6.4 Hypergeometrische Verteilung - uni-kassel.de · 6.4 Hypergeometrische Verteilung Gegeben ist...

29
6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln sind nicht rot. Wir entnehmen n Kugeln, d.h. Stichproben vom Umfang n. Dabei wird im Unterschied zur Binomialverteilung ohne Zurücklegen gezogen. Da ohne Zurücklegen gezogen wird, ändert sich nach jedem Zug die Zusammensetzung der Kugeln, die noch in der Urne sind und damit die Wahrscheinlichkeit, eine rote oder nicht-rote Kugel zu ziehen: 1. Zug: 2. Zug: falls rote Kugel im 1. Zug gezogen falls nicht-rote K. im 1. Zug gezogen Die Ziehungen sind daher nicht unabhängig voneinander. Damit liegt kein Ber- noulli-Prozess vor. N M N ) A ( P und N M ) A ( P 1 1 1 N M N ) A A ( P und 1 N 1 M ) A A ( P 1 2 1 2 1 N 1 M N ) A A ( P und 1 N M ) A A ( P 1 2 1 2 Das Ereignis A tritt ein, wenn eine rote Kugel gezogen wird. Entsprechend ist das Ereignis, dass die gezogene Kugel nicht rot ist. Zufallsvariable X: Anzahl der Realisationen des Ereignisses A, d.h. Anzahl der gezogenen roten Kugeln A

Transcript of 6.4 Hypergeometrische Verteilung - uni-kassel.de · 6.4 Hypergeometrische Verteilung Gegeben ist...

Page 1: 6.4 Hypergeometrische Verteilung - uni-kassel.de · 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln

6.4 Hypergeometrische Verteilung

Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot

und N-M Kugeln sind nicht rot. Wir entnehmen n Kugeln, d.h. Stichproben vom

Umfang n. Dabei wird im Unterschied zur Binomialverteilung ohne Zurücklegen

gezogen. Da ohne Zurücklegen gezogen wird, ändert sich nach jedem Zug die

Zusammensetzung der Kugeln, die noch in der Urne sind und damit die

Wahrscheinlichkeit, eine rote oder nicht-rote Kugel zu ziehen:

1. Zug:

2. Zug: falls rote Kugel im 1. Zug gezogen

falls nicht-rote K. im 1. Zug gezogen

Die Ziehungen sind daher nicht unabhängig voneinander. Damit liegt kein Ber-

noulli-Prozess vor.

N

MN)A(Pund

N

M)A(P 11

1N

MN)AA(Pund

1N

1M)AA(P 1212

1N

1MN)AA(Pund

1N

M)AA(P 1212

Das Ereignis A tritt ein, wenn eine rote Kugel gezogen wird. Entsprechend ist das

Ereignis, dass die gezogene Kugel nicht rot ist.

Zufallsvariable X: Anzahl der Realisationen des Ereignisses A, d.h. Anzahl der

gezogenen roten Kugeln

A

Page 2: 6.4 Hypergeometrische Verteilung - uni-kassel.de · 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln

Herleitung der Wahrscheinlichkeitsfunktion:

Wir erhalten die gesuchte Wahrscheinlichkeit, indem wir die Anzahl der Auswahl-

möglichkeiten mit x roten und n-x nicht-roten Kugeln auf die Anzahl aller

möglichen Stichproben von n aus N Kugeln beziehen. Da das Ziehen der Ku-

geln aus der Urne ohne Zurücklegen erfolgt und die Reihenfolge irrelevant ist,

lassen sich die Auswahlmöglichkeiten über die Formel für Kombinationen ohne

Wiederholung berechnen.

Auswahl von x auf M roten Kugeln:

x

MMöglichkeiten

Auswahl von n-x auf N-M nicht-roten Kugeln:

xn

MNMöglichkeiten

Auswahl von x aus M roten Kugeln

und n-x aus N-M nicht-roten Kugeln:

xn

MN

x

MMöglichkeiten

Auswahl von n auf N Kugeln:

n

NMöglichkeiten

Page 3: 6.4 Hypergeometrische Verteilung - uni-kassel.de · 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln

Eine Zufallsvariable X folgt einer hypergeometrischen Verteilung mit den

Parametern N, M und n, wenn die Wahrscheinlichkeitsfunktion von X durch

(6.15)

gegeben ist. Dabei ist . Sofern diese Bedin-

gung nicht erfüllt ist, nimmt die Wahrscheinlichkeitsfunktion den Wert 0 an.

sonst0

n,,1,0xfür

n

N

xn

MN

x

M

xf

NnundMNxn,Mx

Page 4: 6.4 Hypergeometrische Verteilung - uni-kassel.de · 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln

Urne Stichprobe

Beispiel 6.6:

Wir illustrieren die hypergeometrische Verteilung an einem Urnenmodell. In einer

Urne befinden sich N = 10 Kugeln, von denen M = 4 Kugeln rot und N - M = 6 nicht

rot, hier weiß, sind. Wie groß ist die Wahrscheinlichkeit, bei einer Stichprobe vom

Umfang n = 3 genau x = 2 rote Kugeln zu ziehen, wenn die Kugeln nach dem Zie-

hen nicht wieder zurückgelegt werden?

Eine günstige Kombination ist r r w, d.h. in den ersten beiden Zügen jeweils eine

rote Kugel zu ziehen und im dritten Zug eine weiße Kugel.

Wahrscheinlichkeit, im ersten Zug eine rote Kugel (r1) zu ziehen: P(r1) = 4/10

Bedingte Wahrscheinlichkeit, im zweiten Zug eine rote Kugel (r2) zu ziehen, wenn

im ersten Zug eine rote Kugel gezogen worden ist (r1): P(r2 | r1) = 3/9

Bedingte Wahrscheinlichkeit, im dritten Zug eine weiße Kugel (w) zu ziehen, wenn

in den ersten beiden Zügen jeweils eine rote Kugel gezogen worden ist (r1 ∩ r2):

P(w3 | r1 ∩ r2) = 6/8

Page 5: 6.4 Hypergeometrische Verteilung - uni-kassel.de · 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln

Wie viel unterschiedliche Anordnung der beiden roten und einen weißen Kugeln gibt

es aber? Mit der Formel für Permutationen mit Wiederholung erhalten wir

.3!1!2

!3P 2,3

Es handelt sich hierbei um die drei Stichproben

r r w, r w r, w r r.

Jede dieser drei Möglichkeiten hat die Wahrscheinlichkeit 0,1, so dass

30310weißeinmalundrotzweimalP ,,

ist.

Zum selben Ergebnis gelangt man unter Verwendung der Wahrscheinlichkeitsfunk-

tion der hypergeometrischen Verteilung (6.15). Die Wahrscheinlichkeit dafür, dass

die Zufallsvariable „Anzahl der roten Kugeln“ den Wert x=2 annimmt, ergibt sich aus

(6.15) nach Einsetzen der Parameter N=10, M=4 und n=3:

.3,0120

66

3

10

1

6

2

4

3

10

23

410

2

4

2f

Daher beträgt die Wahrscheinlichkeit der Kombination r r w

.,)()()( 108

6

9

3

10

42r1r3wP1r2rP1rP3w2r1rP

Page 6: 6.4 Hypergeometrische Verteilung - uni-kassel.de · 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln

Erwartungswert Varianz

(6.16) (6.17) N

MnXE

1N

nN

N

M1

N

MnXV

Vergleich zwischen der hypergeometrischen und Binomialverteilung

● Erwartungswert

Die Erwartungswerte der hypergeometrischen und Binomialverteilung stimmen

überein, wenn man p = M/N setzt.

● Varianz

Die Varianz der hypergeometrischen Verteilung ist für n>1 um den Faktor

(N-n)/(N-1) kleiner als die Varianz der Binomialverteilung. Der Unterschied nimmt

mit wachsendem Stichprobenumfang n zu.

Grund: Informationsgewinn beim Ziehen ohne Zurücklegen

Je mehr Kugeln nun ohne Zurücklegen gezogen werden, desto genauere Infor-

mationen haben wir über die restlichen noch in der Urne enthaltenen Kugeln. Die

Streuung der Zufalllvariablen X verringert sich dadurch.

Wenn dagegen mit Zurücklegen gezogen wird, bleibt die Zusammensetzung der

Urne stets unverändert. Die Streuung der Zufallsvariablen X bleibt dann gleich.

Page 7: 6.4 Hypergeometrische Verteilung - uni-kassel.de · 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln

Endlichkeitskorrektur:

Der Faktor (N-n)/(N-1) heißt Endlichkeitskorrektur.

Approximation der hypergeometrischen

Verteilung durch die Binomialverteilung

Bei endlichem Stichprobenumfang n geht der Faktor (N-n)/(N-1) gegen 1, wenn

N über alle Grenzen wächst. Die Varianz der hypergeometrischen Verteilung geht

dann in die Varianz der Binomialverteilung über.

Allgemein lässt sich zeigen, dass die Wahrscheinlichkeitsfunktion der hypergeo-

metrischen Verteilung fH(x|N,M,n) für N und M in die Wahrscheinlichkeits-

funktion der Binomialverteilung fB(x I n,p) übergeht, sofern M/Np geht:

(6.18) xnp1xpxn

nN

xnMN

xM

pNMNM

/

lim

.

Faustregel:

Wenn der Auswahlsatz n/N 0,05, d.h. kleiner oder gleich 5% ist, lässt sich die

Wahrscheinlichkeit bei Zufallsexperimenten mit Ziehen ohne Zurücklegen appro-

ximativ mit der einfacher handhaberen Binomialverteilung berechnen.

Page 8: 6.4 Hypergeometrische Verteilung - uni-kassel.de · 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln

Beispiel 6.7:

Auf einem Markt von 100 Unternehmen befinden sich 10 innovative Unternehmen.

Wie groß ist die Wahrscheinlichkeit, dass in einem Kartell von 4 Unternehmen min-

destens die Hälfte der Unternehmer innovativ sind?

Da ein Unternehmen, das dem Kartell beigetreten ist, nicht nochmals für einen

Beitritt in Betracht kommt, liegt das Auswahlmodell „Ziehen ohne Zurücklegen“

vor. Die Zufallsvariable X gibt die Anzahl der innovativen Unternehmer (= Ereignis

A) in dem Kartell an. Die gesuchte Wahrscheinlichkeit P(X2) lässt sich damit origi-

när mit der hypergeometrischen Verteilung bestimmen.

Mit den Parametern N=100, M=10 und n=4 erhält man

.0489,00001,00028,00460,0

3921225

1210

3921225

90120

3921225

400545

4

100

44

10100

4

10

4

100

34

10100

3

10

4

100

24

10100

2

10

)4X(P)3X(P)2X(P)2X(P

Mit einer Wahrscheinlichkeit von 4,89% ist also mindestens die Hälfte der Unterneh-

mer in dem Kartell innovativ.

Page 9: 6.4 Hypergeometrische Verteilung - uni-kassel.de · 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln

Da der Auswahlsatz n/N = 4/100 = 0,04 kleiner als 0,05 ist, können wir die gesuch-

te Wahrscheinlichkeit approximativ mit der Binomialverteilung bestimmen. Mit

den Parametern n=4 und p=M/N=10/100=0,1 erhalten wir

Mit zunehmender Zahl der konkurrierenden Unternehmen wird die Approximation

der hypergeometrischen Verteilung durch die Binomialverteilung genauer. ♦

.0523,00001,00036,00486,0

9,01,044

9,01,034

9,01,024

)4X(P)3X(P)2X(P)2X(P

041322

Page 10: 6.4 Hypergeometrische Verteilung - uni-kassel.de · 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln

6.5 Geometrische Verteilung

Wir betrachten eine Urne, die eine beliebige Anzahl von roten und nicht-roten

Kugeln enthält. Es sei A das Ereignis, dass eine rote Kugel gezogen wird. Wir

entnehmen so lange Kugeln mit Zurücklegen, bis zum ersten Mal A eintritt, d. h.

eine rote Kugel gezogen wird. Daher ist die Wahrscheinlichkeit, eine rote Kugel zu

ziehen, im Verlauf des Zufallsvorgangs konstant (Bernoulli-Prozess). Bei jeder

Ziehung ist

P(A) = p und P( ) = 1 – p.

Zufallsvariable X:

Anzahl der Durchführungen des Zufallsvorgangs, bei denen das Ereignis A nicht

realisiert wird (= Anzahl der Misserfolge)

Die Zufallsvariable X nimmt den Wert x an, wenn das Ereignis A bei der (x+1)-ten

Durchführung des Zufallsvorgangs zum ersten Mal realisiert wird.

X=x Ereignisse P(X=x)

X=0 A

X=1

X=2

X=x

Übersicht: Wahrscheinlichkeiten bei der geometrischen Verteilung

A

AA

AAA

pAP0XP

pp1APAP1XP

pp1APAPAP2XP 2

pp1APAPAPAPxXPx

malx

AAAA

malx

Page 11: 6.4 Hypergeometrische Verteilung - uni-kassel.de · 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln

.sonst0

,2,1,0xfürpp1xf

x

Die Wahrscheinlichkeitsfunktion der geometrischen Verteilung lautet

(6.19)

Die Wahrscheinlichkeitsfunktion der geometrischen Verteilung verläuft grundsätzlich

rechtsschief. Die Funktion nimmt um so stärker ab, je größer der Parameter p ist.

A

Abbildung: Wahrscheinlichkeitsfunktionen der geometrischen Verteilung

a) p=0,4 b) p=0,8

)x(f

x2

0,1

0,2

0,3

0,4

6410 3 5

)x(f

x2

0,2

0,4

0,6

0,8

6410 3 5

Die geometrische Verteilung kommt bei Zufallsvorgängen mit dem Auswahlmodell

„Ziehen mit Zurücklegen“ zur Anwendung, die bei prinzipiell beliebiger Wiederho-

lung abgeschlossen sind, wenn das Ereignis A eintritt nachdem x-mal hintereinan-

der realisiert worden ist.

Page 12: 6.4 Hypergeometrische Verteilung - uni-kassel.de · 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln

Beispiel 6.8:

Der Controller einer Firma hat ermittelt, dass die Lieferanten die vereinbarten Liefer-

fristen im Mittel in 85 % der Bestellungen einhalten. Die Firma hat mit einem neuen

Lieferanten laufende Teillieferungen von Halbfertigerzeugnissen für die Herstellung

eines Produktes vereinbart. Nachdem der Lieferant dreimal fristgerecht geliefert hat,

ist er bei der vierten Teillieferung in Verzug geraten.

Mit welcher Wahrscheinlichkeit ein solches Verhalten des Lieferanten zu erwarten?

Die Zufallsvariable X misst stets die Anzahl der Misserfolge, die hier der Anzahl der

fristgerechten Lieferungen entspricht. Eine Lieferung der Firma ist mit einer Wahr-

scheinlichkeit von 0,85 fristgerecht (Ereignis ). Daher ist die Wahrscheinlichkeit p

für eine nicht fristgerechte Lieferung (Ereignis A) gleich 0,15.

Gesucht ist damit die Wahrscheinlichkeit, dass die geometrisch verteilte Zufallsva-

riable X den Wert 3 annimmt:

A

0,092.0,150,85pp13f3)P(X 3x

Die Wahrscheinlichkeit, dass ein Lieferant erst bei der vierten Teillieferung in

Verzug gerät, beträgt 9,2 %.

Page 13: 6.4 Hypergeometrische Verteilung - uni-kassel.de · 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln

Erwartungswert Varianz

(6.20) (6.21) p

p1XE

2p

p1XV

Bei größerem p nimmt der Erwartungswert ab, die Lage der Wahrscheinlichkeits-

funktion verschiebt sich dann also weiter nach links. Die Varianz verringert sich da-

bei ebenfalls, was bedeutet, dass die Verteilung schneller abfällt.

● Verteilungsfunktion

Die Verteilungsfunktion der geometrischen Verteilung gibt die Wahrscheinlich-

keit dafür an, dass nach höchstens x Misserfolgen zum ersten Mal A eintritt.

Sie lässt sich in kompakter form darstellen:

(6.22) F(x) = 1 – (1 – p)x+1.

Beweis von (6.22):

Man erhält die Verteilungsfunktion F(x) der geometrischen Verteilung, indem die

Wahrscheinlichkeiten f(y) bis zum Wert yx kumuliert, d.h. addiert:

.pp1 p p-1 pp1 pF(x) x2

Multipliziert man F(x) mit dem Faktor (1-p), erhält man

.pp1pp1pp1pp1x Fp1 1x22

Page 14: 6.4 Hypergeometrische Verteilung - uni-kassel.de · 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln

Als Differenz der beiden Summenformeln ergibt sich

1x

1x

1x

p11ppxF

,p11pp11xF

,pp1pxFp1xF

.p11xF 1x

und nach Division durch p schließlich

Beispiel 6.9:

Angenommen, die Statistik II-Klausur ist beliebig oft wiederholbar. Der Anteil der

Studenten, die die Statistik II-Klausur bestehen, beträgt 60%. Wie groß ist dann

die Wahrscheinlichkeit, dass ein Student die Klausur

a) spätestens im dritten

b) frühestens im dritten (= mind. 2 Misserfolge)

Versuch besteht?

Ad a) Klausur spätestens im dritten Versuch bestehen

Die Zufallsvariable X bezeichnet die Anzahl der Misserfolge, die hier den erfolglo-

sen Versuchen entsprechen. Wenn spätestens im dritten Versuch bestanden

wird, dann sind bis zu zwei Misserfolge zulässig. Gesucht ist dann der Wert der

Verteilungsfunktion an der Stelle x=2:

.936,0064,016,011

)p1(1)p1(12F)2X(P

3

31x

Page 15: 6.4 Hypergeometrische Verteilung - uni-kassel.de · 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln

Aufwendiger gelangt man zum selben Ergebnis, indem man die Wahrscheinlich-

keiten für 0, 1 und 2 Misserfolge addiert:

.936,0096,024,06,0

6,0)6,01(6,0)6,01(6,0

p)p1(p)p1(p)2(f)1(f)0(f)2X(P

2

2

Ad b) Klausur frühestens im dritten Versuch bestehen (= mindestens 2 Misserfolge)

Die Klausur frühestens im dritten Versuch zu bestehen, bedeutet, mindestens zwei-

mal durchzufallen, d.h. mindestens zwei Misserfolge zu erzielen. Die gesuchte

Wahrscheinlichkeit ist daher durch

160,04,0)6,01(

6,0111])p1(1[1

)1(F11XP12XP

22

21x

gegeben. ♦

Page 16: 6.4 Hypergeometrische Verteilung - uni-kassel.de · 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln

6.5 Poissonverteilung

Die Poisson-Verteilung ist eine Wahrscheinlichkeitsverteilung, die zur Modellie-

rung seltener Ereignisse von Relevanz ist.

Beispiel 6.10:

Beispiele für Fragestellungen, in denen die Wahrscheinlichkeitsverteilung

seltener Ereignisse von Bedeutung ist, sind:

- Unfälle in einer großen Fabrik pro Tag,

- Telefonanrufe in einer Vermittlungsstelle während einer Stunde,

- Basisinnovationen in einer Branche pro Jahr,

- tödliche Betriebsunfälle in einer Periode,

- Ankünfte von Flugzeugen auf einem Flughafen pro Minute,

- Druckfehler auf einer Buchseite. ♦

Mit Ausnahme des letzten Falls beziehen sich die seltenen Ereignisse in allen

anderen Beispiele auf ein Zeitintervall. Der Anschaulichkeit halber erläutern wir

die Grundlagen der Poissonverteilung anhand eines zeitlichen Prozesses (Pois-

sonprozess).

Page 17: 6.4 Hypergeometrische Verteilung - uni-kassel.de · 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln

Poissonprozess:

Wir zerlegen nun das Intervall [0,t] in n gleich lange Teilintervalle. Diese n Teilinter-

valle haben dann alle die Länge t/n:

t/n...t/nt/n

0 t

Der Poissonprozess ist durch folgende Eigenschaften gekennzeichnet:

- In jedem der n Teilintervalle kann im Wesentlichen das Ereignis A entweder ein-

mal oder keinmal auftreten. Die Wahrscheinlichkeit, dass das Ereignis A in einem

Teilintervall mehr als einmal eintritt, ist praktisch vernachlässigbar.

- Das Eintreten von A im i-ten Teilintervall ist unabhängig vom Eintreten von A im

j-ten Teilintervall (i ≠ j).

- Die Wahrscheinlichkeit für das Eintreten des Ereignisses von A, P(A) = p, ist für

jedes Teilintervall gleich groß. Außerdem ist p proportional zur Länge des Teil-

intervalls, d.h. p=λ·(t/n), wobei der Proportionalitätsfaktor λ >0 und konstant ist.

Wenn nun die Zahl der Teilintervalle n endlich ist und die Zufallsvariable X die An-

zahl des Eintretens von A in n Teilintervallen bezeichnet, dann ist X unter der An-

nahme, dass das Ereignis A tatsächlich nur ein- oder keinmal in einem Teilinter-

vall eintreten kann, binomialverteilt mit den Parametern n und p.

Beziehung zwischen Parametern n und p und dem Proportionalitätsfaktor λ:

ntp , so dass 0,tnp ist.

Page 18: 6.4 Hypergeometrische Verteilung - uni-kassel.de · 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln

Da die Länge t des gesamten Intervalls [0,t] vorgegeben und konstant ist, ist n·p

konstant. Wenn nun die Zahl der Teilintervalle n steigt, dann sinkt die Länge t/n die-

ser Intervalle, weil das Gesamtintervall die vorgegebene Länge t hat. Da λ konstant

ist, muss p kleiner werden, d.h. das Ereignis A wird nur noch selten in einem Teilin-

tervall eintreten. Man gelangt damit zur Poissonverteilung als Verteilung für sel-

tene Ereignisse.

Speziell ergibt sich die Poissonverteilung in der Grenze aus der Binomialverteilung,

wenn n bei konstantem λ über alle Grenzen wächst. Verwendet man für das Inter-

vall [0,t] das Einheitsintervall [0,1], dann muss

(6.23) λ = n·p

konstant sein. Der Proportionalitätsfaktor λ ist der Parameter der Poissonverteilung.

Eine Zufallsvariable X folgt einer Poissonverteilung mit dem Parameter λ ,

wenn die Wahrscheinlichkeitsfunktion von X durch

(6.24)

mit λ >0 gegeben ist.

sonst0

,1,0xe!xxf

x

Page 19: 6.4 Hypergeometrische Verteilung - uni-kassel.de · 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln

Wir illustrieren die Rolle des Parameters λ bei der Poissonverteilung anhand zweier

Stabdiagramme.

a) λ = 0,5 b) λ = 2

x2

0,2

0,4

0,6

6410 3 5

)x(f

x2

0,1

0,2

0,3

6410 3 5

)x(f

Die Wahrscheinlichkeitsfunktion der Poissonverteilung verläuft linkssteil (rechts-

schief). Mit zunehmendem Wert des Parameters λ nehmen die Wahrscheinlichkei-

ten größerer x-Werte zu. Während der Modus bei kleinem λ gleich 0 ist, steigen die

Wahrscheinlichkeiten bei größerem λ erst einmal an ehe sie ihr Maximum erreichen.

Faustregel für die Approximation der Bino-

mialverteilung durch die Poissonverteilung: (6.25) p 0,1 und n 50

Page 20: 6.4 Hypergeometrische Verteilung - uni-kassel.de · 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln

Beispiel 6.10:

Die Wahrscheinlichkeit, dass eine Person ein bestimmtes Medikament nicht ver-

trägt, sei 0,001. Insgesamt wurden 2.000 Personen mit diesem Medikament be-

handelt. Dann ist die Anzahl der mit dem Medikament behandelten Personen, die

das Medikament nicht vertragen, binomialverteilt mit den Parametern n = 2000 und

p = 0,001, so dass die Wahrscheinlichkeiten aus

x2000x 999,0001,0x

2000xXP

ermittelt werden können. Die Berechnung mit dieser Formel ist jedoch umständ-

lich. Da die Faustregel (6.25) hier erfüllt ist,

(p = 0,001) < 0,1 und (n = 2000 > 50

ist das betrachtete Ereignis, das Medikament nicht zu vertragen, ein seltenes

Ereignis, das mit der Poissonverteilung modelliert werden kann.

Mit dem Parameter

λ = n·p = 2000·0,001 = 2

erhält man die zu verwendende Wahrscheinlichkeitsfunktion der Poissonverteilung

sonst0

,1,0xe!x

2

xf

2x

.

Page 21: 6.4 Hypergeometrische Verteilung - uni-kassel.de · 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln

Mit der Wahrscheinlichkeitsfunktion der Poisson-Verteilung erhält man z. B.

1353,0ee!0

20f0XP 22

0

und

.2707,0e2e!1

21f1XP 22

1

Insgesamt ergibt der Vergleich zwischen Binomialverteilung und Poisson-Vertei-

lung nur geringe Abweichungen, die ab der vierten Dezimalstelle bestehen

Binomialverteilung Poisson-Verteilung

P(X=0) 0,1352 0,1353

P(X=1) 0,2707 0,2707

P(X=2) 0,2708 0,2707

P(X=3) 0,1805 0,1804

P(X=4) 0,0902 0,0902 ♦

Page 22: 6.4 Hypergeometrische Verteilung - uni-kassel.de · 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln

Erwartungswert Varianz

(6.26) E(X) = λ (6.27) V(X) = λ

Erwartungswert und Varianz einer poissonverteilten Zufallsvariablen X stimmen

überein.

Beweis von (6.26):

Lässt man die Anzahl der Realisationen m in der Definition des Erwartungswerts

(5.12) gegen unendlich gehen, kann man den Erwartungswert der Poissonvertei-

lung mit der Wahrscheinlichkeitsfunktion (6.24) wie folgt berechnen:

1x

x

0x

x

!xxee

!xxXE .

Die Summe von x=1 an ist zulässig, da der Ausdruck x·λx/x! für x=0 gleich 0 ist.

Es folgt

1x

1x

1x

1x

!1xe

!1xxxeXE .

Wird nun y = x-1 gesetzt, dann erhält man

0y

y

!yeXE .

Page 23: 6.4 Hypergeometrische Verteilung - uni-kassel.de · 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln

Letzterer Ausdruck gibt aber genau die Taylor-Reihe der Funktion eλ wieder, d.h.

es gilt

e...!2!1!0!y

210

0y

y

woraus sich

,

eeXE

ergibt. ⃞

Beispiel 6.11:

Eine Versicherung hat für einen Zeitraum von einem Jahr in 200 Bauunternehmen

122 schwere Unfälle bei Hochbauarbeiten ermittelt.

Wie groß ist die Wahrscheinlichkeit, dass es in einem Bauunternehmen in einem

Jahr zu 0, 1, 2 und mehr als 2 schweren Unfällen bei Hochbauarbeiten kommt?

Ein schwerer Unfall ist ein seltenes Ereignis, da sich durchschnittlich pro Jahr und

Bauunternehmen nur 122 / 200 = 0,61 schwere Unfälle ereignet haben. In vielen

Bauunternehmen hat sich im betrachteten Jahr kein oder ein Unfall ereignet. Die

gesuchten Wahrscheinlichkeiten können daher mit der Poissonverteilung berechnet

werden.

Page 24: 6.4 Hypergeometrische Verteilung - uni-kassel.de · 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln

Hierzu muss der Parameter λ festgelegt werden, der den Erwartungswert für die An-

zahl der schweren Unfälle in einem Bauunternehmen pro Jahr angibt. Unter Ausnut-

zung der verfügbaren Informationen verwenden wir für den Parameter λ die durch

schnittliche Zahl der schweren Unfälle:

λ = 122 / 200 = 0,61.

Zur Bestimmung der gesuchten Wahrscheinlichkeiten ziehen wir daher die Wahr-

scheinlichkeitsfunktion

sonst0

,1,0xe!x

61,0

xf

61,0x

.

heran. Hiermit erhalten wir die Wahrscheinlichkeiten

5434,0ee!0

61,00f0XP 61,061,0

0

3314,0e61,0e!1

61,01f1XP 61,061,0

1

1011,0e18605,0e!2

61,02f2XP 61,061,0

2

0241,09759,01)1011,03314,05434,0(1

]2f)1(f)0(f[1)2X(P12XP

- für keinen Unfall:

- für einen Unfall:

- für zwei Unfälle:

- für mehr als

zwei Unfälle: ♦

Page 25: 6.4 Hypergeometrische Verteilung - uni-kassel.de · 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln

6.6 Exponentialverteilung

Die Exponentialverteilung ist eine stetige Wahrscheinlichkeitsverteilung, die zur

Modellierung der Dauer von kontinuierlichen Vorgängen wie Wartezeiten,

Lebensdauern und Ausfallzeiten von Relevanz ist.

Beipiele:

- Wartezeit eines Kunden an einem Schalter,

- Lebensdauer eines Produkts wie z.B. einer Glühbirne,

- Lebensdauer einer Maschine,

- Dauer von Instandhaltungsmaßnahmen und Reparaturen,

- Dauer eines Telefongesprächs,

- Ausfallzeit eines Pkws nach einem Unfall z.B. für die Kraftfahrzeug-Haftpflicht

- Alter von Lebewesen

- radioaktiver Zerfall von Elementen

Die Exponentialverteilung kann als das kontinuierliche Pendant der Poisson-

verteilung angesehen werden. Der Parameter der einparametrischen

Verteilung ist ein Maß für die durchschnittliche Zeit zwischen zwei Ereignissen.

Page 26: 6.4 Hypergeometrische Verteilung - uni-kassel.de · 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln

Eine Zufallsvariable X folgt einer Exponentialverteilung mit dem Parameter λ ,

wenn die Dichtefunktion von X durch

(6.27a)

mit λ >0 gegeben ist.

sonst0

0λ0,xfürλxeλxf

Abb.: Dichtefunktion der Exponentialverteilung für alternative Werte von

=1=0,5

f(x) f(x)

x x

Page 27: 6.4 Hypergeometrische Verteilung - uni-kassel.de · 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln

Verteilungsfunktion F(x) einer exponentialverteilten Zufallsvariablen X

Herleitung aus Dichtefunktion:

für x<0:

F(x) = 0

für x0:

[ ]uu e1

ion StammfunkteFunktion

x

0

uλx

0

uλ dueλdueλF(x)

xλ0xλ0λxλ e1eeee

x

0

uλx

0

uλ eeλ

Page 28: 6.4 Hypergeometrische Verteilung - uni-kassel.de · 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln

Die Verteilungsfunktion einer exponentialverteilten Zufallsvariablen X mit

dem Parameter λ lautet

(6.27b)

Ihr Erwartungswert und ihre Varianz sind durch

(6.27c) E(X) = 1/ und (6.27d) V(X) = 1/2

gegeben.

0λ0,xfürλx-e-1

0xfür0xF

Abb.: Verteilungsfunktion der Exponentialverteilung für alternative Werte von

=1 =0,5

F(x) F(x)

x x

Page 29: 6.4 Hypergeometrische Verteilung - uni-kassel.de · 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln

Beispiel 6.11a:

Die Lebensdauer (= Wartezeit bis zum Ausfall) von Glühbirnen des Typs A ist

exponentialverteilt mit dem Erwartungswert 10 [Tsd. Std.].

Wie groß ist die Wahrscheinlichkeit, dass eine Glühbirne mehr als 12 [Tsd. Std.]

intakt ist?

E(X) = 1/ = 10 Parameter = 1/10 = 0,1

- mit Dichtefunktion

- mit Verteilungsfunktion

12

0

x0,1-12

0

x0,1- dxe0,11dxe0,1112)P(X112)P(X

0

12)e1]

0

12)e[1

0

12)e10(0,11 x0,1x0,1x0,1

3012,013012,01ee1ee1 0-1,20-0,112-0,1

F(12)112)P(X112)P(X

3012,0ee11 1,2121,0