaet al (8)

    voi ced a second obj ecti ont

    Schett l er’ smodel .

    They contend that a l og- l og

    pl ot of fr acti onal gas rel easeversus ti me shoul d

    have a~sl opeof O. 5 for a di ff usi on- control l ed

    process unti l hal f of the gas has been produced.

    They rej ect di ff usi onas a control l i ngprocess

    based on observed i ni ti al sl opes of 0. 8 to l . Owhi

    decl i ne to 0. 4 to 0. 6 over 20 years.

    However, thi s assumedproducti onsl ope ofO. 5

    corresponds to d+f fus?onf romthe surf aceof a sem

    i nfi ni te sl ab rel easinggac i n responseto a sudde

    pressure drop to a constant pressure (3 and 7). I

    contrast, Schett l er’ s f l owconstri cti ons i mpl y tha

    the pressure i n the f racture syctemdoes not

    suddenl y drop to a constant pressure. Carsl awand

    J aeger( 3)

    provi de equat i ons whi ch descri bedi f fusi

    f l owunder more real i sti c pressure- f l owcondi ti on

    i . e. , for gas rel ease rel ated to a l i near pressur

    drop versus ti me w th a siml ar producti onsl ope o

    1.5, or for a constant f l ux rate at a f racture

    surf ~- ”ew th a sl ope of 1. 0(7~.

    El ki ns(7) esti matesan expectedproducti on

    slope of sl i ghtl . v ess than 1. 0, provi dedei ther

    di f fusi onor- Dar~y f l owaccounts f or matr i x gas

    rel ease i nto the fr acture system He reasonedt ha

    the gas fl owrate i n the fracture systemcontrol s

    both the pressure drop i n the reservoi r and the dr

    between the f racture surf aces and the wel l head. T

    pressure drops i n turn, determne the producti on

    rate. Matri x gas rel ease i ncreases as the pressur

    i n the fracture systemdrops, but the fr acture fl o

    capaci ty decreases. Thi s anal ysi s made use of the

    fol l ow ngthree rel ati onshi ps:

    .——

  • 8/9/2019 Spe 07921

    3/10

    For a stepw se l i near pressure decrease i n the

    f racturesystem

    Pt= Pi -mot- m( t- tl )- . . . mntn)tn)

    (3)

    ..

    For esti mati ngstepw segas.i nf l ux to the f rac-

    ture systemwhi cn decreases l i nearl yw th ti me:

    %

    = rmot1”5+rm1(t- t11”5+. . . rmntn)1”51”5 (4)

    For the average gas producti onduri ng each

    step - based on the back pressure gas fl ow

    equati on:

    .

    ‘t- -l

    . K~: - p:+: t- l -p: ) (t(t - , ) ) (5,

    By consi deri ngthe f ractureporosi ty smal l com

    pared to the gas storage capaci ty of the matri x,

    he di dn’ t need to I nvol vepressure transi ents i n

    the fractures. El ki ns i ni ti al l yassumedr= 1. 0,

    P. =

    50Gpsi , and P = 490 psi . The above sol u-

    t] on hol ds unti l th~producti onf romadj acent

    fracturesbegi ns to i nterfere- i .e. , unti l a

    l arge f racti onof the gas content has drai ned f rom

    the matr i x.

    Schettl er has shown that the rate of gas di f -

    fusi on f romthe Devoni anshal e matr i x can sati s-

    factori l yexpl ai n the observedproducti on rates.

    The obj ecti ons to the expected sl ope of the

    producti vi ty- ti medecl i ne and the di f fusi on

    coef f i ci ent do not appear warr anted.

    FracturePorosi ty Model : Accordi ng to the f rac-

    ture porosi t. ymodel , vi rtual l y . I l lproduci bl e

    gas resi des w thi n the natural l y- occurri ngf rac-

    ture system

    Rel ease f romthe shal e matr i x pro-

    ceeds too sl ow y to contri bute si gni f i cantl y.

    The support for thi s model rests on a hi story

    match of producti ondata w th cal cul atedDai - ; y

    f l owprod~~~i on i n a uni formy f ractured

    reservoi r~8].

    A f racture porosi ty and perme-

    abi l i ty so deri ved can account for the produced

    gas vol umes.

    However, a revi ewof the i nput data,

    assumpti ons and data handl i ngprovi des further

    i nsi ght i nto the probl em The matched producti on

    data consi sts of averages for several groups:

    hi gh, medi umand l owproducti onwel l s pl us

    averages over separate geographi cal areas. Af ter

    smoothi ngthe averageddata w th Marquardt’ s

    Al gori thmto f i t the curve defi ned by

    f ( t ) = ( l -e-Bt ) (6)

    Kuuskraaet al (8) separatedthe data f romthe

    resul ti ngcurves i nto annual producti onaft er

    5, 10, 20 and 30 years. Fi gure 5 shows the

    resul ti nghi story match for cumul ati veprod ct i on

    after 5, 10, 20 and 30years based on the fj l -

    l ow ngassumpti ons:

    Wel l spaci ng= 150 acres

    Gas gravi ty= 0. 6

    Net formati onthi ckness

    = 580 feet

    Reservoi r temperature= 560 R

    I ni ti al reservoi r pressure= 500 psi a

    Fl ow ngbott omhol e pressure = 100 psi

    The resul ti ngporosi ty and permeabi l i ty’ val ues

    range f rom0. 31 to 0, 8%and f r~m0. 0175 to 0. 027

    red. , respecti vel y.

    Cert ai naspects of the hi storymat~h meri t

    furt her att enti on.

    Fi gure 5 shot ‘ the hi story

    match for several cases.

    Fi rst, note that onl y f

    data poi nts def i ne each producti oncurve. Each

    poi nt represents an average over a ti me i ~terval

    for a number of wel l s.

    Aft er fi tti ng the ori gi nal producti ondata t

    an equati onw th Marquardt’ s Al gori thm the shape

    of the resul ti ngcurve di ff ers fr omthe ori gi nal

    data’ s trend.

    Fi gure 6 compares the shape ofactu

    producti ondecl i ne data (averagedf or groups of

    shal e wel l s) before and af ter thi s smoothi ng

    process. Consi deri ngthe di sti nct di f f erences i n

    the curve shapes, val i d hi story matches shoul d

    probabl y use unsoothed data and comparemore tha

    four poi nts al ong a curve.

    Ei ki ns(7) and others

    have questi onedthe use of thi s smoothi ngfuncti o

    As shown by Fi gure’ 6, equati on 6 i mposes a consta

    percentagedecl i ne Pate on the data. Thi s yi el ds

    l i near producti onrate vs. ti me on sem- l ogpaper

    A val i d smoothi ngprocedure woul d use an al gori th

    whi ch accords w th the observed producti onbehavi

    Proponents of the f racture producti onmodel

    cl ai mthat the f racture network can contain the

    vol ume of shal e gas produced duri ng a wel l ’ s f i rs

    30 years(8). Thi s assumes that al 1 of the gas

    occurs w thi n a 500 foot net’ pay thi ckness, over

    150 acre area w th a fracture porosi ty of 0. 3 to

    0. 8% Actual l y, certai n areas woul d requi re i n

    excess of 4%f racture porosi ty. For i nstance, on

    part of Fl oyd Co:my, Kentucky dri l l ed on l ess th

    a 40 acre spaci ngaveraged bett er than ’ 100MMcf p

    wel 1.

    Usi ng the recovery factorof 65%used by

    Kuuskraa et al ‘ 8) and the fol l ow ngequati on:

    “= AhTs@Pf

    z‘ fps

    (7

    def i nes a requi redporosi ty of about 4% (Rememb

    that the many vari abl eswhi ch have determnedthe

    wel l spacingmake i t ri sky to estimate the true

    shal e vol ume d~’ afnedby a gi ven wel l ). I n ei ther

    case, these requi redf racture porosi ti es seemmuc

    hi gher than those i ndi catedby shal e core sampl es

    Core anal yses and descri pti ons ofover 2500

    feet of Devoni anshal e f romproduci ngareas of th

    Appal achi anBasi n (Li ncol nCounty, West Vi rgi ni a

    and Mart i n County, Kentucky) suggest porosi ti es o

    0. 0003%to a maxi mumof 0. 01% (Thi s i s based on

    observati onsof l ess than one natural f racture pe

    feet and fr acturew dths f rcm0. 001 to 0. 03 cmas

    measured by Terra Tek of Sal t Lake Ci ty‘ 6)) . Mor

    over, the ef fecti ve f racture porosi tymay not rea

    these l evel s as a resul t of observedcarbonate

    fracture fi l l l ngs.

    Col umbi a has reported ef fecti ve permeabi l

    i ti es and fr ac l engths cal c:l l atedromtransi ent(

    reservoi r tests i n two West Vi rgi ni ashal e wel l s

    The test i nterpretat i onscome fromseveral source

    usi ng a vari ety of assumed f l owperi ods (i deal

    l i near, radi al and spheri cal fl ow). Because the

    testi ng took pl ace duri ng the post- f rac cl ean-up

  • 8/9/2019 Spe 07921

    4/10

    14

    GASOCCURRENCEI NTHE DEVONI ANSHALE

    SPE 792

    ------- . ...-. .-— -.. . ..—

    process, we used the resul ts to compare the ef fects

    of our f racture treatments, but di d not- use the

     

    resul ts quanti tati vel y.

    Kuuskraaetal (8) men-

    ti oned that our report edpermeabi l i ti esl end

    support to those generatedby thei r hi storymatch.

    t

    El ki ns(7) questi onedt he basi s of thi s support

    We found that our proppant vol umes and cal cul ated

    fr acture l engths requi re fr acture w dths of 0. 7 to

    11. 5 i nches.

    I n contrast, Hal l i burton’ s rock

    mechani c$speci al i sts suggest a maxi mumw dth of

    0. 5 i nches and a probi ~bl eaverage w dth cl oser to

    0. 1 i nch.

    Due to the tests’ short product~on(71

    peri ods comparedt o the bui l d- up ti me, El kI ns

    rej ects the use of type curve matchi ng for ti eter-

    mning permeabi l i ti es, f rac+ti re engths or for

    demonstrati ngradi al versus l i near f l ow Because

    of the test peri od l engths, resul ti ngl og- l og pl ots

    of bui l d- uppressure vs. ti me may di spl ay a fal se

    ‘ l i neari ty(Fi gure 7) .

    El ki ns(7) noted a l i near rel ati onshi pbetween

    P2 and ( - - @ for extended ti mes i n al l of

    our tests. Taki ng thi s as an i ndi cati onof l i near

    f l owf romthe matr i x i nto the i nducedf ractures

    (O.1“ f racturew dth w th 25%porosi ty), he cal cu-

    l atedan zff ecti ve permeabi l : ”: yange f rom0. 8 to

    3. 2 mcrodarci es. Thi s cal cul ati onempl oyed the

    foll ow ngequati on for l i near fl owof constant

    compressi bi l i tyfl ui ds f roma sem- i nf i ni tesl ab.

    The matr i x porosi ty (0.7% was determnedf roma

    projectedul ti mate recovery of 575 MMcf per wel l ,

    a 500- f oot target secti on, a 150- acrewel l spaci ng

    and a 400 psi average pressure drop.

    I n vi ewof the data smoothi ngand curve f i t-

    ti ng procedures, the present f ractureporosi ty

    hi storymatch does not’ appear val i d. Moreover,

    thi s model requi resporosi ti es and permeabi l i ti es

    at l east one order of magni tude hi gher than those

    i ndi catedby core anal yses and themost careful

    i nterpretati onof our reservoi r tests. Conse-

    quentl y, thi s model does not adequatel y support

    producti onf romf racture porosi ty al one.

    A Compari sonof the Two Model s: As a further test

    of each model ’ s practi cal i ty,we can revi ewthe

    f racture vol ume and spaci ng requi rements: the per-

    meabi l i ty and porosi ty requi red for the f racture

    porosi tymodel ; and the expected gas f l ux f romthe

    shal e matri x. AL thi s poi nt, fi el d data, core

    descri pt i ons, anal yses and materi al bal ance curves

    provi de useful i nsi ghts i nto the probl em

    8oth producti onmodel s agree that the f racture

    spaci ngcontrol s or l i mts shal e gas recovery -

    ’ 12) f, ~nd that a singl e fracture

    ates. Schettl er

    of i ndefi ni telateral extent w th a w dth of 0. 01

    cmwhi ch i ntersects40 meters of wel l bore coul d

    prov?dea f l owof 50 Mcfd aft er one year. Some

    readars may obj ect to the use of f rac;~~esof

    i ndef i ni teextent. However, Kuuskraa~u] cal cul ated

    that the di f fusi onmodel requi res a f racture

    spaci ng (2L) of 100 cm They determnedthi s

    ‘ Paci y

    usi ng a pl ot ofnnrmal i zed ti me

    (kt/ L versus the recovery fr acti on(Fi gure8).

    Thei r esti mate of the recovery ef f i ci ency(O.43)

    deri ves f romthe 30- year producti on”di vi dedby the

    matr i x gas content ofa vol ume of shal e 500 feet

    thi ck over a 150- acre drai nagearea. Thei r matr i x

    gas content ofO. 21 cubi c feet of gas per cubi c

    foot of shal e refl ects Col umbi a’ s report edaverage

    for the enti re Devoni anshal e secti on i n an area

    whi ch appears to be hal f depl eted. I n ar?ycase,

    we found that the shal e w thi n the 500 foot stimu-

    l atedzone nowcontai ns about three ti mes the

    averagecontent.

    Thi s woul d suggest a f racture

    f requencyof l ess tharlone f racture per200 cm

    El ki ns’S(7) esti mate of the spaci ng requi red

    for producti onf romthe matr i x deri ves f roma

    Car; l awand J aeger’ s(3) equati on:

    n.m

    ~p.mt+ M&Li+,.m@~d..

    n=o

    KW3

    (9

    @) - e

    -K(2n+l )2r2t/ 4L2

    . @s ~ . X

    ( 2n+l) 3 : ,

    Thi s re?~ti onshi phol dsf or l i near fl ui d fl owfr om

    sl ab i nto a f racture where pressure decreases

    l i r, earl yw th ti me.

    These resul ts suggest a f rac-

    t~re spaci ngof 1000 feet for a 0. 57 mcrodarcy

    permeabi l i ty (wherem=

    0. 0488psi / day for1944-

    1960, and m= 0. 0422 psi / day for 1960- 1975) .

    El ki ns pl ott ed the cumul ati veproducti onvs. P/ z f

    38 Col umbi aGas shal e wel l s i n Li ncol n County, Wes

    Vi rgi ni a.

    He noted l i near pressure drops f rom504

    to219 psi duri ng 1944-1960and f rom219 to 183

    duri ng1960-1975-

    the two sl opes ref l ecti ng

    di f f erent hi stori cal devel opment tr ends.

    Compared to the matri x model , the f racture

    poroAi tymodel demands a greater f racture f requenc

    Usi ngMuskat’ s equati ons and the porosi ty and per-

    meabi l i ty def i ~~$ by the f racture vol ume model ,

    Kuuskraaet al ~u) found a requi redspaci ngof

    5 X 10-3 cmw th fracturew dths of2. 5 X 10-5 cm

    , 011W3 w

    k

    ‘ Fand T=+

    (10,11

    Such a cl ose spaci ng contrasts s~f~pl yw th t

    actual f requencyof natural f ractures

    ~o~observed

    cores f romthe produci ngarea (up to one f racture

    per10 feet).

    I f the spaci ngwere suff i ci ent to

    perm t the f racture porosi tymodel , the shal e core

    shoul d have much hi gher penneabi l i t i esbecause the

    must each contai nnumerous f ractures (or converse

    theef f ect~ve permeabi l i tymust be much too hi gh).

    Fracturespaci ngs whi ch do al l owf or si gni f i cant

    f racture porosi ty producti onhave a much greater

    potenti al for matr i x producti ondue to the enormou

    exposed surfacearea.

    Accordi ngto the f ractureporos~ty model , f l o

    f romthe shal e matr i x amounts to vi rt ual l ynothing

    over a 30year wel l l i fe. I n order to quant i f yth

    matr i x and f racture contr i buti onsover any ti me

    i nterval , we woul d need to knewthe actual f ractur

    spaci ngs and the pressure prof i l e i n the f racture

    network. However, we can f i nd the ti me requi red

    to refi l l a fracturevol ume per uni t area of

    f racture for any gi ven pressure drop AP as fol l ow

  • 8/9/2019 Spe 07921

    5/10

    For f l owby di f f usi onf romboth f racture surf aces:

    I

    ‘=(*JandG=( fwi~i)

    12$13’

    ti me for the present reservoj r:

    t=* , (15)

     

    (The l ast termin equati on 13 deri ves f romequati on

    7). Al ong 1 cm of fracture, the maxi mumw dth

    shoul dbe . 03 cmaccordfnta o Terra Tek’ s core

    anal yses(6). Based on vai ues of d = 2 X 10-7 for

    Li ncol n County, West Vf rgi ni a core

    ‘ 12), fl owfrom

    the matrf x coul d reff l l the fracture fn 0. 65 hours

    foran. y pressure drop no matt er what f ractf onof

    the f racturegas f s produced.

    Thus far, we have onl y consi dereddi f f usi onas

    the process of matr i x gas rel ease. Hovever, f or

    l fnear Darcy f l owf nto a one square- foot f racture,

    the ti me requi redto recharge the f racture f s:

    F

    =~96X103GTz ~

    ~ kc+

    A(Pf -Pt )

    (14)

    (derf vedby i ntegrati ngequati on8 w th respect to

    ti me).

    Then, f or pressure drops i n the fr actures

    rangfng f rom10 to 400 psf, the recharge tfme

    ranges f rom6. 8 X 10-4

    to 1. 9 x 10-3 hours (roughl y

    2-7 seconds).

    Actual l y, the pressure doesn’ t drop i nstantan-

    eousl y throughout the f racture system However, we

    may consfder the matrf x to respond i nstantaneousl y

    to the actual pressure drop anywhere fn the system

    Therefore, whether by Darcy f l owor di f f usi ve f l ux,

    the matr i x f l owcapaci ty as a whol e exceeds the

    fracturef1owcapacfty as a whol e. Fromthe ta

    $

    n the matr x gas content and fracturew dth( , we

    al so knowthat the matri x wf thfn one foot of a

    fracture contai ns at l east 40 ti mes that fn the

    f racture vol ume.

    Whi l e the above recharge tf mes are cal cul ated

    esti mates rather thanobserved rates, Col umbi a has

    measuredof fgassi ngrates for thfr ty core sampl es.

    These rates are sl ower than those expected by

    Li near Darcy f l owbut faster than those cal cul ated

    by the di ff usfvefl ux (f or gas rel easeto atmos-

    pheri c pressure).

    Our average of f gas rate was

    0. 0013 cfgas per square footof surf acearea per

    day at 70°F.

    However, the fni tf al rates exceeded

    ten tfmes thfs val ue. Al so prel i mnarydata at

    el evatedt emperaturessuggest that the rati 2may

    fncreasemore than an order ofmagnf tude at forma-

    ti on temperaturesover 90°F.

    Another l fneof evidencewhi ch suggests (but

    does not prove) a dual porosit y i s the slope of

    n%t eri albal ancecurves (P/ z vs. G). Ffgure 9

    shows the sl ope change duri ng 28 years of produc-

    ti on, characteri sti cof Devoni an shal ewel l s. The

    cl assi cal expl anati onof thfs observedbehavi or

    woul d rel ate the earl y decl f ne as domnatedby

    f racture vol ume depl etfonf ol l owedby the more

    gradual matrfx depl etf on.

    ‘ 8) have poi ntedout that the

    uuskraaet al

    48 hour rock pressuresused to generate these

    curves may not be the true vol umetr i c average

    reservofr pressure.

    They refer to the foll owfng

    equati on for dete?mnfngthe requf redstabi l i zati on

    Usfng the fol l owfng fnput data, he f fnds a requf red

    tfme of 3. 4 years:

    A= 150 acres, c= 5X 10-3psf-

    u = 0. 012 centi poi se, $ = 04, 005,k = 0. 025ml l f-

    darcy.

    I fwe bel feve thfs equatf onappl f es and the

    assumed data f s corr ect, we woul d have to concedeo

    thf s poi nt.

    However, a revfewof wel l pressure records

    bri ngs to l fght an i ntr ’ stfng contradi ct i on. I n a

    careful l y studfedarea ncl udfngLfncol nCounty,

    West Vf rgfni a, wel l s compl etedpri mari l y between

    1947 and 1956, El ki ns(7) found that fni tf al 48 hour

    bui l d up pressures had depl etedval ues approachi ng

    the annual 48 hour pressures of ol der produci ng

    wel l s (Fi gure 10).

    The ol dest wel l s had fni tf al

    reservof r pressures i n excess of 525 psi. Pressure

    fn the f fve wel l s compl eted i n 1956 ranged f rom350

    to 390 i ncreasi ngtoward the undevel opedarea.

    Three newtest wel l s compl etedf rom1976-1978

    pressuredup to about 250 psi. Al l thi s strongl y

    suggests an i nterconnectedfracture network and

    that areas wel l above 150 acres can be af f ected

    wf thl n 30 years.

    El kfns cal cul atedan ef fectfve

    permeabi l i tyof O. 004md f romthe data for the 1956

    wel l s whtch f l owed 30 Mcfd for three weeks before

    thei r fi rst48 hour bufl d up (usi nga fl ow ngBHP o

    about 100 psi a at an average formatf onpressure of

    400 psfa, and assumnga homogeneous formati onwfth

    0. 7%gas ff l l ed porosi ty, an eff ecti vewel l radfus

    of four feet and 500 feet of net pay).

    I fwe consi deredan unsteady state radfal f l ow

    (as fn the f racture porosfty model ), the drawdown

    hal f way between arrewwel l and anefghbori ng ol d

    wel l produced for sevenyea~s shoul d be onl y 10 psf

    I n contrast, the i ni ti al 48 hour pressureof the

    three newwel l s (up to 4000 feet f romthe ol dwel l s~

    were wf thfn 5 to 18 psf of the annual measurements

    fn the nearby ol der wel l s. I t appears that the

    pressure tr rthe f racture systemcan equal f zeover

    more than a thousand feet w thfn days.

    Thi s agai n suggests an extensi vef racture

    systemwfth a very l owf l owcapacfty drafni nga

    l arge vol ume ofmatr i xwf th a greater potenti al for

    gas rel ease.

    I fmatrf x gas rel easeaccounts for most shal e

    gas producti on, the requf redf racture concentr ati on

    i s four orders of magni tude l ess than that neces-

    sary for fl owsol el y fr omfracture porosfty.

    Actual f racture spaci ngs observed fn shal e cores

    compare w th those requi redf or gas producti onf rom

    the matrfx. I n addi tfon, the shape of the G vs.   i

    pl ots, and the siml ar bufl d- uppressures fnol d

    and recentl y compl etedwel l s suggest a dual porosi t

    and an i nterconnectedf racture systemdrai nfngthe

    shal ematr fx over a l arge area. Perhaps the most

    convi nci ngevidence formatr f x gas producti onfs th

    rapi d rate at whi chmatrf x of fgassfngcan ref fl l a

    f racturevol ume af ter the removal of any port f onof

    the gas. Thi s sfmpl e feature fndfcates that matri x

    gas rel easeassumes a domnant rol e earl y i n the

    l ff e of a Devoni anshal e.

  • 8/9/2019 Spe 07921

    6/10

    CONCLUS1ONS

    A revi ewof the proposedmodel s whi ch purport

    to@xpl afn Devoni anshal e gas producti onreveal ed

    that’the matri x gas rel easerate i nto the exi sti ng

    f racturesystemexceeds the bul k f l owcapaci ty of

    the fr actures.,,The matri x w l l begi n to contri bute

    to a wel l ’ s producti onas soon as gas begi ns to

    fl owi n the fractures. Becauseof the shal e’ s gas

    content rel ease rate (by ei ther di f f usi onor Darcy

    f l ow), the matr i x must be consi deredthe maj or

    source of producedgas.

    Consequentl y, the di str i -

    buti onof matri x gas concentrati onforms a val i d

    basi s for estimati ng the potenti al gas suppl y i n

    the Appal achi anBasi n.

    However, unti l we know

    the actual f racture spaci ngs, di mensi ons, f l ow

    capaci ti es and pressure prof i l es for a gi ven wel l ,

    we can not quanti fy the matr i x and f racture poro-

    si ty contr i buti onsaccuratel y.

    I fwe consi der that al l recoverabl egas

    i ni ti al l y resi des w thi n a fracturenetwork, the

    requi redf racture spaci ngand permeabi l i tybecome

    suspi ci ousl yhi gh.

    Core anal yses and descri pti ons

    of 2500 feet of core-attest to the error of thi s

    fr actureporosi ty model . I n contrast, the para-

    meter val ues requi redby matr i x gas rel ease fal l

    w thi n the range actual l y observed. I n addi ti on,

    the cal cul atedrel ease rates compare w th the

    natural of fgassi ngrates measuredon shal e cores.

    Fi nal l y, the f racture porosi ty hi storymatch

    w th shal e gas producti oncontains several faul ts

    ; ~~; ; t; aveapparentl ygi ven ri se to the msl eadi ng

    .

    So far, the hi storymatch based on di f fu-

    si on appears val i d and coul d provi de addi ti onal i n-

    formati onon f racture geometr y, pressure profi l es,

    drai nagevol umes, recovery factors and on the gen-

    eral nature of shal e gas recovery.

    Two other ~pproaches coul d shed more l i ght on

    the factors control l i nggas producti on: 1) Per-

    f ormng l ong- termtests i n cl osel y-spacedshal e

    wel l s to defi ne f l owconmni cati on i n the fr acture

    system and 2) Mni ng a vol ume of shal e to study

    the natural f racture f requencyand other rel evant

    characteri sti cs.

    TheU. S. Department of Energy i s

    currentl y consi deri ngboth i deas. Of f gas anal yses

    on cores f romthe depl etedarea i n Fl oyd County

    w th a 37-acrewel l spaci ngmght al so be reveal i ng

    The present study shows that any numberof

    numeri cal model s can expl ai n shal e gas producti on

    usi ng conveni ent data and assumpti ons.

    I n wei ghi ng

    the cases for matr i x and f racture producti on, thi s

    revi ewdepended heavi l y upon core data, because

    these provi demore cl ear- cut and reproduci bl e

    evi dence.

    Resourceestimati oni s a tri cky task at best,

    and especi al l y so for the Devoni anshal e. Conse-

    quentl y, we woul d warn the reader not to accept

    any esti mate of Devoni anshal e’ s gas resources

    w thout a thorough understandi ngof thei r basi s.

    (For thi s purpose, al 1 of the 1i sted references

    w l l be hel pful ). We bel i eve that the forthcomng

    report by the Nati onal Petr ol eumCounci l shoul d

    better def i ne the vol umeof the shal e’ s possi bl e

    gas.suppl y.

    .-.

    NOMENCLATURE

    a = a constant -

    7164mcf / day%

    b= a constant- 40. 5mcf/ dy

    c = compressi bi l i ty- psia-

    f

    d= speci fi c degassi bi l i ty- i n cm3/ cm2/ torr/ s

    f(t) = a funct i onof t i me

    9’

    constri cti onfaotor - ft

    h = net pay thi ckness

    k = permeabi l i ty- ml l i darci es

    m=

    pressure decl i ne sl ope - psi a/ day

    q = producti onrate - mcf/ day

    r

    = a constant that i ncl udes eff ects of f ractur

    area, permeabi l i ty, and di f fusi vi ty - mcf/ p

    day%

    s = fracturespaci ng - cm

    t

    = ti me

    - days

    w=

    fracturew dth - cm

    x = di stance i n x di rect ion- f t

    z = gas devi ati on factor - di mensi onl ess

    A= area - f t2

    B = a constant

    C = gas concentrati on- cf gas cf shal e

    D = di ff usi oncoeff i ci ent -

    i

    t /day

    G= cumul at i vegas producti on i n mcf

    K= a constant= 1000 k/ (w$c)

    L = fracturespaci ng+ 2 - feet

    P = pressure -

    psi ~

    T = temperature- R

    v= vol ume - Cf ,

    Greek

    o

    = porosit y -

    di mensi onl ess

    u = vi scosi t y - Cp

    Subscri pts

    f = formati on

    i

    = i ni t ial

    n = nth term

    s

    = standard

    t= value at t ime t

    w= wel l bore

    x=

    open f racture

    ACKNOWLEDGEMENT .

    The authors grateful l yacknow edget he ef f

    of Li ncol n F. El ki ns of Sohi o, Paul D. Schet. l e

    J r. of J uni ata Col l ege and Todd M Doscher of t

    Doschers Group i n researchi ngthe mechani cs of

    gas producti on. Most of the mathemati cal appro

    revi ewed i n thi s paper come di rectl y f romrepor

    by and correspondencesbetweenthese i ndi vi dua

    REFERENCES

    1. Brown, Porter J . : “Energy fromShal e - - ALi

    UsedNati onal Resource”, I n: Symposi umon

    Natural Gas f romUnconventi onal Sources,

    Nati onal Academy of Sci ence, Secti on I I ,

    Chapter 6, pp. 86-99, (1976).

    2. Browni ng, I l eyB. :

    “Rel ati onof Structure

    Shal e Gas Accumul ati on”, I n: Devoni anShal e

    A Symposiumby the Appal achi anGeol ogi cal

    Soci ety, Charl eston, Vol . I , pp. 16-20, (19

  • 8/9/2019 Spe 07921

    7/10

    3. Carslaw H. S. and J aeger, U, C. : “Conducti onof

    9. Laffer ty, R.C. :

    “Occurrenceof Gas i n the Devo

    Heat I n Sol I ds”, 2nd Ed. , 51~ p. , Oxford Press,

    ni an Shal e”, I n: Devoni anShal es - A Symposi um

    (1959) .

    by the Appal achi anGeol ogi cal Soci ety, Char-

    l eston, Vol . I , pp. 14-15, (1935).

    4. Chase, Robert-

    P. C. (Professor, Petr ol eum

    Engi neeri ng, Mari ett a Col l ege, Ohi o) .

    10. Ray, Edward O. :

    “Devoni anShal e Devel opment i n

    Eastern Kentucky”, I n: Symposi umon Natural

    5. Crank, J . :

    “The Mathemati csof Di f fusi on”,

    Gas f romUnconventi onal Sources, Nati onal

    Oxford Press, London, (1954) .

    Acade~ of Sci ences, Secti on I I , Chapter 7,

    pp. 100-112, (1976).

    6. :=; ~.P. , McKet ta, S. F. , Owens, G. L. and

    .

    “Massi veHydraul i c Fracturi ng

    11. Schettl er, Paul D. J r : “Studyof Hyi ro~arbon

    Exper; me~t~”of the DevonianShal e”, Col umbia

    Shal e I nteracti on”, I n: Report ORO- 5- 197- l

    Gas SystemServi ce Corporati on, Col umbus,

    thru 11 for U. S. Department of Energ , J uni ata

    Vol s. I and I I , (1979) .

    Y

    ol l ege, Hunti ngdon, pp. 1-13, (1976 .

    7. El ki ns, Li ncol n:

    P. C. and conmmni cati onson

    12. Schettl er, Paul D. J r. : “ATwo Step Model for

    f racturedreservoi rs to Todd Doscher of Lew n

    Gas Producti on f romLowPermeabi l i tyShales”,

    and Associ ates and Don Ward of U. S. Department

    I n: Report ORO-5197-11, Appendi x C, pp. 1- 18,

    of Energy, Washi ngton.

    (1978) .

    8. Kuuskraa, Vel l o A. , Brashear, J . P. . Doscher,

    13. Smth, E.C. :

    “A Practi cal Approach to Eval ua-

    ToddM , and El ki ns, Ll oyd E. : “Enhanced

    ti ng Shal e HydrocarbonPotenti al ”, I n:

    Recovery of Unconventi onal Gas Sources”,

    Proceedi ngs Second Eastern Gas Shales Symposi um

    Secti on on Devoni anShal e Gas of the Appal achi a

    MorgantownEnergy Technol ogy Center, U. S.

    Basi n, Vol . I I I , pp. 1-79, (1978).

    Department of Energy, Morgantown, Vol . I I ,

    pp. 73-87, (1978).

  • 8/9/2019 Spe 07921

    8/10

    r COMMERCIAL OPEN FLOW

    I

    I

    i

    Ftg. 1- Columbta’s Devonian shale gas development act iv l t y.

    240

    t

    200

    - t

    I

    4

    :-

     

    e 12

    16 2C

    YEAR6

    Ffg . 3- History match of shale gas p roduction wi th gas recovery

    calcu lated by dif fusion for low and intermediate production).

    After Schet tler .’11 )

    Fig. 2- Frequency of natural open flows in Davonain s;ale w

    wells.

    320 -

    260 “

    40

    t

    Fig. 4- History fiatch of shala gas production ISith gae

    recovery calcu lated by diffus ion for h igh product ion) .

    After Schat tler .’11 )

  • 8/9/2019 Spe 07921

    9/10

    400. -

    /

    HIGHCASE

    o

    ~ Soo. -

    MEOIUMC&

    a

    o

    II

    -/“”-

    LOWCA%E

    200

    3

    8

     

    g

    ij ,00

    u

    1~

    ACTUAL PROOIJCTIOHTA

    0 Awwiq ~ 4’

    D Amllwlg datwwltol

    fmwwa Prtaolt.

    ‘-r-

    io &

    TIME ( TEARS)

    /

    6

    ACTUAL DATA

    SMOOTUSDDATA

    5

    \

    a H16H2622

    4 HWI CA6E

    4

    \

    : il X&d&E

    m Kuw CASE

    \

      LWC5S4 300

    \

    4

    00

     

    I

    0

    60

    40

    30

    20

    =..,,.,

    ,0

    9i14

    6Ulbli? 14161’Stiti24 262jkwAJlS

    Fig. 6- Production decl tne of Devonian zhale WS11s.After Elk fns 7)

    Ftg. 5- Hi etoryatch of simulation and ffeld data

    for thres t y pf cal Devonian nel 1s. Af far Kuuakraa

    et a l, 8)

    -100,000

    0

    OwlatiohromLinwily

    0

    :B

    0

    K

    -10,000

    PR@UCTION PERI~ =200 HOURS

    [

    I

    ,10 ,100 1,000

    Fig. 7- Theoretical prassure but ld up for I f near flow. After Elkfna{7)

  • 8/9/2019 Spe 07921

    10/10

    [{ /

    ,4

    g

     

    .3

     .e

    .1

    0

    ~Y,,,,,

     1 2 .3 .4 .5 .6 .7 .8

    .’s

    ......................................

    I

    ~a *

    I

    1

    w

    _..Awmbllec - –

    ‘“” - - ““ “-

    -.

     

    akmah

    u ~-

    Se.s emmr~-wt

    RDmd

    Fig. 10-1956 shut-in preesura distribution in

    Lincoln/f ayne County ehale nel 1s.

    After Elkins. 7)