Die Die FlugsteuerungFlugsteuerung des Hubschraubers Die ... · Die Flugsteuerung des Hubschraubers...

Post on 05-Jun-2018

228 views 2 download

Transcript of Die Die FlugsteuerungFlugsteuerung des Hubschraubers Die ... · Die Flugsteuerung des Hubschraubers...

Ku LX-E 28.10.04 Slide 1 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Die Flugsteuerung des Hubschraubersvon den Grundlagen bis zur Einzelblattsteuerung

Dr. Oliver KunzeProduktentwicklung LX-EZF Luftfahrttechnik GmbH

Praxis-Seminar LuftfahrtFachhochschule Hamburg

Hamburg, d. 28.10.2004

Die Die FlugsteuerungFlugsteuerung des des HubschraubersHubschraubersvon den von den GrundlagenGrundlagen bisbis zurzur EinzelblattsteuerungEinzelblattsteuerung

Dr. Oliver Dr. Oliver KunzeKunzeProduktentwicklungProduktentwicklung LXLX--EEZF Luftfahrttechnik GmbHZF Luftfahrttechnik GmbH

PraxisPraxis--Seminar Seminar LuftfahrtLuftfahrtFachhochschuleFachhochschule HamburgHamburg

Hamburg, d. 28.10.2004Hamburg, d. 28.10.2004

Ku LX-E 28.10.04 Slide 2 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Helicopter Flight Control – from primary to individual blade control

OverviewOverviewHistory / Configuration and History / Configuration and Performance of a HelicopterPerformance of a HelicopterMain Rotor / Main Rotor Control Main Rotor / Main Rotor Control DesignDesignProblems of the Main Rotor Problems of the Main Rotor

AerodynamicsAerodynamicsVibrationsVibrationsNoiseNoise

Individual Blade Control (IBC)Individual Blade Control (IBC)Principle of OperationPrinciple of OperationEffects in Wind Tunnel and Flight TestsEffects in Wind Tunnel and Flight TestsIBC System DesignIBC System Design

Conclusion and OutlookConclusion and Outlook

Ku LX-E 28.10.04 Slide 3 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Helicopter Flight Control – from primary to individual blade control

OverviewOverviewHistory / Configuration and History / Configuration and Performance of a HelicopterPerformance of a HelicopterMain Rotor / Main Rotor Control Main Rotor / Main Rotor Control DesignDesignProblems of the Main Rotor Problems of the Main Rotor

AerodynamicsAerodynamicsVibrationsVibrationsNoiseNoise

Individual Blade Control (IBC)Individual Blade Control (IBC)Principle of OperationPrinciple of OperationEffects in Wind Tunnel and Flight TestsEffects in Wind Tunnel and Flight TestsIBC System DesignIBC System Design

Conclusion and OutlookConclusion and Outlook

Ku LX-E 28.10.04 Slide 4 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Comparison of 1930 Aircraft Maturity, Helicopter vs. Fixed Wing

Do X giant seaplane:MTOW: 48to Distance: 2800km Endurance: 14h

Helicopter by C. d’Ascanio:Altitude: 18m Distance: 1078m Endurance: 8:45min

Ku LX-E 28.10.04 Slide 5 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Helicopter Standard Configuration

Ku LX-E 28.10.04 Slide 6 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Lockheed AH-56A Cheyenne Compound Aircraft

Ku LX-E 28.10.04 Slide 7 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Tiltrotor Aircraft Bell/Boeing V-22 Osprey

Ku LX-E 28.10.04 Slide 8 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Relative Power Required vs. Forward Speed

0

100

200

300

400

0 50 100 150 200

V [m/s]

P/m

[kW

/to]

Helicopter Compound

AirplaneTilt-Rotor

Ku LX-E 28.10.04 Slide 9 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Velocity Distribution over Rotor Disk (Advanced Ratio µ = ΩR / V)

Ku LX-E 28.10.04 Slide 10 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Helicopter Flight Control – from primary to individual blade control

OverviewOverviewHistory / Configuration and History / Configuration and Performance of a HelicopterPerformance of a HelicopterMain Rotor / Main Rotor Control Main Rotor / Main Rotor Control DesignDesignProblems of the Main Rotor Problems of the Main Rotor

AerodynamicsAerodynamicsVibrationsVibrationsNoiseNoise

Individual Blade Control (IBC)Individual Blade Control (IBC)Principle of OperationPrinciple of OperationEffects in Wind Tunnel and Flight TestsEffects in Wind Tunnel and Flight TestsIBC System DesignIBC System Design

Conclusion and OutlookConclusion and Outlook

Ku LX-E 28.10.04 Slide 11 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Rotor Blade Lift and Flap

Ku LX-E 28.10.04 Slide 12 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Blade Control System Using a Conventional Swashplate Arrangement

Ku LX-E 28.10.04 Slide 13 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Angle-of-Attack Distribution in Forward Flight

Level Flight

Ku LX-E 28.10.04 Slide 14 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Main Rotor Control SystemEurocopter (MBB) BO105

Primär-steuer,stehend

Taumel-scheibe

Pitch Horn

Steuer-stange

Ku LX-E 28.10.04 Slide 15 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Conventional Mechanical Primary Control System

Ku LX-E 28.10.04 Slide 16 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Main Rotor Sikorsky CH-53G

Ku LX-E 28.10.04 Slide 17 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Main Rotor Sikorsky CH-53G

Primär-steuerBooster

Pitch Horn Steuerstange (hier IBC-Aktuator)

Taumelscheibestehende Schere

Ku LX-E 28.10.04 Slide 18 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Main Rotor Control with SpiderWestland Sea Lynx MK88

Hub

PitchControlRod

SpiderArm

Spindle

Gimbal Joint

RollerBearings

Ku LX-E 28.10.04 Slide 19 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

NHI NH-90

Erstflug: 18. Dezember 1995Quadruplex fly-by-wire Steuerung

Ku LX-E 28.10.04 Slide 20 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Main Rotor Design – 1950/60s

AEROSPATIALE AS 341 Sikorsky S-58

Ku LX-E 28.10.04 Slide 21 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Main Rotor Design – Bell 412

Damper andFeather BearingLag Hinge

Virtual FlapHinge

Ku LX-E 28.10.04 Slide 22 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Helicopter Flight Control – from primary to individual blade control

OverviewOverviewHistory / Configuration and History / Configuration and Performance of a HelicopterPerformance of a HelicopterMain Rotor / Main Rotor Control Main Rotor / Main Rotor Control DesignDesignProblems of the Main Rotor Problems of the Main Rotor

AerodynamicsAerodynamicsVibrationsVibrationsNoiseNoise

Individual Blade Control (IBC)Individual Blade Control (IBC)Principle of OperationPrinciple of OperationEffects in Wind Tunnel and Flight TestsEffects in Wind Tunnel and Flight TestsIBC System DesignIBC System Design

Conclusion and OutlookConclusion and Outlook

Ku LX-E 28.10.04 Slide 23 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Limiting Phenomena Encountered bya Helicopter Rotor in Forward Flight

Mach Number Effects

Yawed Flow

Reversed Flow

Rotor Wake Interferences

Dynamic Stall Due to Blade Vortex Interaction

High Angles of Attack

Ku LX-E 28.10.04 Slide 24 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Helicopter Vibrations:Source ⇒ Flexible Structure ⇒ Reaction

Periodic and Impulsive Blade Loads

Flexible Rotor/Body Load Paths

Rigid Body MotionsStructural Modes

Flexible BladeCoupledEigenmodes

Ku LX-E 28.10.04 Slide 25 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Vibration Levels of 6 Different Helicopter Types (BO-105 4- and 5-Bladed, CH-53G Aluminium and IRB Blades, Tiger, UH-60)

0.0

0.1

0.2

0.3

0.4

0.5

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45Advance Ratio

n Bl/r

evVi

brat

ion

at P

ilot S

eat [

g]

NASA Recommen-dation

MIL-H-8501A (1962)

Ku LX-E 28.10.04 Slide 26 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Passive Vibration Absorber and Isolation Systems

Cabin AbsorberPendulum Absorber

Nodal BeamIsolation System

FlappingMass

FlexibleLeaf

CabinStructure

Bifilar Absorber

AntiresonanceIsolation System

Ku LX-E 28.10.04 Slide 27 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

BVI-Noise Generating Mechanism

Air Flow

Modified Vortex Strength

Reduced Pitch during BVI

ψ = 90°

ψ = 0°

Ku LX-E 28.10.04 Slide 28 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Example of Helicopter Rotor Sound Spectrum (l.h.s.) and Average Time History (r.h.s.)

Ku LX-E 28.10.04 Slide 29 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Helicopter Flight Control – from primary to individual blade control

OverviewOverviewHistory / Configuration and History / Configuration and Performance of a HelicopterPerformance of a HelicopterMain Rotor / Main Rotor Control Main Rotor / Main Rotor Control DesignDesignProblems of the Main Rotor Problems of the Main Rotor

AerodynamicsAerodynamicsVibrationsVibrationsNoiseNoise

Individual Blade Control (IBC)Individual Blade Control (IBC)Principle of OperationPrinciple of OperationEffects in Wind Tunnel and Flight TestsEffects in Wind Tunnel and Flight TestsIBC System DesignIBC System Design

Conclusion and OutlookConclusion and Outlook

Ku LX-E 28.10.04 Slide 30 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Individual Blade Control through Blade Rootor Trailing Edge Flap Actuation

Blade RootActuator Electrically

Driven TrailingEdge (Servo) Flap

Ku LX-E 28.10.04 Slide 31 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Individual Blade Control through BladeTwist or Trailing Edge Flap Actuation

Ku LX-E 28.10.04 Slide 32 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

IBC Blade Pitch Control with higherharmonic blade pitch movements

0

2

4

6

8

10

12

0 45 90 135 180 225 270 315 360

Rotor Head Azimuth Angle [°]

Bla

de P

itch

[°]

with IBC

primary control

IBC Blade PitchMovementcharacterization:

• frequency (2 .. 7 ΩRotor)

•amplitude (0..3..6°)

• phase (0..360°)

Ku LX-E 28.10.04 Slide 33 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Modification of Local Angle of Attack through IBC

Rotor Azimut Angle ψ [Deg.]

Res

ulta

nt A

ngle

of A

ttack

αre

sat

B

lade

Rad

ial S

tatio

n r/R

= 0

.7

[Deg

.]

with IBC

Baseline

0 90 180 270 360

y

x

r

ψΩ

15

10

5

0

-

-

+

+

++

Ku LX-E 28.10.04 Slide 34 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Principle Layout of IBC System

BLADE-ROOT IBCPITCH ACTUATORS

HYDRAULICPOWER PICK-UP

HYDRAULICMANIFOLD,

MONITORINGAND SHUT-OFF

A

B

ELEC. & HYDRAUL.ROTARY TRANSMISSION

CONVENTIONALFLIGHT CONTROL

SYSTEM

DIGITALCOMPUTER

HYDRAULICDISTRIBUTION

FEEDBACKSIGNALS

CONTROLPANEL

IBC POSITIONCOMMANDS

Ku LX-E 28.10.04 Slide 35 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

IBC Actuator Mounted between Swashplate and Blade Pitch Horn Replacing the Rigid Pitch Rod

Ku LX-E 28.10.04 Slide 36 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Full Scale UH-60 Rotor Wind TunnelTests conducted at NASA Ames

Ku LX-E 28.10.04 Slide 37 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

IBC Inputs and Test Conditions

Ku LX-E 28.10.04 Slide 38 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Large Wind Tunnel at NASA Ames Research Center

Ku LX-E 28.10.04 Slide 39 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Testbed BO-105 S1 with IBC System

Ku LX-E 28.10.04 Slide 40 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

IBC Testbed CH-53G 84+02 Operated by WTD 61

Ku LX-E 28.10.04 Slide 41 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Dynamic Components with IBC Mock-Up

Ku LX-E 28.10.04 Slide 42 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

IBC Data Processing and Control Computer (ZFL) and Data Gathering System (WTD 61)

Ku LX-E 28.10.04 Slide 43 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Effect of 0.15deg 5/rev IBC on 6/rev Accelerations at Main Gear Box and Pilot Seat @120kts

x y z

x y z

Pilot Seat

MGB

Ku LX-E 28.10.04 Slide 44 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Effect of 0.15deg 5/rev IBC on z-Vibration Spectrumat Pilot Seat @120kts

without IBC

with IBC

Ku LX-E 28.10.04 Slide 45 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

C.L. Test Sequence @70kts, Single Mode 5/rev IBC Controlled Variable: 6/rev AccPilz

CL

OLPhaseSweep

90%

refrefref

ref

Ku LX-E 28.10.04 Slide 46 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Predicted Multi Harmonic Vibration Reduction at Main Gear Box Based on Single Harmonic Flight Test Data (0.15deg IBC at 90kts)

G(AccHGx,AccHGy,AccHGz)

100

Vib

ratio

n R

educ

tion

[%]

Numerically Predicted 6/rev Vibration Reduction at Main Gear Box (All Three Axes) Due to Different IBC Frequency Combinations

80

60

40

20

06/rev 4, 6/rev 4, 6, 7/rev 4, 5, 6, 7/rev

0.35

Req

uire

dA

mpl

itude

s[d

eg]

0.30

Corresponding Amplitudes Required0.25

0.20

0.15

0.10

0.05

0.006/rev 4, 6/rev 4, 6, 7/rev 4, 5, 6, 7/rev

Ku LX-E 28.10.04 Slide 47 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Noise Reduction Due to 2/rev 0.66deg IBC at Three Microphones (65kts, -6deg, Optimum IBC Phase)

1031009794918885

Mic #2 (Retr. Side)

1031009794918885

Mic #1 (Center)

VIAS = 65kts, γ = -6°N

on-c

orre

cted

Sou

nd P

ress

ure

Leve

l[dB

]

1031009794918885

Mic #3 (Adv. Side)

-10 -8 -6 -4 -2 0 2 4 6 8 10

Time [sec] (t=0 at moment of highest sound pressure level)

Reference, no IBCA2 = 0.67°, ϕ2 = 30°

Ku LX-E 28.10.04 Slide 48 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Flight Performance Relevant Parameters During 2/rev IBC Phase Sweep

4500

4000

3500Alti

tude

[ft]

#1 #2 #3 #4 #5 #6 #7 #8Data Points

16 Revs≈ 5 sec

135

130

125

120VIA

S [k

ts]

Level Flight VIAS = 125kts, A2 = 0.67°w/o IBC ϕ2 = 0° = 60° = 120° = 180° = 240° = 300° = 359°

2600

2500

2400

2300

Pow

erQ

·Ω[k

W]

Ku LX-E 28.10.04 Slide 49 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Effect of 2/rev 0.66deg IBC on Power Required (125kts, Net Effect, Corrected by Speed, Accel. and Heave Effects)

IBC Phase Angle

-15.00

-10.00

-5.00

0.00

5.00

10.00

15.00

0 60 120 180 240 300 360

ϕ 2 [°]

∆P

[%] (

corr

ecte

d)

More Power Required

Less Power Required

Ku LX-E 28.10.04 Slide 50 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Reduction of Pitch Link / Actuator Load by Application of Optimum Phase 2/rev IBC (A2 = 0.66° ϕ2 = 270°)

Ku LX-E 28.10.04 Slide 51 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Helicopter Flight Control – from primary to individual blade control

OverviewOverviewHistory / Configuration and History / Configuration and Performance of a HelicopterPerformance of a HelicopterMain Rotor / Main Rotor Control Main Rotor / Main Rotor Control DesignDesignProblems of the Main Rotor Problems of the Main Rotor

AerodynamicsAerodynamicsVibrationsVibrationsNoiseNoise

Individual Blade Control (IBC)Individual Blade Control (IBC)Principle of OperationPrinciple of OperationEffects in Wind Tunnel and Flight TestsEffects in Wind Tunnel and Flight TestsIBC System DesignIBC System Design

Conclusion and OutlookConclusion and Outlook

Ku LX-E 28.10.04 Slide 52 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Integration of IBC-System into CH-53G Testbed

Ku LX-E 28.10.04 Slide 53 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

ZFL´s IBC Actuator Evolution

TSS

BO 105 F/T

UH-60A WT/T

CH-53G F/T

BO 105 WT/T

Ku LX-E 28.10.04 Slide 54 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

CH-53G IBC Experimental System Actuator Design

Ku LX-E 28.10.04 Slide 55 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

IDS IBC DC test bench with reversedkinematics non rotating ↔ rotating

11 kW electrical drive

electrical slip ring

torque/speed sensor

hydraulic manifold

4 IBC actuators

IBC DC pump

pump control unitin drive cage

Ku LX-E 28.10.04 Slide 56 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Adaptation of Existing IDS to Lynx Rotor Hub

Ku LX-E 28.10.04 Slide 57 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

InHuS: Innovative Integrated Primary and Individual Blade Control System for Helicopters

IDS:Integration of BothPrimary Control andIBC intoGearbox/Rotorhub

IBC:Hydraulic and ElectricalIndividual Blade Control Systems withHigh Bandwidth butLow Authority

InHuS:Control System in theRotating Frame at Blade Root, Combining BothPrimary Control and IBC Using One Actuation System

Ku LX-E 28.10.04 Slide 58 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

InHuS: Innovative Integrated Primary and Individual Blade Control System for Helicopters (preliminary design)

Ku LX-E 28.10.04 Slide 59 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Helicopter Flight Control – from primary to individual blade control

OverviewOverviewHistory / Configuration and History / Configuration and Performance of a HelicopterPerformance of a HelicopterMain Rotor / Main Rotor Control Main Rotor / Main Rotor Control DesignDesignProblems of the Main Rotor Problems of the Main Rotor

AerodynamicsAerodynamicsVibrationsVibrationsNoiseNoise

Individual Blade Control (IBC)Individual Blade Control (IBC)Principle of OperationPrinciple of OperationEffects in Wind Tunnel and Flight TestsEffects in Wind Tunnel and Flight TestsIBC System DesignIBC System Design

Conclusion and OutlookConclusion and Outlook

Ku LX-E 28.10.04 Slide 60 Praxis-Seminar Luftfahrt Proprietary InformationZFLuftfahrtechnik GmbH

Conclusion

Helicopter versatile aircraftHelicopter versatile aircraftComplex aerodynamics of main rotor in Complex aerodynamics of main rotor in forward flight causes performance forward flight causes performance restrictionsrestrictionsadvanced main rotor blade control can advanced main rotor blade control can reduce reduce vibationvibation & noise and extend flight & noise and extend flight envelopeenvelopeextensive research work on IBC effects extensive research work on IBC effects has been donehas been doneworldworld--wide development wide development activitesactivites of the of the helicopter industry in the field of helicopter industry in the field of application to production helicoptersapplication to production helicopters