The inhibition of automatic imitation: a meta-analysis and ...Kohinoor M. Darda and Richard Ramsey...

Post on 25-Aug-2021

0 views 0 download

Transcript of The inhibition of automatic imitation: a meta-analysis and ...Kohinoor M. Darda and Richard Ramsey...

PR

IFY

SG

OL

BA

NG

OR

/ B

AN

GO

R U

NIV

ER

SIT

Y

The inhibition of automatic imitation: a meta-analysis and synthesis offMRI studiesDarda, Kohinoor Monish; Ramsey, Richard

Neuroimage

DOI:10.1016/j.neuroimage.2019.04.059

Published: 15/08/2019

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA):Darda, K. M., & Ramsey, R. (2019). The inhibition of automatic imitation: a meta-analysis andsynthesis of fMRI studies. Neuroimage, 197, 320-329.https://doi.org/10.1016/j.neuroimage.2019.04.059

Hawliau Cyffredinol / General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/orother copyright owners and it is a condition of accessing publications that users recognise and abide by the legalrequirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of privatestudy or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ?

Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access tothe work immediately and investigate your claim.

09. Oct. 2020

Journal:

Title:Theinhibitionofautomaticimitation:ameta-analysisandsynthesisoffMRI

studies

KohinoorM.DardaandRichardRamsey

WalesInstituteforCognitiveNeuroscience,SchoolofPsychology,BangorUniversity,

Bangor,Gwynedd,Wales,LL572AS,UnitedKingdom

Correspondingauthor:r.ramsey@bangor.ac.uk

Keywords:fMRI;imitation-inhibition;meta-analysis.

2

Abstract

Humanscopyotherpeoplewithouttheirconsciousawareness,abehaviourknownas

automaticimitation.Althoughautomaticimitationformsakeypartofdailysocial

interactions,wedonotcopyotherpeopleindiscriminately.Instead,wecontrolimitative

tendenciesbyprioritisingsomeactionsandinhibitingothers.Todate,neuroimaging

studiesinvestigatingthecontrolofautomaticimitationhaveproducedinconsistent

findings.Somestudiessuggestthatimitationcontrolreliesonadomain-specificneural

circuitrelatedtosocialcognition(thetheory-of-mindnetwork).Incontrast,other

studiesshowengagementofadomain-generalneuralcircuitthatisengagedduringa

diverserangeofcognitivecontroltasks(themultipledemandnetwork).Giventhe

inconsistencyofpriorfindings,inthecurrentpaperweavoidedproblemsassociated

withinterpretingindividualstudiesbyperformingameta-analysis.Todoso,weuseda

multi-levelkerneldensityanalysistoquantitativelyidentifyconsistentpatternsof

activationacrossfunctionalmagneticresonanceimagingstudiesinvestigatingthe

controlofimitation.Ourresultsshowclearandconsistentevidenceacrossstudiesthat

thecontrolofautomaticimitationisguidedbybrainregionsinthemultipledemand

networkincludingdorsolateralfrontoparietalcortex.Incontrast,therewasonlylimited

evidencethatregionsinthetheoryofmindnetworkwereengaged.Indeed,medial

prefrontalcortexshowednoconsistentengagementandrighttemporoparietaljunction

engagementmayreflectspatialratherthanimitativecontrol.Assuch,thecurrentmeta-

analysisreinforcestheroleofdomain-generalcontrolmechanismsandprovideslimited

evidenceinsupportoftheroleofdomain-specificprocessesinregulatingimitative

tendencies.Consequently,neurocognitivemodelsofimitationneedupdatingtoplace

moreemphasisondomain-generalcontrolmechanisms,aswellastoconsidermore

3

complexorganisationalstructuresofcontrol,whichmayinvolvecontributionsfrom

multiplecognitivesystems.

4

Introduction

Theinvoluntarytendencyofhumanbeingstoimitateothers’gestures,speechpatterns,

andpostures,isknownasautomaticimitation(Heyes,2011).Ithasbeensuggestedthat

suchautomaticimitativebehaviourfunctionsasa“socialglue”asitincreasespro-social

behaviour,positiverapport,feelingsofaffiliationandlikingbetweeninteracting

partners(Kavanagh&Winkielman,2016;vanBaaren,Janssen,Chartrand,&

Dijksterhuis,2009;Lakin&Chartrand,2003;Chartrand&Bargh,2009;vanBaaren,

Holland,Steenaert,VanKippenberg,2003).Giventheinfluenceofimitationon

strengtheningsocialbonds,researchershavestartedtoinvestigatethepsychological

andbiologicalmechanismsthatunderpinimitation.Forexample,overthelast20years,

researchershaveusedfunctionalmagneticresonanceimaging(fMRI)inordertobetter

understandtheneuralunderpinningsofthecontrolofautomaticimitativetendencies.

However,thesestudieshaveprovidedmixedfindingsregardingthecontributionsof

domain-generalordomain-specificneuralnetworksinimitationcontrol.Thecurrent

paper,therefore,meta-analysesfMRIstudiestodateonthecontrolofautomatic

imitationinordertoprovideacombinedquantitativeestimateoftheextantevidenceof

manyindividualstudies(Lipsey&Wilson,2001).

Inthelasttwodecades,automaticimitationhasbeenwidelystudiedwithan

attempttointerconnectdifferentdisciplineslikecognitivescience,socialpsychology,

evolutionarybiology,andcognitiveneuroscience(Prinz&Meltzoff,2002;Chartrand&

Bargh,1999;Byrne&Russon,1998).Thisconvergenceacrossmultipledisciplineshas

allowedforarangeofperspectivesonimitationtoemergeinwhichtheoryand

empiricaldatacanstrengtheneachother.Insocialpsychology,automaticimitationhas

beenstudiedinnaturalisticsocialinteractions(Chartrand&Lakin,2013).Alongwith

functioningasa“socialglue,”researchperformedinmorenaturalistsettingssuggests

5

thatimitationbehaviourisalsomoderatedbyothervariablesincluding,butnotlimited

to,personalityvariables,self-construal,goaltoaffiliateordisaffiliate,culturalandsocial

contexts,aswellasthesimilarity,familiarity,andstatusofthepersonbeingimitated

(Chartrand&Lakin,2013;Caspersetal.,2010;Duffy&Chartrand,2015).

Eventhoughautomaticimitationseemstobeanimportantbehaviourthat

facilitatessocialinteractions,wedonotalwayscopyothers’behaviours.Inmany

situations,imitationcanbemaladaptive,anditisessentialtocircumventthetendency

toautomaticallyimitate(Cross&Iacoboni,2014;Cross,Torrisi,Losin,&Iacoboni,2013;

vanSchie,vanWaterschoot,&Bekkering,2008;Newman-Norlund,vanSchie,van

Zuijlen,&Bekkering,2007).Thisneedtoregulateimitativetendenciesindicatesthe

existenceofaselectionmechanismthatinhibitsunwantedactions,andprioritises

alternatives(Brassetal.,2009).Thus,imitationcontrolcanbedividedintoatleasttwo

componentprocesses–actionrepresentationandactionselection.Weobservean

interactionpartnerandtheiractions(representation),andthenselecttheactionthat

needstobeexecuted(selection).

Incontrasttosocialpsychologyapproaches,researchersinthefieldofcognitive

psychologyandneurosciencehavegenerallyusedcomputer-basedreaction-time(RT)

measuresoftheinhibitionofautomaticimitation(Brassetal.,2000;Stürmeretal.,

2000).Oneofthemostcommonlyusedtasksinthisfieldconsistsinmakingfinger

movementswhilesimultaneouslyobservingacompatibleorincompatiblefinger

movement(Brassetal.,2000).Forexample,participantsmaybeaskedtomakeafinger

movementinresponsetoanimperativecuei.e.theyareinstructedtolifttheirindex

fingerwhentheyseeanumber‘1’onscreen,andtheirmiddlefingerwhentheyseea

number‘2.’Simultaneously,participantsalsoobserveatask-irrelevantindexormiddle

6

fingermovement,whichiscompatibleorincompatiblewiththeirownresponse.Other

variantsofthistaskincludehandopeningandclosingmovementsinsteadoffinger

movements(Pressetal.,2005;Wangetal.,2011)orpre-specifyingtheparticipant’s

responsebeforetheimperativecue(i.e.participantsareaskedtoalwayslifttheirindex

fingerwhentheyseeafingermovement;Brass,Bekkering&Prinz,2001;Heyesetal.,

2005).Inthesevariantsaswell,participantsobserveahandorfingermovementwhich

iscompatibleorincompatiblewiththeirownresponse.Irrespectiveofthetaskused,

greatercognitiveresourcesarerequiredwheninhibitingmovementsincompatibleto

one’sownresponses,thusleadingtogreaterRTs(Heyes,2011;Brass&Heyes,2005).

Thedifferencebetweentheincompatibleandcompatibleconditions(referredtoasthe

generalcompatibilityeffect)issaidtobeameasureofimitationcontrol(Heyesetal.,

2005;Heyes,2011).

Todate,anumberofneuroimagingstudieshaveinvestigatedtheneural

mechanismsofimitationcontrolusingRTparadigms.However,theevidence

demonstratingtheextenttowhichRTparadigmsofimitationcontrolengagedomain-

generalordomain-specificneuralnetworksismixed.Domain-specificprocesses

operateonparticulartypesofstimulioraspectsofcognition,whiledomain-general

processesoperateacrossarangeofstimuliandtasks(Barett,2012;Spunt&Adolphs,

2017).Oneoftheprevailingtheoriesofautomaticimitationproposesthatimitation

controlreliesonadomain-specificneuralcircuitrelatedtosocialcognition(Brassetal.,

2009).This“specialist”theoryhasgainedtractionwithevidencefrompatientand

neuroimagingdatapointingtotheengagementoftwokeycandidateregions–the

anteriormedialprefrontalcortex(mPFC)andtherighttemporoparietaljunction(rTPJ)

(Brass&Heyes,2005;Brassetal.,2009).Forexample,mPFCandrTPJhavebeen

7

engagedinhumanbrainimaginginvestigationsofimitationinhibition(Brassetal.,

2001;2005;2009;Spengleretal.,2009;Wangetal.,2011).Brassandcolleaguesfurther

proposedadissociationofrolesforthemPFCandrTPJduringimitationcontrol-the

rTPJdistinguishesbetweenself-andother-generatedactions,andthemPFCenforces

theself-generatedactionwhenfacedwithconflictfromanactionrepresentation

generatedbyanotheragent(Brassetal.,2009).Inaddition,patientswithfrontallobe

lesionsshowdisruptedimitationinhibitionbehaviour(Brassetal.,2003;Spengleretal.,

2010)andanincreasedtendencytoautomaticallyimitateevenwhentheyareclearly

instructedtonotdoso(Lhermitteetal.,1986).Moreevidencefortheinvolvementof

rTPJcomesfromneuro-stimulationstudies:inhibitingtheactivityintherTPJby

transcranialmagneticstimulation(TMS)interferedwithimitativeresponsesimpairing

imitationinhibition(Hogeveenetal.,2014;Sowden&Catmur,2015).Irrespectiveofthe

methodused,itisworthnotingthat,todate,therehaveonlybeenasmallnumberof

studiesimplicatingmPFCandrTPJinthecontrolofimitation.Moreover,thesestudies

haveusedrelativelysmallsamplesizesbetween10and25participantsandtherehave

beenfew,ifany,directreplications.Therefore,thesumtotalofevidenceformPFCand

rTPJengagementduringimitationcontrolissuggestiveratherthancompelling.

Alongwithimitativecontrol,neuroimagingfindingssuggestmPFCandrTPJare

alsoengagedinavarietyofsocio-cognitivetasksthatareassociatedwiththeoryof

mind,includingdistinguishingbetweenselffromother,perspectivetaking,aswellas

attributingbeliefs,desiresandattitudestoothers(ToM;Gallagheretal.,2000;Amodio

&Frith,2006;Ruby&Decety,2001;Aichhornetal.,2006;Decetyetal.,2002;

Santiestebanetal.,2012;Brassetal.,2009;Spengleretal.,2010).Basedonthese

findings,self-othercontrolprocesseshavethusbeenproposedasacandidate

8

mechanismforarangeofsocio-cognitivefunctions.Forexample,itisimportantto

inhibitone’sownperspectiveormentalstateandenhancethatoftheotherwhen

empathisingwithothers,takingtheirperspective,orengagingasuccessfultheory-of-

mind(deGuzmanetal.,2016;Sowden&Shah,2014).Further,atypicalself-other

controlhasbeenlinkedtodisorderscharacterisedbysocialdysfunctionincluding

autismandschizophrenia(CookandBird ,2012;Ferrietal.,2012).Overall,this

evidencesuggeststhatinimitationcontrol,itiscrucialtoinhibittherepresentationof

theother’saction,andenforceyourown,andthismechanismisguidedbyadomain-

specificneuralcircuituniquetosocialcognition(Brassetal.,2009).

Incontrasttothis“specialist”viewofimitationcontrol,however,“generalist”

theoriesofimitationsuggestthattheinhibitionofautomaticimitationdoesnotdiffer

fromanyotherpre-potenttendenciesorgeneralcognitivefunctions(Heyes,2011;

Cooperetal.,2013).MultiplecognitivecontroltasksliketheFlanker,Stroop,andSimon

tasks,whichrequiretheinhibitionofautomaticoverlearnedresponsetendencies,have

beenfoundtoengageadomain-generalcontrolnetworkidentifiedinthedorsolateral

fronto-parietalcortices(Aronetal.,2014;Bungeetal.,2002;Hazeltineetal.,2007;Nee

etal.,2007;Wageretal.,2005).Thisnetworkisalsocalledthemultipledemand(MD)

networkasitisengagedacrossadiversityofmentaloperations(Duncanetal.,2010).

Acrossstudiesthatinvestigateimitationinhibition,somehavefoundengagementofthe

mPFCandrTPJ(Brassetal.,2001;2005;2009;Spengleretal.,2009),whereasothers

showengagementoftheMDnetwork(Bien,Roebroeck,Goebel,&Sack,2009;

Crescentini,Mengotti,Grecucci,&Rumiati,2011;Cross&Iacoboni,2013;Mengotti,

Corradi-Dell’Acqua,&Rumiati,2012;Marshetal.,2016).However,mostpreviousfMRI

studieshavebeenlimitedbylowstatisticalpowerandsmallsamplesizes.More

9

recently,amulti-experimentstudyusinglargersamplesizes(N=28,N=50)anda

functionalregionofinterest(fROI)approachthatbolstersstatisticalpowerand

functionalsensitivityhasshownthatimitationcontrolengagesonlytheMDnetwork,

andnotmPFCorrTPJ(Darda,Butler&Ramsey,2018).Indeed,evenwithanapriori

poweranalysisensuring80%powertodetectmediumeffectsizes,Dardaand

colleagues(2018)didnotevenfindadirectionaltrendtosuggestthattheToMnetwork

wasdirectlyengagedduringimitationcontrol.

Asmentionedbefore,imitationcontrolcanbedividedintoatleasttwo

componentprocesses–actionrepresentationandactionselection.Theabovereviewof

literaturesuggeststwopossibleneuralmechanismsasbeingkeytoactionselection

duringimitationcontrol.Ononehand,duringimitationcontrol,theneural

representationgeneratedbytheobservedperson’sactionisinhibited,andtheself-

generatedactionisselectedandenforcedandthisselectionmechanismengagesa

domain-specificneuralnetworki.e.themPFCandrTPJ.Ontheotherhand,theselection

mechanismmaybeguidedbyadomain-generalneuralnetworki.e.theMDnetwork.In

bothpossiblemechanisms,theinputisthesamei.e.theobservedpersonandaction

mayengagedomain-specificsocio-perceptualneuralcircuits.However,thedifference

liesintheselectionorcontrolmechanismthatunderliestheinhibitionofautomatic

imitativetendencieswhichfinallyleadstoconsequentbehaviour(seegraphical

representationinFigure1).

Thequestionofinterestforthecurrentmeta-analysis,therefore,liesatthe

selectionstageofimitationcontrolwiththeevidencetodateforengagementofdomain-

specificanddomain-generalneuralnetworksbeinginconsistent.Eventhoughthemost

statisticallypowerfulfMRIstudytodateonlyshowstheengagementoftheMDnetwork

10

(Dardaetal.,2018),theinterpretationofindividualstudiesremainslimitedinscopefor

severalreasons.First,manysinglestudiesarelikelytobeunderpoweredleadingto

missedorspuriousresults(Buttonetal.,2013).Second,empiricalworkinvolvesdesign

choicesthatstronglyinfluenceresults,makingithardertogeneraliseeffectsacross

analysispipelinesanddifferingexperimentalprocedures(Carp,2012).Giventhe

inconsistencyofpriorfindingsandtheabsenceofaquantitativesynthesisofevidence,

takingameta-analyticalapproachtofurtherinvestigatetheneuralbasisofimitation

hasmanybenefits(Cumming,2014).Assuch,bymeansofameta-analysis,thecurrent

paperenablesthedetectionofconsistentpatternsofactivationacrossstudies.

Inordertoquantifytheconsistencyandspecificityofregionalactivationfor

imitationcontrolacrossstudies,weperformedamulti-levelkerneldensityanalysis

(MKDA;seeMethodsandMaterialsfordetails).WeincludedallfMRIstudies(N=12)

investigatingimitationcontrolusingtheRTmeasureofimitationinhibition(seeTable

1).Ourprimarymeasureaimedtoquantifytheconsistencyofregionengagement

acrossstudieswithparticularfocusontheengagementoftheToMnetworkandtheMD

network.Thedependentvariablewasthebloodoxygenleveldependent(BOLD)

responsemeasuredintheincludedfMRIstudies.Giventhepriormixedfindingsacross

studies,thismeta-analysisaimedtoquantifytheextenttowhichToM,MDorboth

neuralnetworksmaybeengagedwhenduringtheinhibitionofautomaticimitation.

Wealsorantwomoreexploratoryanalyses,whichwerebasedonasmallsubset

ofthetotalstudies.Themostcommonmeasureofimitationinhibition,thegeneral

compatibilityeffect,alsoincludesaspatialcomponent(Heyes,2011).Inorderto

measureimitativecompatibilitymorespecifically,therefore,imitativeandspatial

effectsneedtobedissociated(Gowenetal.,2016;Boyeretal.,2012;Catmur&Heyes,

11

2011).However,onlyafewfMRIstudieshavemeasuredtheimitativecompatibility

effectindependentofthespatialcomponent(Dardaetal.,2018;Marshetal.,2016;

Crossetal.,2013).ThismakesitdifficulttointerprettherolesoftheToM(mPFCand

rTPJ)andMDnetworksinimitationcontrol–theirengagementcouldreflectbothsocial

(imitative)and/ornon-social(spatial)control.Indeed,therTPJhasbeenpreviously

associatedwithorientingtobothsocialandnon-socialstimuli(Corbettaetal.,2008;

Thieletal.,2004).Thus,giventhatonlyafewstudieshavedissociatedbetween

imitative(N=3)andspatialcompatibility(N=4)effects,wealsorantwofurther

exploratoryMKDAsinordertoquantifyconsistencyofpatternsacrossstudiesforboth

imitativeandspatialcompatibilityeffects.Indeed,giventhelownumberofstudies

includedinthesecondaryanalyses,theseresultsprovideonlysuggestive,andnot

compelling,evidenceregardingtheroleoftheMDandToMnetworksinimitativeand

spatialcontrol.

MethodsandMaterials

Literaturesearchanddatacollection

Inthecurrentpaper,wefollowrecentguidelinesputforwardformeta-

analysingneuroimagingstudies(Mulleretal.,2018).FMRIstudiesexploringthe

inhibitionofautomaticimitativetendenciesweresearchedforontheonlinedatabase

PubMed,aswellasthearticlesearchengineGoogleScholar.Combinationsofkeywords

including‘imitationinhibition,’‘fMRI,’‘imitation,’‘automaticimitation,’and‘imitation

control’wereusedtoidentifyrelevantliterature(priortoJanuary2019).Atotalof15

studieswerefound.Werejectedstudiesiftheprimarymethodofinvestigationwasnot

fMRI,ifthestudydidnotreportresultsinstereotacticcoordinatespace(either

MontrealneurologicalInstitute(MNI)orTalaraichcoordinates)(N=1;Bienetal.,2009),

12

ifreportedresultswerebasedonregion-of-interest(ROI)analyses,andthestudydid

notreportwhole-brainanalysiscoordinateseitherinthemainarticleorin

supplementarymaterials(orwecouldnotobtainthemfromtheauthors)(N=1;Brasset

al.,2009),andifthestudyinvolvedchildrenoratypicalpopulations(andthe

coordinatesforcontrolswerenotreportedseparately)(N=1;Spengler,Bird,&Brass,

2010).

Awidevarietyofcontrastsareusedinstudiesthatinvestigatetheinhibitionof

automaticimitation.However,inordertominimiseheterogeneity,studiesthatuseda

paradigmthatwasnotbasedonorwasnotconceptuallysimilartotheBrassetal.

(2000)paradigmformeasuringinhibitionofautomaticimitationwerealsoexcluded.

Thus,12studieswithatotalof300participantswereincludedinthemeta-analysis(see

Table1).

Eventhoughourmainanalysiswasonthegeneralcompatibilityeffect,wealso

rantwoseparatemeta-analysesforspatialandimitativecompatibility.Table2

summarisesthecontrastsusedinthecurrentmeta-analysisforgeneral,spatial,and

imitativecompatibilityeffects.Atotalof13contrastsacross12studieswith142foci

wereusedforgeneralcompatibility,4contrastsacross4studieswith42fociwereused

forspatialcompatibility,andatotalof3contrastsacross3studieswith20fociwere

usedforimitativecompatibility.

Dataanalysis

AllanalysesinthecurrentpaperwereperformedinMatlabR2015b

(Mathworks,Naticks,MA)usingtheMKDAtoolboxdevelopedbyWageretal.,2007;

http://wagerlab.colorado.edu).MKDAisananalysistechniquethatusesarandom

effectsmodeltoassessconvergenceacrossstudies.Thisallowsforassessing

convergenceacrossstudiesasopposedtobetweenindividualfoci(asimplementedin

13

classicalmeta-analysistechniquesthatusefixedeffectsanalyses).Thus,resultsarenot

biasedbyasmallnumberofindividualstudies.Further,eachcontrastisweightedby

thesamplesizeandstudyquality(i.e.whetherthestudyusedfixedorrandomeffects

model;Wageretal.,2007;KoberandWager,2010).

MKDAwasperformedonallthreecompatibilitytypesseparately.Before

performingtheanalyses,weextractedthefollowinginformationfromeachstudyand

includeditinourdatabase:authors,yearofpublication,samplesize,taskcontrasts,

fixedorrandomeffectsmodel,andMNIorTalaraichco-ordinates.Co-ordinates

reportedinTalairachspacewereconvertedtoMNIstereotacticspaceusingLancaster

transformation(tal2icbmtransform;Lancasteretal.,2007).Peakcoordinatesfromeach

contrastmapwerethenconvolvedwitha10mmsphericalkernelinordertocreatea

contrastindicatormap(CIM).Theresultingvoxelswithin10mmofthepeakwere

deemed“significant”andgivenavalueofone;othervoxelsweregivenavalueofzero

whichindicatednosignificanteffect.Adensitymapwasthencreatedbyaveragingthe

indicatormaps,weightedbysamplesize,andwhetherthestudyusedafixedorrandom

effectsmodel.Morespecifically,asrecommendedbyWagerandcolleagues(Wager,

Lindquist,&Kaplan,2007),thisdensitymapwasweightedbythesquarerootofthe

samplesizeofthestudy,andthenmultipliedbyanadjustmentfactorof1forrandom

effectsanalysis,and.75forafixedeffectsanalysis.

EachvoxelofthedensitymapwasgivenadensitystatisticP.Pstandsforthe

proportionofcontrastsincludedintheanalysisthatshowactivitywithin10mmofthe

voxel.AMonteCarlosimulation(with5000iterations)wasthencarriedoutinorderto

identifyvoxelsthathadaP-statisticthatwashigherthanthefrequencypredictedby

chance.Thiswastestedagainstthenullhypothesisthatactivatedregionsinthe

resultingpairwisecontrastmaps(fromthe5000iterations)wererandomlydistributed

14

acrossthebrain.Totestforthesignificanceoftheclustersize,asimilarprocedurewas

used.Thisallowedfortheidentificationofathresholdforclustersizeatwhichaspecific

numberofvoxelsneededtobeactivatedcontiguouslysothattheclustercouldbe

deemedsignificant.

Inordertomaximisesensitivityintestingourhypotheses,wereportresults

usingtwothresholdingtechniques.Onethresholdingtechniqueisbasedonheightand

theotherisbasedonclustersize.FortheweightedP-statistic(height-basedthreshold),

thefamilywiseerror(FWE)correctedthresholdistheproportionofstudieswhich

yieldedactivitywithin10mmofavoxelthatshowedahigherP-statisticthanthe

maximumP-statisticacross95%oftheMonteCarlomaps.Fortheclustersize

threshold,theFWEcorrectedthresholdisthecontiguousvoxelsobservedattwo

differentthresholds(p<.001andp<.01)whoseclustersizeismorethantheextentof

clustersfoundacross95%oftheMonteCarlomaps.Weusetwocluster-based

thresholdsinordertoalsodetectregionsthatshowalowerresponseinmagnitudeover

alargerclustersizebothatmorestringent(p<.001)andlessstringent(p<.01)

thresholds.Voxelsthatexceedtheheight-basedthresholdinouranalysisappearonthe

resultingmapsinFigure2inyellow,andthosethatexceedtheclusterextent-based

thresholdappearinorange(p<.001)andred(p<.01).

Intheresultingtable(Table3),peakactivationfocithatpasstheheight-based

thresholdarereported.Ifactivationsdonotpasstheheight-basedthreshold,fociofthe

cluster-extent-basedthresholdingarereported.Thenumberofvoxelsineachcluster

thatsurvivedheight-basedand/orextent-basedthresholdingisalsoreported.Resulting

coordinateswerelocalisedusingtheSPMAnatomyToolbox(Eickhoffetal.,2005).The

databaseofco-ordinates,andcodeusedtoperformthemeta-analysisareavailable

online(https://osf.io/dbuwr/).

15

Results

Forthegeneralcompatibilityeffect,across13contrastsfrom12studies,

consistentactivationwasfoundinrightinferiorparietallobule,rightsupramarginal

gyrus,rightsuperiortemporalgyrus,andrighttemporo-parietaljunction(seeTable3;

Figure2A).Theseclusterssurvivedbothheight-basedandthemorestringentextent-

basedthresholding(p<.001).Activationwasalsofoundinrightsuperiorfrontalgyrus,

andrightmiddlefrontalgyrus,whichsurvivedbothheightandthelessstringentextent-

basedthresholding(p<.01).Activationintheleftandrightinsulasurvivedthemore

stringentextent-basedthreshold(p<.001),butnottheheight-basedthreshold.

ActivationintherightIFGsurvivedthelessstringentextent-basedthreshold(p<.01)

butnottheheight-basedthreshold.

WerantwofurtherMKDAsseparatelyforspatialandimitativecompatibility.

Forspatialcompatibility,across4contrastsfrom4studies,wefoundconsistent

activationthatwithstoodtheheight-basedthresholdingintheleftIPLandtherightSFG

(seeTable3;Figure2B).Noregionswithstoodcluster-basedthresholding.Forimitative

compatibility,across3contrastsfrom3studies,wefoundconsistentactivationinthe

leftIPLthatsurvivedheight-based(seeTable3;Figure2C).Activationwasalsofoundin

therightIPL,whichwithstoodheight-basedaswellasthelessstringentextent-based

thresholding(p<.01).

Thesedensitymapsshowingregionsthatwithstoodbothheightand/orcluster-

extentthresholdingforeachcompatibilitytypewerethenoverlaidwiththeToMand

MDnetworkmasksseparately.TheToMnetworkmaskconsistedoffourparcels

includingthedorsal,medial,andventralmedialprefrontalcortex(DMPFC,MMPFC,

VMPFC),andtherighttemporo-parietaljunction(rTPJ),whichhavepreviouslybeen

implicatedinmentalisingortheory-of-mind(Dufouretal.,2013).FortheMDnetwork

16

mask,16parcelswereusedwhichincludedareasinbilateralsuperiorandinferior

parietallobules(SPL,IPL),intraparietalsulcus(IPS),inferiorandmiddlefrontalgyrus

(IFG,MFG),precentralgyrus(PrecG),insula(Ins),andthesupplementarymotorarea

(SMA)(availableat:https://evlab.mit.edu/funcloc/download-parcels).Overlayofthe

densitymapswiththeToMandMDnetworkmasksallowedforidentificationofoverlap

betweenregionsthatwereconsistentlyactivatedintheMKDAandtheToMandMD

networks(Figure3).Forallcompatibilitytypes(general,imitativeandspatial),all

regionsthatpassedheightorextent-basedthresholdingoverlappedwithregionsinthe

MDnetwork(Figure3A).Additionally,onecluster,whichshowedconsistentactivation

forgeneralcompatibility,alsooverlappedwiththerightTPJintheToMnetwork(Figure

3B).TherewasnooverlapwiththemPFCnodeoftheToMnetworkforany

compatibilitytype.

InordertobreakdowntheroleoftherightTPJingeneralcompatibility,we

performedafurther,moreexploratoryanalysis.Wecomparedpeakcoordinatesfrom

priorstudieswitharightTPJmask,whichhasbeenpreviouslyimplicatedintheory-of-

mind(Dufouretal.,2013).Todoso,theToMnetworkmaskforrTPJwasoverlaidwith

thecontrastindicatormapsofallstudiesusedforimitative(N=3)andspatial(N=4)

compatibility.Thecontrastindicatormapsinclude10mmsphericalkernelsaround

peakcoordinatesofeachcontrast.Thisallowscoordinatesfrompriorimitativeand

spatialcompatibilitycontraststobedisplayedwithoutanythresholdingrestrictions

andoverlaidwiththerTPJnodeoftheToMnetwork.Figure4showsoverlapbetween

contrastindicatormapsforgeneralcompatibilityandspatialcompatibilitywiththe

rightTPJnodeoftheToMnetworkmask.Bycontrast,thereisnooverlapbetween

contrastindicatormapsforimitativecompatibilityandthesamerightTPJmask.

17

Discussion

Inthecurrentpaper,weperformedameta-analysisoffMRIstudiesinordertoquantify

theconsistencyandspecificityofregionalactivationduringtheinhibitionofautomatic

imitation.Ourresultssupporteda“generalist”viewofimitationcontrol–wefound

clearengagementofdorsolateralfrontoparietalcorticeswhenobservinganactionthat

conflictedwithacurrentmotorintention.Theseregionsoverlappedwithregions

associatedwiththeMDnetwork.Wefoundlessevidencefora“specialist”viewof

imitationcontrol,whichreliesontheToMnetwork.Indeed,therewasnoengagementof

mPFCacrossstudiesandtherewasnoclearevidenceregardingtheengagementofrTPJ;

therewasonlysuggestiveevidencethatitmayreflectspatialratherthansocialcontrol.

Thus,ourresultsprovideunambiguoussupportfortheengagementofadomain-

generalneuralnetworkduringthecontrolofimitation,andonlylimitedevidencefor

theengagementofadomain-specificneuralnetworkthatistiedtosocialcognition.

Studiesinvestigatingtheneuralcorrelatesofimitationcontrolhavetodate

shownmixedevidencefortheengagementofdomain-generalanddomain-specific

neuralnetworksinimitationinhibition.Whilesomestudieshavefoundengagementof

themPFCandrTPJ(Brassetal.,2001;2005;2009;Spengleretal.,2009),othersshow

engagementoftheMDnetwork(Bien,Roebroeck,Goebel,&Sack,2009;Marshetal.,

2016;Dardaetal.,2018).ThecurrentMKDAdemonstratedthatbrainregionsinthe

multipledemandnetworkarereliablyandconsistentlyengagedacrossstudiesthat

investigateimitationinhibitionusingthegeneralcompatibilityeffect.Brainregionsin

theMDnetworkarealsoengagedforimitative(bilateralIPL)andspatialcompatibility

effects(leftIPL,rightSFG).Thus,ourfindingssuggestthatbrainregionsthatare

engagedacrossarangeofcognitivecontroltasksarealsoreliablyengagedwhen

18

controllingtheautomatictendencytoimitateothers,asmeasuredbygeneraland

imitativecompatibilityeffects.

Evidencesupportingtheengagementofadomain-specificneuralcircuitthatis

centraltosocialcognitionandincludesmPFCandrTPJwaslessconsistentinthe

currentmeta-analysis.Brassetal.(2009)proposedthattherTPJwasinvolvedin

distinguishingbetweenself-andother-generatedactions,whereasthemPFCwas

engagedwhenenforcingthecorrectaction.However,thecurrentMKDAdidnotfind

anyevidenceofanteriormPFCengagementforeithergeneral,spatial,orimitative

compatibilityeffects.AnabsenceofmPFCengagementforimitationcontrolacross

studiesisthusinconsistentwiththehypothesisthataspecificneuralsystemrelatedto

socialcognitionisalsoengagedduringtheinhibitionofautomaticimitation(Brassetal.,

2009).

IncontrasttotheresultsreportedinmPFC,acrossstudiesinvestigating

imitationinhibitionasmeasuredbythegeneralcompatibilityeffect,thecurrentmeta-

analysisfoundengagementofrTPJ.However,itisdifficulttointerprettheroleofrTPJin

imitationcontrolforatleasttworeasons.First,thegeneralcompatibilityeffectisa

productofbothspatialandimitativeeffects,whichmakesithardtointerpretina

straightforwardmanner.Second,rTPJisinvolvedinbothsocialandnon-social

processes,whichmakesitafunctionallyheterogenousregion(Corbettaetal.,2008;

Kralletal.,2015,2016;Lee&McCarthy,2016;Schuwerketal.,2017).

Further,inthecurrentmeta-analysis,across12studies,wefindengagementof

rTPJforthegeneralcompatibilityeffect.However,itisimportanttodistinguish

betweenasynthesisofevidencebasedonadescriptiveapproach,andaquantitative

meta-analysis(Gigerenzer,2018).Todate,14fMRIstudieshaveinvestigatedimitation

controlbymeasuringthegeneralcompatibilityeffect(weexcludedBienetal.,2009and

19

Brassetal.,2009inthemeta-analysis,seeMethods).Outofthe14studies,only4

studiesreporttheengagementofrTPJforthegeneralcompatibilityeffect(seeDardaet

al.,2018,Table1formoredetails).Thus,wefindthatonly28.6%offMRIstudieson

imitationcontroltodate(4/14)showanyevidenceinsupportofaroleofrTPJin

imitationcontrol,andthesestudiesdonotdissociatebetweenspatialandimitative

effects.

InthelargestandmostsensitivefMRIstudyofimitationinhibitiontodate,

Dardaandcolleagues(2018)showednoengagementofrTPJfortheimitative

compatibilityeffect,butengagementofrTPJforgeneralandspatialcompatibility

effects.Similarly,inthecurrentmeta-analysis,whenweexploredtheunthresholded

spatialandimitativecompatibilityeffectmapsseparately,therewaspartialoverlap

betweenthespatialcompatibilityeffectandrTPJ,butnooverlapbetweentheimitative

compatibilityeffectandrTPJ.GiventhatthesmallnumberoffMRIstudiesinvestigating

spatialandimitativecompatibilityeffectsseparately(N=4andN=3,respectively),the

currentfindingsneedtobeinterpretedwithcaution.However,whentakentogether

withpriorfindings,theresultsprovideconsistentlylimitedevidencefortheunivariate

engagementofrTPJinthecontrolofimitativetendencies.Incontrast,currentfMRI

findingsprovidemoreevidencethatrTPJisinvolvedinresolvingspatialconflict,which

isinkeepingwithpatientwork(Vallar&Perani,1987;Valleretal.,1993),aswellas

evidenceusingspatialcueingtaskslikethePosnerparadigm(Posner&Cohen,1984;

Thieletal.,2004;Corbettaetal.,2008).MorerecentworkalsosuggeststhatrTPJmay

playamoredomain-generalroleintheprocessofcontextualupdating,actingon

changingexpectationsafterunexpectedevents(Geng&Vossel,2013;Mengottietal.,

2017).Assumingthatonincompatibletrialsexpectationsareviolated,rTPJmayplaya

moregeneralisedroleofcontextupdatinginimitationandspatialcontrol.However,

20

irrespectiveofwhetheritplaysadomain-specificordomain-generalrole,inthecurrent

meta-analysis,wefindlimitedevidencefortheunivariateengagementofrTPJinthe

controlofautomaticimitativetendencies.

Limitationsandalternativeinterpretations

Beforemovingontothewidertheoreticalimplicationsoftheseresults,wefirst

acknowledgepossiblelimitationstothecurrentmeta-analyticalapproach.Thecurrent

meta-analysisdidnotincludeworkbyBrassandcolleagues(2009),whichimplicated

rTPJandmPFCinimitationcontrol,duetothewhole-braindatabeingunavailable.

Nonetheless,asmentionedbefore,only28.6%(4/14)offMRIstudies,whichhave

investigatedimitationcontrol,foundengagementofmPFCandrTPJ,andtheyallhad

smallsamplesizes(between10and20participants).Itis,therefore,unlikelythatthe

inclusionofanadditionalstudywitharelativelysmallsamplesize(Brassetal.,2009)

wouldchangetheresultsofthemeta-analysis,giventhattheyareweightedbysample

size.

AfurtherconsiderationistherelativesizeoftheMDandToMnetworksthatwe

usedinouranalyses.GiventhattheMDnetworkspansamuchlargerareathantheToM

network,ouranalysismaybebiasedtowardfindingresultsintheMDnetworkoverthe

ToMnetwork.Althoughthisistrueinarelativesense,wedonotfeelthatithindersour

interpretationoftheresultsintheToMnetworkforseveralreasons.First,regionsof

interestintheToMnetworkwerenotparticularlysmallareas.ThemPFCregions

includedseveralportionsofthedorsal,middle,andventralmPFC,andtherTPJcovered

arelativelylargeareaofcortex.Second,bothnetworksweredefinedaccuratelybased

onpriorwork,whichusedlargesamplesofparticipants.Thus,eventhoughToMareas

werecomparativelysmallerthantheMDnetwork,theystillcoveredaswathofcortexin

21

regionsfunctionallyandpreciselydefinedastheToMnetwork.Consequently,wefeel

confidentthathadtheseregionsbeenconsistentlyengagedacrossstudies,wewould

havebeenabletodetectthem.Third,evenifweonlyuseCIMsacrossthewholebrain,

whichreportactivationpeaksfrompriorstudies,thusavoidingissueswith

thresholdingorchoiceofmasks,westilldonotfindevidenceforengagementnearrTPJ

andmPFCfortheimitativecompatibilityeffect(Figure4).

Anadditionalpossibilitytoconsideristhatthedifferencebetweentheresults

intermsofdomain-specificanddomain-generalnetworkengagementcouldbedueto

thedifferencesinstimuliusedinthestudiesincludedinthemeta-analysis.However,

thetasksareallconceptually,visuallyandcognitivelysimilartoeachotherwithonly

minordifferencesacrossallstudies.Forexample,inDardaetal.,(2018;Exp1and

Exp2),thestimuliconsistofindexandmiddlefingermovements,whereasinWangetal.

(2011),handopeningandclosingmovementsareused.Moreover,arecentmeta-

analysisalsoshowedthatbehaviouralperformanceisconsistentacrossarangeof

studiesthatcoverarangeofminormethodologicaldifferences(Craccoetal.,2018).

Giventhelackofsubstantialdifferencesbetweenthestudiesandtheconsistentpattern

ofbehaviouraldata,itseemsunlikelythatsmalldifferencescouldberesponsiblefor

theseeffects.

Finally,weacknowledgethatfMRIisonlyoneformofmeasurement,anditis

importanttoconsiderhowthesefindingsmeshwithresultsfromotherneuroscience

techniques.Forinstance,neurostimulationstudieshaveimplicatedrTPJinimitation

control(Santiestebanetal.,2015;Bardietal.,2017).Usingrepetitivetranscranial

magneticstimulation(TMS),dampeningofactivityintherTPJinterferedwithimitative,

butnotspatialresponses(Hogeveenetal.,2014;Sowden&Catmur,2015),whereas

excitatorystimulationoftherTPJbyanodaltranscranialdirectcurrentstimulation

22

(tDCS)causedincreasedperformanceontheimitationtask(Santiestebanetal.,2012).

Further,inpatientswithlesionsinthetemporoparietaljunctionarea,imitation

inhibitiondeficitshavebeenfoundtocorrelatewithdeficitsinvisualandcognitive

perspectivetakingtasks,furthersupportingtheroleofrTPJinimitationcontrol

(Spengleretal.,2010).Thus,thereseemstobeadiscrepancybetweenneurostimulation

andpatientstudies,andresultsfromthecurrentmeta-analysisoffMRIstudies.The

evidencefromneurostimulationandpatientstudiesfortheengagementofrTPJin

imitationcontrolis,however,limitedtoafewstudieswithsmallsamplesizes.Under

anyyardstick,therefore,thesumtotalofevidencefromneurostimulationandpatient

studiescanonlybejudgedtobesuggestiveatpresent.Itisbasedonafewstudieswith

smallsamplesizesthatlackformalpoweranalysesandreplications.Therefore,for

moreconfirmatoryevidence,futureinvestigationswithpre-registeredandadequately

poweredreplicationsareessential(Munafoetal.,2017;Zwaanetal.,2018;Nelsonetal.,

2018).Inaddition,itisalsopossiblethattheroleofrTPJinimitationcontrolcannotbe

capturedbyunivariatemeasurementsandamorecomplexneuralorganisationisat

playduringimitationcontrol.

Theoreticalimplications

ThelackofconsistentactivationinmPFCinthecurrentmeta-analysisanda

difficultyininterpretingtheroleofrTPJhaveimplicationsfor“specialist”theoriesof

imitation.“Specialist”theoriessuggestthatbasedonadedicatedneuralcircuitforsocial

cognition,self-othercontroliscrucialfortheregulationofimitation,empathy,autism,

andtheory-of-mind(Brassetal.,2009;deGuzmanetal.,2016;Sowden&Shah,2014).

However,morerecentbehaviouralevidencesuggeststhatimitationmaynotvaryasa

functionofautistic-liketraitsorempathy,thusquestioningtherelianceofimitation

23

inhibitiononadistinctlysocialmechanism(Butleretal.,2015;Craccoetal.,2018;

Genschowetal.,2017).Insteadofadistinctlysocialmechanism,imitationcontrolmay

involvedomain-generalcognitivecontrolmechanisms,whicharealsoengagedduring

thecontrolofothernon-socialpre-potentresponsetendencies(Heyes,2011;Cooperet

al.,2012).Indeed,thedual-routemodelofautomaticimitationproposedbyHeyes

(2011)canexplainthecontrolofautomaticimitativetendencieswithoutassuminga

relianceonaself-otherdistinction.Themodelsuggeststhatlikeotherstimulus-

responsecompatibilitytasks,imitationcontrolismediatedbylong-termstimulus-

responseassociationswhichareaproductoflearning.Inlinewiththis,the

computationalmodelputforthbyCooperetal.(2012)furthersubstantiatesthisnotion

bydemonstratingthatspatialandimitativecompatibilityeffectsdependonsimilar

cognitiveprocesses,andanybehaviouraldifferencesareaccountedforbydifferentsets

ofinputnodesforspatialandimitativeeffectsinageneraldual-routeframework(but

seeBerthental&Scheutz(2013)foracritiqueofthismodel).

Eventhoughitispossiblethatimitationandspatialcompatibilityrelyona

partlysharedsetofcognitiveprocesses,thisdoesnotaddressthequestionofwhether

theseprocessesalsorelyonsimilarordistinctneurobiologicalmechanisms.The

currentmeta-analysissuggeststhattheselectionmechanisminimitationinhibitionis

guidedbyadomain-generalmultipledemandsystem,whichisalsoengagedduringthe

inhibitionofothernon-socialexternalinfluences.However,alackofengagementof

mPFC(andpossiblyrTPJ)inimitationcontroldoesnotimplythattheydonotalsoplay

aregulatoryroleinimitationcontrol.Forexample,mPFChasbeendemonstratedto

exertatop-downinfluenceduringmodulationofimitationviadirectgaze(Wangetal.,

2011).Inaddition,rTPJshowedahigherresponsewhenaninteractionpartnerwas

believedtobehumanandlookedhumancomparedtowhentheseanimacycueswere

24

absent(Klapperetal.,2014).ThesefindingssuggestthatmPFCandrTPJmayplaya

regulatoryroleinimitationcontrolandmaybefunctionallyconnectedtoother

networkswithoutbeingdirectlyengaged(Burnett&Blakemore,2009).Thecurrent

findingssuggestthatfutureworkshouldpostulateandtestmorecomplexmodelsof

imitationcontrol,whichextendbeyondtheoperationsofthetheoryofmindnetwork.

Inasimilarmanner,othersocio-perceptualcircuits,whichextendbeyondthe

MDnetwork,mayalsobeinvolvedwheninhibitingautomaticimitativetendencies.In

thisregard,itisimportanttonotethedistinctionbetweeninput-andmechanism-

specificity.Ofcourse,theinputintheimitationinhibitiontaskcanbereadilyidentified

asemanatingfromasocialentityi.e.ahumanhand.Thus,theobservedinputisclearly

socialinthesensethattheobservedagentoffersopportunityforsocialinteraction.

Althoughtheperceptualinputissocial,adomain-generalselectionmechanismmaystill

operateinimitationcontrol.Indeed,itispossiblethatthesameselectionmechanism

operatesacrossbothsocialandnon-socialcontexts.Inthecontextofimitation,

therefore,domain-specificactionobservationandpersonperceptionnetworksmay

functionallyinteractwithdomain-generalcontrolmechanismsintheMDnetwork(see

Figure1).Thus,similartootherdomainsofsocialinformationprocessing,aninterplay

betweendomain-generalanddomain-specificnetworksmayresultinthecontrolof

automaticimitativetendencies(Baldauf&Desimone,2014;Spunt&Adolphs,2017;

Zakietal.,2010).Thus,theengagementofdomainspecificanddomaingeneralneural

networksinimitationcontrolmaybemorecomplicatedthatwhatcurrentmodelsof

imitationsuggest.Consequently,theoriesthatmovebeyondaneatdivisionandposit

linksbetweendomain-generalanddomain-specificsystemsinimitationcontrolneedto

begivengreateremphasisinfuturework(Barrett,2012;Spunt&Adolphs,2017;

Michael&D’Ausilio,2015;Binney&Ramsey,2019).

25

Inconclusion,thecurrentmeta-analysisprovidesevidencethattheselection

mechanismwheninhibitingautomaticimitativetendenciesisguidedbytheregionsof

thedomain-generalmultipledemandnetworkratherthanadomain-specificsystem

relatedtosocialcognition.Ourmeta-analysisquestionstheroleofmPFCandrightTPJ

inimitationcontrol,andsuggeststhatcurrentneurocognitivemodelsofimitation

controlneedfurtherrevisioninordertoaccountforthemorecomplexnatureof

functionalinterplaybetweendomain-generalanddomain-specificsystems.

26

References

Aichhorn,M.,Perner,J.,Kronbichler,M.,Staffen,W.,&Ladurner,G.(2006).Dovisual

perspectivetasksneedtheoryofmind?.Neuroimage,30(3),1059-1068.

AmodioDM,FrithCD.2006.Meetingofminds:themedialfrontalcortexandsocial

cognition.NatRevNeurosci.7:268-277.

AronAR,RobbinsTW,PoldrackRA.2014.Inhibitionandtherightinferiorfrontal

cortex:onedecadeon.TrendsCognSci.18:177-185.

Bardi,L.,Gheza,D.,&Brass,M.2017.TPJ-M1interactioninthecontrolofshared

representations:newinsightsfromtDCSandTMS

combined.NeuroImage,146:734-740.

Bargh,J.A.,&Chartrand,T.L.(1999).Theunbearableautomaticityofbeing.American

psychologist,54(7),462.

Barrett,H.C.(2012).Ahierarchicalmodeloftheevolutionofhumanbrain

specializations.ProceedingsoftheNationalAcademyofSciences,

109(Supplement1),10733-10740.doi:10.1073/pnas.1201898109

Bertenthal,B.I.,&Scheutz,M.(2013).Inpraiseofamodelbutnotitsconclusions:

CommentaryonCooper,Catmur,andHeyes(2012).Cognitivescience,37(4),

631-641.

BienN,RoebroeckA,GoebelR,SackAT.2009.Thebrain'sintentiontoimitate:the

neurobiologyofintentionalversusautomaticimitation.CerebCortex.19:2338-

51.

Binney,R.J.,&Ramsey,R.(2019,March18).SocialSemantics:Theroleofconceptual

knowledgeandcognitivecontrolinaneurobiologicalmodelofthesocial

brain.https://doi.org/10.31234/osf.io/36tm5

Boyd,R.,&Richerson,P.J.(1996,January).Whycultureiscommon,butcultural

evolutionisrare.InProceedings-BritishAcademy(Vol.88,pp.77-94).OXFORD

UNIVERSITYPRESSINC.

BoyerTW,LongoMR,BertenthalBI.2012.Isautomaticimitationaspecializedformof

stimulus–responsecompatibility?Dissociatingimitativeandspatial

compatibilities.ActaPsychologica.139:440-8.

BrassM,BekkeringH,WohlschlagerA,PrinzW.2000.Compatibilitybetweenobserved

andexecutedfingermovements:comparingsymbolic,spatial,andimitativecues.

BrainandCognition,44:124-143.

27

BrassM,ZyssetS,vonCramonDY.2001.Theinhibitionofimitativeresponse

tendencies.NeuroImage,14:1416-1423.

BrassM,DerrfussJ,Matthes-vonCramonG,vonCramonDY.2003.Imitativeresponse

tendenciesinpatientswithfrontalbrainlesions.Neuropsychology,17:265-271.

BrassM,DerrfussJ,vonCramonDY.2005.Theinhibitionofimitativeandoverlearned

responses:afunctionaldoubledissociation.Neuropsychologia,43:89-98.

Brass,M.,&Heyes,C.2005.Imitation:iscognitiveneurosciencesolvingthe

correspondenceproblem?TrendsCognSci,9:489-495.

BrassM,RubyP,SpenglerS.2009.Inhibitionofimitativebehaviourandsocial

cognition.PhilosTransRSocLondBBiolSci.364:2359-67.

BungeSA,HazeltineE.ScanlonMD,RosenAC,GabrieliJDE.2002.Dissociable

contributionsofprefrontalandparietalcorticestoresponseselection.

NeuroImage.17:1562-1571.

Button,K.S.,Ioannidis,J.P.,Mokrysz,C.,Nosek,B.A.,Flint,J.,Robinson,E.S.,&Munafò,

M.R.(2013).Powerfailure:whysmallsamplesizeunderminesthereliabilityof

neuroscience.NatureReviewsNeuroscience,14(5),365.

Byrne,R.W.,&Russon,A.E.(1998).Learningbyimitation:Ahierarchical

approach.Behavioralandbrainsciences,21(5),667-684.

Carp,J.(2012).Thesecretlivesofexperiments:methodsreportinginthefMRI

literature.Neuroimage,63(1),289-300.

Caspers,S.,Zilles,K.,Laird,A.R.,&Eickhoff,S.B.(2010).ALEmeta-analysisofaction

observationandimitationinthehumanbrain.NeuroImage,50(3),1148-1167.

CatmurC,HeyesC.2011.Timecourseanalysesconfirmindependenceofimitativeand

spatialcompatibility.Journalofexperimentalpsychology.Humanperceptionand

performance.37:409-21.

Chartrand,T.L.,&Lakin,J.L.(2013).TheAntecedentsandConsequencesofHuman

BehavioralMimicry.AnnualReviewofPsychology,64(1),285-308.doi:

doi:10.1146/annurev-psych-113011-143754

Cook,J.L.,&Bird,G.(2012).Atypicalsocialmodulationofimitationinautismspectrum

conditions.Journalofautismanddevelopmentaldisorders,42(6),1045-1051.

Cooper,R.P.,Catmur,C.,&Heyes,C.2012.Areautomaticimitationandspatial

compatibilitymediatedbydifferentprocesses?CognSci.37:605–30.

28

Corbetta,M.,Patel,G.,&Shulman,G.L.(2008).TheReorientingSystemoftheHuman

Brain:FromEnvironmenttoTheoryofMind.Neuron,58(3),306-324.

CraccoE,BardiL,DesmetC,RigoniD,RadkovaI,DeschrijverE,GenschowO,DeCoster

L,BrassM.AutomaticImitation:AMeta-Analysis.(2018).PsychologicalBulletin.

CrescentiniC,MengottiP,GrecucciA,RumiatiRI.2011.Theeffectofobservedbiological

andnon-biologicalmovementsonactionimitation:anfMRIstudy.Brain

research.1420:80-92.

CrossKA,IacoboniM.2013.Optimisedneuralcoding?Controlmechanismsinlarge

corticalnetworksimplementedbyconnectivitychanges.HumanBrainMapping.

34:213-25.

Cross,K.A.,Torrisi,S.,Losin,E.A.R.,&Iacoboni,M.2013.Controllingautomatic

imitativetendencies:interactionsbetweenmirrorneuronandcognitivecontrol

systems.Neuroimage,83:493-504.

Cross,K.A.,&Iacoboni,M.2014.Toimitateornot:Avoidingimitationinvolves

preparatoryinhibitionofmotorresonance.Neuroimage,91:228-236.

Cumming,G.(2014).Thenewstatistics:Whyandhow.Psychologicalscience,25(1),7-

29.

Darda,K.M.,Butler,E.E.,&Ramsey,R.(2018).FunctionalSpecificityandSex

DifferencesintheNeuralCircuitsSupportingtheInhibitionofAutomatic

Imitation.Journalofcognitiveneuroscience,30(6),914-933.

Decety,J.,Chaminade,T.,Grezes,J.,&Meltzoff,A.N.(2002).APETexplorationofthe

neuralmechanismsinvolvedinreciprocalimitation.Neuroimage,15(1),265-

272.

deGuzmanM,BirdG,BanissyMJ,CatmurC.2016.Self–othercontrolprocessesinsocial

cognition:fromimitationtoempathy.Phil.Trans.R.Soc.

B.371(1686):20150079.

Downing,P.E.,&Peelen,M.V.(2011).Theroleofoccipitotemporalbody-selective

regionsinpersonperception.Cognitive Neuroscience, 2(3-4), 186-203.

Duffy,K.A.,&Chartrand,T.L.(2015).Mimicry:causesandconsequences.Current

OpinioninBehavioralSciences,3,112-116.

DufourN,RedcayE,YoungL,MavrosPL,MoranJM,TriantafyllouC,GabrieliJD,SaxeR.

2013.Similarbrainactivationduringfalsebelieftasksinalargesampleofadults

withandwithoutautism.PloSOne.8:e75468.

29

DuncanJ.2010.Themultiple-demand(MD)systemoftheprimatebrain:mental

programsforintelligentbehaviour.TrendsCognSci.14:172-9.

Ferri,F.,Frassinetti,F.,Mastrangelo,F.,Salone,A.,Ferro,F.M.,andGallese,V.(2012).

Bodilyselfandschizophrenia:thelossofimplicitself-body

knowledge.Conscious.Cogn.21,1365–1374.doi:10.1016/j.concog.2012.05.001

Gallagher,H.L.,Happé,F.,Brunswick,N.,Fletcher,P.C.,Frith,U.,&Frith,C.D.(2000).

Readingthemindincartoonsandstories:anfMRIstudyof‘theoryofmind’in

verbalandnonverbaltasks.Neuropsychologia,38(1),11-21.

Geng,J.J.,&Vossel,S.(2013).Re-evaluatingtheroleofTPJinattentionalcontrol:

contextualupdating?.Neuroscience&BiobehavioralReviews,37(10),2608-

2620.

Genschow,O.,vanDenBossche,S.,Cracco,E.,Bardi,L.,Rigoni,D.,&Brass,M.2017.

Mimicryandautomaticimitationarenotcorrelated.PloSone,12(9),e0183784.

GowenE,BoltonE,PoliakoffE.2016.Believeitornot:Movingnon-biologicalstimuli

believedtohavehumanorigincanberepresentedashumanmovement.

Cognition.146:431-8.

HazeltineE,PoldrackR,GabrieliJDE.2007.Neuralactivationduringresponse

competition.JCognNeurosci.12:118-129.

Heyes,C.,Bird,G.,Johnson,H.,&Haggard,P.(2005).Experiencemodulatesautomatic

imitation.CognitiveBrainResearch,22(2),233-240.

Heyes,C.(2011).Automaticimitation.Psychologicalbulletin,137(3),463.

HogeveenJ,ObhiSS,BanissyMJ,SantiestebanI,PressC,CatmurC,BirdG.2014.Task-

dependentanddistinctrolesofthetemporoparietaljunctionandinferiorfrontal

cortexinthecontrolofimitation.SocialCognitiveandAffectiveNeuroscience,

10:1003-1009.

Iacoboni,M.,Woods,R.P.,Brass,M.,Bekkering,H.,Mazziotta,J.C.,&Rizzolatti,G.

(1999).Corticalmechanismsofhumanimitation.science,286(5449),2526-

2528.

KanwisherN.2010.Functionalspecificityinthehumanbrain:awindowintothe

functionalarchitectureofthemind.ProcNatlAcadSci.107:11163-70.

Kober,H.,&Wager,T.D.(2010).Meta-analysisofneuroimagingdata.Wiley

InterdisciplinaryReviews:CognitiveScience,1(2),293-300.

30

Krall,S.C.,Rottschy,C.,Oberwelland,E.,Bzdok,D.,Fox,P.T.,Eickhoff,S.B.,...&Konrad,

K.(2015).Theroleoftherighttemporoparietaljunctioninattentionandsocial

interactionasrevealedbyALEmeta-analysis.Brain Structure and

Function, 220(2), 587-604.

Lancaster,J.L.,Tordesillas-Gutiérrez,D.,Martinez,M.,Salinas,F.,Evans,A.,Zilles,K.,...&

Fox,P.T.(2007).BiasbetweenMNIandTalairachcoordinatesanalyzedusing

theICBM-152braintemplate.Human brain mapping, 28(11), 1194-1205.

Lee,S.M.,&McCarthy,G.(2014).Functionalheterogeneityandconvergenceintheright

temporoparietaljunction.Cerebral Cortex, 26(3), 1108-1116.

Lhermitte,F.,Pillon,B.,&Serdaru,M.(1986).Humanautonomyandthefrontallobes.

PartI:Imitationandutilizationbehavior:aneuropsychologicalstudyof75

patients.Annalsofneurology,19(4),326-334.

Lipsey,M.W.,&Wilson,D.B.(2001).Practicalmeta-analysis.SagePublications,Inc.

MarshLE,BirdG,CatmurC.2016.Theimitationgame:Effectsofsocialcueson

‘imitation’aredomain-generalinnature.NeuroImage.139:368-75.

Mengotti,P.,Dombert,P.L.,Fink,G.R.,&Vossel,S.(2017).Disruptionoftheright

temporoparietaljunctionimpairsprobabilisticbeliefupdating.Journalof

Neuroscience,37(22),5419-5428.

MengottiP,Corradi-Dell'AcquaC,RumiatiRI.2012.Imitationcomponentsinthehuman

brain:anfMRIstudy.Neuroimage.59:1622-30.

Munafò,M.R.,Nosek,B.A.,Bishop,D.V.M.,Button,K.S.,Chambers,C.D.,PercieduSert,

N.,...Ioannidis,J.P.A.(2017).Amanifestoforreproduciblescience.Nature

HumanBehaviour,1,0021.doi:10.1038/s41562-016-0021

Nelson,L.D.,Simmons,J.,&Simonsohn,U.(2018).Psychology'sRenaissance.AnnuRev

Psychol,69,511-534.doi:10.1146/annurev-psych-122216-011836.

NeeDE,WagerTD,JonidesJ.2007.Interferenceresolution:Insightsfromameta-

analysisofneuroimagingtasks.CognAffectBehavNeurosci.7:1-17.

Newman-NorlundRD,vanSchieHT,vanZuijlenAM,BekkeringH.2007.Themirror

neuronsystemismoreactiveduringcomplementarycomparedwithimitative

action.NatNeurosci.10:817-819.

Press,C.,Bird,G.,Flach,R.,&Heyes,C.(2005).Roboticmovementelicitsautomatic

imitation.CognitiveBrainResearch,25(3),632-640.

31

Posner,M.I.,&Cohen,Y.(1984).Componentsofvisualorienting.Attentionand

performanceX:Controloflanguageprocesses,32,531-556.

Prinz,W.,&Meltzoff,A.N.(2002).Anintroductiontotheimitativemindandbrain.The

imitativemind:Development,evolutionandbrainbases,1-15.

Ruby,P.,&Decety,J.(2001).Effectofsubjectiveperspectivetakingduringsimulationof

action:aPETinvestigationofagency.Natureneuroscience,4(5),546.

SantiestebanI,BanissyMJ,CatmurC,BirdG.2012.EnhancingSocialAbilityby

StimulatingRightTemporoparietalJunction.CurrBiol.22:2274-2277.

Santiesteban,I.,Banissy,M.J.,Catmur,C.,&Bird,G.2015.Functionallateralizationof

temporoparietaljunction–imitationinhibition,visualperspective-takingand

theoryofmind.EuropeanJournalofNeuroscience,42(8),2527-2533.

SchuwerkT,SchurzM,MüllerF,RupprechtR,SommerM.2017.TherTPJ’soverarching

cognitivefunctioninnetworksforattentionandtheoryofmind.Socialcognitive

andaffectiveneuroscience.12(1):157-168.

Shea,N.(2009).Imitationasaninheritancesystem.PhilosophicalTransactionsofthe

RoyalSocietyB:BiologicalSciences,364(1528),2429-2443.

Sowden,S.,&Shah,P.(2014).Self-othercontrol:acandidatemechanismforsocial

cognitivefunction.Frontiersinhumanneuroscience,8,789.

SpenglerS,vonCramonDY,BrassM.2009.Controlofsharedrepresentationsrelieson

keyprocessesinmentalstatereasoning.HumanBrainMapping.30:3704-3718.

SpenglerS,vonCramonDY,BrassM.2010.Resistingmotormimicry:Controlof

imitationinvolvesprocessescentraltosocialcognitioninpatientswithfrontal

andtemporo-parietallesions.SocialNeuroscience,5:401-416.

Spunt,R.P.,&Adolphs,R.(2017).Anewlookatdomainspecificity:insightsfromsocial

neuroscience.NatRevNeurosci,18(9),559-567.doi:10.1038/nrn.2017.76

Stürmer,B.,Aschersleben,G.,&Prinz,W.(2000).Correspondenceeffectswithmanual

gesturesandpostures:astudyofimitation.JournalofExperimentalPsychology:

HumanPerceptionandPerformance,26(6),1746.

Thiel,C.M.,Zilles,K.,&Fink,G.R.(2004).Cerebralcorrelatesofalerting,orientingand

reorientingofvisuospatialattention:anevent-relatedfMRI

study.Neuroimage,21(1),318-328.

Vallar,G.(1993).Theanatomicalbasisofspatialhemineglectinhumans.InUnilateral

neglect (pp. 37-69). Psychology Press.

32

Vallar,G.,&Perani,D.(1987).Theanatomyofspatialneglectinhumans.InAdvances in

psychology (Vol. 45, pp. 235-258). North-Holland.

vanSchieHT,vanWaterschootBM,BekkeringH.2008.Understandingactionbeyond

imitation:reversedcompatibilityeffectsofactionobservationinimitationand

jointaction.JExpPsycholHumPerceptPerform.34:1493.

WagerTD,SylvesterCYC,LaceySC,NeeDE,Franklin,M,JonidesJ.2005.Commonand

uniquecomponentsofresponseinhibitionrevealedbyfMRI.NeuroImage.

27:323-340.

Wager,T.D.,Lindquist,M.,&Kaplan,L.(2007).Meta-analysisoffunctional

neuroimagingdata:currentandfuturedirections.Socialcognitiveandaffective

neuroscience,2(2),150-158.

WangY,RamseyR,HamiltonAFdeC.2011.Thecontrolofmimicrybyeyecontactis

mediatedbymedialprefrontalcortex.JNeurosci.31:12001e12010.

Whiten,A.,&VanSchaik,C.P.(2007).Theevolutionofanimal‘cultures’andsocial

intelligence.PhilosophicalTransactionsoftheRoyalSocietyB:Biological

Sciences,362(1480),603-620.

Zwaan,R.A.,Etz,A.,Lucas,R.E.,&Donnellan,M.B.(2017).MakingReplication

Mainstream.BehavBrainSci,1-50.doi:10.1017/S0140525X17001972

33

Table1.Dataextractedfromthestudiesincludedinthemeta-analysis.

Authors Year Sample Contrasts Fixed/RandomEffectsModel

MNIorTalaraichcoordinates

GC SC IC

Brassetal. 2001 10 x Fixed Talaraich

Brassetal. 2005 20 x Fixed Talaraich

Spengleret

al.2009 20 x Random Talaraich

Crescentini

etal.2011 19 x Random MNI

Wangetal. 2011 20 x Random MNI

Mengotti

etal.2012 22 x x Random MNI

Cross&

Iacoboni2013 24 x x Random MNI

Crossetal. 2013 20 x x

Klapperet

al.2014 19 x Random MNI

Marshet

al.2016 24 x x x Random MNI

Dardaet

al.(Exp1)2018 28 x Random MNI

Dardaet

al.(Exp2)2018 50 x x x Random MNI

Campbell

etal.

2018 x Random MNI

TOTAL=

11 300

NB:GC=GeneralCompatibility,SC=SpatialCompatibility,IC=ImitativeCompatibility

34

Table2.Contrastsusedinthemeta-analysisforgeneral,spatial,andimitative

compatibility.

Authors Year GeneralCompatibility SpatialCompatibility ImitativeCompatibility

Brassetal. 2001 GeneralIncompatible>

GeneralCompatible

Brassetal. 2005 GeneralIncompatible>

GeneralCompatible

Spengleretal. 2009 GeneralIncompatible>

GeneralCompatible

Crescentiniet

al.2011 GeneralIncompatible>

GeneralCompatible

Wangetal. 2011 GeneralIncompatible>

GeneralCompatible*

Mengottiet

al.2012 Non-specular>

Specular^

SpatiallyIncompatible>

SpatiallyCompatible

Cross&

Iacoboni2013 GeneralIncompatible>

GeneralCompatible

SpatiallyIncompatible>

SpatiallyCompatible

Crossetal. 2013 GeneralIncompatible>

GeneralCompatible

GeneralCompatibility>

SpatialCompatibility

Klapperetal. 2014 GeneralIncompatible>

GeneralCompatible*

Marshetal. 2016 GeneralIncompatible>

GeneralCompatible

SpatialIncompatible>

SpatiallyCompatible

ImitativelyIncompatible

>ImitativelyCompatible

Dardaetal.

(Exp1)2018 GeneralIncompatible>

GeneralCompatible

Dardaetal.

(Exp2)2018 GeneralIncompatible>

GeneralCompatible

SpatialIncompatible>

SpatialCompatible

ImitativeIncompatible>

ImitativelyCompatible

Campbellet

al.

2018 GeneralIncompatible>

GeneralCompatible

No.ofstudies 12 4 3

No.ofcontrasts 13 4 3

No.offoci 142 42 20

Table2showsthecontrastsusedinthecurrentmeta-analysis,andthenumberof

contrasts,foci,andstudiesforeachcompatibilitytype(general,spatial,andimitative).

*Collapsedacrossconditions;forWangetal.,2011:collapsedacrossdirectandaverted

gaze,forKlapperetal.,2014:collapsedacrossbelief(motion-capture,computer

animation)andform(human,non-human).

^Non-specular>Speculari.e.{(spatiallyincompatibleandimitativelycompatible)+

(imitativelyincompatibleandspatiallycompatible)>generalcompatible)}]

35

Table3.Areasconsistentlyactivatedforgeneralcompatibility,spatialcompatibility,and

imitativecompatibility.

36

GENERALCOMPATIBILITYRegion MNI MaximumP No.ofVoxels Threshold

x y zRightTPJ 60 -46 22 0.42 1 ^**

RightTPJ 56 -46 32 0.41 1 ^**

Rightsupramarginalgyrus

56 -36 36 0.44 9 ^**

RightIPL 60 -34 34 0.43 2 ^**

RightIPL 52 -30 38 0.37 5 ^**

RightMFG 34 0 54 0.45 15 ^*

RightSFG 26 -2 64 0.37 46 ^*

LeftInsulaLobe -36 14 0 0.32 453 **

-34 12 -2 213

-36 18 2 240

RightInsulaLobe 38 16 4 0.36 405 **

34 18 0 172

46 12 2 75

38 16 6 158

RightIFG 46 14 10 0.28 1269 *

44 16 -4 74

28 24 -4 44

32 12 0 41

46 22 2 113

56 10 2 116

28 20 6 105

36 26 6 66

56 16 6 128

52 12 14 219

48 2 22 92

40 8 22 132

37

Table3showsareasconsistentlyactivatedforgeneralcompatibility,spatial

compatibility,andimitativecompatibility.MaximumPstandsforthemaximum

proportionofstudiesexhibitingtheeffectatthepeakdensityweightedbysamplesize.

MNI=MontrealNeurologicalInstitute(MNI)standardstereotaxicspacecoordinates.

Thevoxelsizeis2×2×2mm

3

.

*Clusterswithstandingp<.01clusterextent-basedthreshold.

**Clusterswithstandingp<.001clusterextent-basedthreshold.

^Clusterswithstandingtheheight-basedthreshold.

50 8 28 139

SPATIALCOMPATIBILITY

LeftIPL -36 -40 48 0.78 8 ^

Rightsuperiorfrontalgyrus

24 -4 58 0.78 190 ^

24 -6 54 56 ^

24 -4 60 134 ^

IMITATIVECOMPATIBILITY

Leftsupramarginalgyrus/IPL

-48 -28 34 0.73 11 ^

Rightsupramarginalgyrus/IPL

48 -26 44 0.73 18 *^

52 -30 42 7

46 -26 46 11

38

Figure1.Brainnetworksassociatedwiththecontrolofautomaticimitation.

Figure1.Brainnetworksassociatedwiththecontrolofautomaticimitation.

Thisgraphicalrepresentationdividesimitationcontrolintotwoconstituentprocesses–

representationofthepersonandtheiraction,andtheselection(control)oftheright

actiontobeexecuted.Inthecontextofautomaticimitation,therepresentationsystem

consistsinface,body,biologicalmotion,andactionperception.Theneuralsubstrates

forpersonandactionperceptionspanthefusiformgyrus,occipitotemporalcortex,and

posteriorsuperiortemporalsulcus,aswellasthemirrorneuronsystem(Kanwisher,

2010;Caspers,etal.,2010).Thecontrolorselectionsystemconsistsinabrainnetwork

thatiseitherdomain-general(i.e.themultipledemandnetwork)ordomain-specific(i.e.

thetheory-of-mindnetwork).N.B.Abbreviations:MNS=mirrorneuronsystem;IPL=

inferiorparietallobule,IFG=inferiorfrontalgyrus;pSTS=posteriorsuperiortemporal

sulcus;OT=occipito-temporalcortex;FG=fusiformgyrus,MD=multipledemand

network;ToM=theory-of-mindnetwork;mPFC=medialprefrontalcortex;PMC=

primarymotorcortex;dlPFC=dorsolateralprefrontalcortex;TPJ=temporo-parietal

junction.Thebidirectionalarrow“”indicateslinksbetweenthedifferentnodesof

imitationcontrol.

39

Figure2.ConsistencyofbrainactivationfromtheMKDAAnalyses.

Figure2.ConsistencyofbrainactivationfromtheMKDAAnalyses.

Brainareasthatareconsistentlyengagedforgeneralcompatibility(A),spatial

compatibility(B),andimitativecompatibility(C).Voxelsthatexceedtheheight-based

threshold(p<.05,FDRcorrected)inouranalysisappearinyellow,andthosethatexceed

theclusterextent-basedthresholdappearinorange(p<.001)andred(p<.01).

Figure3.OverlayoftheMKDAmapswiththeToMandMDnetworkmasks.

Figure3.OverlayoftheMKDAmapswiththeToMandMDnetworkmasks.OverlayofthedensitymapswiththeToMandMDnetworkmasksallowedforidentificationofoverlapbetweenregionsthatwereconsistentlyactivatedintheMKDAandtheToMandMDnetworks.Forallcompatibilitytypes(general,imitativeandspatial),allregionsthatpassedheightorextent-basedthresholdingoverlappedwithregionsintheMDnetwork(A).Additionally,onecluster,whichshowedconsistentactivationforgeneralcompatibility,alsooverlappedwiththerightTPJintheToMnetwork(B).TherewasnooverlapwiththemPFCnodeoftheToMnetworkforanycompatibilitytype.

Figure4.OverlayofContrastIndicatorMapswithrTPJ.1

2

Figure4.OverlayofContrastIndicatorMapswithrTPJ.3

TheToMnetworkmaskforrTPJoverlaidwiththecontrastindicatormapsofallstudies4

usedforgeneral(N=12;A)imitative(N=3;B)andspatial(N=4;C)compatibility.There5

wasoverlapbetweencontrastindicatormapsforgeneralcompatibilityandspatial6

compatibilitywithrightTPJ.Thereisnooverlapbetweencontrastindicatormapsfor7

imitativecompatibilityandthesamerightTPJmask.8

Abbreviations:IC=ImitativeCompatibility;SC=SpatialCompatibility,GC=General9

Compatibility10

11

42

Dataandcodeavailabilitystatement12

13

Databaseofco-ordinatesandcodeusedtoperformthemeta-analysisareavailable14

onlineat:https://osf.io/dbuwr/15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

43

Ethicsstatement37

Thecurrentworkwasameta-analysisofexistingdataandtherewerenoethical38

considerations.39