Supporting Information acids for the sustainable ...

15
Supporting Information Electrocatalytic cross-coupling of biogenic di- acids for the sustainable production of fuels F. Joschka Holzhäuser, a Guido Creusen, b Gilles Moos, Manuel Dahmen, c Andrea König, d Jens Artz, a Stefan Palkovits a and Regina Palkovits a ,* a Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Aachen, Germany. [*[email protected]] b Institut für Makromolekulare Chemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany. c Institut für Energie- und Klimaforschung Modellierung von Energiesystemen, Forschungszentrum Jülich, Jülich, Germany d Aachener Verfahrenstechnik - Process Systems Engineering, RWTH Aachen University, Aachen, Germany 1. Calculations 2. Experimental photographs 3. NMR spectra 4. Additional charts 5. Total faradaic efficiency charts Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2019

Transcript of Supporting Information acids for the sustainable ...

Page 1: Supporting Information acids for the sustainable ...

Supporting Information

Electrocatalytic cross-coupling of biogenic di-acids for the sustainable production of fuels

F. Joschka Holzhäuser,a Guido Creusen,b Gilles Moos, Manuel Dahmen,c Andrea König,d Jens

Artz,a Stefan Palkovitsa and Regina Palkovitsa,*

a Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Aachen, Germany. [*[email protected]]

b Institut für Makromolekulare Chemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.

c Institut für Energie- und Klimaforschung Modellierung von Energiesystemen, Forschungszentrum Jülich, Jülich, Germany

d Aachener Verfahrenstechnik - Process Systems Engineering, RWTH Aachen University, Aachen, Germany

1. Calculations2. Experimental photographs3. NMR spectra4. Additional charts5. Total faradaic efficiency charts

Electronic Supplementary Material (ESI) for Green Chemistry.This journal is © The Royal Society of Chemistry 2019

Page 2: Supporting Information acids for the sustainable ...

1. Calculations

Calculation of charge chronoamperometry (Q = charge, I = current, t = time):

𝑄 =𝑦

∫𝑥

𝐼 𝑑𝑡

Calculation of charge potentiometry:

𝑄 = 𝐼𝑡

Caclulation of the faradiac efficiency (nmol = amount of total product amount in mol, n = number of electrons transferred, F = Faraday constant):

𝐹𝑒𝑓𝑓 =𝑛𝑚𝑜𝑙𝑛𝐹

𝑄∙ 100%

For 1 faradaic equivalent the equation becomes (nmol-spl = simplified factor [dimensionless]):

𝐹𝑒𝑓𝑓 = 𝑛𝑚𝑜𝑙 ‒ 𝑠𝑝𝑙 ∙ 100%

Page 3: Supporting Information acids for the sustainable ...

2. Experimental pictures

Page 4: Supporting Information acids for the sustainable ...

3. NMR spectra

1H-NMR: Tertbutyl-isovalerate

1H-NMR: mono-Methyl hydrogen methylsuccinic acid (MMSA)

Page 5: Supporting Information acids for the sustainable ...

1H-NMR: mono-Ethyl hydrogen succinate (HESA)

Page 6: Supporting Information acids for the sustainable ...

1H-NMR: Ethyl 5-methylhexanoate

Page 7: Supporting Information acids for the sustainable ...

1H-NMR: Dimethyl 2,5-dimethyladipiate

Page 8: Supporting Information acids for the sustainable ...

1H-NMR: Methyl 2,5-dimethylhexanoate

Page 9: Supporting Information acids for the sustainable ...

1H-NMR: 2,9-Dimethyldecane

Page 10: Supporting Information acids for the sustainable ...

4. Additional charts

Page 11: Supporting Information acids for the sustainable ...

1:1 1:2 1:4 1:8 1:160

10

20

30

40

50

60

DH DDH MDH

MMSA:IVA

Yie

ld [%

]

Figure 1a: Variation of different ratios of MMSA with IVA. Conditions: 0 °C, MeOH:H2O 80:20, 1 farad equivalent, 0.1 M NEt3, 100 mAcm-2, WE: Pt, CE: Ti. Yield of MDH/ DDH related to MMSA, DH related to IVA (total Volume 5 mL).

5 10 15 200

10

20

30

40

50

60

DH DDH MDH

Electrolyte [mol %]

Yie

ld [%

]

Figure 2a: Variation of the electrolyte concentration. Conditions: 0 °C, MeOH:H2O 80:20, 1 farad equivalent, 100 mAcm-2, WE: Pt, CE: Ti, 0.33 M MMSA, 1.3 M IVA. Yield of MDH/ DDH related to MMSA, DH related to IVA (total Volume 5 mL).

Page 12: Supporting Information acids for the sustainable ...

100:0 80:20 50:50 20:80 10:90 0:1000

10

20

30

40

50

60

DH DDH MDH

H2O: MeOH

Yie

ld [%

]

Figure 3a: Variation of the solvent mixture. Conditions: 0 °C, 1 farad equivalent, 100 mAcm-2, WE: Pt, CE: Ti, 0.33 M MMSA, 1.3 M IVA, 0.1 M NEt3 (for 100% Water: 0.1 M MMSA, 0.4 M IVA). Yield of MDH/ DDH related to MMSA, DH related to IVA (total Volume 5 mL).

Ru100 Ru75 Ru50 Ru500

5

10

15

20

25

30

35

40

45

50

DH DDH MDH Isovaleric acid

Working

Yield[%]

Figure 4a: Screening of (RuxTi1-x)O2 on titanium plates in comparison with Pt. Conditions: 0 °C, 1 farad equivalent, 100 mAcm-

2, MeOH as solvent, CE: Ti, 0.33 M MMSA, 1.3 M IVA, 0.1 M NEt3. Yield of MDH/ DDH related to MMSA, DH related to IVA (total Volume 2 mL).

Page 13: Supporting Information acids for the sustainable ...

5. Total faradaic efficiency charts (Complete new Section!)

1:1 1:2 1:4 1:8 1:160

5

10

15

20

25

30

35HESA + IVA MMSA + IVA

Faradaicefficiency[%]

HESA or

For Figure 1(left) + Figure 1a: Variation of different ratios of MMSA/HESA with IVA. Conditions: 0 °C, MeOH:H2O 80:20, after 1 farad equivalent, 0.1 M NEt3, 100 mAcm-2, WE: Pt, CE: Ti.

5 10 15 200

5

10

15

20

25

30

35

HESA + IVA MMSA + IVA

Faradaicefficiency[%]

Triethylamine

For Figure 1(right) + Figure 2a: Variation of the electrolyte concentration. Conditions: 0 °C, MeOH:H2O 80:20, after 1 farad equivalent, 100 mAcm-2, WE: Pt, CE: Ti, 0.33 M MMSA/HESA, 1.3 M IVA.

Page 14: Supporting Information acids for the sustainable ...

100:0 80:20 50:50 20:80 10:90 0:1000

5

10

15

20

25

30

35

40

45

50

HESA + IVA MMSA + IVA

Faradaicefficiency[%]

Water/MeOH

For Figure 2 + Figure 3a: Variation of the solvent mixture. Conditions: 0 °C, after 1 farad equivalent, 100 mAcm-2, WE: Pt, CE: Ti, 0.33 M MMSA/HESA, 1.3 M IVA, 0.1 M NEt3 (for 100% Water: 0.1 M MMSA/HESA, 0.4 M IVA).

For Figure 3 + Figure 4a: Screening of (RuxTi1-x)O2 on titanium plates in comparison with Pt. Conditions: 0 °C, after 1 farad equivalent, 100 mAcm-2, MeOH as solvent, CE: Ti, 0.33 M MMSA/HESA, 1.3 M IVA, 0.1 M NEt3.

Page 15: Supporting Information acids for the sustainable ...

For Figure 4: Screening of (RuxTi1-x)O2 on Ti and Pt plates with different electrolytes. Left: Using 0.1 M NEt3 as electrolyte and base. Right: Using 0.1 M KOH as electrolyte and base. General conditions: 0 °C, after 1 farad equivalent, 100 mAcm-2, MeOH as solvent, CE: Ti, 0.33 M MHO, 1.3 M IVA.

For Figure 5: Screening of (RuxTi1-x)O2 on Ti and Pt plates with different electrolytes. General conditions: 0 °C, after 1 farad equivalent, 100 mAcm-2, MeOH as solvent, CE: Ti, 1 M MHO.