Brennstoffe aus solarthermischen Prozessen – Stand und … DLR Solar Fuels... · 2016. 12. 2. ·...

26
Brennstoffe aus solarthermischen Prozessen – Stand und Perspektiven Workshop Gemeinsame Initiative Energiesystem 2050 – FT3, Jülich, 3. Mai 2015 Dr. Martin Roeb und Dr. Christian Sattler [email protected] DLR.de Chart 1

Transcript of Brennstoffe aus solarthermischen Prozessen – Stand und … DLR Solar Fuels... · 2016. 12. 2. ·...

  • Brennstoffe aus solarthermischen Prozessen – Stand und Perspektiven

    Workshop Gemeinsame Initiative Energiesystem 2050 –FT3, Jülich, 3. Mai 2015

    Dr. Martin Roeb und Dr. Christian [email protected]

    DLR.de • Chart 1

  • • Background: Political, Economical, Ecological, Technical• Concentrating Solar Systems• Solar fuels technology scale-up• Project examples• Outlook

    Introduction

    DLR.de • Chart 2

  • • Goals of the EU until 2020 (20/20/20)• 20% higher energy efficiency• 20% less GHG emission• 20% renewable energy

    • Goal of the EU until 2050: • 80% less CO2 emissions than in 1990

    • G7 Goals, Elmau, Germany• 100% Decarbonisation until 2100• 100 bln $/year for climate actions in developing

    countries, large share by industrial investment

    Political Drivers: Examples – EU Sustainable Energy Technology Plan (SET-Plan 2007) G7 Goals (2015)

    DLR.de • Chart 3

  • Development of EU GHG emissions [Gt CO2e]

    DLR.de • Chart 4

  • Temperature Levels of CSP Technologies

    DLR.de • Chart 5

    Paraboloid: „Dish“

    Solar Tower (Central ReceiverSystem)

    Parabolic Trough / Linear Fresnel

    3500°C

    1500°C

    390°C

    150°C50°C

  • Solar Towers

    DLR.de • Chart 6

    ‐PS10, Ivanpah, Torresol‐PSA CRS, CESA‐1, ‐Solar‐Two, Daggett, 

    8 km = 5 mls.377 MWe

    http://www.ivanpahsolar.com/

  • CSP Market Development according to IEA

    0,7

    0,9

    1,6

    0,1

    0,1

    0,1

    0,6

    9.2

    4.0

    2.5

    0.60.4

    0.8

    20162015

    7.6

    3.21.9

    0.0

    31.4%

    2017

    10.9

    4.2

    2.5

    1.00.61.0

    2.5

    0.3 0.30.6

    2014

    5.9

    2.5

    2.2

    0.2 0.3

    2013

    4.2

    1.4

    2.2

    0.2 0.2

    2012

    2.8

    0.8

    CAGR: 31.4%USSpainChinaIndiaOther OECDOther non-OECD (~MENA & South Africa)

    DLR.de • Chart 7

  • Potential Solar High Temperature Applications underInvestigation

    DLR.de • Chart 8

    Reforming of natural gas

    Gasification of coal and biomass

    Water and CO2 splitting

    Thermochemical storage

    Recycling of sulfuric acid

    Processing of ores

    Calcination / Cement production

    Ammonia / Fertilizer Production

    Metal Smelting and Recycling

    Glass production

    High Temperature Electrolysis

  • Potential of Solar Energy

    Power/fuel production of solar plant of the size of Lake Assuan equals (energetically) the entire crude oil production of the Middle East!!

    DLR.de • Chart 9

  • Principle of Solar Fuel Production

    DLR.de • Chart 10

    Kohlenstoffdioxid(CO2)Wasser (H2O)

    Synthesegas (H2 + CO)

    Wasserstoff (H2)

    Flüss. Kraftstoff z.B. Fischer-Tropsch-Anlage

    CSPPhotovoltaik

    Windenergie Geothermie

    Transport

  • Solar hydrogen production:From raw material to fuelWater +

    DLR.de • Chart 11

  • 12

    Efficiency comparison for solar hydrogen production from water (Siegel et al., 2013)*

    Process T[°C]

    Solar plant Solar-receiver+ power [MWth]

    η T/C

    (HHV)

    η Optical η Receiver

    ηAnnual

    EfficiencySolar – H2

    Elctrolysis (+solar-thermal power)

    NA Actual Solar tower

    Molten Salt 700

    30% 57% 83% 13%

    High temperature steam electrolysis

    850 Future Solar tower

    Particle 700

    45% 57% 76,2% 20%

    Hybrid Sulfur-process

    850 Future Solar tower

    Particle 700

    50% 57% 76% 22%

    Hybrid Copper Chlorine-process

    600 Future Solar tower

    Molten Salt700

    44% 57% 83% 21%

    Metaloxide two step Cycle

    1800 Future Solar dish

    Particle Reactor

    < 1

    52% 77% 62% 25%

    *N.P. Siegel, J.E. Miller, I. Ermanoski, R.B. Diver, E.B. Stechel, Ind. Eng.Chem. Res., 2013, 52, 3276-3286.

    DLR.de • Chart 12

  • Technical Optimization in all Dimensions necessary

    104 – 102 m Solar Plant

    Site

    Solar field

    Simulation

    Environmental impact

    102 – 101m Receiver

    Design

    Simulation

    Construction

    Testing

    Next-Generation-

    Development

    101 – 10-2m Receiver-

    components

    MaterialsDesign

    Heat and

    Mass transport

    Simulation

    Testing and

    Development

    10-2 – 10-8 m Reactive Systems

    Simulation

    SynthesisChemical Charactristics

    Physical Characteristics

    DLR.de • Chart 13

  • Solar Field Development

    The field has to bedesigned for itsapplication:• Location• Concentration ratio

    to achieve theProcess temperature

    • At high concentration(1000 suns) secondary opticshave to be taken intoaccount

    T (K)E.A. Fletcher, R.L. Moen, Science, 197 (1977) 1050-1056.

    M. Schmitz et al., Solar Energy 80 (2006) 111–120.

    DLR.de • Chart 14

  • Scale evolution

    DLR.de • Chart 15

    TGA Lab-scale furnace test rig

    Solar receivers

  • Example how a technology is developedThe HYDROSOL concept

    1. Water Splitting

    H2O + MOredMOox + H2

    2. Regeneration 

    MOoxMOred + ½ O2

    O

    H H

    O O

    900 °C

    1300 °C

    Net Reaction: H2O  H2 + ½ O2

    DLR.de • Chart 16

  • HYDROSOL Development

    DLR.de • Chart 17

    Hydrosol I2002 – 2005

  • Hydrosol Plant - Design for CRS tower PSA, Spain

    • European FCH-JU project

    • Partner: APTL (GR), HELPE (GR), CIEMAT (ES), HYGEAR (NL)

    • 750 kWth demonstration ofthermochemical water splitting

    • Location: Plataforma Solar de Almería, Spain, 2016

    • Use of all heliostats

    • Reactor set-up on the CRS tower

    • Storage tanks and PSA on theground

    DLR.de • Chart 18

  • Sulfur-based thermochemical cycles for hydrogen production: on-sun operation on Solar Tower Jülich

    DLR.de • Chart 19

    Radiation shield

    Solar absorber behind quartz glass window

    Secondary concentrator

    • 07 – 09/2015: Assembly of pilot plant on research platform• 09 – 10/2015: Initial operation with water/first test with sulphuric acid

    • Water volume flow: 600 ml/min• Absorber temperature: ~1200 °C @ 50 kW solar power on aperture• Gas outlet temperature (steam): ~1000 °C• Lessons Learned: e.g. reactor temp. too low, secondary cooling not

    sufficient, system is generally resistant to sulphuric acid• 11/2015 – today: Modification of pilot plant/preparation of 2nd on-sun test

    • E.g. enhanced secondary cooling, changed catalyst location

  • Solar Ammonia Production

    DLR.de • Chart 20

    Haber‐Bosch ProcessNH3

    H HO

    H H

    Ce2Ox

    O

    1100°C 1400°C

    H2From water

    CuOx

    N N

    O O

    O O

    880°C 840°C

    N2From air

  • DLR.de • Chart 21

    O2

    CuOx+1

    CuOx

    N₂

    Oxidation

    Reduction

    Qin (Concentrated Solar Power)

    Qout

    Copper Oxide

    Air

    Tred: 880°C, Tox : 840 °C

    11kW/Kmol of Air

    Air separation based on model material: Copper oxide

  • DLR Strategie-Projekt: Future Fuels –Flüssige Energie für Strom, Wärme und globalen Transport

    • DLR Strategie-Projekt Future Fuels vernetzt 8 Institute in6 multilateralen Teilprojekten,um das Potential zukünftiger flüssiger Kohlenwasserstoffe zu untersuchen

    TP 0 Koordination

    DLR.de • Chart 22

  • EU STAGE-STE - Task „Technology assessment of

    solar thermochemical fuelproduction“

    - Entwicklung von Flowsheets- Bewertung von Technologien

    für verschiedene Szenarien- Einordnung in die

    europäischen Energieprogramme (SET Plan)

    - Ökonomische Analyse

    Flowsheet einer thermochemischen Wasserstoffanlage

    DLR.de • Chart 23

  • OutlookSpecific Solar Fuel Demonstration Tower needed!

    CRS Tower PSA, Spain Solar Fuels Tower, Location?2008 and 2016 2020

    DLR.de • Chart 24

    • High concentration > 1000• Heliostats fit to receiver size• Field control adapted to fuel production processes

  • EU Project Sun-to-Liquid – Current state of field design

    DLR.de • Chart 25

  • DLR.de • Chart 26

    Thank you very much for your attention!