Transmission Lines - FEUP

67
Faculdade de Engenharia Transmission Lines ELECTROMAGNETIC ENGINEERING MAP – TELE 2008/2009

Transcript of Transmission Lines - FEUP

Page 1: Transmission Lines - FEUP

Faculdade de Engenharia

Transmission Lines

ELECTROMAGNETIC ENGINEERINGMAP – TELE 2008/2009

Page 2: Transmission Lines - FEUP

EE 0809Lines 2

Faculdade de EngenhariaTransmission Lines

transmission lines à waveguides supporting TEM waves

parallel-plate waveguides

coaxial waveguides

two-wire waveguides

most common types

Page 3: Transmission Lines - FEUP

EE 0809Lines 3

Faculdade de EngenhariaTransmission Lines

general transmission line equations

time-harmonic solutions

finite transmission lines

voltage, current and impedance along the line

transmission lines in circuits

Smith chart

impedance matching

λ/4 transformer

reactive elements

single-stub

double-stub

transients

today

next week

Page 4: Transmission Lines - FEUP

EE 0809Lines 4

Faculdade de EngenhariaTEM waves in parallel-plate waveguides

b

y

z

x

W

xE

H

yEE

ˆ

ˆ

00

00

η−=

=r

r

βγ j= xeE

H

yeEE

zj

zj

ˆ

ˆ

0

0

β

β

η−

−=

=r

r

inside the guide:

Page 5: Transmission Lines - FEUP

EE 0809Lines 5

Faculdade de EngenhariaVoltage between the plates

b

y

z

x

W

voltage between the plates: zjebE β−−= 0

∫ ⋅−=−2

1

12

P

P

ldEVVrr

xeE

H

yeEE

zj

zj

ˆ

ˆ

0

0

β

β

η−

−=

=r

rinside the guide:

zjy eEE β−= 0

( ) ∫−=b

ydyEzV0

voltage à

Page 6: Transmission Lines - FEUP

EE 0809Lines 6

Faculdade de EngenhariaCurrent density on the plates

b

y

z

x

W

xeE

H

yeEE

zj

zj

ˆ

ˆ

0

0

β

β

η−

−=

=r

r

1

2

na

current density on the plates:

upper plate:

yan ˆˆ −=

inside the guide:

lower plate:

yan ˆˆ = 1

2

na

( )21ˆ HHaJ ns

rrr−×=

02 =Hr

xeEH zj ˆ01

β

η−−=

r( ) zeEbyJ zj

s ˆ0 β

η−−==

r

02 =Hr

xeEH zj ˆ01

β

η−−=

r ( ) zeEyJ zjs ˆ0 0 β

η−==

r

Page 7: Transmission Lines - FEUP

EE 0809Lines 7

Faculdade de EngenhariaCurrent on the plates

b

y

z

x

W

upper plate current:

∫ ⋅=A

sdJIrr

zjeEW β

η−−= 0

xeE

H

yeEE

zj

zj

ˆ

ˆ

0

0

β

β

η−

−=

=r

rinside the guide:

( ) zeEbyJ zjs ˆ0 β

η−−==

r

currentà

( ) ∫ ⋅=W

s zdxJzI ˆr

( ) zeE

byJ zjs ˆ0 β

η−−==

r

( ) zeE

yJ zjs ˆ0 0 β

η−==

r

current density:

lower plate current: zjeEW β

η−+= 0( ) ∫ ⋅=

Ws zdxJzI ˆ

r

Page 8: Transmission Lines - FEUP

EE 0809Lines 8

Faculdade de EngenhariaLossless transmission line equations

b

y

z

x

W

( ) zjebEzV β−−= 0

( ) zjeEWzI β

η−−= 0 zj

zj

eE

WjdzdI

ebEjdzdV

β

β

ηβ

β

=

=

0

0

εµη

εµωβ

=

=

VbW

jdzdI

IW

bj

dzdV

εω

µω

−=

−= ( )H/mW

bL

µ=

( )C/mbW

= VCjdzdI

ILjdzdV

ω

ω

−=

−=

0

0

22

2

22

2

=+

=+

LCIdz

Id

LCVdz

Vd

ω

ω

eqs. for V e I in a losslesstransmission line

Page 9: Transmission Lines - FEUP

EE 0809Lines 9

Faculdade de EngenhariaEquivalent circuit of a lossless transmission line

differential length ∆z of a transmission line:

zL∆

zC∆

z∆

i(z+∆z,t)i(z,t)

+ +

--v(z,t) v(z+∆z,t)

( )t

tzizLvL ∂

∂∆=

,

( )t

tzzvzCiC ∂

∆+∂∆=

,

( ) ( ) ( )

( ) ( ) ( ) 0,,

,

,,

,

=∆++∂

∆+∂∆+−

∆++∂

∂∆=

tzzit

tzzvzCtzi

tzzvt

tzizLtzv

Page 10: Transmission Lines - FEUP

EE 0809Lines 10

Faculdade de EngenhariaEquivalent circuit of a lossless transmission line

zL∆

zC∆

z∆

i(z,t)

+

-v(z,t)

( ) ( ) ( )

( ) ( ) ( ) 0,,

,

,,

,

=∆++∂

∆+∂∆+−

∆++∂

∂∆=

tzzit

tzzvzCtzi

tzzvt

tzizLtzv

( ) ( )

( ) ( )t

tzvCz

tzit

tziLz

tzv

∂∂=

∂∂−

∂∂=

∂∂−

,,

,, ( ) ( )

( ) ( )zVCjdz

zdI

zILjdz

zdV

ω

ω

=−

=−

0lim →∆z

phasor notation0

0

22

2

22

2

=+

=+

LCIdz

Id

LCVdz

Vd

ω

ω

same as before

Page 11: Transmission Lines - FEUP

EE 0809Lines 11

Faculdade de EngenhariaEquivalent circuit of a lossy transmission line

differential length ∆z of a transmission line:

zR∆ zL∆

zG∆zC∆

z∆

i(z+∆z,t)i(z,t)

+ +

--v(z,t) v(z+∆z,t)

( )( )

ttzi

zLv

tzizRv

L

R

∂∂

∆=

∆=,

,

( )( )

ttzzv

zCi

tzzvzGi

C

G

∂∆+∂

∆=

∆+∆=,

,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 0,,

,,

,,

,,

=∆++∂

∆+∂∆+∆+∆+−

∆++∂

∂∆+∆=

tzzit

tzzvzCtzzvzGtzi

tzzvt

tzizLtzizRtzv( ) ( ) ( )

( ) ( ) ( )t

tzvCtzvG

ztzi

ttzi

LtziRz

tzv

∂∂

+=∂

∂−

∂∂

+=∂

∂−

,,

,

,,

,0lim →∆z

Page 12: Transmission Lines - FEUP

EE 0809Lines 12

Faculdade de EngenhariaGeneral transmission line equations

( ) ( ) ( )

( ) ( ) ( )t

tzvCtzvG

ztzi

ttzi

LtziRz

tzv

∂∂

+=∂

∂−

∂∂

+=∂

∂−

,,

,

,,

,

( ) ( ) ( )

( ) ( ) ( )zVCjGdz

zdI

zILjRdz

zdV

ω

ω

+=−

+=−

general solution

i(z,t)

+

-v(z,t)

( )( )CjGLjR ωωγ ++=

( ) ( )

( ) ( )zIdz

zId

zVdz

zVd

22

2

22

2

γ

γ

=

=

βαγ j+= ( )( ) zz

zz

eIeIzI

eVeVzVγγ

γγ

−−+

−−+

+=

+=

00

00

propagation constant

attenuation constant

phase constant

phasor notation

Page 13: Transmission Lines - FEUP

EE 0809Lines 13

Faculdade de Engenharia

( ) zz eVeVzV γγ −−+ += 00

Attenuation and phase constants

±gV

−0V

+0V

gZ

z

+

−( )zV

( )zI

( ) ( ) tjzz eeVeVtzv ωγγ −−+ += 00Re,

( ) ( ) ztjzztjz eeVeeV βωαβωα +−−−+ += 00Re

−+00 and VVif are real

( ) ( )zteVzteV zz βωβω αα ++−= −−+ coscos 00

z

atenuation phase

Page 14: Transmission Lines - FEUP

EE 0809Lines 14

Faculdade de Engenharia

( ) zz eVeVzV γγ −−+ += 00

Voltage and current in transmission line

( ) ( ) ( )

( ) ( ) ( )zVCjGdz

zdI

zILjRdz

zdV

ω

ω

+=−

+=−

( ) zz eIeIzI γγ −−+ += 00

γωLjR

IV +

=+

+

0

0 only 2 constantsare required

4 constants required to define voltage and current

−=0

0

IV

++

+= 00 V

LjRI

ωγ

−−

+−= 00 V

LjRI

ωγ

±gV

−−00 , IV

++00 , IV

gZ

z

+

−( )zV

( )zI

Page 15: Transmission Lines - FEUP

EE 0809Lines 15

Faculdade de EngenhariaCharacteristic impedance

Characteristic impedanceà

( )Ω++

=CjGLjR

ωω

infinite lineà no reflections

ratio between voltage and current for an infinite length transmission line

( ) zeIzI γ−+= 0

( ) zeVzV γ−+= 0

γωLjR +

=

characteristic impedance

( )( )CjGLjR ωωγ ++=

±gV

−−00 , IV

++00 , IV

gZ

z

+

−( )zV

( )zI

+

+

=0

0

IV

( )zZ

( ) ( )( )zIzV

zZ = ( ) 0ZzZ =

note: in general 00

0

0

0 ZIV

IV

=−= −

+

+

Page 16: Transmission Lines - FEUP

EE 0809Lines 16

Faculdade de EngenhariaSummary

Propagation constantà ( )( ) ( )1m−++=+= CjGLjRj ωωβαγ

( )Ω++

=CjGLjR

Zωω

0

Propagation velocityà

Characteristic impedanceà

( )1ms −=βω

v

Wavelengthà ( )m2βπ

λ =

General case

•frequency dependent attenuation

•frequency dependent velocity

SIGNAL DISTORTION

Page 17: Transmission Lines - FEUP

EE 0809Lines 17

Faculdade de EngenhariaTransmission lines – special cases

LCjωγ =

CL

Z =0 LCv

1=

Lossless lines

NO DISTORTION

0== GR ( )( )CjGLjRj ωωβαγ ++=+=

CjGLjR

Zωω

++

=0 βω

=v

LCωβ

α

=

= 0

Distortionless linesCG

LR

=

( )LC

LjR ωγ +=

CL

Z =0LC

v1

=LC

LC

R

ωβ

α

=

=

•zero or constant attenuation•constant velocity•constant and real characteristic impedance

Page 18: Transmission Lines - FEUP

EE 0809Lines 18

Faculdade de EngenhariaTransmission-line parameters

In turn, these parameters depend on the line geometry and on the materials thatconstitute the line

Letσ à dielectric conductivityσC à conductor conductiviityε à electric permitivitty of the dielectricµ à magnetic permeability of the dielectricµC à magnetic permeability of the conductor

The behaviour of a transmission line depends on the operating frequency andon parameters R, L, G and C

Page 19: Transmission Lines - FEUP

EE 0809Lines 19

Faculdade de EngenhariaTransmission-line parameters

a

b

a

D

a

hW

2h

coaxial two-wire conductor over ground parallelplate

Page 20: Transmission Lines - FEUP

EE 0809Lines 20

Faculdade de EngenhariaFinite transmission lines

LLL IZV =

( ) ( ) ( )[ ]( ) ( ) ( )[ ]z

Lz

LL

zL

zLL

eZZeZZIZ

zI

eZZeZZIzV

γγ

γγ

000

00

21

21

−−+=

−++=

( )

( ) zozo

zo

zo

eZV

eZV

zI

eVeVzV

γγ

γγ

00

−−

+

−−+

−=

+=

±gV

gZ

0

+

−( )zV

( )zI

( )zZ

LZ+

−( )zV

( )zI

+

−LV

LI

zl−0

0

0

0

0 ZIV

IV

=−=−

+

+

( )( ) zz

zz

eIeIzI

eVeVzVγγ

γγ

−−+

−−+

+=

+=

00

00

00

0

0

ZV

ZV

I

VVV

oL

oL

−+

−+

−=

+= ( )

( )00

00

2121

ZZIV

ZZIV

LL

LL

−=

+=

+

0=z

Page 21: Transmission Lines - FEUP

EE 0809Lines 21

Faculdade de EngenhariaImpedance along the transmission line

z

LZ±gV

gZ

+

−( )zV

( )zI

( )zZ

+

−( )zV

( )zI

+

−LV

LI

( ) ( )( )

( ) ( )( ) ( ) z

Lz

L

zL

zL

eZZeZZeZZeZZ

ZzIzV

zZ γγ

γγ

00

000

−−+−++

== −

( ) ( ) ( )[ ]( ) ( ) ( )[ ]z

Lz

LL

zL

zLL

eZZeZZIZ

zI

eZZeZZIzV

γγ

γγ

000

00

21

21

−−+=

−++=

( ) ( ) ( )( ) ( ) L

zzzz

zzL

zz

ZeeZeeZeeZee

ZzZ γγγγ

γγγγ

−−+−−+

= −−

−−

0

00

( ) ( )( )zZZ

zZZZzZ

L

L

γγ

tanhtanh

0

00 −

−=

'z

( ) ( )( )'tanh

'tanh'

0

00 zZZ

zZZZzZ

L

L

γγ

++

=

xx

xx

eeee

x −

+−

=)tanh(

Page 22: Transmission Lines - FEUP

EE 0809Lines 22

Faculdade de EngenhariaInput impedance – lossless transmission line

z

LZ±gV

gZ

+

−( )zV

( )zI

( )zZ

+

−( )zV

( )zI

+

−LV

LI

'z

lossless line βγ j=( ) ( )xjjx tantanh =

( ) ( )( )'tan

'tan'

0

00 zjZZ

zjZZZzZ

L

L

ββ

++

=

length l

( )( )ljZZ

ljZZZZ

L

Lin β

βtantan

0

00 +

+=

( ) ( )( )'tanh

'tanh'

0

00 zZZ

zZZZzZ

L

L

γγ

++

=

Page 23: Transmission Lines - FEUP

EE 0809Lines 23

Faculdade de EngenhariaInput impedance of lossless transmission lines – special cases

lossless transmission line of length l ( )( )ljZZ

ljZZZZ

L

Lin β

βtantan

0

00 +

+=

0ZZ L = 0ZZ in =

∞=LZ ( )ljZZ in βcotg0−=

nl = Lin ZZ =

0=LZ ( )lanjZZ in βt0=

( )4

12λ

−= nlL

in ZZ

Z20=

always imaginary

Page 24: Transmission Lines - FEUP

EE 0809Lines 24

Faculdade de EngenhariaReflection coefficient at the load

Reflection coefficient (voltage)à ratio between reflected and incident voltages

( )( ) +

==

==Γ

00

0

VV

zV

zV o

inc

refL

at the load:

0

0

ZZZZ

L

LL +

−=Γ

( )

( )00

00

2121

ZZIV

ZZIV

LL

LL

−=

+=

+

Special cases:

0ZZ L = 0=ΓL

∞=LZ 1=ΓL

0=LZ 1−=ΓL

no reflections MATCHED LINE

Page 25: Transmission Lines - FEUP

EE 0809Lines 25

Faculdade de EngenhariaReflection coefficient at the load

0

0

ZZZZ

L

LL +

−=Γ

Notes:

1. For current

2. Most often, is complex àLΓ ΓΓ=Γ θjLL e||

Linc

refI

VV

II

I

IΓ−=−===Γ +

+

0

0

0

0

1

1

0

0

+

−=Γ

ZZZZ

L

L

L 11

+−

=ΓL

LL z

z

LL z

ZZ

=0

( )( ) LL

LL

jxrjxr

+++−

=11

LL jxr +=

1||, ≤ΓL

Page 26: Transmission Lines - FEUP

EE 0809Lines 26

Faculdade de EngenhariaReflection coefficient along the line

( )( ) +

==

==Γ

00

0

VV

zV

zV o

inc

refLat the load: ΓΓ=

+−

=Γ θjL

L

LL e

ZZZZ

0

0

along the line:( )( )

zLz

zo

inc

ref eeVeV

zV

zVz γ

γ

γ2

0

)( Γ===Γ −+

zz −='

'2)'( zLez γ−Γ=Γ

lossless line: βγ j= ( )'2)'( zjL ez βθ −ΓΓ=Γ absolute value is constant

Page 27: Transmission Lines - FEUP

EE 0809Lines 27

Faculdade de EngenhariaVoltage along the line

( ) zjzj eVeVzV ββ −−+ += 00

z

( ) ( ) ( )zjzjzj eeVeVVzV βββ −−−−+ ++−= 000

( ) ( ) ( )zVeVVzV zj ββ cos2 000−−−+ +−=

( )2

cosjxjx ee

x−+

=

propagating wave

stationary wave

Page 28: Transmission Lines - FEUP

EE 0809Lines 28

Faculdade de EngenhariaNote – propagating and stationary waves

•let ( ) zjAezV β−=•let ( ) ( ) ( )ztAAeeAetzv ztjtjzj βωβωωβ −=== −− cosReRe,

zpropagating wave

( ) ( )zAzV βcos=•let ( ) ( ) ( ) ( )tzAezAtzv tj ωββ ω coscoscosRe, ==

stationary wavez

nodes( v=0 for every t )

Page 29: Transmission Lines - FEUP

EE 0809Lines 29

Faculdade de EngenhariaVoltage along the line

( ) zjzj eVeVzV ββ −−+ += 00

z

propagating + stationary waves

( ) ( )zjL

zj eeVzV ββ 20 1 Γ+= −+

( ) ( )( ) ( )( )( )'2cos21

'2sin'2cos1'

20

220

zV

zzVzV

LL

LL

βθ

βθβθ

−Γ+Γ+=

−Γ+−Γ+=

Γ+

ΓΓ+

periodic termperiod=λ/2

( ) ( )( )( )'2'

0

'2'0

1

1'zj

Lzj

zjL

zj

eeV

eeVzVβθβ

ββ

−+

−+

ΓΓ+=

Γ+=

'z

Page 30: Transmission Lines - FEUP

EE 0809Lines 30

Faculdade de EngenhariaVoltage along the line - example

( ) ( )'2cos21'2

0 zVzV LL βθ −Γ+Γ+= Γ+

Let

( )m2m1

5.0

V1

1

4

0

πλβ

π

=⇒=

=

+

j

L e

V

0123456789100

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

minV

MAXV

Page 31: Transmission Lines - FEUP

EE 0809Lines 31

Faculdade de EngenhariaVoltage maxima and minima

•voltage minima: ( ) 1'2cos −=−Γ zβθ

( ) ( )'2cos21'2

0 zVzV LL βθ −Γ+Γ+= Γ+

•location: πβθ nzM 22 / −=−Γ ( )Γ+= θπβ

nzM 221/

n

z 0'≥

integer

•location: ( )πβθ 122 / +−=−Γ nzm ( )[ ]Γ++= θπβ

1221/ nzm

n

z 0'≥

integer

•value: LLVV Γ−Γ+= + 212

0min( )LVV Γ−= + 10min

•value: LLMAXVV Γ+Γ+= + 21

20 ( )LMAX

VV Γ+= + 10

•voltage maxima: ( ) 1'2cos +=−Γ zβθ

Page 32: Transmission Lines - FEUP

EE 0809Lines 32

Faculdade de EngenhariaVoltage along the line - example

( ) ( )'2cos21'2

0 zVzV LL βθ −Γ+Γ+= Γ+

Let

( )m2m1

5.0

V1

1

4

0

πλβ

π

=⇒=

=

+

j

L e

V

0123456789100

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

minV

MAXV

( ) 5.110 =Γ+= +LMAX

VV

( ) 5.010min=Γ−= +

LVV

85π

πλ

=28

/ ππ += nzM

85/ π

π += nzm

Page 33: Transmission Lines - FEUP

EE 0809Lines 33

Faculdade de EngenhariaSWR

SWR (Voltage Standing Wave Ratio)à ratio between voltage maxima and minima

( )( )L

LMAX

V

V

V

VSWR

Γ−

Γ+==

+

+

1

1

0

0

min L

LSWRΓ−

Γ+=

1

1

11

+−

=ΓSWRSWR

L

Note: 1≥SWR

Page 34: Transmission Lines - FEUP

EE 0809Lines 34

Faculdade de EngenhariaSWR – particular cases

0

0

ZZZZ

L

LL +

−=Γ

L

LSWRΓ−

Γ+=

1

111

+−

=ΓSWRSWR

L

Particular cases:

0ZZ L = 0=ΓL minVV MAX =

no reflections

no stationary wave

1=SWR 0=ΓL

matched line 1=SWR

1=SWR

Page 35: Transmission Lines - FEUP

EE 0809Lines 35

Faculdade de EngenhariaSWR – particular cases

0

0

ZZZZ

L

LL +

−=Γ

L

LSWRΓ−

Γ+=

1

111

+−

=ΓSWRSWR

L

Particular cases:

∞=LZ 1=ΓL

0=LZ 1−=ΓL ∞=SWR

( ) ++ =Γ+= 00 21 VVV LMAX

( ) 010min=Γ−= +

LVV

∞=SWR

+= 02VVMAX

0min

=V

Page 36: Transmission Lines - FEUP

EE 0809Lines 36

Faculdade de EngenhariaCurrent along the line

( ) zjzj eIeIzI ββ −−+ += 00

z

propagating + stationary waves

( ) ( )zjL

zj eeZV

zI ββ 2

0

0 1 Γ−= −+

( ) ( )( ) ( )( )

( )'2cos21

'2sin'2cos1'

2

0

0

22

0

0

zZ

V

zzZ

VzI

LL

LL

βθ

βθβθ

−Γ−Γ+=

−Γ−+−Γ−=

Γ

+

ΓΓ

+

periodic termperiod=λ/2

( ) ( )

( )( )'2'

0

0

'2'

0

0

1

1'

zjL

zj

zjL

zj

eeZV

eeZV

zI

βθβ

ββ

−+

−+

ΓΓ−=

Γ−=

'z

Page 37: Transmission Lines - FEUP

EE 0809Lines 37

Faculdade de EngenhariaCurrent maxima and minima

•current minima: ( ) 1'2cos =−Γ zβθ

( ) ( )'2cos21' 2

0

0z

Z

VzI LL βθ −Γ−Γ+= Γ

+

•location: ( )πβθ 12'2 +−=−Γ nz ( )[ ]Γ++= θπβ

1221

' nzn

z 0'≥

integer

•location: πβθ nz 2'2 −=−Γ ( )Γ+= θπβ

nz 221

'n

z 0'≥

integer

•value: LLZ

VI Γ−Γ+=

+

21 2

0

0

min( )LZ

VI Γ−=

+

10

0

min

•value: LLMAX Z

VI Γ+Γ+=

+

21 2

0

0 ( )LMAX Z

VI Γ+=

+

10

0

•current maxima: ( ) 1'2cos −=−Γ zβθ

Page 38: Transmission Lines - FEUP

EE 0809Lines 38

Faculdade de EngenhariaVoltage and current – maxima and minima location

( ) 1'2cos =−Γ zβθ

( ) ( )'2cos21' 2

0

0z

Z

VzI LL βθ −Γ−Γ+= Γ

+

( )[ ]Γ++= θπβ

1221/ nzm

n

z 0'≥

integer

( )Γ+= θπβ

nzM 221/

n

z 0'≥

integer

( ) 1'2cos −=−Γ zβθ

( ) ( )'2cos21' 20 zVzV LL βθ −Γ+Γ+= Γ+

máximos de tensãoe

mínimos de corrente

voltage maximaAND

current minima

voltage minimaAND

current maxima

Page 39: Transmission Lines - FEUP

EE 0809Lines 39

Faculdade de EngenhariaTransmission lines in circuits

±gV

gZ

0

LZ+

−inV

inI

+

−LV

LI

( )( )lzII

lzVV

VZIV

in

in

inging

−==−==

+=

( )

( ) zozo

zo

zo

eZV

eZV

zI

eVeVzV

γγ

γγ

00

−−

+

−−+

−=

+=

zl−+− Γ= 00 VV L

[ ][ ]l

Ll

in

lL

lin

eeZV

I

eeVV

γγ

γγ

2

0

0

20

1

1

−+

−+

Γ−=

Γ+=

( ) ( )[ ]lL

lLg

lg eZeZe

ZV

V γγγ 20

2

0

0 11 −−+

Γ++Γ−=

Page 40: Transmission Lines - FEUP

EE 0809Lines 40

Faculdade de EngenhariaTransmission lines in circuits

±gV

gZ

0

LZ+

−inV

inI

+

−LV

LI

zl−

( ) ( )[ ]lL

lLg

lg eZeZe

ZV

V γγγ 20

2

0

0 11 −−+

Γ++Γ−=

( )[ ]lLgg

gl

eZZZZ

VZeV

γ

γ

200

00 −

+

Γ−++=

0

0

ZZZZ

g

gg +

−=Γ (reflection coefficient at the source)

[ ]lLg

g

g

l

e

V

ZZZ

eVγ

γ

20

00

1 −

+

ΓΓ−+=

( )

( )

ΓΓ−Γ−

+=

ΓΓ−Γ+

+=

−−

−−

lLg

zLz

g

lg

lLg

zLz

g

lg

ee

eZZ

eVzI

ee

eZZ

eVZzV

γ

γγ

γ

γ

γγ

γ

2

2

0

2

2

0

0

11

11

voltage and current as functions of

LZload:

line:

source:

lZ ,,0 γ

gg ZV ,

Page 41: Transmission Lines - FEUP

EE 0809Lines 41

Faculdade de EngenhariaTransmission lines in circuits

±gV

gZ

0

LZ+

−inV

inI

+

−LV

LI

zl−

( )

( )

ΓΓ−Γ−

+=

ΓΓ−Γ+

+=

−−

−−

lLg

zLz

g

lg

lLg

zLz

g

lg

ee

eZZ

eVzI

ee

eZZ

eVZzV

γ

γγ

γ

γ

γγ

γ

2

2

0

2

2

0

0

11

11

( ) ( )( ) 122

0

0 11−−−

ΓΓ−Γ++

= lLg

zL

z

g

lg eee

ZZ

eVZzV γγγ

γ

( ) ( ) ( ) ( )

+ΓΓΓ+ΓΓ+ΓΓΓ+ΓΓ+Γ+

+= −−−−−−−

LzL

lLg

zlLg

zL

lLg

zlLg

zL

z

g

lg eeeeeeeeee

ZZ

eVZ γγγγγγγγγγγ

222222

0

0

( ) ( )

+ΓΓ+ΓΓ+Γ+

+= −−−

L222

0

0 1 lLg

lLg

zL

z

g

lg eeee

ZZ

eVZ γγγγγ

L++++=−

3211

1xxx

x

Page 42: Transmission Lines - FEUP

EE 0809Lines 42

Faculdade de EngenhariaTransmission lines in circuits

±gV

gZ

0

LZ+

−inV

inI

+

−LV

LI

zl−

( ) ( ) ( ) ( ) ( )

+ΓΓΓ+ΓΓ+ΓΓΓ+ΓΓ+Γ+

+= −−−−−−−

LzL

lLg

zlLg

zL

lLg

zlLg

zL

z

g

lg eeeeeeeeee

ZZ

eVZzV γγγγγγγγγγ

γ222222

0

0

( ) L++++++= −−+−−+−−+ zzzzzz eVeVeVeVeVeVzV γγγγγγ332211

−−+ Γ= 12

2 VeV lg

γ

+− Γ= 33 VV L

−−+ Γ= 22

3 VeV lg

γ

+2V

+− Γ= 22 VV L

−2V

g

lg

ZZ

eVZV

+=

−+

0

01

γ

+1V

+− Γ= 11 VV L

−1V

Page 43: Transmission Lines - FEUP

EE 0809Lines 43

Faculdade de EngenhariaTransmission lines in circuits

±gV

gZ

0

LZ+

−inV

inI

+

−LV

LI

zl−

( ) L++++++= −−+−−+−−+ zzzzzz eVeVeVeVeVeVzV γγγγγγ332211

+2V

−2V

+1V

−1V

( ) ( ) ( ) zzzz eVeVeVVVeVVVzV γγγγ −−+−−−−+++ +=+++++++= 00321321 LL

Page 44: Transmission Lines - FEUP

EE 0809Lines 44

Faculdade de EngenhariaPower in lossless transmission lines

( ) ( )( )( ) ( )( )'2'

0

0

'2'0

1'

1'

zjL

zj

zjL

zj

eeZV

zI

eeVzV

βθβ

βθβ

−+

−+

Γ

Γ

Γ−=

Γ+=

(lossless transmission line)

( ) ( ) ( ) ''Re21

' * zIzVzPav =

( ) ( )( ) ( ) ( )( )

Γ−Γ+= −−−+

−+ ΓΓ '2'

0

*0'2'

0 11Re21

' zjL

zjzjL

zjav ee

ZV

eeVzP βθββθβ

( ) ( )( ) '2'22

0

2

01Re

2zjzj

LL eeZ

Vβθβθ −−−

+

ΓΓ −Γ+Γ−=

( ) '2sin21Re2

2

0

2

0zj

Z

VLL βθ −Γ+Γ−= Γ

+

( ) ( ) constant12

' 2

0

2

0=Γ−=

+

Lav Z

VzP

incident reflected

Page 45: Transmission Lines - FEUP

EE 0809Lines 45

Faculdade de EngenhariaPower in transmission lines – general case

( ) ( )( )( ) ( )( )'2'2''

0

0

'2'2''0

1'

1'

zjzL

zjz

zjzL

zjz

eeeeZV

zI

eeeeVzV

βθαβα

βθαβα

−−+

−−+

Γ

Γ

Γ−=

Γ+=( ) ( ) ( ) ''Re

21

' * zIzVzPav =

( ) ( )( ) ( ) ( )( )

Γ−Γ+= −−−−+

−−+ ΓΓ '2'2''

0

*0'2'2''

0 11Re21

' zjzL

zjzzjzL

zjzav eeee

ZV

eeeeVzP βθαβαβθαβα

( ) '2sin21Re2

'2'42'2

0

2

0zejee

R

Vz

Lz

Lz βθααα −Γ+Γ−= Γ

−−+

( ) ( )'22'2

0

2

0

2' z

Lz

av eeR

VzP αα −

+

Γ−= ( ) ( )2

0

2

0, 1

20' LavLav R

VzPP Γ−===

+

( ) ( )lL

lavinav ee

R

VlzPP αα 222

0

2

0, 2

' −+

Γ−===

00 RZ =if

Page 46: Transmission Lines - FEUP

EE 0809Lines 46

Faculdade de EngenhariaProblem

formulae

Page 47: Transmission Lines - FEUP

EE 0809Lines 47

Faculdade de EngenhariaProblem

formulae

Page 48: Transmission Lines - FEUP

EE 0809Lines 48

Faculdade de EngenhariaProblem

formulae

Page 49: Transmission Lines - FEUP

EE 0809Lines 49

Faculdade de EngenhariaProblem

formulae

Page 50: Transmission Lines - FEUP

EE 0809Lines 50

Faculdade de Engenharia

( )

( ) 22

22

22

1

21

1

imre

imL

imre

imreL

x

r

Γ+Γ−

Γ=

Γ+Γ−

Γ−Γ−=

Load impedance ó reflection coefficient

11

+−

=ΓL

LL z

zwhere

0ZZ

z LL = (normalized load impedance)

00 RZjXRZ LLL

=+=

(lossless line)

LLL jxrz +=

imrej

LL je Γ+Γ=Γ=Γ Γθ

L

LLz

Γ−Γ+

=11

( )( ) imre

imreLL j

jjxr

Γ−Γ−Γ+Γ+

=+11

Page 51: Transmission Lines - FEUP

EE 0809Lines 51

Faculdade de Engenharia

reΓ

imΓ

( )

( ) 22

22

22

1

21

1

imre

imL

imre

imreL

x

r

Γ+Γ−

Γ=

Γ+Γ−

Γ−Γ−=

Load impedance ó refelction coefficient

22

2

11

1

+

=Γ+

+

−ΓL

imL

Lre rr

r

Lr+11

L

L

rr+1

( ) ( ) 220

20 Ryyxx =−+−

( )0

1=Γ

+=Γ

im

LLre rrcentered at

circle of radius ( )Lr+11

the reflection coefficients of all ZLwhose real part is rL are in this circle

Page 52: Transmission Lines - FEUP

EE 0809Lines 52

Faculdade de Engenharia

reΓ

imΓ

Load impedance ó reflection coefficient

22

2

11

1

+

=Γ+

+

−ΓL

imL

Lre rr

r

Note:

curve does not depend on xL

0=Γim 111

,, =Γ∨+−

=Γ rreL

Llre r

r

111

+−

L

L

rr

0=Lr 1, −=Γ lre

for any ZL

∞=Lr 1, =Γ lre

1−

open circuit

Page 53: Transmission Lines - FEUP

EE 0809Lines 53

Faculdade de Engenharia

reΓ

imΓ

( )

( ) 22

22

22

1

21

1

imre

imL

imre

imreL

x

r

Γ+Γ−

Γ=

Γ+Γ−

Γ−Γ−=

Load impedance ó reflection coefficient

( )2

2 111

=

−Γ+−Γ

LLimre xx

( ) ( ) 220

20 Ryyxx =−+−

circle of radius Lx1

Lim

re

x11

=Γ=Γcentered at

Lx1

Lx1

1

1≤ΓL

the reflection coefficients of all ZLwhose imaginary part is xL are here

Page 54: Transmission Lines - FEUP

EE 0809Lines 54

Faculdade de Engenharia

reΓ

imΓ

Load impedance ó reflection coefficient

Lx1

Lx1

1

Note:

curve does not depend on rL

( )2

2 111

=

−Γ+−Γ

LLimre xx

Lx1

0=Lx

0=Lx infinite radius

symmetrical curves for xL < 0

Page 55: Transmission Lines - FEUP

EE 0809Lines 55

Faculdade de EngenhariaSmith chart

reΓ

imΓ

1

xL constant

rL constant

Page 56: Transmission Lines - FEUP

EE 0809Lines 56

Faculdade de EngenhariaSmith chart

Page 57: Transmission Lines - FEUP

EE 0809Lines 57

Faculdade de Engenharia

Γθ

reΓ

imΓ

Smith chart

1

LZ

•from:

point in chart ( intersection of curves corresponding to rL and xL )

ΓθandLΓ

rL and xL

Lx

Lr

•from:

Page 58: Transmission Lines - FEUP

EE 0809Lines 58

Faculdade de EngenhariaReflection coefficient along the line

along the line:

zz −='

'2)'( zLez γ−Γ=Γ

lossless line: βγ j= ( )'2)'( zjL ez βθ −ΓΓ=Γ

reΓ

imΓ

1

constant magnitude

phase decreases with z’

toward generator

toward load

( )( ) 0

0)(ZzZZzZ

z+−

Note:

( )( )

zLz

zo

inc

ref eeVeV

zV

zVz γ

γ

γ2

0

)( Γ===Γ −+

Smith chart can be used to obtain from ( )zZ )(zΓ

Page 59: Transmission Lines - FEUP

EE 0809Lines 59

Faculdade de EngenhariaDistances in the Smith chart

in Smith chart the distances are measured as fractions of λ

reΓ

imΓ

1

toward generator

toward load

( )'2)'( zjL ez βθ −ΓΓ=Γ when πβ 2'2 =z

222

βπ

==z

a complete turn (360º)

corresponds to a distance = λ/2

initial position

Page 60: Transmission Lines - FEUP

EE 0809Lines 60

Faculdade de EngenhariaInput impedance

1. draw the point corresponding to the normalized load impedance zL à point P1

2. draw the circle centered at the origin with radius OP1

3. draw the straight line from O to P1

4. draw the straight line from O that corresponds to a rotation of l toward the generator

5. intersection of this line with previous circle à point P2

6. obtain , where zin is read from P2

reΓ

imΓ

1

0ZzZ inin ⋅=

P1

P2

Page 61: Transmission Lines - FEUP

EE 0809Lines 61

Faculdade de EngenhariaAdmittance

reΓ

imΓ

1

( ) ( )( )'tan

'tan'

0

00 zjZZ

zjZZZzZ

L

L

ββ

++

= ( )( ) LL

L

ZZ

jZZjZZ

ZzZ20

0

00 2tan

2tan4

' =++

=

=

ππλ

( )LZ

ZZ

Z 0

0

4=

λ( ) Lyz =4λ

º3602 ⇔λ

º1804 ⇔λ

1. draw zL

2. rotate 180º

Ly

Lz

Page 62: Transmission Lines - FEUP

EE 0809Lines 62

Faculdade de EngenhariaMaxima and minima location

( ) ( )'2cos21'2

0

0z

Z

VzI LL βθ −Γ−Γ+= Γ

+

( ) ( )'2cos21' 20 zVzV LL βθ −Γ+Γ+= Γ+

( ) 1'2cos =−Γ zβθ à voltage maxima and current minima

à voltage minima and current maxima( ) 1'2cos −=−Γ zβθ

( ) ( )'2' zjL ez βθ −ΓΓ=Γ

voltage maxima where ( ) πnz 2' =Γ∠

voltage minima where ( ) ( )π12' +=Γ∠ nz

Page 63: Transmission Lines - FEUP

EE 0809Lines 63

Faculdade de EngenhariaMaxima and minima location

reΓ

imΓ

1

voltage maxima where ( ) πnz 2' =Γ∠

voltage minima where ( ) ( )π12' +=Γ∠ nz

voltage maxima

voltage minima

Note:

1. maxima and minima where input

impedance is real

2. maxima (minima) points are separated

by nλ/2

Page 64: Transmission Lines - FEUP

EE 0809Lines 64

Faculdade de EngenhariaProblem

Page 65: Transmission Lines - FEUP

EE 0809Lines 65

Faculdade de EngenhariaProblem

Page 66: Transmission Lines - FEUP

EE 0809Lines 66

Faculdade de EngenhariaProblem

Page 67: Transmission Lines - FEUP

EE 0809Lines 67

Faculdade de EngenhariaProblem