Gliederung

15
Gliederung 1. Populäre Einführung I: Astrometrie 2. Populäre Einführung II: Hipparcos und Gaia 3. Wissenschaft aus Hipparcos-Daten I 4. Wissenschaft aus Hipparcos-Daten II 5. Hipparcos: Technik und Mission 6. Astrometrische Grundlagen 7. Hipparcos Datenreduktion Hauptinstrument 8. Hipparcos Datenreduktion Tycho 9. Gaia: Technik und Mission 10. Gaia Global Iterative Solution 11. Wissenschaft aus Gaia-Daten 12. Sternklassifikation mit Gaia 13. SIM und andere Missionen

description

Gliederung. Populäre Einführung I: Astrometrie Populäre Einführung II: Hipparcos und Gaia Wissenschaft aus Hipparcos-Daten I Wissenschaft aus Hipparcos-Daten II Hipparcos: Technik und Mission Astrometrische Grundlagen Hipparcos Datenreduktion Hauptinstrument - PowerPoint PPT Presentation

Transcript of Gliederung

Page 1: Gliederung

Gliederung

1. Populäre Einführung I: Astrometrie2. Populäre Einführung II: Hipparcos und Gaia3. Wissenschaft aus Hipparcos-Daten I 4. Wissenschaft aus Hipparcos-Daten II5. Hipparcos: Technik und Mission6. Astrometrische Grundlagen 7. Hipparcos Datenreduktion Hauptinstrument8. Hipparcos Datenreduktion Tycho9. Gaia: Technik und Mission10. Gaia Global Iterative Solution11. Wissenschaft aus Gaia-Daten12. Sternklassifikation mit Gaia13. SIM und andere Missionen

Page 2: Gliederung

Sternklassifikation mit Gaia

Page 3: Gliederung

Object classification/physical parametrization

• classification as star, galaxy, quasar, supernovae, solar system objects etc.• determination of physical parameters: - Teff, logg, [Fe/H], [/H], A(), Vrot, Vrad, activity etc.• combination with parallax to determine stellar: - luminosity, radius, (mass, age)• use all available data (photometric, spectroscopic, astrometric)• must be able to cope with: - unresolved binaries (help from astrometry) - photometric variability (can exploit, e.g. Cepheids, RR Lyrae) - missing and censored data (unbiased: not a ‘pre-cleaned’ data set)• multidimensional iterative methods: - cluster analysis, k-nn, neural networks, interpolation methods• required for astrometric reduction (identification of quasars, variables etc.)• maybe discovery of new types of objects produce detailed classification catalogue of all 109 objects

Page 4: Gliederung

Classification methodology

Page 5: Gliederung

Minimum Distance Methods (MDM)

astrophysical parameter(s)d1,d2 dataD distance to a template

Page 6: Gliederung

Neural Networks

Page 7: Gliederung

Parametrization example: RVS-like data

blue = training datared = test data

CaII (849-874nm) data from Cenarro et al. (2001)

R = 5700 (1/2 GAIA)

SNR (median) = 70 (90% in range 20-140)

Network trained on half and tested on other half

Bailer-Jones (2003)

Page 8: Gliederung

Results: Teff and [Fe/H]

Page 9: Gliederung

Classification issues• different data sensitivities to APs (Teff strong; [Fe/H]

weak)• wide range of object types

– inhomogeneous stellar models– hierarchical classifier

• binary stars (raises dimensionality)• stellar variability• degeneracy• inhomogeneous data• calibration• etc.

Page 10: Gliederung

GAIA photometric systems

Broad Band Photometer (BBP)●astrometric chromaticity correction●space for up to 7 bands●classification, Teff, extinction

Medium Band Photometer (MBP)●AP determination●space for up to 16 bands

6*Ag

CCD3

2B 1X CCD1b CCD2

Both photometric systems are still under development

Page 11: Gliederung

Filter system evaluation• synthetic spectra: - BaSeL spectra (Lejeune et al. 1997) - wide range of Teff, logg, [Fe/H]• artifically redden: - Fitzpatrick (1999) extinction curves• GAIA photometric simulator + noise model

(“photsim”)• split data set into two halves 1. for model training 2. for model evaluation

Page 12: Gliederung

MBP performance estimates

mag dex dex %

~0.1 0.05‒0.25 0.20.1‒0.35

0.7 8

~1.0 8

0.08 0.4 0.03 4

0.3 0.35

Av) ([Fe/H]) (logg) (Teff)

KV, G=15, Av = 0, [Fe/H] = +0.1..-2 1–2KV, G=20, Av = 0 0.1‒0.7 0.3–0.5 2–5KV, G=20, Av = 6

KIII, G=15, Av = 0 0.2–0.4 0.2–0.3 2.5–4KIII, G=15, Av = 6 0.7–0.8

AIII, G=15, Av = 0, [Fe/H] ~ 0

BV, G=15, Av = 6, [Fe/H] ~ 0

Accuracy varies a lot as a function of the 4 APs and magnitude

Willemsen, Kaempf, Bailer-Jones (2003)

Page 13: Gliederung

Heuristic filter design

• objective: design filter system to maximally “separate” a set of stars

• fixed parameters: set of stars, instrument, total integration time, Nfilters

• free parameters: c (central wavelength), (width), f (fractional integration time), for each filter

• maximize over the set of stars:

fitness ~SNR separationAP difference

Page 14: Gliederung

Evolutionary algorithm

initialise population

simulate counts (and errors) from each star in each filter system

calculate fitness ofeach filter system

select fitter filter systems(probability a fitness)

mutate filter systemparameters

Page 15: Gliederung

HFD: a preliminary resultnominal 10-band MBP-like system

red = filter transmission x fractional integration time

blue = CCD QE

● high reproducibility (convergence) for given fixed parameters● broader filters produced that hitherto adopted in MBP design● substantial filter overlap● fitness higher than that of existing systems (e.g. 1X)