Identifizierung des Keims Streptococcus mutans

109
Aus der Klinik für Zahnerhaltung, Parodontologie und Präventive Zahnheilkunde, Universität des Saarlandes, Homburg/Saar (Direktor: Prof. Dr. M. Hannig) Identifizierung des Keims Streptococcus mutans aus Bakteriengemischen und Speichelisolaten mittels Flugzeit-Massenspektrometrie Dissertation zur Erlangung des akademischen Grades Dr. med. dent. Doctor medicinae dentariae an der medizinischen Fakultät der Universität des Saarlandes 2014 Eingereicht von Till-Martin Wessel Hüsken, geb. am 23.06.1980 in Wesel

Transcript of Identifizierung des Keims Streptococcus mutans

Page 1: Identifizierung des Keims Streptococcus mutans

1

Aus der Klinik für Zahnerhaltung, Parodontologie und Präventive Zahnheilkunde, Universität des Saarlandes, Homburg/Saar

(Direktor: Prof. Dr. M. Hannig)

Identifizierung des Keims Streptococcus mutans

aus Bakteriengemischen und Speichelisolaten

mittels Flugzeit-Massenspektrometrie

Dissertation zur Erlangung des akademischen Grades

Dr. med. dent.

Doctor medicinae dentariae

an der medizinischen Fakultät der Universität des Saarlandes 2014

Eingereicht von Till-Martin Wessel Hüsken,

geb. am 23.06.1980 in Wesel

Page 2: Identifizierung des Keims Streptococcus mutans

2

Promotionsjahr: 2014

Dekan: Prof. Dr. M.D. Menger

1. Berichterstatter: Prof. Dr. Stefan Rupf

2.

Page 3: Identifizierung des Keims Streptococcus mutans

I

Inhaltsverzeichnis:

Abbildungsverzeichnis und Tabellenverzeichnis ..................................................................... III

Abkürzungsverzeichnis ............................................................................................................ VI

1. Zusammenfassung ............................................................................................................... VII

1.1 Zusammenfassung (deutsch) ........................................................................................ VII

1.2 Abstract (englisch) ......................................................................................................... IX

2. Einleitung ............................................................................................................................... 1

2.1 MALDI-TOF-Massenspektrometrie zur Identifizierung oraler Mikroorganismen ........ 1

2.2 Probleme bei der Identifikation oraler Bakterien ............................................................ 7

2.3 Orale mikrobielle Gemeinschaften .................................................................................. 9

2.4 Bedeutung von Streptococcus mutans, Kariesinitiation ................................................ 13

2.5 Klassifikation und Identifizierung der Mutans-Streptokokken ..................................... 19

2.6 Ziele der Arbeit, Fragestellung ...................................................................................... 28

3 Material und Methoden ......................................................................................................... 29

3.1 Material: Geräte und Chemikalien................................................................................. 29

3.2 Methoden: MALDI-TOF MS ........................................................................................ 32

3.3 Bakterien: Gemischherstellung, Reinkulturen und klinische Isolate und ihre

Analyse mittels MALDI-TOF MS .............................................................................. 34

3.4 Analyse der Peptidmassenspektren................................................................................ 38

4. Ergebnisse ............................................................................................................................ 42

4.1 Vorversuche (Reinkulturen und Gemische) .................................................................. 42

4.2 Erstellung der Referenzdatenbank ................................................................................. 43

4.3 Quantitative Analyse der Bakteriengemische ................................................................ 49

4.3.1 Qualität der Analyseergebnisse .................................................................................. 62

Page 4: Identifizierung des Keims Streptococcus mutans

II

5. Diskussion ........................................................................................................................ …71

5.1 Fragestellung .................................................................................................................. 71

5.2 Methodik ........................................................................................................................ 73

5.3 Folgerungen ................................................................................................................... 77

6. Literaturverzeichnis ........................................................................................................ …..78

7. Anhang (Tabelle der Peakmassenlisten der 43 Gemische) ………………………… ……..95

8. Danksagung .......................................................................................................................... 96

9. Lebenslauf ............................................................................................................................ 97

Page 5: Identifizierung des Keims Streptococcus mutans

III

Abbildungsverzeichnis:

Abbildung 1: Grafische Darstellung des Funktionsprinzips der Matrix-assisted laser desorp-

tion/ionisation time of flight (MALDI-TOF) Massenspektrometrie .................. 6

Abbildung 2: Phylogenetische Verwandtschaftsverhältnisse innerhalb der Streptokokken

(modifiziert nach Kawamura et al. 1995 und Zbinden et al. 2012). ................. 22

Abbildung 3: Beispiele von mikroskopischen Aufnahmen von S. mutans

– Bakterienkolonien auf MSB-Agar ................................................................. 23

Abbildung 4: Untersuchung der optimalen Anzahl von Massenpeaks zur Identifizierung von

Mutans Streptokokken Isolaten ........................................................................ 42

Abbildung 5a: MALDI-TOF MS- Ergebnisse der Mutans-Referenzstämme (GS 5, Ingbritt,

Jb 1600 und LM-7) der Datenbank ................................................................... 44

Abbildung 5b: MALDI-TOF MS- Ergebnisse der Mutans-Referenzstämme (NCTC 10449,

OMZ 125, OMZ 175 und Qp 50-1) der Datenbank.......................................... 45

Abbildung 5c: MALDI-TOF MS- Ergebniss des Mutans-Referenzstammes Se 11 der Daten-

bank................................................................................................................... 46

Abbildung 6a: MALDI-TOF-MS Darstellung des aus einer Speichelprobe isolierten Stammes

S50_834. ............................................................................................... ………46

Abbildung 6b: Klassifikation als S. mutans (Isolat S50_834), aus Speichel gewonnen, im Ver-

gleich mit anderen Stämmen der Datenbank. .................................................. .47

Abbildung 7a: MALDI-TOF-Masterspektren der Gemische 1-3

mit jeweils 100 prozentiger Bakterienbeteiligung ............................................ 50

Abbildung 7b: MALDI-TOF-Master-Massenspektren der Gemische 4 - 7 ............................. 51

Abbildung 7c: MALDI-TOF-Master-Massenspektren der Gemische 8 - 11 ........................... 52

Abbildung 7d: MALDI-TOF-Master-Massenspektren der Gemische 12 - 15 ......................... 53

Abbildung 7e: MALDI-TOF-Master-Massenspektren der Gemische 16 - 19 ......................... 54

Abbildung 7f: MALDI-TOF-Master-Massenspektren der Gemische 20 - 23 ......................... 55

Abbildung 7g: MALDI-TOF-Master-Massenspektren der Gemische 24 - 27 ......................... 56

Abbildung 7h: MALDI-TOF-Master-Massenspektren der Gemische 28 - 31 ........................ 57

Abbildung 7i: MALDI-TOF-Master-Massenspektren der Gemische 32 - 35 ........................ 58

Page 6: Identifizierung des Keims Streptococcus mutans

IV

Abbildung 7j: MALDI-TOF-Master-Massenspektren der Gemische 36 - 39 ......................... 59

Abbildung 7k: MALDI-TOF-Master-Massenspektren der Gemische 40 - 43 ......................... 60

Abbildung 8: Qualität der Analyseergebnisse der Bakteriengemische (gesamt). ................... 62

Abbildung 9: Qualität der Analyseergebnisse der binären Bakteriengemische ...................... 63

Abbildung 10: Qualität der Analyseergebnisse der ternären Bakteriengemische .................... 63

Abbildung 11: Prozentuale Speziesanteile am Originalgemisch

/ Analyse-Ergebnisse (Gemische 1-10) ........................................................... 66

Abbildung 12: Prozentuale Speziesanteile am Originalgemisch

/ Analyse-Ergebnisse (Gemische 11-20) ......................................................... 67

Abbildung 13: Prozentuale Speziesanteile am Originalgemisch

/ Analyse-Ergebnisse (Gemische 21-30) ......................................................... 67

Abbildung 14: Prozentuale Speziesanteile am Originalgemisch

/ Analyse-Ergebnisse (Gemische 31-43) ......................................................... 68

Abbildung 15: Unterteilung der Analyse-Ergebnisse

in pos. / neg. Abweichungen und exakte Analysen .......................................... 69

Abbildung 16: Durchschnittliche Abweichungen binäre / ternäre Gemische........................... 69

Abbildung 17: Prozentuale Abweichungen aller Gemische ..................................................... 70

Page 7: Identifizierung des Keims Streptococcus mutans

V

Tabellenverzeichnis:

Tabelle 1: Vergleichende Darstellung der Verfahren zur

Geno- und Phänotypisierung von Bakterien.......................................................... 26

Tabelle 2: Übersicht der verwendeten Geräte ........................................................................ 29

Tabelle 3: Übersicht der verwendeten Chemikalien............................................................... 30

Tabelle 4: Referenzstämme von Mutans- und oralen Streptokokken..................................... 31

Tabelle 5: Sanger DNA-Sequenzierung: Reaktionsansatz ..................................................... 33

Tabelle 6: Darstellung der vorbereiteten Gemischproben, angegeben in prozentualer Beteili-

gung ....................................................................................................................... 35

Tabelle 7: Speziesspezifische Peaks der Massenspektren von 10 Mutans und oralen Strep-

tokokken der Datenbank im Vergleich untereinander ........................................... 48

Tabelle 8: Artspezifische (exklusive) Peakmassenliste der Bakterien S. sanguinis,

S. oralis und S. mutans zur Identifikation im Bakteriengemisch .......................... 49

Tabelle 9: Bakteriengemische und dazugehörige quantitative Analysewerte ........................ 64

Tabelle 10: Peakmassenliste der 43 Gemische ......................................................................... 95

Page 8: Identifizierung des Keims Streptococcus mutans

VI

Abkürzungsverzeichnis

BHI-Agar Brean-Heart-Infusion-Agar

CID “Collision-induced dissociation”

Da Dalton

DNA Desoxyribonukleinsäure

HCCA ά-Cyano-4-hydroxyzimtsäure

ICM-MS „intact cell“ MALDI-TOF Massenspektrometrie

kDa Kilodalton

m Masse

m/z-Verhältnis Verhältnis von Masse zu Ladung

MALDI-TOF MS “matrix assisted laser desorption/ionization time of flight”-

Massenspektrometrie (Flugzeitmassenspektrometrie)

MSB-Agar Mitis-Salivarius-Bacitracin-Agar

ns Nanosekunde

OD optische Dichte

PCR Polymerasekettenreaktion

PSD „Post-source decay”

rRNA ribosomale Ribonukleinsäure

Taq Thermus aquaticus

TFA Trifluoressigsäure

Th Thomson

w/v weight per volume

z Ladung

Page 9: Identifizierung des Keims Streptococcus mutans

VII

1. Zusammenfassung

1.1 Zusammenfassung (deutsch)

Orale Streptokokken nehmen bei der Entstehung der Karies eine bedeutende Rolle ein. Strep-

tococcus mutans stellt als Schlüsselpathogen einen geeigneten Modellkeim zur Darstellung

des Kariesprozesses dar. Aufgrund der genetischen Verwandtschaft und ähnlicher Kultivie-

rungsbedingungen von oralen Streptokokken ist trotz des Einsatzes molekulargenetischer Me-

thoden eine sichere Identifizierung einzelner klinischer Isolate kompliziert. Gemische phylo-

genetisch verwandter Arten können nur durch Kultivierung oder Sequenzierung als solche er-

kannt werden. Kulturtechniken sind für potentielle Kreuzinfektionen nahe verwandter Arten

oder auch gegenüber Laborstämmen anfällig.

Das Ziel der vorgelegten Arbeit war die Detektion des kariesassoziierten Keimes

S. mutans in Bakteriengemischen. Es sollten Gemische als solche erkannt und ihre anteilige

Zusammensetzung analysiert werden. Aus Referenzstämmen der Arten Streptococcus mutans

(DSM 20523), Streptococcus sanguinis (DSM 20567) und Streptococcus oralis (DSM 20627)

wurden 27 binäre und 13 ternäre artifizielle Gemische hergestellt, die mittels MALDI-TOF

MS untersucht wurden.

Basierend auf Referenzstämmen der Spezies S. mutans, S. sobrinus, S. sanguinis, S.

macacae, S. ratti, S. pneumaniae, S. criceti, S. ferus, S. downei, S. anginosus, S. gordonii, S.

parasanguinis, S. constellatus, S. oralis, S. salivarius, S. mitis und S. intermedius, wurde unter

Verwendung der Flugzeit-Massenspektrometrie (MALDI-TOF MS) eine Datenbank erstellt.

539 Wildtypisolate des Taxons S. mutans, die mit Hilfe von selektiver Kultivierung und spe-

zies-spezifischer Polymerasekettenreaktion klassifiziert worden waren, wurden dieser Stamm-

sammlung zugeordnet. Die Auswertung der Peptidspektren erfolgte unter Nutzung von Mas-

senpeaks mit Hilfe der hierarchischen Clusteranalyse.

Ein sicherer qualitativer Nachweis war für alle drei untersuchten Arten bei einem Anteil von

mehr als 10 % innerhalb der Bakteriengemische gewährleistet. Eine quantitative Auswertung

war nur bei gleichen Anteilen der drei untersuchten Arten an den Gemischen möglich.

Innerhalb der mit mikrobiologischen Methoden als S. mutans klassifizierten 539 klinischen

Isolate lagen 460 Klassifizierungen bereits aus einer anderen Studie vor und wurden mittels

MALDI-TOF MS bestätigt. Aus den übrigen 79 Spektren (zunächst visuell nach Kultur als

S.mutans eingeordnet) konnten 68 als S. mutans und 11 Spektren der Arten S. sanguinis (4

Page 10: Identifizierung des Keims Streptococcus mutans

VIII

Stämme), S. sobrinus (6 Stämme) und S. anginosus (1 Stamm) identifiziert werden. Diese

korrigierte Zuordnung wurde molekulargenetisch wiederum durch Sanger - Sequenzierung

bestätigt.

Gemische der Taxa S. mutans, S. sanguinis und S. oralis, bei denen ein weiteres Bakterium

über 10 Prozent vorlag, wurden sicher erkannt. Somit kann zusammenfassend ausgeführt

werden, dass mit der MALDI-TOF Massenspektrometrie ein schnelles Verfahren zur Identifi-

kation von Bakterien vorliegt, mit dem Bakterien-Isolate auf Artebene korrekt identifiziert

werden können. Außerdem stellt die MALDI-TOF MS eine bedingt geeignete Methode zur

Identifizierung von Bakteriengemischen dar.

Ein Vorteil der Methode liegt in den geringen Mengen von nur ca. 104 bis 106 Bakterien, die

von einer gewachsenen Kolonie bzw. von einem Bakteriengemisch zur Identifizierung der

Taxa benötigt werden. Ein weiterer Vorteil liegt darin, dass die Ergebnisse sehr zeitnah vor-

liegen. Im Vergleich hierzu benötigen biochemische Testverfahren Zeiten für die biochemi-

schen Reaktionen von sechs bis zwölf Stunden.

Durch die MALDI-TOF MS ist es möglich, sowohl bekannte als auch völlig neue Isolate und

Gemische zu erkennen. Wie bei den klinischen Isolaten in der vorliegenden Studie gezeigt,

kann MALDI-TOF MS die Klassifikation durch Selektivkultivierung unterstützen. Ein weite-

res Ergebnis dieser Arbeit ist die Erkenntnis, dass es für die Identifizierung von Bakterien mit

MALDI-TOF MS günstiger ist, Peakmassenlisten anstelle exklusiver Peaks zu nutzen.

Page 11: Identifizierung des Keims Streptococcus mutans

IX

1.2 Abstract

Oral streptococci play a significant role in the development of dental caries. In this process

the germ called Streptococcus mutans acts as a key pathogen and fits as an appropriate model

germ. Despite the use of molecular genetic methods, an infallible identification of single clin-

ical isolates is a complex endeavor due to the genetic relationship and similar culturing condi-

tions of oral streptococci. Mixtures of phylogenetically closely related types can only be iden-

tified by sequencing. Culture techniques bear a certain risk by cross infections of closely re-

lated types. The present thesis' goal was to detect the caries-associated germ S. mutans in bac-

teria mixtures and to analyze these as to their proportional compositions. Twenty seven binary

and 13 ternary artificial mixtures were prepared from reference strains of the S. mutans (DSM

20523), the Streptococcus sanguinis (DSM 20567) and the Streptococcus oralis (DSM

20627), and were analyzed via MALDI-TOF MS. Based on reference strains of the species

S.mutans, S sobrinus, S. sanguinis , S.macacae, S.ratti, S.pneumaniae, S. criceti, S.ferus,

S.downei, S.anginosus, S.gordonii, S. parasanguinis, S.constellatus, S.oralis, S.salivarius,

S.mitis und S.intermedius, a database was created by using time-of-flight mass spectrometry

(MALDI-TOF MS).

539 wild-type isolates of the taxon S. mutans, previously classified via selective culturing and

species-specific polymerase chain reaction, were included in the strain collection. Mass peak

lists were made in order to evaluate the peptide spectra, using hierarchical cluster analyses.

Given a share of at least 10 % within the bacteria mixtures, solid qualitative evidence could

be found for all three types included in the study. A quantitative analysis was only possible in

the case of mixtures of equal portions of the three types.

Amongst the 539 isolates that had been classified as S. mutans via microbiological methods,

460 classifications already existed by another study and were confirmed via MALDI-TOF-

MS. From the further 79 spectra (first visual classified after growing as S. mutans) 68 could

be identified as S. mutans, 11 spectra were identified as S. sanguinis (4 strains), S. sobrinus (6

strains) and S. anginosus (1 strain). This reclassification was confirmed molecular genetically

by Sanger sequencing.

Mixtures of the taxa S. mutans, S. sanguinis und S. oralis containing more than 10 percent of

another bacterium can be identified with certainty. Thus, in summary it can be concluded that

the MALDI-TOF mass spectrometry serves as a quick tool for the identification of bacteria at

the type level (nearly all bacterial isolates were accurately recognized) as well as - with cer-

tain restrictions - of bacterial mixtures. The advantages become most evident with the small

Page 12: Identifizierung des Keims Streptococcus mutans

X

quantities of about 104 to 106 cultures that are required of bacterial mixtures or grown colonies

for identification of the taxa, and in the short time that is needed for preservation of the re-

sults.

The MALDI-TOF MS allows the identification and classification of both established and

all new isolates and mixtures. As seen in the clinical isolates, it does prevent the risk of a mis-

interpretation through exclusive selective culturing. The next result of this promotion is that it

is better to use full peak mass lists than exclusive peaks to identify bacteria.

Page 13: Identifizierung des Keims Streptococcus mutans

1

2. Einleitung

2.1 MALDI-TOF Massenspektrometrie für die Identifizierung

oraler Mikroorganismen

Arbeitsprinzip:

Die Abkürzung MALDI-TOF steht für die Kombination aus einer Matrix-unterstützten Laser-

desorptions/Ionisations-(MALDI)-Ionenquelle und einem „Time-of-Flight“ (TOF) Flugzeit-

analysator (Hillenkamp 1991). MALDI-TOF MS ist eine diskontinuierliche Methode, bei der

die Desorption der Ionen jeweils als Folge von einzelnen Laserblitzen erfolgt, d.h. die Abfol-

ge der Ionenerzeugung, Beschleunigung und Trennung wird in kurzen Zeitabständen wieder-

holt. Aufgrund des gepulsten MALDI-Ionisationsverfahrens lässt sich dieses besonders vor-

teilhaft mit dem ebenfalls diskontinuierlichen Betriebsmodus des TOF-Analysators koppeln.

Die weiteren Vorteile der MALDI-TOF-MS-Methode liegen u.a. in einem prinzipiell unbe-

grenzten Massenbereich, z.B. Polystyrol 1.500 kDa (Schriemer 1996). Die MALDI-TOF MS

ist eine Methode, die der Ionisierung von Molekülen ohne starke Fragmentation dient. Außer-

halb des Massenspektrometers wird bei der MALDI-Probenpräparation die Analyt-Matrix-

Mischung auf den mobilen MALDI-Probenträger aufgebracht und durch Vakuumschleusen in

die Ionenquelle eingebracht. Durch den Laserpuls erfolgt sowohl der Start der Flugzeitmes-

sung als auch der Beschuss des Analyt-Matrix-Kristalls in der Ionenquelle. In diesem Desorp-

tions/Ionisationsprozess werden durch die bei der Laserwellenlänge absorbierende Matrix

gasförmige Analytionen erzeugt. Diese werden in einem anliegenden starken elektrischen

Feld (10 bis 30 kV) beschleunigt und im TOF-Analysator nach der Flugzeit getrennt.

Nach der unten angegebenen Gleichung (Cotter 1992) haben die Molekülionen nach Durch-

laufen des Spannungsgefälles die gleiche, definierte kinetische Energie:

E kin = U * z =1/2 * m * v2

Ekin = kinetische Energie

U = Beschleunigungsspannung z = Elementarladung

m = Ionenmasse v = Ionengeschwindigkeit

Page 14: Identifizierung des Keims Streptococcus mutans

2

Die gleiche kinetische Energie der Molekülionen führt in der Flugstrecke des TOF MS zu un-

terschiedlichen Flugzeiten t in Abhängigkeit vom m/z. Nach definierter Flugstrecke L treffen

die Ionen auf den Detektor. Die Aufnahme des Detektorsignals nach der Flugzeit ergibt zu-

nächst das TOF-Massenspektrum in Abhängigkeit von der Zeit, welches sich dann in eine

m/z-Abszisse umrechnen lässt.

Durch Substitution von v = L/t in oben genannte Gleichung und Umformung für m/z ergibt

sich:

m/z = 2* U/ L2

L = definierte Länge der Flugstrecke

t = Flugzeit des Molekülions

Die Registrierung der Analytionen kann im Linear- oder im Reflektordetektor erfolgen

(Cotter 1992).

Das Datensystem liefert die Massenspektren. Die Massenspektrometrie dient der Ermittlung

der absoluten Masse geladener Moleküle und Molekülfragmente. Hierbei gibt es verschiedene

Verfahren, die sich zum einen hinsichtlich der Ionisierungs- und Fragmentierungsmethoden

und zum anderen hinsichtlich der Fragmentanalyse unterscheiden (Lottspeich und Zorbas,

1998a).

Das allgemeine Arbeitsprinzip der Flugzeit-Massenspektrometrie „Matrix-assisted laser

desorption/ionization time-of-flight mass spectrometry“ (MALDI-TOF MS) besteht aus der

Überführung einer neutralen Spezies in Ionenform, der Trennung der Ionen nach ihrem Mas-

se/Ladungsverhältnis (m/z) und dem Nachweis der Ionen durch einen Detektor. Hierbei besit-

zen im Unterschied zur MALDI MS alle Ionen beim Eintritt in den Analysator die gleiche

Energie. Bei der Post-Source Decay MALDI-TOF Fragmentierungsmethode z.B. wird die

Aktivierungsenergie lediglich durch eine Änderung der Laserleistung geregelt und lässt damit

nur einen geringfügigen Einfluss auf den Fragmentierungsmechanismus zu. Bei der „Collisi-

on-Induced Dissociation“ (CID)-Fragmentierungsmethode beruht die Fragmentierung dage-

gen auf Stößen mit einem nach der Beschleunigungszone eingelassenen, regelbaren Stoßgas

(Trimpin 2002).

Das zu analysierende Material wird mit einer organischen Säure vermengt, die die kon-

zentrierte Matrix (in unserem Fall Zimtsäure) darstellt (Zimtsäure: Bakteriensuspension im

Verhältnis 1:1) und auf dem Target getrocknet. Das Target ist in unserem Fall ein Stahl-

Probenträger, auf welchem nach Verdunstung des Lösemittels eine teilkristalline Schicht ent-

Page 15: Identifizierung des Keims Streptococcus mutans

3

steht, in der die Polymermoleküle im Idealfall durch Matrixmoleküle vollständig voneinander

separiert sind.

Durch die Kombination der Probe mit einer Matrix wurde erstmals die Untersuchung größerer

intakter Biomoleküle wie Nukleinsäuren und Proteine ermöglicht (Hillenkamp et al. 1991).

Proteine, die etwa die Hälfte des Trockengewichtes der Zelle ausmachen, können ohne Ex-

traktion zur Typisierung von Bakterien verwendet werden (Fenselau und Demirev 2001).

Das Gemisch von Analyt und Matrix wird mit einem gepulsten Laser (1-200 ns) beschossen.

Bei diesem Vorgang werden Protonen aus der Matrix auf den Analyten übertragen

(s. Abb. 1).

Es erfolgt die Absorption von Laserenergie durch die Matrix. Somit bildet die Fähigkeit einer

organischen Matrix, Energie zu absorbieren die Grundlage der MALDI-TOF-

Massenspektrometrie. Alle MALDI-TOF MS Geräte arbeiten unter Verwendung eines Vaku-

ums, was dazu führt, dass sich die Ionen nicht berühren, da dies zu einem Zerfall der Ionen

bzw. einer Änderung ihrer Flugrichtung führen würde. Danach werden die entstandenen Io-

nen entsprechend ihrem Verhältnis von Masse zu Ladung (m/z) in einem Analysator aufge-

trennt. Die meisten Ionen sind einfach geladen, aber es treten auch mehrfach geladene Ionen

auf. Das bedeutet, dass ein doppelt geladenes Ion mit der Masse m= 2000 bei m/z 1000 wie-

dergefunden wird. In einem elektrischen Feld werden die Ionen dann beschleunigt und fliegen

durch einen Raum, in dem keine Feldstärken mehr vorherrschen. Die gleiche kinetische Ener-

gie der Ionen ist die Voraussetzung dafür, dass sie sich nach ihrem unterschiedlichen Verhält-

nis von m/z und ihrer dadurch vorhandenen Geschwindigkeit auftrennen. Die Ionen treffen

am Ende der Röhre auf eine Detektorvorrichtung, welche die Ionenpakete wahrnimmt. Das

Masse/Ladungsverhältnis wird dann aus der Differenz der gleichen Startzeit und der unter-

schiedlichen Ankunftszeit am Detektor berechnet. Die Darstellung erfolgt im Diagramm

(s. Abb. 1) als m/z – Verhältnis, aufgetragen gegen die Intensität (Guilhaus 1995).

Es zeigte sich, dass mit Hilfe der MALDI-TOF MS qualitativ unterschiedliche Massenspek-

tren von verschiedenen Bakterien erzeugt werden können (Arnold und Reilly 1998, Nilsson

1999). Die Methode eignet sich sowohl dazu, intakte Bakterienzellen (Welham et al. 1998,

Fenselau und Demirev 2001) als auch Bakterienlysate (Wang et al. 1998) zu analysieren. An-

halt und Fenselau konnten zeigen, dass die in Peptid-Massenspektren enthaltenen Peakmassen

unterschiedlicher Bakterien für die jeweilige Bakterienart charakteristisch sind (Anhalt und

Fenselau 1975). Hierauf basiert auch die Methode zur Differenzierung von Bakteriengemi-

schen, die eine Identifizierung einzelner Bakterien anhand ihrer Massenpeaks ermöglicht

Page 16: Identifizierung des Keims Streptococcus mutans

4

(Wahl et al. 2002). Die MALDI-TOF Massenspektrometrie bietet darüber hinaus die Mög-

lichkeit, Bakterienarten schnell bis hin zur Subspezies zu phänotypbasieren, außerdem kann

eine Analyse von Mutationen und Resistenzen erfolgen (Raoult et al. 2004). Es ist möglich,

sowohl Bakterienlysate als auch Peptidspektren ganzer Zellen und Mikroorganismen zu un-

tersuchen (Marvin et al. 2003). Des Weiteren können in Kombination mit der PCR Einzelba-

senpolymorphismen einfach aufgeklärt (Tost und Gut 2005) oder DNA-Sequenzierungen

vorgenommen werden (Kaetzke und Eschrich 2002).

Für die Identifizierung und Typisierung von Mikroorganismen lassen sich bei der MALDI-

TOF MS zwei Ansätze unterscheiden: Zum einen ist es möglich, spezifische Biomarker nach-

zuweisen (Allmaier et al. 1995, Madonna et al. 2003), zum anderen können komplette Spek-

tren ganzer Zellen durch „intact-cell“ (MALDI-TOF MS (ICM)) gewonnen werden (Evason

2000, Edwards-Jones 2000), bei der die Identität der einzelnen Massenpeaks nicht bekannt ist.

Die Signale repräsentieren abundante Moleküle wie Proteine und Peptide. So können einzelne

Massenpeaks ribosomalen Proteinen zugeordnet werden (Ryzhov und Fenselau 2001). Ent-

sprechend unterscheidet man für die Auswertung der Massenspektren zwei verschiedene Me-

thoden. Bei der ersten wird das gesamte Spektrum der Peakmassen analysiert (Bright et al.

2002). Bei der zweiten hingegen werden nur charakteristische Peakmassen bewertet (Arnold

und Reilly 1998, Hathout et al. 1999, Jarman et al. 2000, Smole et al. 2002). Die Klassifikati-

on von Bakterien wurde auf Artebene (Jarman et al. 2000), Gattungsebene (Holland et al.

1996) und auch auf Stammebene (Nilsson 1999, Shah et al. 2002) beschrieben.

In unterschiedlichen Arbeiten nutzte man Massenpeakmuster sowie die Interpretation ganzer

Spektren im Sinne eines „Fingerabdrucks“ zur Differenzierung von Bakterien sowohl auf Art-

als auch auf Stammebene (Arnold und Reilly 1998, Shah et al. 2002, Welham et al. 1998,

Wang et al. 1998, Nilsson 1999, Jarman et al. 2000, Fenselau und Demirev 2001, Rupf et al.

2006). So vermochten Krishnamurthy und Ross (1996) anhand charakteristischer Peakmassen

zwischen virulenten und nichtvirulenten Stämmen von Bacillus melitensis zu unterscheiden.

Mit Hilfe dieser Methode wurden des Weiteren 25 verschiedene Stämme der Bakterienart

Escherichia coli differenziert und von anderen Enterobakterien abgegrenzt (Conway et al.

2001).

MALDI-TOF MS wird zurzeit in vielen Bereichen der medizinischen Diagnostik mit unter-

schiedlichen Ansätzen genutzt und hat hier auf Grund der schonenden Ionisierung, die auch

eine Analyse großer intakter Moleküle ermöglicht, große Bedeutung erlangt (Hillenkamp und

Karas 1988). Einer Arbeitsgruppe (Moussaoui et al. 2010) gelang es, 193 von 213 gram-

Page 17: Identifizierung des Keims Streptococcus mutans

5

negative Bakterien (91,1 %) und 284 von 319 gram-positiven Bakterien (89,0 %) korrekt auf

Spezies-Ebene zu identifizieren. Dies gelang direkt aus Blutzellen. Sieben Isolate wurden

fälschlicherweise als S. pneumoniae identifiziert.

Risch et al. (2010) identifizierten 204 klinische Isolate aus Urin, Speichel und Blut. Hierzu

nutzten sie zum einen die MALDI-TOF MS und zum anderen konventionelle Methoden

(VITEK II und API). Zweiundsiebzig der 204 Isolate waren gram-positiv und 130 gram-

negativ, außerdem waren 2 Candida-Arten vertreten. Bei 27 Isolaten (13,2 %) gab es eine

Abweichung zwischen der Spezies und Artzuordnung. 61 von 72 der gram positiven Bakte-

rien wurden durch beide Methoden korrekt identifiziert (85 %) und 115/130 (88 %) der gram

negativen Bakterien. Das bedeutet eine Sensivität von 86,8 %. Diese Angaben werden durch

andere Studien verifiziert: So gab es 84,1 % Übereinstimmungen beim Vergleich konventio-

neller Methoden mit der MALDI-TOF MS bei Seng et al. (2010). Cherkaoui et al. (2010)

identifizierten 99,1 % korrekt und Bizzini et al. (2010) führen 93 % in ihrer Studie an.

Wahl und Mitarbeitern (2002) gelang es, einzelne Bakterienarten aus künstlich hergestellten

Bakteriengemischen zu identifizieren. An diese Arbeit knüpft die vorliegende Dissertation an.

Die Proteinidentifizierung mittels MALDI-TOF MS findet heute auch Anwendung in der ora-

len Mikrobiologie. So konnte beispielsweise eine Regulation von Stressproteinen für S.

mutans (Wilkins et al. 2002, Len et al. 2004) gezeigt werden. Außerdem wurden Unterschiede

zwischen Peptidmustern planktonischer und adhärenter Zellen für S. mutans nachgewiesen

(Svensater et al. 2001, Welin et al. 2004), das P1-Epitop charakterisiert (Rhodin et al. 2004)

und eine alterierte Proteinexpression für S. oralis bei saurem pH-Wert (Wilkins et al. 2001

und 2003) gezeigt. Darüber hinaus wurden Untersuchungen zur strukturabhängigen Aktivität

von Mutacin II (Novak et al. 1996, Chen et al. 1998) sowie Mutacin 1140 (Hillman et al.

1998) durchgeführt. Zusammenfassend ist aus den obigen Studien zu entnehmen, dass sich

sowohl die herkömmlichen Methoden, als auch die MALDI-TOF MS als geeignete Verfahren

zur Identifikation von Bakterien erweisen. Der große Vorteil der MALDI-TOF MS liegt si-

cherlich in der Zeitersparnis, Kosteneinsparung (s. Tabelle 1) und letztendlich auch in der si-

chereren Beurteilung, ob es sich um ein Gemisch, ein bekanntes oder ein völlig neues Isolat

handelt.

Page 18: Identifizierung des Keims Streptococcus mutans

6

In Abbildung 1 ist das Funktionsprinzip der Matrix-assisted laser desorption/ionisation time

of flight (MALDI-TOF) Massenspektrometrie grafisch dargestellt.

Abbildung 1: Grafische Darstellung des Funktionsprinzips der Matrix-assisted laser desorp-

tion/ionisation time of flight (MALDI-TOF) Massenspektrometrie (hier dargestellt mit Zimt-

säure als Matrix).

Page 19: Identifizierung des Keims Streptococcus mutans

7

2.2 Probleme bei der Identifikation oraler Bakterien

Die mikrobiologische Analyse der oralen Mikroflora stellt auf Grund der hohen Dichte der Be-

siedlung, der verschiedenen Habitate in der Mundhöhle und der Organisation von Biofilmen ein

komplexes Feld dar (Davey und O’Toole 2000).

Das Untersuchungsgut wie Plaque oder Speichel können quantitativ und qualitativ stark diffe-

rieren, wie Rupf (2006) anmerkte, und eine Kultivierung im Labor stellt sich allein schon

durch die komplexen Nährstoffansprüche vieler Bakterien als schwierig dar (Marsh 2003).

Bakterien korrekt zu identifizieren ist außerdem bei einigen Bakteriengruppen als problema-

tisch anzusehen. Diese Problematik tritt sowohl bei der phänotypischen Einordnung von Acti-

nomyzeten aufgrund ihrer phänotypischen Variabilität (Slack and Gerencser 1975, Ruby et al.

2002) als auch bei Laktobazillen auf, welche ähnliche Phänotypen in der Kultur zeigen, so

dass es schwer ist, sie mit mikrobiologischen Methoden zu differenzieren (Karoly et al. 2012).

Weitere Probleme ergeben sich durch die Ähnlichkeit mancher Bakterien, wie S. mutans und

S. sobrinus, die ebenfalls schwierig zu differenzieren sind.

Die Fortschritte in der mikrobiologischen Klassifikation von oralen Bakterien führten hierbei

nicht nur zu einer Erleichterung der Identifikation neuer Arten. Auf Grund der komplexen

Problematik der Taxonomie finden heute numerische und phylogenetische Parameter gleich-

ermaßen Berücksichtigung, was durch neu hinzugekommene Arten und die weitere Differen-

zierung einzelner Stämme zu Neuerungen in der bislang bestehenden Nomenklatur führte. Die

Interpretation von Ergebnissen älterer Studien stellt somit eine ernstzunehmende Herausfor-

derung dar (Holt 1984, Baron 1996, Kilian 2001, Siqueira 2003).

Grundsätzlich ist die bakterielle Taxonomie nur bedingt mit der höherer Organismen ver-

gleichbar, da Bakterien zu den Prokaryoten zählen und sich durch Teilung vermehren. Dank

der Einführung von DNA-Sequenzierungstechniken (Fox et al. 1977) ist eine auf dem ubiqui-

tär vorhandenen Gen der 16S rRNA phylogenetisch basierte Klassifikation der Mikroorga-

nismen möglich, die gesamte bakterielle DNA selbst ist aber keine eindeutig zu erfassende

Einheit. Beim Einsatz von DNA-Sequenzierungstechniken werden Fragmente einer DNA-

Sequenz erstellt, die dann meist mit einer Gelelektrophorese getrennt und durch Fluoreszenz

identifiziert werden. Zusätzlich zur chromosomalen DNA werden aber immer auch extra-

chromosomale Strukturen wie Plasmide oder Erbinformationen von Bakteriophagen aufge-

funden.

Zur möglichst genauen Genotypisierung muss eine vollständige Analyse des gesamten Ge-

noms erfolgen. Solche Genomsequenzen stehen aber erst für wenige Referenzstämme zur

Verfügung (Ajdic et al. 2002, Duncan 2003, Nelson et al. 2003, Chen et al. 2004, 2005). Un-

Page 20: Identifizierung des Keims Streptococcus mutans

8

terschiedliche Studien gehen davon aus, dass bis zu 25 % der Streptokokken falsch oder in-

korrekt identifiziert wurden (Gorm Jensen et al. 1999 und Kikuchi et al. 1995). Diese mikro-

biologischen Fehlklassifikationen treten wegen genetischer Polymorphismen innerhalb der

Stämme (Beighton et al. 1991) und wegen Inkonsistenzen innerhalb biochemischer Merkma-

le desselben Stammes auf (Tardif et al. 1989).

Das gleichzeitige Auftreten nahe verwandter Stämme bei der Kultivierung sowie die damit

verbundene mögliche Bildung einer Mischkultur erschweren die spätere Trennung zusätzlich.

Dies zeigt die Problematik der korrekten Identifizierung nahe verwandter Arten und der damit

verbundenen Selektivität und Sensitivität einzelner Testverfahren. Des Weiteren stellen falsch

eingeordnete Stämme selbst, sowie neu klassifizierte Stämme, Fehlerquellen dar (Rupf et al.

2005). Erst kürzlich wurde in der Arbeitsgruppe um Zbinden et al. (2012) mit Streptococcus

tigurinus ein neuer Vertreter der Mitis-Gruppe gefunden. Genau hier kann die Maldi-TOF MS

eingesetzt werden, um Inkorrektheiten zu detektieren (Rupf et al. 2005, 2008), eventuell neue

Arten zu detektieren oder andere Verfahren wie die Sequenzierung bei der taxonomischen

Einordnung unbekannter Isolate zu unterstützen. Bei Vorliegen von Bakteriengemischen ver-

sagt jedoch häufig selbst die Sequenzierung und liefert im besten Falle Hinweise auf das Vor-

liegen eines Gemischs.

Page 21: Identifizierung des Keims Streptococcus mutans

9

2.3 Orale mikrobielle Gemeinschaften

Der menschliche Körper stellt einen günstigen Lebensraum für Mikroorganismen dar. So wird

ein Erwachsener von ca. 1014 Bakterien besiedelt, was dem Zehnfachen der körpereigenen

Zellen (1013) entspricht (Henderson und Wilson 1998).

Der oropharyngeale Trakt bietet durch sein feuchtes und gleichwarmes Milieu optimale Be-

dingungen zur Vermehrung von Bakterien. Aus diesem Grund stellt sich die bakterielle Be-

siedlung hier dichter dar als auf den äußeren Hautoberflächen. In der Mundhöhle finden sich

mehr Bakterien als im Respirationstrakt und dem oberen Verdauungstrakt (Davis 1996). Die

orale Mikroflora besteht aus einer großen Anzahl unterschiedlicher Taxa, von denen einige in

hoher, andere nur in geringer Zahl vorhanden und nicht alle kultivierbar sind. Mehr als 700

Arten wurden bis heute kultiviert (Ekstrand 2012, Rupf 2006, Paster et al. 2006). Diese Viel-

falt an Mikroorganismen (Marsh 2003) ergibt sich aus zwei grundsätzlich qualitativ unter-

schiedlichen Habitaten in der Mundhöhle, die sich in Oberflächenstruktur und Nährstoffange-

bot voneinander unterscheiden. Zum einen sind dies die sich nicht erneuernden Zahnoberflä-

chen, die aus azellulären Substanzen bestehen und in Glattflächen, Fissuren und Approxi-

malflächen sowie in supra- und subgingivale Zonen eingeteilt werden können. Andererseits

existieren in der Mundhöhle epitheliale Oberflächen. Black arbeitete schon zum Ende des 19.

Jahrhunderts die Bedeutung der unterschiedlichen Areale der Zahnoberflächen als Kariesprä-

dilektionsstellen heraus, der eine Klassifikation der Kavitäten folgte (Black 1886 und 1914).

Die oralen Epithelien hingegen finden sich an Lippen, Wangen- und Gaumen- sowie in der

Alveolarkammschleimhaut, weiterhin am gingivalen Sulkus, der Zunge und im Rachenbe-

reich. Sie verfügen über eine hohe Erneuerungsrate (Schröder 2000). Auf ihrer Oberfläche be-

finden sich endständige Neuroaminsäuremoleküle, die als Wirtsrezeptoren mit Adhäsinen von

einigen Bakterien reagieren können (Marsh et al. 2003, Rupf 2006).

Die physiologische Kolonisation eines Menschen mit Mikroorganismen beginnt mit der Ge-

burt. Zu diesem Zeitpunkt werden die meisten Bakterien von der Mutter übertragen, später er-

folgt eine Aufnahme weiterer Bakterien auch aus der weiteren Umwelt. Die so entstehende

Bakterienflora, die interindividuell starke Varianzen aufweist, bildet sich in den ersten Le-

benswochen heraus (Hahn 2009). Physiologische Veränderungen ergeben sich dann noch

einmal durch den Zahndurchbruch und später den Zahnwechsel in der Kindheit (Brailsford et

al. 2005). Neben den dominierenden Bakterien lassen sich auch Pilze und Protozoen in der

Normalflora nachweisen, des Weiteren können Infektionen durch Viren oder andere Erreger-

gruppen erfolgen (Monjardino 1996, Porter 2003, Gorski und Weber-Dabrowska 2005).

Page 22: Identifizierung des Keims Streptococcus mutans

10

Neben den physiologisch vorhandenen Habitaten oraler Mikroorganismen können endodonti-

sche, implantologische, prothetische oder kieferorthopädische Eingriffe zur Entstehung neuer

Mikrobiotope führen (van Winkelhoff et al. 2000). Aber auch ein höheres Lebensalter wirkt

sich auf die Mundflora aus. So steigt beispielsweise das Krebsrisiko mit zunehmendem Alter

an. Eine Zytostatikatherapie bewirkt dann eine Veränderung der oralen Flora durch Zunahme

von Candida albicans und nichtoralen opportunistischen Keimen wie Enterobakterien. Aber

auch andere Medikamente, die vermehrt von älteren Patienten eingenommen werden, können

das Gleichgewicht der Normalflora stören, indem sie den Speichelfluss reduzieren. Darüber

hinaus kann durch das Tragen von Prothesen die Besiedlung des Mundes mit C. albicans ge-

fördert werden (Marsh 2003).

Die physiologisch hohe Bakteriendichte in der Mundhöhle bietet einen gewissen natürlichen

Schutz vor der Etablierung pathogener Keime durch die Konkurrenz um zur Verfügung ste-

hende Nährstoffe und Bindungsstellen (Marsh 2004). Die Substratkonkurrenz führt hierbei zu

einer Wachstumseinschränkung der zumeist anaeroben Pathogene. Des Weiteren bestimmen

bakterielle Interaktionen die Zusammensetzung der oralen Flora entscheidend mit. So können

Stoffwechselprodukte der Bakterien einer Spezies Nährstoffe für andere Spezies darstellen

(Costerton et al. 1995). Darüber hinaus existieren aber auch antagonistische Effekte der Me-

tabolithemmung innerhalb unterschiedlicher Bakteriengruppen durch die Abgabe von Abfall-

produkten, die toxisch auf andere Bakterien wirken. Davon abzugrenzen ist die aktive Pro-

duktion toxischer Substanzen, um den Lebensraum vor anderen Bakterienstämmen zu schüt-

zen (Hahn 2009, Kolenbrander et al. 1985, Marsh 1989, Raskin et al. 1996, Grönroos et al.

1998).

Eine wichtige Funktion der physiologischen Bakterienflora ist die Stimulation der Entwick-

lung des Immunsystems, wobei es sich um einen fortlaufenden Prozess handelt (Robbins et al.

1996). Eine Verschiebung vom physiologischen Zustand, der „mikrobiellen Homöostase“

(Marsh 2003), zum opportunistisch pathogenen Zustand, erfolgt dann, wenn die spezifische

und unspezifische mechanische und immunologische Kontrolle des menschlichen Organismus

herabgesetzt ist. Des Weiteren herrschen pathogene Zustände immer dann, wenn die Bakte-

rien der Normalflora Zugriff auf physiologisch gering- oder unbesiedelte Gewebe wie Dentin,

die Zahnpulpa oder parodontale und periradikuläre Strukturen nehmen (Davis 1996, Sbordone

und Bortolaia 2003, Tronstad und Sunde 2003, Sundqvist und Figdor 2003). Dentin und Pulpa

sind beim gesunden Menschen durch den Zahnschmelz vor einem solchen Zugriff geschützt.

Der Schmelz ist eine Substanz ektodermalen Ursprungs, die die Schutzfunktionen von Epithe-

lien übernimmt. Sind diese gesunden Verhältnisse aber gestört und der Zahnschmelz durch-

Page 23: Identifizierung des Keims Streptococcus mutans

11

brochen, so sind die sterilen Gewebe ungeschützt und Bakterien der Normalflora können zu-

nächst in die Dentinstrukturen eindringen (Adriaens et al. 1988), das Pulpenkavum erreichen

und dieses infizieren (Tronstad und Sunde 2003). Parodontale Strukturen sind in physiologi-

schen Verhältnissen durch die hemidesmosomale Anlagerung des Sulkusepithels an den Zahn

geschützt. Wird dieser Schutz im gingivalen Sulkus zerstört, entstehen gingivale und paro-

dontale Taschen, die wiederum neue Habitate für Mikroorganismen bilden, die als patholo-

gisch einzustufen sind (Page und Schroeder 1982, Listgarten 1986, Schenkein et al. 1999).

Der Erhalt des Gleichgewichts der oralen Mikroflora erfolgt in erster Linie durch chemo-

mechanische Maßnahmen, also das tägliche Zähneputzen in Verbindung mit chemisch unter-

stützenden, antimikrobiellen Zahnpasten und Spüllösungen. Diese Zahnreinigung ist essentiell

um die orale Gesundheit zu erhalten, da die wirtseigenen immunologischen und funktionellen

Abwehrmechanismen allein nicht genügen, um die Bildung eines mikrobiellen Biofilms auf

den Zahnflächen zu unterbinden. Hinzu kommt, dass neben dem Effekt der Säuberung der

Zähne die kompetitiven Eigenschaften der Bakterien gegen andere Arten durch das Zähneput-

zen verstärkt werden (Addy et al. 1986, Page und Kornman 1997, Mombelli und Sama-

ranayake 2004, Foster 2005). Hierbei ist jedoch die eingesetzte Kraft dosiert aufzuwenden, da

ein allzu kräftiges Zähneputzen wiederum Zähne und Zahnfleisch zu beschädigen vermag

(König 1990, Attin et al. 2004).

In zahlreichen Studien wird das gemeinsame Vorkommen verschiedener oraler Streptokokken

mit einer höheren Kariesaktivität assoziiert: hierbei handelt es sich um S. mutans und S.

sobrinus (de Soet 1995). Sie sind anhand ihrer Koloniemorphologie und ihrer biochemischen

Eigenschaften nur schwer voneinander zu differenzieren. S. mutans und S. sobrinus sind häu-

fig in der Mundhöhle vergesellschaftet. Dabei zählen die Mutans-Streptokokken zu den kari-

esinitiierenden Mikroorganismen (Marsh und Martin 2003). Hier haften sie sowohl an der

Plaque, auf Schmelzoberflächen als auch an kariösem Dentin. Bakterien bilden 70 Prozent des

Gesamtvolumens der ausgereiften Zahnplaque. Sie sind in eine Plaquematrix eingebettet

(Hellwig et al. 1999). In dieser bilden sie einen Verbund mit vielen Wechselwirkungen, mit

denen sie sich untereinander beeinflussen. Die Plaquematrix wird durch die Speichelzusam-

mensetzung, andere Mikroorganismen und die Ernährung beeinflusst. In mehreren Studien

wird das gemeinsame Vorhandensein mehrerer Bakterienarten in Abhängigkeit vom Kari-

esstadium proklamiert. Dies betrifft je nach Studie Mutans- (Marsh und Martin 2003) oder

Non-Mutans-Streptokokken und Veillonellen (Becker et al. 2002, Aas et al. 2008).

Page 24: Identifizierung des Keims Streptococcus mutans

12

Die mikrobielle Dynamik macht es notwendig, schnelle und sichere Verfahren zur Identifizie-

rung von Bakteriengemischen zu etablieren, um sowohl diese in verschiedenen Kariesstadien

untersuchen zu können, als auch die Rolle eines jeden im Krankheitsprozess zu ermitteln.

Man kann zwischen 30 und 300 Bakterienarten aus Plaqueproben kultivieren (Sissons 1997).

Mittels Pyrosequencing wurden zwischen 73 und 120 Genera gefunden (Balda-Ferre et al.

2012).

Page 25: Identifizierung des Keims Streptococcus mutans

13

2.4 Kariesinitiation und Streptococcus mutans

Es wird heutzutage davon ausgegangen, dass Karies eine multifaktorielle Erkrankung ist. Zu

Beginn der systematischen Erforschung der Kariesentstehung postulierte man, dass Karies

durch die 3 Faktoren Wirt, Substrat und Mikroorganismen beeinflusst wird (Keyes und Jordan

1963). Diese Trias ist dann im Laufe der Jahre um den Parameter Zeit erweitert worden (Kö-

nig 1971).

In den folgenden Jahrzehnten konkurrierten zwei Ansichten zur mikrobiologischen Kompo-

nente der Kariesentstehung miteinander: Einerseits propagierte man eine Infektion durch

Mutans-Streptokokken oder Laktobazillen (Fitzgerald und Keyes 1960, Loesche 1986) als

„spezifische Plaquehypothese“. Andererseits konnte für eine Reihe weiterer Keime der nor-

malen Standortflora, wie Streptococcus anginosus, Streptococcus mitis, Streptococcus oralis

oder Streptococcus salivarius, ein kariogenes Potenzial nachgewiesen werden. Die daraus ab-

geleitete Schlussfolgerung, dass alle die Zahnoberflächen kolonisierenden Bakterien mit ihren

Stoffwechselprodukten zur Kariesinitiation beitragen können, führte zur Postulierung der „un-

spezifischen Plaquehypothese“ (Loesche 1986, Kleinberg 2002). Marsh und Martin (2003)

kombinierten beide Theorien zur „ökologischen Plaquehypothese“. Diese sieht die Kariesini-

tiation als die Folge einer Verschiebung im natürlichen Gleichgewicht der Plaqueflora, her-

vorgerufen durch Änderungen in den örtlichen Bedingungen. Diese Theorie wird momentan

stark kontrovers erörtert und diskutiert, was zur „erweiterten ökologischen Plaquehypothese“

(Takahashi und Nyvad 2008) führte, die weiter unten beschrieben wird.

Da Mutans-Streptokokken in der Mundhöhle in großer Anzahl vorkommen können, gingen

und gehen zahlreiche Wissenschaftler davon aus, dass sie ursächlich für die Etablierung der

menschlichen Karies verantwortlich sind. Das wird zum einen dadurch begründet, dass S.

mutans regelmäßig aus kariösen Läsionen isoliert werden kann und hochgradig säurebildend

ist (Hamada and Slade 1980, Loesche 1986). Die Eigenschaft von S. mutans, wasserunlösli-

che Glukane bilden zu können, was die Etablierung weiterer Bakterienarten an der Zahnober-

fläche erlaubt, sowie die Eigenschaft, im Tierexperiment in Abwesenheit von Saccharose Ka-

ries auslösen zu können, sind weitere Indizien für die hohe Kariogenität des Keims (Hamada

and Slade 1980).

Andere Studien gehen hingegen davon aus, dass das Verhältnis vom Vorhandensein von S.

mutans und der Karies nicht absolut ist: Beim massiven Vorhandensein von S. mutans an der

Zahnoberfläche kommt es demnach oft nicht zu einer kariösen Läsion und auch ohne S.

mutans kann sich Karies etablieren (Nyvad 1993, Bowden 1997, Aas et al. 2008). In anderen

Page 26: Identifizierung des Keims Streptococcus mutans

14

Untersuchungen wurden Non-Mutans-Streptokokken mit niedrigem pH-Wert und Actinomy-

zeten für die Kariesinitiation verantwortlich gemacht (van Houte et al 1994, 1996, Sansone et

al. 1993), sowie ein breites Spektrum anderer Streptokokken und Veillonellen (Becker et al.

2002, Aas et al. 2008).

Dennoch gibt es viele Belege, dass Mutans-Streptokokken an der Säure- und Plaqueprodukti-

on in der Mundhöhle beteiligt sind. Schon mit Durchbruch des ersten Zahns beginnt die Be-

siedlung der Mundhöhle mit Mutans-Streptokokken (Berkowitz et al. 1975). Kinder mit kari-

ösen Zähnen weisen eine höhere Anzahl von Mutans-Streptokokken im Speichel auf als Kin-

der ohne behandlungsbedürftige Zähne (Kneist et al. 1998). Dabei lag im Durchschnitt nach

Erreichen der Okklusion im 48. Lebensmonat der prozentuale Anteil infizierter Kinder bei 45

Prozent (Catalanotto et al. 1975, Edwardsson und Mejare 1978, Alaluusua und Renkonen

1983, Roeters et al. 1995). Entscheidenden Einfluss auf die Ansiedlung von S. mutans haben

die Zahnmorphologie und die Position des Zahnes in der menschlichen Mundhöhle. Es ist ein

Anstieg der bakteriellen Zahnbesiedlung von den Approximalflächen unterer Schneidezähne

über die Approximalflächen oberer Schneidezähne, die Approximalflächen von Molaren bis

zu den Fissuren von Molaren festzustellen (Loesche 1986). S. mutans kommt allerdings auch

im zahnlosen Kiefer vor und bildet hier mit 50-60 Prozent eine transiente Keimbesiedlung

(Wan et al. 2001).

Neben den Zähnen ist der Speichel ein bedeutendes Reservoir der Mutans-Streptokokken. In

einem Milliliter Speichel findet man bis zu 109 Bakterien (Bowen 1996). Durch den Speichel

werden die Bakterien in der gesamten Mundhöhle verteilt. Eine signifikante Verbindung zwi-

schen der Anzahl Mutans-Streptokokken im Speichel und deren Prävalenz an den Zähnen ist

ebenfalls beschrieben worden (Duchin und van Houte 1978). Durch Speichelkontakt vollzieht

sich auch die erste Übertragung der Bakterien von der Mutter oder dem Vater, beispielsweise

durch das gemeinsame Ablecken desselben Löffels. Die Eltern, insbesondere die Mutter, gel-

ten als wichtigster Überträger der Mutans-Streptokokken auf das Kind (Li und Caufield

1995).

In einer in-vitro-Studie zum Adhärenzverhalten von S. mutans an zahnärztlichen Werkstoffen

wurde festgestellt, dass es signifikante Unterschiede bezüglich der Besiedlungsdichte gibt.

Hierbei war zum einen entscheidend, ob die Materialien mit oder ohne Speichel untersucht

worden sind und zum anderen, um welches Material es sich handelte, hier genannt in der Rei-

henfolge der aufsteigenden Keimzahl: Titan, Gold, Schmelz, Amalgam, Cerec-

Industriekeramik, Acrylat, Komposit, Hydroxylapatit und Aluminiumoxidkeramik. Generell

Page 27: Identifizierung des Keims Streptococcus mutans

15

zeigten die Proben ohne Speichelbedeckung eine höhere Keimbesiedlung (Greiss und Iva-

nusch 2006).

Mutans-Streptokokken spalten niedermolekulare Kohlenhydrate, z.B. Saccharose, als Dimer

aus Fructose und Glucose mit Hilfe des Enzyms Glycosyltransferase und verstoffwechseln

den Fructose-Anteil zu Milchsäure (pK= 3,08). Sie nutzen ferner den Glucoseanteil zum Auf-

bau von schwerlöslichem Dextran, in dieser besonders adhärenten Form auch als Mutan be-

zeichnet, das einen Hauptbestandteil der Plaquematrix bildet. Die Glycosyltransferase der

Mutans-Streptokokken kann man daher auch als die hauptsächliche Säure- und Plaquematrix-

Produktionsstätte der Mundhöhle bezeichnen, wobei auch andere Bakterienarten Plaque pro-

duzieren (Hannig et al. 2008, Bowen und Koo 2011). König et al. (1971) formulierten drei

charakteristische Merkmale für kariesauslösende Bakterien, die im Besonderen für Mutans-

Streptokokken gelten: Erstens müssen diese Bakterien niedermolekulare Kohlenhydrate

schnell transportieren können, wenn sie in Konkurrenz mit anderen Plaquebakterien stehen.

Zweitens sollte eine rasche Umwandlung dieser Kohlenhydrate erfolgen. Beide Fähigkeiten

sollten drittens auch unter Extrembedingungen, beispielsweise bei niedrigem pH-Wert, funk-

tionieren. Mutans-Streptokokken sind in der Lage, Saccharose schneller als andere orale

Keime zu metabolisieren (Minah und Loesche 1977).

Bei neutralem pH-Wert sind Mutans-Streptokokken und Laktobazillen nur wenig konkurrenz-

fähig und machen einen geringen Anteil der Plaque aus. Durch häufigen Verzehr fermentier-

barer Kohlenhydrate produzieren S. mitis, S. oralis und S. sanguinis Säuren und senken so den

pH-Wert in der Plaque ab. Dadurch können sich azidogene und azidurische Keime stärker

vermehren. Durch verstärkte Säurebildung dieser Keime kommt es nun zur Demineralisierung

der Zahnhartsubstanz mit Defektformation (Marsh und Martin 2003).

Mutans-Streptokokken sind azidogener und azidurer als viele andere orale Bakterien (Hamada

und Slade 1980, Loesche 1986), wobei die Vermehrung unter sauren Milieubedingungen

nicht eingeschränkt ist, da die für diese Bakterien essentiellen Stoffwechselwege, wie u.a. die

Glycolyse, auch hier ablaufen (Takahashi et al. 1997). Streptokokken der Mutansfamilie kön-

nen Saccharose schneller als andere orale Keime metabolisieren (Minah und Loesche 1977).

Hierbei entsteht vor allem Laktat, das eine starke organische Säure ist (Iwami und Yamada

1985). Weitere Pathogenitäts- und Virulenzfaktoren von Mutans-Streptokokken sind die Bil-

dung von Adhärenzfaktoren, die Produktion von Glykosyltransferasen, Mutazinen und intra-

zellulären Polysacchariden (Kuramitsu 1993). Kritiker formulieren hingegen folgende Punkte,

die gegen eine alleinige Kariesinitiation durch S. mutans sprechen:

Page 28: Identifizierung des Keims Streptococcus mutans

16

Die ersten Bakterien, die gesäuberte Zähne in situ kolonialisieren, sind S. sanguinis, S. oralis

und S. mitis (Nyvad und Kilian 1987). Diese drei Spezies stellen zusammen 95 % der Strep-

tokokken und 56 % der totalen initialen bakteriellen Flora (Nyvat und Kilian 1987, Li et al.

2004), während S. mutans hingegen lediglich 2 % oder weniger Anteil an der initialen Flora

einnimmt (Nyvat und Kilian 1990). Somit gehören die ersten besiedelnden Bakterien der Mit-

is-Gruppe an. Bei einer etablierten Dentinkaries mit Defektformation nehmen die Mutansbak-

terien bis zu 30 % ein, wobei hier die Laktobazillen, Prevotellen und Bifidobakterien über-

wiegen (Aas et al 2008, Becker et al. 2002, Chhour et al. 2005, Munson et al. 2004).

In einer Studie von De Soet und Mitarbeitern von 1995 wurde die Mikroflora von offenen und

geschlossenen Dentinläsionen von Kindermolaren im Alter von 8-18 Jahren verglichen. In

beiden Gruppen wurden Anteile von S. mutans, Laktobazillen, S. sobrinus und Aktinomyze-

ten gefunden. Hierbei war das Verhältnis von S. mutans und Laktobazillen ausgeglichen (De

Soet et al. 1995).

Die meisten Non-Mutans-Streptokokken verfügen über Adhäsine, mit denen sie sich an die

Proteine und die Zuckerketten der erworbenen Pellikelschicht auf Zahnoberflächen anheften

können (Gibbons 1989, Kolenbrander 2000). S. mutans hingegen haftet nicht effizient an der

Pellikel (Nyvad und Kilian 1990b), obwohl das Bakterium ebenfalls Adhäsine bilden kann.

Die gebildeten wasserunlöslichen Glucane fungieren als ein Faktor für die Plaquebildung, in-

dem sie die Adhärenz und Kolonisation in der Plaque fördern (Mattos-Graner et al. 2000).

Diese extrazelluläre Polysacharide wie Glucane oder Fruktane können aber von den meisten

oralen Streptokokken gebildet werden (Banas und Vickerman 2003, Vocca-Smith et al. 2000).

In einer kariösen Läsion haben die Non-Mutans-Streptokokken einen Standortvorteil, da sie

Aminozucker verwenden können, welche in der oralen Kavität immer vorhanden sind (Whi-

ley and Beighton 1998).

Diese Argumente ließen die momentan propagierte „erweiterte ökologische Plaquehypothese“

entstehen.

Sie veranschaulicht die Beziehungen und Wechselwirkungen zwischen säuretoleranten und

säureproduzierenden Bakterien des Biofilms und die Auswirkungen auf die Mineralbalance

der Zahnhartsubstanz, die Zusammensetzung der dentalen Plaque und den Kariesprozess. In

dieser Theorie ist die Plaque ein dynamisches mikrobiologisches Ökosystem mit Mutans- und

Non-Mutans-Bakterien und Aktinomyzeten, welche die Schlüsselrollen für die Aufrechterhal-

tung der dynamischen Stabilität bilden (Takahashi und Nyvad 2008).

Page 29: Identifizierung des Keims Streptococcus mutans

17

Die Säurebildung aus Zuckern führt zu einer vorübergehenden Senkung des pH-Wertes, der

durch homöostatische Mechanismen in der Plaque schnell wieder in den neutralen Bereich zu-

rückkehrt (Marsh and Martin 1999). Dies passiert in der supragingivalen Plaque mehrere Ma-

le am Tag und wird als „dynamisches Stabilitätsstadium“ bezeichnet. Überschreitet nun die

Zuckerzufuhr das Maß, in dem der Speichel die Säuren noch neutralisieren kann, so sinkt der

pH-Wert ab und ermöglicht den ‘low pH’-Non-Mutans-Streptokokken und Aktinomyzeten,

Säuren zu produzieren. Das wiederum führt zu einem Mineralverlust des Schmelzes und

letztendlich zu einer initialen Läsion (säurebildende Phase/Stadium).

Nach dieser Phase nehmen die säureliebenden Bakterien wie S. mutans und Laktobazillen ei-

ne zunehmende Rolle ein (säureliebende Phase) und beschleunigen den Kariesprozess

(Takahashi und Nyvad 2008).

Die „erweiterte ökologische Karieshypothese“ unterstützt die von Kleinberg (2002) aufge-

stellte Theorie, dass das Verhältnis zwischen säure- und baseproduzierenden Bakterien das

Herz der Kariesaktivität ist.

Die Bakterien bestimmen die Aktivität der Läsion und das äußere klinische Erscheinungsbild

(Nyvad und Fejerskov 1997, Nyvad et al. 2003, 2005, Thylstrup et al. 1994).

Diese klinischen Unterschiede wurden klassifiziert (Nyvad et al. 1999, 2003). Liegt bei einem

Patienten bei der Untersuchung klinisch ein Defekt ohne stabile Oberfläche vor, entsteht ein

Raum, der von ihm nicht mehr gereinigt werden kann. Dieser Zustand erfordert restaurative

Maßnahmen (Kidd und Fejerskov 2004).

Die Karies stellt somit eine Zahnhartgewebsdemineralisation dar, die durch bakterielle orga-

nische Säuren in der Zahnplaque ausgelöst wird. Die bakterielle Vergärung von Mono- und

Disacchariden führt vor allem zur Entstehung von Milchsäure. Diese bewirkt einen lokalen

Abfall des pH-Wertes an der Zahnoberfläche. Der kritische pH-Wert, bei dem eine Deminera-

lisation des Zahnschmelzes beginnt, liegt zwischen 5,0 und 5,5 (Loesche 1986).

Das klinische Bild der Karies manifestiert sich in mehreren Stadien. Silverstone (1973) zeigte

die Entwicklung einer initialen Karies über eine Läsion mit makroskopisch intakter Schmelz-

oberfläche bis zur Defektkaries. Als Folge der Invasion des Dentins kann auch das Pulpenka-

vum durch Mikroorganismen infiziert werden (Tronstad und Sunde 2003).

Die Entfernung kariöser Zahnhartsubstanz erfolgt entweder mittels rotierender Instrumente

oder durch Handexkavatoren. Weitere Verfahren, wie der Einsatz von Lasern (Matsumoto et

al. 2002) und Ozon (Baysan 2000, Rickard et al. 2004), stellen zusätzliche Ansätze dar. Bei

der mechanischen Kariesexkavation können zur Unterstützung chemische Substanzen wie N-

Monochloro-DL2-Aminobutyrat (NMAB) (Goldman und Kronman 1976) oder eine Kombi-

Page 30: Identifizierung des Keims Streptococcus mutans

18

nation der Aminosäuren Lysin, Leucin und Glutamin mit Natriumhypochlorit (Carisolv)

(Ericson et al. 1999) eingesetzt werden. Das Prinzip der chemomechanischen Kariesentfer-

nung beruht auf dem selektiven Anlösen kariösen Dentins durch Auflösung und Spaltung des

durch bakterielle Proteolyse denaturierten Kollagens (Hannig 1999). Es konnte nachgewiesen

werden, dass durch chemomechanische Kariesexkavation ein vergleichbarer Erfolg bei der

Entfernung kariösen Dentins wie durch Einsatz rotierender Instrumente erzielt wird (Lager et

al. 2003).

Insbesondere durch individuelle Betreuung, kombiniert mit gruppenprophylaktischen Maß-

nahmen, ist die Krankheitsvermeidung durch Vorsorge möglich (Hellwig et al. 1999). Der

Einfluss begünstigender Faktoren soll so vermindert, initiale Läsionen möglichst früh erkannt

und einer Remineralisation zugeführt werden. Hierbei ist besonders die Applikation von Fluo-

riden für die Reduktion der Karies verantwortlich (Klein et al. 1985, Kalsbeek und Verrips

1990, Belfrán-Aguilar et al. 2000). Fluoride lagern sich in den Schmelz ein und machen ihn

widerstandsfähiger gegenüber säurebedingten Demineralisationsvorgängen. Zusätzlich unter-

stützen Fluoride die Remineralisation (ten Cate 1990), üben einen hemmenden Effekt auf ei-

nige kariesassoziierte Bakterien aus und reduzieren so die Säureproduktion der Bakterien

(Marquis 1990).

Es existieren allerdings auch einige wirtspezifische Schutzmaßnahmen gegen die Bakterien,

wie zum Beispiel die Produktion von sekretorischem Immunglobolin A. Dieses verhindert das

Anheften der Bakterien an die Zähne, aktiviert gleichzeitig die antibakteriellen Faktoren und

macht die bakteriellen Enzyme unwirksam. So besitzt der Speichel aufgrund von Immunglo-

bulinen, Lysozymen, Peroxidasen, Laktoferrinen und anionischen Proteinen antibakterielle

Aktivität (Bowen 1996, Tenovuo 1998). Weitere Schutzfunktionen, die durch den Speichel

wahrgenommen werden, sind die Reinigungsfunktion der Mundhöhle, Gleitwirkung, Säure-

pufferung und Verdauung von Stärke (Whelton 1996).

Page 31: Identifizierung des Keims Streptococcus mutans

19

2.5 Klassifikation und Identifizierung der Mutans-Streptokokken

Klassifikation

Die Klassifikation, Nomenklatur und Identifizierung von Mikroorganismen wird als Taxono-

mie bezeichnet. Sie hat die Aufgabe, Bakterien hinsichtlich ihrer Ähnlichkeiten und Ver-

wandtschaftsverhältnisse anzuordnen und führt zur Schaffung international anerkannter Taxa.

Die Benennung oder Nomenklatur der Bakterien, die die Klassifikation widerspiegelt, wird

von einem internationalen Komitee geregelt (Marsh 2003). Erste Klassifikationssysteme wur-

den mit einfachen und später komplexeren Lichtmikroskopen, später mit Elektronenmikro-

skopen und durch Kultivierung auf unterschiedlichen Medien erarbeitet.

Während ältere Klassifikationssysteme lediglich hinsichtlich morphologischer und einfacher

physiologischer Kriterien, wie der Form der Zelle und dem Vergärungsspektrum einfacher

Zucker erfolgten, das genetische Material aber weitgehend unberücksichtigt blieb, beruhen

modernere Klassifizierungsschemata hauptsächlich auf chemischen Analysen der Zelle

(Chemotaxonomie) und auf der Bestimmung genetischer Verwandtschaftsverhältnisse zwi-

schen einzelnen Stämmen (Marsh 2003). Auf diese Weise konnten bis heute mehr als 700

verschiedene Bakterienarten in der Mundhöhle identifiziert werden. Streptococcus mutans

gehört nach der allgemeinen biologischen Klassifikation zum Reich der Bakterien und hier

aufgrund der gram-positiven Zellwandstruktur zum Stamm der Firmicutes, des Weiteren zur

Klasse der kokkoiden Bacilli und auf Grund des wichtigsten Stoffwechselendproduktes der

Kohlenhydratfermentierung -der Milchsäure- zur Ordnung der Lactobacillales. Streptococcus

mutans ist weiterhin der Familie der Streptococcaceae zuzuordnen sowie der Gattung der

Streptokokken, die den größten Anteil der oralen Mikroflora ausmachen, und hierbei der Art

mutans (Ekstrand et al. 2012). Eine Art, Spezies oder Taxon stellt eine Kollektion von Stäm-

men dar, die gemeinsame Eigenschaften aufweisen und sich wesentlich von anderen Stämmen

unterscheiden. Hierbei wird, sobald eine Art als anerkannt gilt, ein Stamm in Reinkultur als

Typ- oder Referenzstamm dargestellt, der als Namensgeber und konstantes Beispiel seiner Art

gilt (Holt 1984, Marsh 2003). Innerhalb einer Art können verschiedene Stammgruppen gebil-

det werden. Diejenigen, die sich durch eine bestimmte Eigenschaft auszeichnen, werden als

Biotypen oder Biovare bezeichnet. Stammgruppen mit bestimmten Antigenzusammensetzun-

gen bezeichnet man als Serotypen oder Serovare (Marsh 2003).

Zuerst in der Literatur beschrieben wurde S. mutans von Clarke (1924). Hier wurde der Keim,

der als Namensgeber für die Gruppe fungiert, aus kariösen Läsionen isoliert. Die Klassifikati-

on zur Art „mutans“ verdankt er seiner Fähigkeit, sich bei sich änderndem (sinkenden) pH-

Page 32: Identifizierung des Keims Streptococcus mutans

20

Wert in seiner Form anzupassen. Dabei wandelt er sich von der Kokkenform in eine lanzettar-

tige Stäbchenform um (Clarke 1924). Schon in den frühen 70er Jahren gab es verschiedene

Ansätze um orale Streptokokken weiter einzuteilen. Diese reichten von der makroskopischen

Betrachtung bis hin zur Mikroskopie. Ein weiterer Ansatz war die Untersuchung der Hem-

mung des Wachstums anderer Bakterien über Bakteriozine (Kelstrup et al. 1970). Hierbei

handelt es sich um antimikrobielle Substanzen, die von den Bakterien selbst gebildet werden.

Ein Stamm wird danach charakterisiert, wie stark er einen Indikatorkeim im Wachstum

hemmt und selbst durch andere Keime gehemmt wird (Kolenbrander et al. 1985, Marsh 1989,

Raskin et al. 1996, Grönroos et al. 1998). Mutans-Streptokokken sind unabhängig von der

Kariesprävalenz in fast allen Individuen einer Population zu finden (Carlsson 1989). Die

Mutans Gruppe enthält als weitere 6 Vertreter Streptococcus sobrinus, Streptococcus criceti,

Streptococcus ratti, Streptococcus downei, Streptococcus macacae und Streptococcus ferus

(Coykendall 1989). Auch Kawamura und Mitarbeiter (1995) untersuchten die Verwandt-

schaftsverhältnisse der Gattung Streptokokkus und unterteilten diese in sechs Gruppen (Ab-

bildung 2).

Aufgrund ihres Kohlenhydrat-Antigens teilte man die Mutans- Gruppe in acht Serotypen (a-h)

ein (Beighton et al. 1981, Perch et al. 1974). Ein Serotyp k wurde zusätzlich beschrieben

(Nakano et al. 2004). Die ursprüngliche Form von S. mutans umfasst allerdings nur die Sero-

typen c, e und f, während die Serotypen d und g S. sobrinus genannt werden. Diese Unter-

scheidung ist insofern wichtig, da manche Serotypen in der Lage sind, aus Saccharose mehr

Säure herzustellen als S. mutans (Ekstrand et al. 2012).

Allen oralen Streptokokken ist gemeinsam, dass es sich um Katalase-negative, gram-positive

Kokken handelt, die Leucinaminopeptidase-positive, Pyrrolidonylarylamidase-negative

Nachweisreaktionen zeigen und nicht in 6,5 % NaCl-Bouillon wachsen (Facklam 2002).

Mutans-Streptokokken sind fakultative Anaerobier und lassen sich bei einer Temperatur von

37 °C kultivieren (Ma und Marquis 1997). Die Zellen haben einen Durchmesser von 0,5-

0,75 µm. S. mutans Zellen bilden Paare oder kapsellose Ketten und gehen in Flüssigmedien

und auf einzelnen Festmedien, wenn ein saurer pH-Wert vorliegt, in eine 1,5-3,0 µm lange

Stäbchenform über.

S. sobrinus hat einen Durchmesser von 0,5 µm und erscheint ebenfalls paarweise oder in Ket-

tenform. S. ratti, S. ferus und S. criceti liegen entweder paarweise oder in Kettenform vor

(Hardie 1986).

Page 33: Identifizierung des Keims Streptococcus mutans

21

Für die Primärkultur von S. mutans wird am häufigsten MSB-Agar (Mitis-Salivarius-

Bacitracin) verwendet (Gold et al. 1973), welcher für die anderen Streptokokken in der

Mundhöhle ein Selektivmedium ist. Der Zusatz von Bacitracin verhindert hierbei das Wachs-

tum der Begleitflora und anderer oraler Streptokokken. Auf MSB-Agar wächst S. mutans als

maulbeerförmige Kolonie in die Tiefe des Agars (Siehe Abbildung 3: Kolonien 1-4).

Die Eigenschaft, Karies im Tierexperiment auszulösen, lässt sich für S. mutans, S. sobrinus, S.

ratti und S. criceti belegen. S. ferus konnte bisher nicht mit der Entstehung von Karies in

Verbindung gebracht werden (Whiley und Beighton 1998). Des Weiteren können Mutans-

Streptokokken beispielsweise durch unterschiedliche Wachstumseigenschaften, unterschiedli-

che Enzymmuster, morphologische Kriterien auf Selektiv- und Nichtselektivmedien und Fer-

mentation verschiedener Zucker weiter differenziert werden (Bratthall und Köhler 1976, Whi-

ley und Beighton 1998). In der Literatur bereits beschrieben ist die Kultivierung von Strepto-

kokken auf Trypticase-Hefeextract-Cystin-Saccharose-Bacitracin (TYCSB) -Agar (van Palen-

stein Helderman et al. 1983). Hiernach weisen S. mutans und S. sobrinus unterschiedliche

Wachstumsmuster auf. S. mutans kommt in drei unterschiedlichen Serotypen (c, e und f) vor,

wobei der Serotyp c in Plaque und Speichel des Menschen dominiert (Loesche 1986).

In der Zahnmedizin sind verschiedene Verfahren bekannt, um die Mutans-Streptokokken zu

identifizieren und zugleich quantitativ zu erfassen. Ein häufig praktiziertes Verfahren bilden

hier zum Beispiel „chair-side“-Tests. Hierzu zählt sowohl der Dentocult SM® Strip

Mutans-Test (Jensen und Bratthall 1989) als auch der CRT® bacteria-Test (Laurisch 1997).

Diese Medien sind allerdings nur teilweise spezifisch und werden dazu genutzt, das Kariesri-

siko zu bestimmen.

Page 34: Identifizierung des Keims Streptococcus mutans

22

Überblick über die Bakterienfamilien

Innerhalb der Gruppe der oralen Streptokokken lassen sich die Mutans-Streptokokken von der

Anginosus-, der Mitis- und der Salivarius-Gruppe abgrenzen (Whiley und Beighton 1998).

Eine Klassifizierung, die auf phänotypischen Merkmalen beruht, beschreibt noch eine zusätz-

liche S. sanguinis - Gruppe, welche sich aus der Mitis - Gruppe ausgliedert (Facklam 2002).

Die sechs weiteren Vertreter der Mutans-Gruppe sind in Abb. 2 dargestellt: Streptococcus

sobrinus, Streptococcus criceti, Streptococcus ratti, Streptococcus downei, Streptococcus

macacae und Streptococcus ferus (Coykendall 1989).

Abbildung 2: Phylogenetische Verwandtschaftsverhältnisse innerhalb der Streptokokken (mo-difiziert nach Kawamura et al. 1995). Mutans-Streptokokken sind rot hervorgehoben. * S. fe-rus ordnet sich nach heutigem Kenntnisstand in die Mutans-Gruppe ein und wurde nachträg-lich eingefügt. * S. tigurius ordnet sich in die Mitis-Gruppe ein (Zbinden et al. 2012).

Page 35: Identifizierung des Keims Streptococcus mutans

23

Bakterienkulturen auf Agar

Kolonie 1

Auf MSB-Agar wächst S. mutans als maulbeerförmige

Kolonie in die Tiefe des Agars.

Kolonie 2

Kolonie 3

Kolonie 4

Abbildung 3: Beispiele von mikroskopischen Aufnahmen von S. mutans- Bakterienkolonien

auf MSB-Agar.

Page 36: Identifizierung des Keims Streptococcus mutans

24

Identifizierung

Es existieren verschiedene Möglichkeiten, Mutans-Streptokokken nachzuweisen und zu typi-

sieren. Man unterscheidet hier zwischen Verfahren, die entweder auf phänotypischen oder ge-

notypischen Charakteristika der Bakterien basieren.

In dieser Arbeit wurde eine phänotypische Nachweismethode untersucht, wobei die Klassifi-

kation auf Basis der Genotypisierung stattfand (16S Gen).

Hierbei lag der Hauptschwerpunkt der mikrobiologischen Forschung lange Zeit auf den phä-

notypischen Unterschieden der Mikroorganismen wie der mikroskopischen Darstellung, Ko-

loniemorphologie auf speziellen Kulturmedien sowie physiologischen, biochemischen und se-

rologischen Unterschieden (Busse et al. 1996). Die Merkmale werden als gleichwertig ange-

sehen und sind anhand der numerischen Taxonomie quantitativ darstellbar. Hierdurch lässt

sich ein künstliches System berechnen, welches die Ähnlichkeiten der beschriebenen Bakte-

riengruppen darstellt (Holt 1984, Bowden und Hamilton 1986).

Seit den 70er Jahren sind Analysen der DNA und RNA von Mikroorganismen anhand erster

DNA-Sequenzierungstechniken möglich, die auf eine bakterielle Evolution hindeuten (Fox et

al. 1977, Olson et al. 1986). Phylogenetisch basierende Untersuchungen geben Aufschluss

über die Genomgröße, den GC-Gehalt, das Reassoziationsverhalten der DNA unter optimalen

und nicht optimalen Umständen und die thermische Stabilität des DNA-Doppelstrangs (Baron

1996). Völlige Übereinstimmungen der Erbinformationen wären nur bei den Zellen von Mik-

roorganismen einer Kolonie zu erwarten (Rupf 2006).

Eine Typisierung mittels monoklonaler Antikörper kann sowohl qualitativ als auch quantitativ

erfolgen. Hierbei werden serologische Techniken angewandt, die einen Vergleich der Anti-

genprofile auf der Zelloberfläche ermöglichen. Ebenso können verschiedene Gene, wie das

Dextranase-Gen, verwendet werden, um die DNA nachzuweisen (Ida et al. 1998, 1999). Zu

den ersten DNA-basierten Verfahren, mit denen S. mutans Stämme auf der Artebene differen-

ziert wurden, gehört die Plasmidanalyse (Caufield et al. 1982). Es sind sowohl monoklonale

Antikörper für S. mutans als auch für S. sobrinus vorhanden (de Soet et al. 1990, Gu et al.

2002). Dennoch lässt sich eine schnellere und einfachere Identifikation von S. mutans und S.

sobrinus durch die spezifische Polymerasekettenreaktionen (PCR) erreichen (Rupf et al. 1999,

2001). Darüber hinaus existieren noch weitere Möglichkeiten für die Typisierung von Bakte-

rien. Beispielsweise wird die genomische DNA durch verschiedene Restriktionsenzyme (En-

donucleasen) verdaut, die die Nukleinsäuren an spezifischen Stellen durchtrennen. Die entste-

henden Fragmente liefern einen „chromosomalen Fingerabdruck“ (Restriktionslängenpoly-

Page 37: Identifizierung des Keims Streptococcus mutans

25

morphismen, RFLPs), anhand dessen Bakterien verschiedenen Stämmen zugeordnet werden

können. Das Verfahren des Ribotypings liefert einfachere Muster als die RFLP-Analyse, in-

dem die Restriktionsfragmente auf eine Nitrozellulose- oder Nylonmembran transferiert und

hybridisiert werden (Saarela et al. 1993, Marsh 2003). Weitere Verfahren sind die Restrikti-

onsendonuklease-Analyse (REA) (Caufield und Walker 1989) und die Pulsfeldgelelektropho-

rese (PFGE) (Jordan and LeBlanc 2002), welche ebenfalls für die Differenzierung von S.

mutans und anderen Bakterien eingesetzt werden können.

Bei der Polymerasekettenreaktion (PCR, Polymerase Chain Reaction) handelt es sich um eine

Technik zur gezielten in vitro-Amplifizierung von spezifischen DNA-Abschnitten, die von

zwei bekannten Sequenzen flankiert werden (Mullis und Faloona 1987, Saiki et al. 1985). Die

interessierenden DNA-Abschnitte können hierbei exponentiell vervielfältigt werden, selbst

wenn nur wenige Kopien der DNA zur Verfügung stehen.

Anhand von „Fingerprinttechniken“, wie der „arbitrarily primed“ (AP) -PCR oder „repetitive

extragenic palindromic“ (REP)-PCR, können Übertragungswege untersucht werden. Diese

beiden Techniken basieren auf der Polymerasekettenreaktion und können ebenfalls zur Typi-

sierung herangezogen werden. Die „arbitrarily primed“-PCR wurde u.a. von Williams und

Mitarbeitern (1990) sowie Welsh und McClelland (1990) beschrieben. Hierbei kommt es bei

einer niedrigen Annealingtemperatur zur Bindung einer oder mehrerer kurzer Primer (9-10

Basenpaare) an die Ziel-DNA. Im Anschluss erfolgt die elektrophoretische Auftrennung der

erhaltenen Fragmente. Anwendung fand die AP-PCR unter anderem für die Typisierung von

Mutans-Streptokokken (Saarela et al. 1996, Li und Caufield 1998, Grönroos und Alaluusua

2000) und der Streptococcus mitis-Gruppe (Rudney und Larson 1999), sowie für die Untersu-

chung von Übertragungswegen von S. mutans von der Mutter auf das Kind (Li et al. 2000).

In der Arbeit von Shklair und Keene (1974) wurden die Mutans-Streptokokken u.a. nach ih-

ren Fermentationseigenschaften in fünf Biotypen (a-e) eingeteilt. Ein weiteres Kriterium war

das Bacteriozinmuster und die Argininhydrolyse. Rupf et al. (2001) identifizierten mittels

Gaschromatographie 425 Isolate von Mutans-Streptokokken und verglichen sie mit anderen

Möglichkeiten der Identifikation. Dabei wird die Verteilung der kurzkettigen Fettsäuren in

Bakterienzellen qualitativ und quantitativ bestimmt und aus dem Verteilungsmuster ein art-

spezifisches Profil erstellt. Basierend auf den Sequenzunterschieden zwischen den einzelnen

Arten war die Entwicklung bakterieller Stammbäume möglich.

In Tabelle 1 sind einige Verfahren zur Geno- und Phänotypisierung von Bakterien dargestellt

(nach Wichelhaus et al. 2000):

Page 38: Identifizierung des Keims Streptococcus mutans

26

Tabelle1: Verfahren zur Geno- und Phänotypisierung von Bakterien (modifiziert nach Wichelhaus et al. 2000).

Methode Anteil typi-

sierbarer

Stämme

Reprodu-

zierbar-

keit

Diskrimi-

ninierungs-

potential

Vorteile Nachteile

Genotypisierende Verfahren

Antibiotika-

Resistenz-

Profil

alle mäßig bis

gut

gut • einfache Durch-

führung

• schnell

• preiswert

• schwierige Interpretati-

on

Plasmid-

Analyse

variabel gut mäßig • einfache Durch-

führung

• preiswert

• Plasmide sind instabile

genet. Elemente

Pulsfeld-

Gelelektro-

phorese

(PFGE)

alle gut exzellent • relativ einfache

Interpretation

• aufwendige Durchfüh-

rung

• relativ kostenintensive

App. notwendig

RAPD alle mäßig gut bis exzel-

lent

• schnell

• preiswert

• relativ schwierige Inter-

pretation

• viele Variablen beein-

flussen die Reproduzier-

barkeit

REP-PCR alle gut gut • schnell

• preiswert

• relativ schwierige Inter-

pretation

Ribo-

typisierung

alle gut gut • relativ einfache

Interpretation

• aufwendige Durchfüh-

rung

Sequen-

zierung

alle gut exzellent • relativ einfache

Interpretation

• heutige Standardmetho-

de

Phänotypisierende Verfahren

Antibiotika-

Resistenz-

profil

alle gut gering • leichte Interpreta-

tion

• standardisiertes

Verfahren

• einfache Durch-

führung

• preiswert

• geringe Diskriminierung

Biotypi-

sierung

alle mäßig gering • preiswert

• kommerzielle

• geringe Diskriminierung

Page 39: Identifizierung des Keims Streptococcus mutans

27

Systeme

Lysotypie variabel gut bis mä-

ßig

gut bis mäßig • standardisiertes

Verfahren

• aufwendige Durchfüh-

rung

• Referenzlaboratorien

vorbehalten

• Interpretation häufig

schwierig

Maldi-

TOF-MS

alle gut mäßig • relativ einfache

Durchführung

• einfache Inter-

pretation

• schnell

• kostenintensive App.

• z.Zt. fehlende Stan-

dardisierung

• Kultivierung ist nötig

(Breitung 2007)

Multilocus-

Enzym-

Elektro-

phorese

alle gut gut • einfache Interpre-

tation

• kaum angewandte Me-

thode

• relativ aufwendige

Durchführung

Serotypi-

sierung

variabel gut mäßig • relativ einfache

Durchführung

• geringe Diskriminierung

Page 40: Identifizierung des Keims Streptococcus mutans

28

2.6 Ziele der Arbeit, Fragestellung

Eine sichere Identifizierung einzelner Isolate oraler Streptokokken stellt für die mikrobiologi-

sche Forschung aufgrund der genetischen Verwandtschaft einzelner Stämme und ähnlicher

Kultivierungsbedingungen eine Herausforderung dar. Das Ziel der vorliegenden Arbeit war es

daher, basierend auf Vorarbeiten (Dissertation Breitung 2007, Rupf et al. 2006), die eine

Klassifizierung von S. mutans mittels MALDI-TOF MS zum Gegenstand hatten, zu überprü-

fen, ob eine Detektion des Keimes in Bakteriengemischen mittels dieses Verfahrens möglich

ist.

Es sollten folgende Fragestellungen beantwortet werden:

1. Ist eine Identifizierung und Quantifizierung des Keimes S. mutans mittels MALDI-

TOF MS aus artifiziellen Bakteriengemischen möglich?

2. Besteht durch die Anwendung von MALDI-TOF MS für die Identifizierung der Art S.

mutans aus klinischen Isolaten Verbesserungspotenzial in Ergänzung zur Verwendung

bisher existierender molekulargenetischer Methoden?

Page 41: Identifizierung des Keims Streptococcus mutans

29

3 Material und Methoden

3.1.Material

Geräte

Im Folgenden sind die in der vorliegenden Arbeit verwendeten Geräte aufgeführt.

Tabelle 2: Übersicht der verwendeten Geräte

MALDI-TOF MS

Autoflex Massenspektrometer Bruker Daltonik GmbH, Bremen

384 Target Plate, Edelstahl Bruker Daltonik GmbH, Bremen

PCR-Geräte

GeneAmp PCR System 9600 Applied Biosystems, U.S.A

Touchgene Gradient Techne, Cambridge, UK

Reinstwasseranlage Seralpur Delta UV/UF Seral, München

Spektrofotometer 931 Kontron Instruments, Watford, UK

Sterilwerkbank Antair BSK Medizin & Labortechnik, Magdeburg

Stromversorgungsgerät 1000/ Biorad GmbH, München

Thermomixer 5436 Eppendorf, Hamburg

Ultraschallbad Sonorex RK 100H Bandelin, Berlin

UV-Box CleanCab Herolab GmbH, Wiesloch

Vortex-Mischer VF2 IKA-Labortechnik, Dresden

Waagen

Laborwaage PB1502 Mettler Toledo GmbH, Giessen

Analysenwaage AJ100 Mettler Toledo GmbH, Giessen

Zentrifugen

Tischzentrifuge Mikro 12-24 Hettich, Tuttlingen

Page 42: Identifizierung des Keims Streptococcus mutans

30

Chemikalien

Eine Übersicht über die verwendeten Chemikalien, Pufferlösungen und Matrixsubstanzen ist

in Tabelle 3 zusammengestellt.

Tabelle 3: Übersicht der verwendeten Chemikalien

α-Cyano-4-hydroxyzimtsäure (HCCA) Bruker Daltonik GmbH, Bremen

Aceton Mallinckrodt Baker, Griesheim

Acetonitril (ACN)100% Amersham Pharmacia Biotech, Freiburg

SeaKem LE Agarose FMC, Rockland, USA

Ethanol Merck, Darmstadt

Ethidiumbromid Roth, Karlsruhe

Methanol Roth, Karlsruhe

Trifluoressigsäure (TFA)5% Mallinckrodt Baker, Griesheim

NaEDTA Boehringer, Mannheim

Bromphenolblau Merck, Darmstadt

Enzyme

bio-Taq DNA-Polymerase Biomaster GmbH, Köln

Recombinant Taq DNA-Polymerase Takara Bio INC, Japan

DNA–Längenstandards

Wasser

Für die HPLC Aldrich, Steinheim

Reinstwasser Kombination der Systeme Seradest Vario

Page 43: Identifizierung des Keims Streptococcus mutans

31

Bakterienstämme

Die 26 verwendeten Referenzstämme von Mutans- und oralen Streptokokken werden in Ta-

belle 4 aufgeführt:

Tabelle 4: Referenzstämme von Mutans- und oralen Streptokokken

Taxa Stämme

Streptococcus mutans NCTC 10449, OMZ 125, GS 5, Ingbritt, JB 1600

LM7, SE 11, QP 50-1, OMZ 175, DSM 20523

Streptococcus sobrinus OMZ 65, OMZ 176, V 100

Streptococcus criceti OMZ 61

Streptococcus ratti FA I3, OMZ 51, LB 28, AHT7, E 493

Streptococcus mitis OMZ 84

Streptococcus sanguinis OMZ 9S2, DSM 20567

Streptococcus salivarius OMZ 474

Streptococcus oralis NS 96, NS 306, DSM 20627

Page 44: Identifizierung des Keims Streptococcus mutans

32

3.2. Methoden

MALDI-TOF MS

Als Massenspektrometer wurde in der vorliegenden Arbeit ein Autoflex der Firma Bruker Dal-

tonik, Bremen, eingesetzt. Als Matrix wurde HCCA verwendet, da die homogenere Kristall-

struktur zu reproduzierbareren Ergebnissen führt, als bei der Verwendung anderer Matrixsub-

stanzen wie Sinapin- und Ferulasäure zu erwarten sind (Breitung 2007).

Die externe Kalibrierung des MALDI-TOF-Massenspektrometers erfolgte mit einem

Peptidstandard (Firma Sigma, Taufkirchen) mit bekanntem Molekulargewicht, indem die ge-

messenen Flugzeiten den bekannten m/z-Verhältnissen zugeordnet werden konnten. Die Ge-

nauigkeit der Massenbestimmung des Analyten unter Verwendung des Peptidstandards betrug

0,01 bis 0,1 %.

Der Messbereich lag zwischen 2.000 Da und 20.000 Da für die Erstellung der Datenbank. Je-

des Spektrum stellte die Summe aus zehn Einzelspektren zu je 400 Laserschüssen, die an ver-

schiedenen Orten des Kristalls aufgenommen wurden, dar und bildete somit das Summen-

spektrum. Um eine verbesserte Reproduzierbarkeit zu gewährleisten, wurde jede Probe

mehrmals an verschiedenen Tagen vermessen. Aus diesen subjektiv zehn besten Summen-

spektren wurde wiederum ein Masterspektrum gebildet, welches dann für die nachfolgenden

Untersuchungen verwendet wurde.

In dieser Arbeit wurde die Touchdown-PCR eingesetzt, die gegenüber der Standard-PCR eine

Abwandlung des Thermocycler-Profils darstellt, um die erhaltenen Ergebnisse der MALDI-

TOF -Spezieszuordnung zu verifizieren (Tabelle 5).

Page 45: Identifizierung des Keims Streptococcus mutans

33

Tabelle 5: Sanger-Sequenzierung: Reaktionsansatz

Reagenz Volumen Temperaturprofil

10 x PCR-Puffer 5 µl 94 °C 7 min

MgCl2 (50 mM) 2 µl 94 °C 30 sek

20 Zyklen

Tanneal bei jedem

Zyklus um 0,5 °C

erniedrigt

dNTPs (25 mM) 0,4 µl 63 °C 30 sek

DNA-Polymerase (5 U/µl) 0,25 µl 72 °C 30 sek

Primer Bio3U18

(100 pmol/µl) 0,25 µl 94 °C 30 sek

10 Zyklen Tanneal konstant Primer Uni16SRe

(100 pmol/µl) 0,25 µl 53 °C 30 sek

Bakterienstammlösung

(106 Zellen) 1-3 µl 72 °C 30 sek

Reinstwasser ad 50 µl 72 °C 10 min

Reagenz Volumen Temperaturprofil

Big Dye Mix 3 µl 94 °C 5 min

Sequenzierprimer

(6 pmol/µl) 1 µl 94 °C 30 sek

40 Zyklen über Genopureds gereinigtes

PCR-Produkt (100 ng/µl)

1 µl 30 sek

72 °C 1 min

Reinstwasser ad 20 µl 72 °C 7 min

Page 46: Identifizierung des Keims Streptococcus mutans

34

3.3 Bakterien: Herstellung der Bakteriengemische, Reinkulturen und klini-

schen Isolate und ihre Analyse mittels MALDI-TOF MS

Bakteriengemische

Für die Herstellung von Bakteriengemischen wurden die Bakterien S. mutans DSM 20523, S.

sanguinis DSM 20567 und S. oralis DSM 20627 verwendet. Die Bakterien wurden bei der

deutschen Stammsammlung bestellt und in BHI Bouillon (Brain-Heart-Infusion) kultiviert

(gemäß Tabelle 6). Ihre taxonomische Zuordnung wurde mittels Sanger-Sequenzierung bestä-

tigt. Diese Stämme wurden zum einen ausgewählt, da sie bei der Kariesinitiation von Bedeu-

tung sind und zum anderen um beurteilen zu können, inwieweit es möglich ist, zwischen Bak-

terienarten innerhalb der Mitisgruppe einerseits und zwischen der Mitis- und Mutansgruppe

andererseits unterscheiden zu können (s. Abb.2).

Es erfolgte das zweimalige Waschen mit doppelt destilliertem Wasser, um Verfälschungen

der Messergebnisse durch die Bouillon zu vermeiden. Mit Hilfe eines Photometers wurde die

optische Dichte der 3 Bakterienstammsuspensionen bestimmt. Vor allem für die Gemische

war es notwendig, vorab zu klären, in welcher Konzentration sie am reproduzierbarsten zu

messen sind. Dazu wurden verschiedene Konzentrationen der zuvor anhand eines Photome-

ters abgeglichenen optischen Dichte entnommen und mit Hilfe des MALDI-TOF-

Massenspektrometers untersucht. Es wurden Aliquote mit je 10, 20, 30, 40, 50 und 100 Mik-

rolitern aus der Suspension entnommen und vermessen. Weiterhin wurden die Gemische in

den prozentual vorgegebenen Anteilen (siehe Tabelle 6) hergestellt. So entstanden 43 Gemi-

sche, wobei die ersten drei Reinkulturen darstellen und alle weiteren binäre oder ternäre Ge-

mische sind. Es ergaben sich für die Auswertung insgesamt 129 abzugleichende Ergebnisse,

da jeder Ansatz auf das Vorkommen von allen 3 Bakterien analysiert wurde, auch wenn es ur-

sprünglich nur aus einem oder zwei Bakterien bestand.

Page 47: Identifizierung des Keims Streptococcus mutans

35

Tabelle 6: Darstellung der vorbereiteten Proben, angegeben in prozentualer Beteiligung am Gesamtgemisch (Gemisch 1-3 sind Reinkulturen (Bakterium A = DSM 20523 = S. mutans, Bakterium B = DSM 20567 = S. sanguinis und Bakterium C = DSM 20627 = S. oralis); bei Gemisch 4 bis einschließlich Gemisch 22 handelt es sich um binäre, danach ternäre Gemi-sche).

Bakterium A Bakterium B Bakterium C

DSM 20523 DSM 20567 DSM 20627

Gemisch 01 100 0 0

Gemisch 02 0 100 0

Gemisch 03 0 0 100

Gemisch 04 50 50 0

Gemisch 05 50 0 50

Gemisch 06 0 50 50

Gemisch 07 0 40 60

Gemisch 08 0 30 70

Gemisch 09 0 20 80

Gemisch 10 0 10 90

Gemisch 11 0 60 40

Gemisch 12 0 70 30

Gemisch 13 0 80 20

Gemisch 14 0 90 10

Gemisch 15 40 0 60

Gemisch 16 30 0 70

Gemisch 17 20 0 80

Gemisch 18 10 0 90

Gemisch 19 40 60 0

Gemisch 20 30 70 0

Gemisch 21 20 80 0

Gemisch 22 10 90 0

Gemisch 23 30 30 40

Gemisch 24 30 40 30

Gemisch 25 40 30 30

Gemisch 26 20 40 40

Gemisch 27 40 20 40

Page 48: Identifizierung des Keims Streptococcus mutans

36

Bakterium A Bakterium B Bakterium C

DSM 20523 DSM 20567 DSM 20627

Gemisch 28 40 40 20

Gemisch 29 10 40 50

Gemisch 30 10 50 40

Gemisch 31 0 95 5

Gemisch 32 0 99 1

Gemisch 33 95 0 5

Gemisch 34 99 0 1

Gemisch 35 95 5 0

Gemisch 36 99 1 0

Gemisch 37 0 5 95

Gemisch 38 0 1 99

Gemisch 39 5 0 95

Gemisch 40 1 0 99

Gemisch 41 90 5 5

Gemisch 42 5 90 5

Gemisch 43 5 5 90

Untersuchung der Reinkulturen mittels MALDI-TOF

Es wurden 460 Mutans- und orale Streptokokken untersucht, welche aus einer Sammlung von

Prof. Dr. S. Rupf stammen. Für die MALDI-TOF MS Untersuchung wurden diese oralen

Streptokokken anaerob kultiviert (GasPack, BBL, Becton Dickinson, Cockeysville, USA, 24

h, 35 °C ± 2 °C in 10 ml Balmelli Bouillon), bei 4000 U/min für 5 min zentrifugiert (Megafu-

ge 1.0, Heraeus-Christ, Osterode) und bei –20 °C bis zur Messung aufbewahrt. Für die Analy-

se der Bakterienlysate wurden die bei –20 °C gelagerten Proben aufgetaut und zunächst bei

Raumtemperatur mit 13.000 U/min 2 Minuten lang zentrifugiert. Nach Bildung des so erhal-

tenen Zellpellets wurde der Überstand mittels einer sterilen Pipette in ein 1,5 ml Reaktionsge-

fäß (Eppendorf) überführt und dieser dann in 2 Stunden in einer Vakuumzentrifuge konden-

siert. Dies entsprach einem Volumen von ca. 1 ml. Vor dem Auftragen auf einem Stahltarget

wurden die Proben in 20 Mikrolitern 5 % TFA/100 % Acetonitril (Matrixlösung) suspendiert.

Page 49: Identifizierung des Keims Streptococcus mutans

37

Durch mehrmaliges Durchmischen mit einer sterilen Pipette löste sich das Pellet. Es wurden

anschließend 3– 10 Spots zu je 1 Mikroliter auf ein Stahltarget kokristallisiert. Nach dem

Trocknen wurde jede Probe mit 10 µl einer 0,1%igen Trifluoressigsäurelösung gewaschen

und mittels 1 Mikroliter Zimtmatrix (gesättigte Lösung von 4-HCCA in 5 % TFA/ 100 %

Acetonitril) rekristallisiert. Zuvor wurde in Vorversuchen anhand des S. mutans- Referenz-

stammes NCTC 10449 und S. sobrinus OMZ 176 der Einfluss unterschiedlich langer Kulti-

vierungszeiten auf die Spektren untersucht. Die Messungen wurden an einem Massenspekt-

rometer Autoflex (Bruker Daltonik, Bremen) durchgeführt.

In Vorversuchen wurde eine optimale Anzahl von Peakmassen zur Identifizierung gesucht.

Hierzu wurde die Differenz der „simple matching“-Koeffizienten der identifizierten Art zur

nächstmöglichen Art gebildet. Zur Ermittlung der Mindestzahl der zur Identifizierung auf Art-

Ebene benötigten Peakmassen wurde basierend auf der Dissertation von Breitung (2007), die

Differenz aus Mittelwert und Standardabweichung genutzt. Die Erstellung der Datenbank er-

folgte einmal mit 60 Peakmassen und zum anderen mit 100 Peakmassen, um einen Übertrag

in bereits bestehende Datenbanken vornehmen zu können.

Klinische Patientenisolate

Von 10 Patienten wurden 79 S. mutans aus Speichelproben und kariösem Dentin isoliert. S.

mutans wurde in dieser Arbeit verwendet, da er u.a. eine wichtige Rolle bei der Kariesinitiati-

on spielt. Das Vorgehen wurde von der Ethikkommission der Universität Leipzig genehmigt

(Az. 266/2005). Die Speichelproben wurden nach 1-minütigem Kauen auf Paraffin, die Den-

tinproben mittels Exkavation mit dem Rosenbohrer gewonnen und anschließend auf einem

Selektivmedium (CRT bacteria, (Ivoclar Vivadent, Schaan, Liechtenstein) für 4 Tage bei 37

°C inkubiert. Die Kolonien wurden danach auf MSBT-Agar überführt und anschließend 3 Ta-

ge bei 37 °C kultiviert. Nach 3 Tagen Bebrütung wurden Einzelkolonien, sofern als S. mutans

erkennbar, fotografiert und in 6 ml Balmelli-Bouillon abgeimpft (siehe Abb. 3). Danach er-

folgte die Kultivierung der Balmelli-Bouillon für 24 h bei 37 °C.

Page 50: Identifizierung des Keims Streptococcus mutans

38

3.4 Analyse der Peptidmassenspektren

Zur Auswertung der erhaltenen Massenspektren wurde das Programm Flex-Analysis (Bruker

Daltonik GmbH, Bremen) verwendet. Nach Glättung der Basislinie wurde von jedem einzel-

nen Spektrum eine Peakmassenliste erstellt und eventuell nicht markierte Massenpeaks nach-

träglich manuell markiert. Als Grundlage aller weiteren Auswertungsroutinen der Referenz-

stämme diente der Vergleich der erhaltenen Peakmassenlisten. Diese Peaklisten, welche Mas-

sen und relative Intensitäten enthalten, wurden als Excel-Dateien exportiert. Um gleiche

Peakmassen in einem Set oder Paar von Spektren zu finden, wurde, unter Berücksichtigung

der Variabilität der m/z Werte identischer Fragmente in unterschiedlichen Spektren, ein be-

wegliches Massefenster angelegt. Die Breite des Fensters war abhängig von der Genauigkeit

der Erfassung der m/z-Werte und wurde als lineare Beziehung zur m/z-Größe aufgefasst

(Fenstergröße = Absolute Breite + Relative Breite * [m/z]).

Basierend auf Wiederholungsmessungen von Masterspektren wurden eine absolute Fenster-

breite von 6 Da und eine relative Fensterbreite von 0,001 als geeignet angesehen. Alle Peak-

massen, welche innerhalb eines Fensters lagen, wurden einbezogen und als ursprünglich von

demselben Molekül stammend angesehen. Die damit generierten Peakmassenlisten wurden in

Microsoft Excel 2000 (Microsoft Corp., Redmond, U.S.A.) importiert, nachdem die subjektiv

zwei schlechtesten der 12 gemessenen Spektren verworfen worden waren. Die weitere statis-

tische Auswertung der Peakmassenlisten und Bandenmuster erfolgte mit statistischen Algo-

rithmen, basierend auf der Software MatLab R2006b (The MathWorks Inc., Natick, U.S.A.),

programmiert von Prof. Dr. W. Schellenberger, Institut für Biochemie, Medizinische Fakultät

der Universität Leipzig.

A: Identifikation und Klassifikation der Referenzstämme und klinischen Isolate

Es wurden im Gegensatz zu den Gemischen die Gesamtlisten mit einer Länge von ca. 60

bzw.100 Peaks verwendet. Dabei wurden ausschließlich die Peakpositionen berücksichtigt.

Die Intensitäten wurden nicht mit in die Analyse einbezogen. Mittels des „simple matching“ -

Verfahrens wurde eine Distanzmatrix dSM erstellt:

dcbadadSM+++

+= ,

wobei a die Anzahl gemeinsamer Peakmassen darstellt, b die Anzahl von singulären Peak-

massen des Stammes A und c des Stammes B. Die Größe d stellt die Anzahl von Peakmassen

Page 51: Identifizierung des Keims Streptococcus mutans

39

dar, die in der Gesamtheit der untersuchten Spektren, aber weder in Stamm A oder B, vor-

kommen. Bei einem paarweisen Vergleich bleibt sie unberücksichtigt.

Die Distanzmatrix wurde mittels „Agglomerative Hierarchical Clustering“- Algorithmen un-

ter Verwendung von „Complete Linkage“ analysiert.

Bei der vorliegenden Arbeit wurde also das hierarchische Clustering mit agglomerativem An-

satz angewendet. Hierbei wurde eine Struktur von Clustern gebildet, bei der kleinere Cluster

in größeren enthalten sind, wobei die kleinsten jeweils nur ein Objekt enthalten. Anhand der

agglomerativen Methode wurden ausgehend von allen Daten die ähnlichsten schrittweise zu-

sammengefasst. Zur Klassifikation der Referenzstämme wurden die Peakmassenlisten also

paarweise miteinander verglichen.

B: Identifikation und Klassifikation der Gemische

Die Identifikation von Mutans-Streptokokken in Gemischen beruhte auf dem Vergleich spezi-

fischer Peakmassen und nicht gesamter Peakmassenlisten. Hierbei wurden die Bakterienarten

S. mutans, S. sanguinis und S. oralis verwendet. Die Peakmassen umfassten hier einen Be-

reich von 2-13 kDa. Die weitere statistische Auswertung erfolgte wiederum mit statistischen

Algorithmen, basierend auf der Software MatLab R2006b (The MathWorks Inc., Natick,

U.S.A.).

Bei der Erstellung der Datenbank wurde das Prinzip des hierarchischen Clusterns genutzt.

Hierzu wurden ganze Spektren verwendet, wobei nach Gemeinsamkeiten innerhalb dieser ge-

samten Spektren gesucht wurde.

Das Programm zur Identifizierung von Gemischen basiert auf der Annahme, dass die einzel-

nen Bakterien spezifische Peakmassen enthalten, die in ihrer Intensität im Gemisch variieren.

Hier wird also nach Unterschieden innerhalb der Signaturen gesucht.

Für die Klassifikation der Gemische wurde ein von Tibshirani (2002) entwickeltes Verfahren

zur Analyse von DNA-Microarrays verwendet. Im Rahmen dieser „shrunken centroid“ -

Methode werden zunächst die m/z-Werte für alle Peaks im Datensatz berechnet. Die Klassen-

Centroide sind der Mittelwert der Peakintensitäten in den Klassen. Die Standardabweichung

der Peak-Intensitäten innerhalb der Klassen wird als ein Maß für die „Qualität“ eines Peaks

innerhalb einer Klasse genutzt. Dazu wird die Differenz zwischen den Klassen-Centroiden

und dem Gesamt-Centroid durch die „gepoolten“ Standardabweichnungen der Peakintenstä-

ten in den Klassen dividiert. Dabei erhalten Peaks mit einer „stabilen“ Intensität in einer

Klasse ein besonders großes Gewicht. Anschließend wird die Peakzahl der Centroide durch

Page 52: Identifizierung des Keims Streptococcus mutans

40

Anwendung eines “threshold”-Wertes verkleinert. Dabei werden aus dem Datensatz Peaks

entfernt, die eine große Streuung aufweisen, oder in der Umgebung des Gesamt-Centroids des

Datensatzes liegen.

xij sind die Peak-Intensitäten für die m/z-Werte i = 1, 2, … p der Spektren j = 1, 2, … n.

Ck bezeichnet die nk Spektren der Klasse k (k=1, 2, … K).

Dann gilt für das Centroid der Spektren der Klasse k (�̅�ik )

Für das globale Centroid gilt entsprechend:

Die normalisierten Differenzen der Klassen-Centroide vom globalen Centroid sind

, dabei ist s0 eine kleine Konstante, si die über alle Klassen des Datensatzes gepoolte (globale) Standardabweichung der Peakintensitäten:

und

Für das Centroid der Klasse k erhält man durch Umstellung:

Beim „shrinking“ werden die dik um den Betrag ∆ reduziert und Peaks, deren Intensität da-bei den Zahlenwert 0 erreicht, aus dem Klassen-Centroid entfernt.

( (x)+ =x, wenn x>0 und (x)+=0 ,wenn x<=0)

Page 53: Identifizierung des Keims Streptococcus mutans

41

Das dargestellte Verfahren liefert „shrunken centroids“ und hat zwei wesentliche Vorteile:

1) Durch die Entfernung von „noisy“-Peaks wird das Verfahren im Vergleich mit der di-rekten Nutzung von Spektren oder Klassen-Centroiden robuster.

2) Das Verfahren führt implizit zur Detektion von wichtigen Peaks, um die Klassen un-terscheiden zu können (feature reduction).

Der Grad der Feature-Reduktion kann durch den „threshold“- Parameter ∆ kontrolliert wer-

den. Ein robustes Verfahren ist die Bestimmung des „threshold“ durch Cross-Validierung des

Datensatzes und Wahl desjenigen „threshold“- Wertes, der die geringste Rate von Fehlklassi-

fikationen bei der Cross-Validierung aufweist.

Durch die Übertragung der „feature-reduction“ auf die Spektren des Datensatzes entsteht ein

reduzierter Datensatz, in dem Ähnlichkeitsbeziehungen durch agglomeratives Clustern darge-

stellt werden.

Für die Klassifikation von Proben wird das Spektrum mit den „shrunken centroids“ vergli-

chen und der Klasse zugeordnet, für die die Jaccard-Distanz zu diesen minimal ist.

Page 54: Identifizierung des Keims Streptococcus mutans

42

4. Ergebnisse (Vorversuche, Gemischerkennung,

Gemischquantifizierung, klinische Stämme)

4.1 Vorversuche (Reinkulturen)

Die untersuchten Mutans-Streptokokken lieferten charakteristische Massenspektren, so dass

reproduzierbare Peakmassen erhalten wurden. Die höchsten Intensitäten der Peakmassen tra-

ten hierbei im Massenbereich von 2 bis 11 kDa auf. Die Spektren verschiedener Taxa wiesen

sichtbare Unterschiede auf, wobei die meisten Peakmassen im Bereich von 2 bis 5 kDa ge-

messen wurden. Als Mindestzahl zur Identifizierung auf Art-Ebene wurde in der Dissertation

von Breitung (Breitung 2007) eine Anzahl von 40 Peakmassen ermittelt. Auffällig war, dass

bei einer Anzahl von mehr als 70 Peakmassen eine Abnahme der Unterschiede zwischen S.

mutans und den restlichen Arten festzustellen war. Bei mehr als 80 Peakmassen sank hier die

Differenz aus Mittelwert und Standardabweichung wieder. Um die Mindestzahl von Peak-

massen zur Identifizierung zu untersuchen, wurde die Differenz der “simple matching“-

Koeffizienten der identifizierten Art zur nächstmöglichen gebildet (Breitung 2007). Diese Er-

gebnisse wurden in der vorliegenden Promotionsarbeit bestätigt und für die weitere Auswer-

tung eine Peakmassenliste von 60 bzw. 100 Massenpeaks verwendet, um sie in die Datenbank

integrieren zu können.

Abbildung 4 : Untersuchung der optimalen Anzahl von Massenpeaks zur Identifizierung von

Mutans Streptokokken- Isolaten.

Page 55: Identifizierung des Keims Streptococcus mutans

43

Vorversuche Gemische

Die ermittelten Bakterienkonzentrationen in der Stammlösung, bei der sie optimal messbar

waren, ergaben die folgenden optischen Dichten: OD S. mutans (DSM 20523) 0,841, OD S.

sanguinis (DSM 20567) 0,744 und OD S. oralis (DSM 20627) 0,892. OD unter 0,5 und über

1 erwiesen sich für alle oben genannten Bakterien als nicht durchgängig messbar.

4.2. Erstellung der Referenzdatenbank

Zu Beginn der Untersuchungen wurde die Methodik unter Verwendung einer Stammsamm-

lung, zu der die Spezies S. mutans, S sobrinus, S. sanguinis , S. macacae, S .ratti, S. pneumo-

niae, S. criceti, S. ferus, S. downei, S. anginosus, S. gordonii, S. parasanguinis, S. constella-

tus, S .oralis, S. salivarius, S. mitis und S. intermedius gehörten, und deren Artzugehörigkeit

durch Sequenzierung der Gene der 16S rRNA bestätigt worden war, etabliert. Mit derselben

Vorgehensweise wurden 539 Mutans-Streptokokken-Isolate aus klinischen Proben untersucht

und anschließend in die Datenbank integriert. Von 460 dieser Isolate war die Klassifizierung

durch Sequenzierung der 16S rRNA Gene bereits bekannt. Die übrigen 79 Spektren, gewon-

nen aus Speichel und kariösem Dentin von 10 Patienten, wurden anhand ihrer Kulturmorpho-

logie vorklassifiziert und mittels MALDI-TOF MS untersucht. Von diesen 79 Spektren konn-

ten 68 als S. mutans, 6 als S. sobrinus, 4 als S. sanguinis und 1 als S. anginosus identifiziert

werden. Auch diese Klassifizierung wurde mittels Sequenzierung überprüft. Durch wiederhol-

te Kultivierung und Messung ließen sich diese Ergebnisse reproduzieren. Zunächst dargestellt

in Abbildung 5 a-c sind MALDI-TOF Massenspektren- Ergebnisse der 9 Mutans-

Referenzstämme ( GS 5, Ingbritt, Jb 1600, LM-7, NCTC, OMZ 125, OMZ 175, Qp 50 und Se

11) der Datenbank. Als Vergleich danach in Abbildung 6a und 6b, sind exemplarische Mas-

senspektren der klinisch gewonnenen Speichel-Isolate dargestellt und die damit verbundene

Analyse.

Analyse der klinischen Isolate

Als Grundlage der Analyse der klinischen Isolate diente die Datenbank. Mittels der Anwen-

dung des Software Package MatLab 2006b konnten insgesamt 79 Spektren aufgezeichnet

werden, welche dann nach Sequenzierung ebenfalls in die Datenbank integriert wurden.

Page 56: Identifizierung des Keims Streptococcus mutans

44

Abbildung 5a: MALDI-TOF Massenspektren-Ergebnisse der Mutans-Referenzstämme ( GS 5,

Ingbritt, Jb 1600, LM-7) der Datenbank. Dargestellt auf der x-Achse ist das Verhältnis von

Masse zu Ladung (m/z) und auf der y-Achse die Intensität der Ergebnisse als artifizielle Ein-

heit (a.u.).

Page 57: Identifizierung des Keims Streptococcus mutans

45

Abbildung 5b: MALDI-TOF Massenspektren-Ergebnisse der Mutans-Referenzstämme (NCTC

10449, OMZ 125, OMZ 175, Qp 50-1,) der Datenbank. Dargestellt auf der x-Achse ist das

Verhältnis von Masse zu Ladung (m/z) und auf der y-Achse die Intensität der Ergebnisse als

artifizielle Einheit (a.u.).

Page 58: Identifizierung des Keims Streptococcus mutans

46

Abbildung 5c: MALDI-TOF Massenspektren-Ergebniss des Mutans-Referenzstammes (Se 11)

der Datenbank. Dargestellt auf der x-Achse ist das Verhältnis von Masse zu Ladung (m/z) und

auf der y-Achse die Intensität der Ergebnisse als artifizielle Einheit (a.u.).

Abbildung 6a: MALDI-TOF-MS Darstellung des aus einer Speichelprobe isolierten Stammes

S50_834. Dargestellt auf der x-Achse ist das Verhältnis von Masse zu Ladung (m/z) und auf

der y-Achse die Intensität der Messergebnisse als artifizielle Einheit (a.u.).

Page 59: Identifizierung des Keims Streptococcus mutans

47

Abbildung 6b: Klassifikation als S. mutans (Isolat S50_834), aus Speichel gewonnen, im Ver-

gleich mit anderen Stämmen der Datenbank.

Auf der y-Achse der Abbildung 6b ist die Differenz zwischen Spektrum S 50 und den Refe-

renzspektren der Datensammlung dargestellt. Auf der x-Achse sind die Einträge der Daten-

bank, geordnet nach Ähnlichkeiten zum MALDI-TOF-Spektrum S50_834, dargestellt. Aus

Gründen der Übersichtlichkeit sind nur die 20 ähnlichsten Einträge der Datenbank aufgeführt.

Die Messung hat mit 3 verschiedenen Proben des Isolates S50_834 an verschiedenen Stellen

des Probetellers (target) stattgefunden, so dass die ersten beiden Ergebnisse die Kontrollpro-

ben darstellen. Bei den weiteren 12 Einträgen (OMZ 125, LM-7, GS 5, Ingbritt, M 1-2, Mu

1-2-2, NCTC 10449, Mu 3-2, Mu 3-2-2, Mu 2-2, JB 1600, OMZ 175) handelt es sich durch-

gehend um Stämme von S. mutans, es folgen S. sobrinus (Sob-3-2), S. downei (Do-3-2), S.

sobrinus (Sob 3-1), S. ratti (Rat 5-1) und S. salivarius 2-2-2.

Die entstandene Peakliste der exemplarischen Speichelprobe S50_834 (Abbildung 6a) wurde

mit den Peaklisten aller Referenzstämme der Datenbank abgeglichen. Das Ergebnis ist in Ab-

bildung 6b zu erkennen.

Alle 79 Proben wurden anhand ihrer Kulturmorphologie vorklassifiziert und mittels MALDI-

TOF MS untersucht.

0.5

1

1.5

2

2.5

3

3.5

S50 834

S50 834

Mut

ans OM

Z 125

Mut

ans LM

-7

Mut

ans GS5

Mut

ans Ing

britt

Mu1

-2

Mu1

-2-2

Mut

ans NCT

C

Mu3

-2

Mu3

-2-2

Mu2

-2M

utan

s JB160

0

Mut

ans OM

Z 175

Sob-

3-2

Do-3

-2

Sob-

3-1

Rat-5

-1

Sal2

-2-2

Sum

me

der D

ista

nzen

zum

Tes

tspe

ktru

m

Testspektrum= 'S50834' / Bewertung zu D-Typ=1 (Intensitäten)

Page 60: Identifizierung des Keims Streptococcus mutans

48

Auf diese Weise konnten 69 der vorliegenden Proben als S. mutans, 6 als S. sobrinus, 4 als S.

sanguinis und 1 als S. anginosus identifiziert werden. Diese wurden sequenziert und nach

Übereinstimmung mit der Identifizierung in die Datenbank integriert.

Auffallend war, dass es sich bei 11 der als S. mutans visuell vorklassifizierten Stämme nicht

um solche handelte. Erst durch die MALDI-TOF MS erfolgte die oben angeführte Klassifizie-

rung, welche sich dann mittels Sequenzierung bestätigte. Es kann vermutet werden, dass es

sich hierbei um eine Fehlklassifikation des Kulturphänotyps handelte.

Bei solchen Datenmengen war es schwer, exklusive peaks zu finden, je größer die Datenbank

wurde. Betrachtet man nur die unten aufgeführten Referenzstämme der Datenbank und sucht

hierunter speziesspezifische Peaks mit einer Messgenauigkeit von 5 Da, so findet man nur

noch folgende exklusive Peaks ( in Tabelle 7 dargestellt), welche nicht mehr zur alleinigen

Identifizierung durch das für die Analyse der Gemische geschriebene Programm ausreichte.

Somit erfolgte die Erstellung der Datenbank, wie oben beschrieben, mittels gesamter Cluster

von Spektren.

Tabelle 7: Speziesspezifische Peaks der Massenspektren von 10 Mutans und oralen Strepto-

kokken der Datenbank im Vergleich untereinander.

S. oralis DSM 20627 3259,4 7682,2 9375,2 9513,7S. mitis DSM 12643 8821,6S. sanguinis DSM 20567 2888,1 3145,2 5768,1 6283,9 6600,4S. mutans DSM 20523 3068,6 4526,2 4783,8 5928,7 6140,8 6255,6S. anginosus DSM 20563 4595,3 6935,4 9562,6 10391,3S. pneumoniae 4-2 5006,8 5103,6 5126,9 9535,5S. pneumoniae 4-1 3019,7 3824,5 4343,6 4516,7 9049,9S. ferus DSM 20646 2621,4 3550,7 4380,4 5968,6 6079,8 6308,6 9620,2S. parasang. DSM 6776 4129,8 5913,8 6616,8 7671,9 7941,3 8265,6S. mitis 2-2-2 2871,9 4976,8 5379,9

Page 61: Identifizierung des Keims Streptococcus mutans

49

4.3 Quantitative Analyse der Bakteriengemische

Der gewählte Ansatz zur Identifizierung von Mutans-Streptokokken in Bakteriengemischen

beruhte anstelle von Musteranalyse auf dem Vergleich artspezifischer Peakmassen. Verwen-

dung fanden hier die Bakterienarten S. mutans, S. sanguinis und S. oralis. Der zuvor erfolg-

reiche Weg, mit Hilfe von Clustern gesamter Spektren zu identifizieren, führte zu Peaklisten,

welche bei Gemischen nicht mehr anhand der erstellten Datenbank zu erkennen waren. Tabel-

le 8 zeigt die artspezifischen Peakmassen, die beim Vergleich der untersuchten oralen Strep-

tokokken gefunden wurden. Die Anzahl artspezifischer Peakmassen im Vergleich untereinan-

der lag bei 9 (S. sanguinis), 16 (S. oralis) und 20 (S. mutans).

Tabelle 8: Artspezifische (exklusive) Peakmassenliste der Bakterien S. sanguinis,

S. oralis und S. mutans zur Identifikation im Bakteriengemisch.

S. sanguinis S. oralis S. mutans

3315,3 2635,8 2622,5

4168,9 3931,3 3190,7

4427,3 5273,0 4217,0

5240,6 5724,9 4256,7

5292,6 5961,7 4458,3

5770,0 6650 5228,2

6289,3 6762,3 5355,7

6870,2 6850,1 5418,0

7963,3 6969,3 5484,2

7563,1 5606,1

8250,0 5732,0

9067,2 5923,2

9834,3 6259,3

10402 6691,3

11448,3 7541,5

12226 8883,7

8934,1

9707,4

9806,8

10271,5

Page 62: Identifizierung des Keims Streptococcus mutans

50

Die Abbildungen 7a-k stellen die gemessenen MALDI-TOF- Masterspektren der 43 Gemi-

sche dar. Die Gemische 1-3 sind Reinkulturen, bei Gemisch 4 bis einschließlich Gemisch 22

handelt es sich um binäre, danach ternäre Gemische. Die Masterspektren stellen die Zusam-

menfassung von 10 Summenspektren dar. Die nachfolgende Portionierung zu je 4 Diagram-

men (Gemisch 4-43) ist der Übersichtlichkeit geschuldet. Zur genaueren Interpretation kön-

nen die Messungen der Tabelle 9 entnommen werden.

Abbildung 7a: MALDI-TOF-Masterspektren der ersten 3 Gemische mit jeweils 100 prozenti-

ger Bakterienbeteiligung. Dargestellt auf der x-Achse ist das Verhältnis von Masse zu Ladung

(m/z) und auf der y-Achse die Intensität der Messergebnisse als artifizielle Einheit (a.u.).

Page 63: Identifizierung des Keims Streptococcus mutans

51

Abbildung 7b: MALDI-TOF-Masterspektren der Gemische 4-7. Dargestellt auf der x-Achse

ist das Verhältnis von Masse zu Ladung (m/z) und auf der y-Achse die Intensität der Messer-

gebnisse als artifizielle Einheit (a.u.).

Page 64: Identifizierung des Keims Streptococcus mutans

52

Abbildung 7c: MALDI-TOF-Masterspektren der Gemische 8-11. Dargestellt auf der x-Achse

ist das Verhältnis von Masse zu Ladung (m/z) und auf der y-Achse die Intensität der Messer-

gebnisse als artifizielle Einheit (a.u.).

Page 65: Identifizierung des Keims Streptococcus mutans

53

Abbildung 7d: MALDI-TOF-Masterspektren der Gemische 12-15. Dargestellt auf der x-Achse

ist das Verhältnis von Masse zu Ladung (m/z) und auf der y-Achse die Intensität der Messer-

gebnisse als artifizielle Einheit (a.u.).

Page 66: Identifizierung des Keims Streptococcus mutans

54

Abbildung 7e: MALDI-TOF-Masterspektren der Gemische 16-19. Dargestellt auf der x-Achse

ist das Verhältnis von Masse zu Ladung (m/z) und auf der y-Achse die Intensität der Messer-

gebnisse als artifizielle Einheit (a.u.).

Page 67: Identifizierung des Keims Streptococcus mutans

55

Abbildung 7f: MALDI-TOF-Masterspektren der Gemische 20-23. Dargestellt auf der x-Achse

ist das Verhältnis von Masse zu Ladung (m/z) und auf der y-Achse die Intensität der Messer-

gebnisse als artifizielle Einheit (a.u.).

Page 68: Identifizierung des Keims Streptococcus mutans

56

Abbildung 7g: MALDI-TOF-Masterspektren der Gemische 24-27. Dargestellt auf der x-Achse

ist das Verhältnis von Masse zu Ladung (m/z) und auf der y-Achse die Intensität der Messer-

gebnisse als artifizielle Einheit (a.u.).

Page 69: Identifizierung des Keims Streptococcus mutans

57

Abbildung 7h: MALDI-TOF-Masterspektren der Gemische 28-31. Dargestellt auf der x-Achse

ist das Verhältnis von Masse zu Ladung (m/z) und auf der y-Achse die Intensität der Messer-

gebnisse als artifizielle Einheit (a.u.).

Page 70: Identifizierung des Keims Streptococcus mutans

58

Abbildung 7i: MALDI-TOF-Masterspektren der Gemische 32-35. Dargestellt auf der x-Achse

ist das Verhältnis von Masse zu Ladung (m/z) und auf der y-Achse die Intensität der Messer-

gebnisse als artifizielle Einheit (a.u.).

Page 71: Identifizierung des Keims Streptococcus mutans

59

Abbildung 7j: MALDI-TOF-Masterspektren der Gemische 36-39. Dargestellt auf der x-Achse

ist das Verhältnis von Masse zu Ladung (m/z) und auf der y-Achse die Intensität der Messer-

gebnisse als artifizielle Einheit (a.u.).

Page 72: Identifizierung des Keims Streptococcus mutans

60

Abbildung 7k: MALDI-TOF-Masterspektren der Gemische 40-43. Dargestellt auf der x-Achse

ist das Verhältnis von Masse zu Ladung (m/z) und auf der y-Achse die Intensität der Messer-

gebnisse als artifizielle Einheit (a.u.).

Page 73: Identifizierung des Keims Streptococcus mutans

61

Unterschieden wurde bei der Analyse zwischen binären und ternären Gemischen, welche ent-

sprechend Tabelle 6 hergestellt wurden.

Die Qualität der Analyseergebnisse wurde dahingehend beurteilt, ob die im Gemisch enthal-

tenen Bakterienarten korrekt identifiziert wurden. Ein „falsch positives“ Analyse-Ergebnis

ergab das Vorhandensein von Bakterien, die im Gemisch nicht enthalten waren, ein „falsch

negatives“ Ergebnis hingegen lag vor, wenn im Gemisch enthaltene Arten bei der Analyse

nicht erkannt wurden.

Die binären Gemische wurden schon ab einem prozentualen Anteil des zweiten Bakteriums

von 1 % als Gemisch erkannt, allerdings wurde hier in allen fünf Fällen auch das dritte, nicht

vorhandene Bakterium im Gemisch „falsch positiv“ identifiziert. Der Schwellenwert zur

exakten Erkennung eines binären Gemisches als solches lag somit bei einem 5%-igen Anteil

des zweiten zugefügten Bakteriums.

Oberhalb einer qualitativen Nachweisgrenze von 10 % konnten alle Bakterienarten mit der

MALDI-TOF MS sicher nachgewiesen werden.

Von den insgesamt erhaltenen 129 Werten erwiesen sich 10 (7,75 %) als falsch positiv und 1

(0,775 %) als falsch negativ. 30 Gemische (23,25 %) wurden in ihrer prozentualen Zusam-

mensetzung exakt analysiert. Die übrigen 88 (68,22 %) Ergebnisse zeigten die korrekte Betei-

ligung der Bakterienarten an, wiesen jedoch prozentuale Abweichungen auf (Abb. 8).

Page 74: Identifizierung des Keims Streptococcus mutans

62

4.3.1 Qualität der Analyse-Ergebnisse

Abbildung 8: Qualität der Analyseergebnisse der Bakteriengemische (gesamt).

Unterteilt in falsch positive (kein Anteil am Gemisch, aber Anteil durch Analyse), falsch nega-

tive (Anteil am Gemisch, aber kein Anteil in der Analyse), exakte Analyse und korrekte Betei-

ligung, aber eine prozentuale Abweichung enthaltend.

Differenziert man weiter zwischen binären und ternären Gemischen, ergaben sich bei den bi-

nären Gemischen nur 3 % (2/66) falsch positive Ergebnisse, 0 % falsch negative (0/66) und

mit 44 % (29/66) eine große Anzahl exakter Analysen. 53 % (35/66) zeigten die korrekten

Beteiligungen mit Abweichungen in den prozentualen Anteilen (s. Abb. 9).

Bei den ternären Gemischen lagen dagegen 12,7 % (8/63) falsch positive Ergebnisse, sowie 1

falsch negatives (1,6 %) Ergebnis vor. Nur 8 % (5/63) der Gemische wurden exakt analysiert

und 78 % (49/63) zeigten die korrekten Beteiligungen bei abweichender Prozentzahl (s. Abb.

10).

10 (8%)

1 (1%)

30 (23%)

88 (68%)

Qualität der Analyse-Ergebnisse

falsch pos.

falsch neg.

exakte Analyse

korrekte Beteiligung, proz.Abweichung

Page 75: Identifizierung des Keims Streptococcus mutans

63

Abbildung 9: Qualität der Analyseergebnisse der binären Bakteriengemische,

unterteilt in falsch positive (kein Anteil am Gemisch, aber Anteil durch Analyse), falsch nega-

tive (Anteil am Gemisch, aber kein Anteil in der Analyse), exakte Analyse und korrekte Betei-

ligung, aber eine prozentuale Abweichung enthaltend.

Abbildung 10: Qualität der Analyseergebnisse der ternären Bakteriengemische,

unterteilt in falsch positive (kein Anteil am Gemisch, aber Anteil durch Analyse), falsch nega-

tive (Anteil am Gemisch, aber kein Anteil in der Analyse), exakte Analyse und korrekte Betei-

ligung, aber eine prozentuale Abweichung enthaltend.

Page 76: Identifizierung des Keims Streptococcus mutans

64

Tabelle 9 zeigt in den farbig hinterlegten Zeilen die originale Gemischzusammensetzung. Die

Ergebniszeilen enthalten die vom Analyseprogramm ermittelten zugehörigen Werte.

Tabelle 9: Bakteriengemische und dazugehörige quantitative Analysewerte (Angabe in Mikro-litern), grün hervorgehoben sind Abweichungen nach oben, rot nach unten, gelb hinterlegt mit falsch positiven Ergebnissen (kein Anteil am Gemisch, aber Anteil durch Analyse) und gelb hinterlegt mit roter Zahl sind falsch negative Ergebnisse (Anteil am Gemisch, aber kein Anteil in der Analyse).

Anteil im

Gemisch

Anteil

durch

Analyse

Anteil im

Gemisch Anteil durch

Analyse Anteil im

Gemisch

Anteil

durch Ana-

lyse

DSM 20523

S. mutans

DSM 20567

S. sanguinis

DSM 20627

S. oralis

Gemisch 01 100 100 0 0 0 0

Gemisch 02 0 0 100 100 0 0

Gemisch 03 0 0 0 0 100 100

Gemisch 04 50 51 50 53 0 0

Gemisch 05 50 40 0 0 50 60

Gemisch 06 0 0 50 13 50 86

Gemisch 07 0 1 40 20 60 78

Gemisch 08 0 0 30 25 70 75

Gemisch 09 0 0 20 9 80 91

Gemisch 10 0 0 10 10 90 90

Gemisch 11 0 0 60 22 40 77

Gemisch 12 0 0 70 49 30 50

Gemisch 13 0 0 80 43 20 55

Gemisch 14 0 2 90 30 10 70

Gemisch 15 40 35 0 0 60 65

Gemisch 16 30 22 0 0 70 76

Gemisch 17 20 25 0 0 80 75

Gemisch 18 10 10 0 0 90 90

Gemisch 19 40 56 60 44 0 0

Gemisch 20 30 37 70 64 0 0

Gemisch 21 20 35 80 65 0 0

Page 77: Identifizierung des Keims Streptococcus mutans

65

Anteil im

Gemisch

Anteil

durch

Analyse

Anteil im

Gemisch Anteil durch

Analyse Anteil im

Gemisch

Anteil

durch Ana-

lyse

DSM 20523

S. mutans

DSM 20567

S. sanguinis

DSM 20627

S. oralis

Gemisch 22 10 24 90 77 0 0

Gemisch 23 30 26 30 22 40 51

Gemisch 24 30 6 40 25 30 69

Gemisch 25 40 25 30 12 30 60

Gemisch 26 20 5 40 20 40 75

Gemisch 27 40 25 20 10 40 65

Gemisch 28 40 10 40 25 20 65

Gemisch 29 10 25 40 25 50 50

Gemisch 30 10 0 50 50 40 50

Gemisch 31 0 4 95 88 5 7

Gemisch 32 0 5 99 93 1 0,7

Gemisch 33 95 74 0 0 5 25

Gemisch 34 99 88 0 5 1 6

Gemisch 35 95 89 5 4 0 5

Gemisch 36 99 78 1 10 0 11

Gemisch 37 0 0 5 7 95 92

Gemisch 38 0 8 1 8 99 82

Gemisch 39 5 17 0 10 95 78

Gemisch 40 1 11 0 9 99 78

Gemisch 41 90 78 5 8 5 13

Gemisch 42 5 22 90 70 5 8

Gemisch 43 5 13 5 13 90 74

Page 78: Identifizierung des Keims Streptococcus mutans

66

Die folgenden Diagramme 11-14 stellen die tatsächlichen und die ermittelten %-Anteile der

Bakteriengemische nebeneinander dar: Die Reihenfolge wurde auch hier der Übersicht halber

gewählt.

Abbildung 11: Prozentuale Bakterienanteile am Originalgemisch / Analyse-Ergebnisse (Gemische 1-10). Dargestellt an der y-Achse ist die prozentuale Abweichung und an der x-Achse das jeweilige Gemisch. Grün hinterlegt sind positive Abweichungen, rot negative und gelb falsch positive (Anteil an der Analyse, aber kein Anteil am Gemisch), falsch negativ (An-teil am Gemisch, aber kein Anteil an der Analyse).

Page 79: Identifizierung des Keims Streptococcus mutans

67

Abbildung 12: Prozentuale Bakterienanteile am Originalgemisch / Analyse-Ergebnisse (Ge-

mische 11-20). Dargestellt an der y-Achse ist die prozentuale Abweichung und an der x-Achse

das jeweilige Gemisch. Legende siehe Abbildung 11.

Abbildung 13: Prozentuale Bakterienanteile am Originalgemisch / Analyse-Ergebnisse (Ge-

mische 21-30). Dargestellt an der y-Achse ist die prozentuale Abweichung und an der x-Achse

das jeweilige Gemisch. Legende siehe Abbildung 11.

Page 80: Identifizierung des Keims Streptococcus mutans

68

Abbildung 14: Prozentuale Bakterienanteile am Originalgemisch / Analyse-Ergebnisse (Ge-

mische 31-43). Dargestellt an der y-Achse ist die prozentuale Abweichung und an der x-Achse

das jeweilige Gemisch. Legende siehe Abbildung 11.

Bei Betrachtung der prozentualen Abweichungen in den Analyseergebnissen innerhalb der Mutans-

(S. mutans) und der Mitis-Gruppe (S. sanguinis und S. oralis) (Abb. 11 bis 14) fällt auf, dass die Ab-

weichungen von 0 bis maximal 60 % differieren. Größere Abweichungen imponieren vor allem bei

den ternären Gemischen und hier vermehrt bei gleichzeitiger Beteiligung beider Bakterien der Mitis-

Gruppe. Hierbei erfolgt die Verschiebung zumeist zu Gunsten von S. oralis, wie die Abbildungen 15

bis 17 verdeutlichen. Die prozentualen Abweichungen variieren demnach entsprechend der Beteili-

gung und dem Verwandtschaftsgrad der im Gemisch vorhandenen Bakterien.

S. mutans wurde in 33 % (14/43) mit exakter prozentualer Beteiligung analysiert, während ebenfalls in

jeweils 33 % (14/43 und 15/43) positive und negative Abweichungen auftraten. Durchschnittlich lag

die positive Abweichung bei +14 % (Min +4 %, Max +24 %), die negative Abweichung bei -9 %

(Min -2 %, Max -17 %).

Die Beteiligung von S. sanguinis wurde in 26 % (11/43) exakt identifiziert, in 53 % (23/43) traten po-

sitive und in 21 % (9/43) negative Abweichungen auf. Die durchschnittliche positive Abweichung lag

hier bei +18 % (Min +1 %, Max +60 %), die negative Abweichung betrug durchschnittlich -6 % (Min

-2 %, Max -10 %).

Page 81: Identifizierung des Keims Streptococcus mutans

69

S. oralis wurde ebenfalls in 26 % (11/43) korrekt analysiert. Positive Abweichungen traten in 7 Fällen

auf (16 %), negative Abweichungen in 25 Fällen (58 %). Die durchschnittliche Höhe der positiven

Abweichungen betrug +12 % (Min +3 %, Max +21 %), der negativen -3 % (Min -2 %, Max -60 %).

Abbildung 15: Unterteilung der Gemisch - Analyseergebnisse in pos. / neg. Abweichungen

und exakte Analysen. An der y-Achse sind die Fallzahlen dargestellt, aufgetragen gegen die

jeweilige Bakteriengruppe an der x-Achse.

Abbildung 16: Durchschnittliche Abweichungen binäre / ternäre Gemische dargestellt an der

y-Achse sind die Fallzahlen aufgetragen an der x-Achse sind die Bakterien S. mutans, S. san-

guinis und S. oralis mit der jeweiligen Beteiligung.

Page 82: Identifizierung des Keims Streptococcus mutans

70

Abbildung 17: Prozentuale Abweichungen aller Gemische. Die y-Achse stellt die prozentuale

Abweichung dar und die x-Achse das jeweilige Gemisch 1-43.

Page 83: Identifizierung des Keims Streptococcus mutans

71

5. Diskussion

5.1 Fragestellungen

Die Zielstellung der vorliegenden Arbeit war, zu überprüfen, ob die Identifizierung und Quan-

tifizierung des Keimes S. mutans mittels MALDI-TOF MS aus artifiziellen Bakteriengemi-

schen möglich ist.

Insgesamt wurden 43 artifizielle Bakteriengemische aus Mutans- und Non-Mutans-

Streptokokken mit der MALDI-TOF MS klassifiziert. Die qualitative Nachweisgrenze lag bei

einem 10%-igen Anteil der Einzelstämme am Bakteriengemisch.

Oberhalb dieser Nachweisgrenze konnten die untersuchten Bakterien sicher mit der MALDI-

TOF MS nachgewiesen werden. Einzig die prozentuale Abweichung divergierte abhängig von

dem Verwandtschaftsgrad und der Anzahl der beteiligten Bakterienarten, wobei binäre und

ternäre Gemische untersucht wurden. Eine genaue quantitative Auswertung ternärer Gemi-

sche war demzufolge nur dann möglich, wenn die untersuchten Arten in gleichen Anteilen

vorlagen. Somit lag die Zahl der falsch positiven Ergebnisse in den ternären Gemischen vier

Mal höher als in den binären Gemischen, und die Zahl der exakten Übereinstimmungen bei

der Analyse ternärer Gemische erreichte nur ca. ein Fünftel derer binärer Gemische. Auch ein

Vergleich der prozentualen Abweichungen innerhalb der Mitis- und der Mutans-Gruppe zeig-

te größere Differenzen in ternären Gemischen, die vor allem durch ein gleichzeitiges Vor-

kommen beider Arten der Mitis-Gruppe (S. sanguinis und S. oralis) verstärkt wurden. Eine

Verschiebung erfolgte hier hauptsächlich zu Gunsten von S. oralis gegenüber S. sanguinis,

was auf häufigere exklusive Peaks von S. oralis (16) im Vergleich zu S. sanguinis (9) zurück-

zuführen ist. Dies bedeutet für die Identifikation von Bakteriengemischen mit hohem Ver-

wandtschaftsgrad Folgendes: Je näher die enthaltenen Bakterienisolate innerhalb des Gemi-

sches verwandt sind, desto schwieriger gestaltet sich ihre Differenzierung. Die quantitative

Analyse wird sich demnach zu Gunsten des Bakteriums verschieben, das mehr exklusive

Peaks aufweist, so wie es sich bei den Experimenten zur vorliegenden Arbeit verhielt. Beson-

ders erschwert wird die quantitative Analyse, wenn diese Peaks sehr nah beieinander liegen,

da dies zu Überschneidungen führen kann. Gemische von Bakterien, die keine Ähnlichkeiten

aufweisen, können nach Erkenntnissen der vorliegenden Arbeit leichter qualitativ und auch

quantitativ identifiziert werden. Es kann vermutet werden, dass eine exakte Identifikation mit

sinkender Anzahl unterschiedlicher Bakterienarten im Gemisch an Genauigkeit zunimmt. Die

in dieser Arbeit ermittelte Nachweisgrenze von 10 % sollte in künftigen Untersuchungen dazu

Page 84: Identifizierung des Keims Streptococcus mutans

72

führen, dass Ergebnisse mit kleinerer Beteiligung am analysierten Gemisch sehr kritisch be-

trachtet werden, insbesondere unter Berücksichtigung der verwandtschaftlichen Ähnlichkeiten

der betreffenden Arten. Bei der Erstellung der Datenbank wurden 60 Massenpeaks zur Analy-

se herangezogen. Diese Anzahl wurde u.a. gewählt, da die zu erweiternde Datenbank mit 60

Massenpeaks begonnen worden war und ein Ziel dieser Promotion war, eine einheitliche Da-

tenbank zu erstellen und zum anderen wegen der in Abb. 4 dargestellten Ergebnisse zur Be-

stimmung der optimalen Anzahl von Massenpeaks zur Identifizierung von Mutans Strepto-

kokken. Anhand dieser Anzahl war eine Identifizierung unbekannter Proben über einen paar-

weisen Vergleich der Peakmassenliste des unbekannten Isolates mit der Artenliste und eine

Bildung des „simple matching“-Koeffizienten möglich, was auch in künftigen Arbeiten wei-

tergeführt werden kann. Die Art mit dem größten „simple matching“-Koeffizienten kann dann

als identifizierte Art angesehen werden. Hier war entscheidend, dass sowohl die „Artenlisten“

in der Datenbank als auch die Peakmassenlisten unbekannter Isolate die gleiche Länge auf-

wiesen. Auf diese Weise konnten der Datenbank im Zuge der vorliegenden Arbeit 539 Wild-

typisolate der Art S. mutans hinzugefügt werden. Zusätzlich wurden nicht eindeutige Ergeb-

nisse sequenziert. Die ermittelten Ergebnisse stimmten mit den Ergebnissen früher durchge-

führter artspezifischer PCR-Untersuchungen von Rupf et al. (2000) überein.

Darüber hinaus hatte die Arbeit zum Ziel, spezifische Peakmassen für drei Bakterienarten zu

finden, um diese dann zur Identifikation in Gemischen zu nutzen. Die zuvor angewendete

Technik unter Verwendung ganzer Cluster von Peakmassen konnte hier nicht angewandt

werden, da Gemische zu veränderten Massenspektren führten, die mit Hilfe der Datenbank

nicht mehr identifiziert werden konnten. Diese sogenannten „exklusiven“ Peaks sollten eine

exakte Identifikation gewährleisten. Für jedes untersuchte Bakterium gab es solche artspezifi-

schen Peaks. Diese waren in ihrer Häufigkeit pro Bakterium allerdings divergent. Das ange-

wandte Verfahren erwies sich als nicht geeignet, um eine sehr große Datenbank zu erstellen.

Mit zunehmender Anzahl der Bakterienarten tendierte die Anzahl der exklusiven Peaks gegen

0, da die unterschiedlichen Arten jeweils einen gemeinsamen und einen unterschiedlichen An-

teil von Peakmassen aufwiesen, was bei großen Datenmengen zu Überschneidungen führt.

Die zweite Fragestellung der Arbeit war, ob bei der Identifizierung des Keims

S. mutans aus klinischen Isolaten bisher angewandte molekulargenetische Methoden durch

die ergänzende Anwendung von MALDI-TOF MS verbessert werden können. Dies konnte

bestätigt werden, da bei nahezu allen untersuchten Isolaten eine korrekte Identifikation der

Bakterien erzielt wurde und man somit von einem sicheren Verfahren zur Speziesidentifikati-

on sprechen kann.

Page 85: Identifizierung des Keims Streptococcus mutans

73

5.2 Methodik

Die Speziesdiagnostik von Mikroorganismen mittels MALDI-TOF MS wird schon seit 1996

beschrieben (Claydon et al. 1996, Krishnamurthy et al. 1996a, Krishnamurthy u Ross 1996b),

gewann aber in den letzten Jahren enorm an Bedeutung. Mehrere Autoren beschrieben bereits

Verfahren zur Identifizierung nicht bekannter Isolate mit Hilfe der MALDI-TOF MS. Die

Verfahren reichen von der Aufbereitung ganzer Bakterien (ICM-MS) und Bakterienlysate bis

zum Auffinden bestimmter Proteine (Allmaier et al. 1995, Madonna et al. 2003). Edwards-

Jones et al. verwendeten die ICM-MS 2003 zur Identifizierung methicillin-resistenter Staphy-

lococcus aureus Stämme. In einer jüngeren Arbeit aus dem Jahr 2008 verwendeten Sen-Yung

Hsieh et al. die MALDI-TOF MS zur Bestimmung und Klassifizierung von sechs human-

pathogenen Bakterien aus Isolaten. Ebenfalls im Jahre 2008 wurde von einer Arbeitsgruppe

um Sauer eine Datenbank mit 2.800 Bakterien erstellt, welche hauptsächlich aus einer Gat-

tung gram-negativer Stäbchenbakterien (Erwinia) aus der Familie der Enterobakterien

(Enterobacteriaceae) besteht (Sauer 2008).

Aktuelle Studien konnten die Verlässlichkeit der MALDI-TOF MS als kostengünstige,

schnelle und zuverlässige Form der Diagnostik in der medizinischen Mikrobiologie für eine

große Zahl von Bakterienspezies nachweisen (Alatoom et al. 2011, Brabuddhe et al. 2008,

Bizzini et al. 2010, Cherkaoui et al. 2010, Cherkaoui et al. 2011, Couturier et al. 2011, Neville

et al. 2011, Saffert et al. 2011, Saleeb et al. 2011). Sie ermöglicht eine Differenzierung zwi-

schen pathogenen und nicht pathogenen Keimen, was sowohl in der Human- als auch in der

Veterinärmedizin von entscheidender Bedeutung ist. Die Vorteile der MALDI-TOF MS lie-

gen in dem geringen Aufwand nach der Kultivierung sowie in der Teilautomatisierung des

Verfahrens.

Die geringen Mengen von Ziel-DNA in vielen Proben bringen herkömmliche DNA basieren-

de quantitative Analysemethoden an ihre Grenzen. Auch bei der MALDI-TOF MS, welche

nicht DNA basierend ist, ist eine exakte quantitative Analyse grundsätzlich bislang nur einge-

schränkt gewährleistet, da die einzelnen Bestandteile des Gemisches unterschiedliche Ionisa-

tionswahrscheinlichkeiten aufweisen, was zu Suppressionseffekten führen kann (Krause et al.

1999). Des Weiteren kann es aufgrund einer ungleichmäßigen Analytenverteilung auf dem

Target zu signifikanten Variationen der gemessenen Ionenintensitäten kommen. Weitere po-

tentielle Probleme liegen in dem nicht reproduzierbaren Applikationsvorgang der Probe, der

heterogenen Oberfläche des Targets sowie Schwankungen der Laserintensität. Einige Studien

Page 86: Identifizierung des Keims Streptococcus mutans

74

beschäftigen sich daher mit der Einführung verbesserter Versuchsbedingungen, wie dem Ein-

satz von ionischen Matrices, was zu guten Kalibrierungen sowie einer guten Linearität und

Reproduzierbarkeit führte (Armstrong et al. 2001, Li und Gross 2004).

Andere Studien zeigten wiederum gute Ergebnisse beim Einsatz der MALDI-TOF MS in der

quantitativen Analyse (Wittmann und Heinzle 2001, Duncan et al. 1993, Sleno und Volmer

2005, 2006). Zusammenfassend muss gesagt werden, dass diese vielversprechende Methode

weitergehend untersucht werden muss, um aussagekräftige Ergebnisse erzielen zu können.

Im Rahmen der Vorversuche wurden Auswertungsparameter untersucht und modifiziert. Zur

Identifizierung der Mutans-Streptokokken-Isolate wurden zwei statistische Verfahren unter-

sucht: Das erste beruhte auf gesamten Peakmassenlisten klinischer Isolate, das zweite auf dem

Vergleich artspezifischer Peakmassen, die in den zusammengefassten Peakmassenlisten der

Vertreter einer Art gesucht wurden.

Die Erstellung einer Datenbank mit artspezifischen Peakmassen war abhängig von der Anzahl

der verwendeten Arten in der Datenbank.

Es wurden artspezifische Peakmassen aus den Artenlisten der Mutans-Streptokokken und der

untersuchten oralen Streptokokken gebildet. Mit steigender Anzahl der in die Auswertung

einbezogenen Arten sank die Anzahl spezifischer Peakmassen für die einzelnen Arten. Somit

erwies es sich als sinnvoll, gesamte Peakmassenlisten als Fingerprint für die Erstellung der

Datenbank zu nutzen, da die artspezifischen Peakmassen mit zunehmender Größe der Daten-

bank gegen null tendiert hätten (siehe Tabelle 7).

Zur statistischen Auswertung wurde das hierarchische Clustering mit agglomerativem Ansatz

gewählt. Die Clusteranalyse ist eine Technik des Data Mining, welches die Analyse großer

Datenmengen bezeichnet, indem sie zuvor reduziert und damit interpretierbar gemacht wer-

den. Die Clusteranalyse bedient sich der Algorithmen, um Strukturen in den Daten erkennen,

sie danach zu gruppieren und so auf die relevanten Informationen zu reduzieren. Ziel der Ana-

lyse ist es, ein den Daten zugrunde liegendes Modell zu finden, das deren Interpretation er-

leichtert, wofür die betreffenden Objekte zunächst anhand vorhandener Ähnlichkeiten be-

stimmter Merkmale klassifiziert werden. Die so entstehenden Gruppen werden Cluster ge-

nannt. Im Unterschied zur Klassifikation stehen hierbei die Gruppen nicht schon im Vorhinein

fest und die Objekte werden ihnen systematisch zugeordnet, sondern sie werden erst implizit

vom jeweiligen Algorithmus gebildet. Man spricht daher von „unüberwachtem Lernen“. Bei

der Zuordnung wird, wie bei der Klassifikation, davon ausgegangen, dass Objekte einer

Gruppe sich ähnlich sind, während Objekte unterschiedlicher Gruppen sich unähnlich sind.

Clusteralgorithmen beruhen somit auf der Berechnung der Ähnlichkeit der zu untersuchenden

Page 87: Identifizierung des Keims Streptococcus mutans

75

Objekte. In dieser Arbeit galten die gemessenen Spektren als Input für die Ähnlichkeitsbe-

rechnung.

Es existieren zwei große Gruppen von Clusteralgorithmen: die hierarchischen Algorithmen

und das Partitionierungsverfahren. Das Partitionierungsverfahren bildet nur eine Ebene von

Clustern.

Bei der vorliegenden Arbeit kam das hierarchische Clustering zum Einsatz. Hierbei wird eine

Struktur von Clustern gebildet, bei der kleinere Cluster in größeren Clustern enthalten sind,

wobei die kleinsten jeweils nur ein Objekt enthalten. Dieses Verfahren wird in agglomerative

und divisive Methoden unterteilt. Typen von hierarchischen Verfahren sind die Bottom-Up-

Konstruktion eines Dendrogramms (agglomerative) oder die Top-Down-Konstruktion des

Dendrogramms (divisive).

Beim agglomerativen hierarchischen Clustering werden initiale Cluster gebildet, die jeweils

aus einem Objekt bestehen und die Distanzen zwischen allen Paaren dieser Cluster bestim-

men. Danach wird ein neuer Cluster generiert aus den zwei Clustern, die die geringste Distanz

zueinander haben. Zum Schluss wird die Distanz zwischen dem neuen Cluster und allen ande-

ren generiert. Das Ziel ist, dass sich alle Objekte in einem Cluster befinden (Ester et al 2003).

Kaufman und Rousseeuw (1990) beschreiben eine Divisive Clustering Procedure (Diana) wie

folgt: Starte mit einem Cluster, der alle Beobachtungen enthält. Berechne den Durchmesser

aller Cluster. Der Durchmesser ist die maximale Distanz oder Unähnlichkeit aller Objekte in-

nerhalb des Clusters. Der Cluster mit dem größten Durchmesser wird in zwei Cluster geteilt.

Dazu wird das Objekt in dem Cluster bestimmt, das die größte durchschnittliche Distanz oder

Unähnlichkeit zu allen anderen Objekten hat. Es bildet den Kern der "Splittergruppe". Jedes

Objekt, das näher an der Splittergruppe liegt als an den restlichen Objekten, wird nun der

Splittergruppe zugeordnet. Die Schritte 2-5 werden solange wiederholt, bis alle Cluster nur

noch ein Objekt enthalten. Die agglomerative Methode fasst, ausgehend von allen Daten, die

ähnlichsten schrittweise zusammen, die divisive beginnt mit einem Cluster, welches in immer

heterogenere Cluster aufgeteilt wird.

In dieser Arbeit wurde das agglomerative Verfahren angewendet.

Eine weitere Aufteilung der Verfahren kann in harte und weiche Clusteralgorithmen erfolgen.

Bei der harten Methode wird jeder Datenpunkt exakt einem Cluster zugeordnet, während bei

der weichen Methode jedem Datenpunkt eine Wahrscheinlichkeit zugeordnet wird, mit der er

zu jedem existierenden Cluster gehört.

Die Arbeit beschäftigte sich nicht mit der Identifikation der Bakterien bis auf Subspezies-

Ebene, sondern mit der Identifikation auf Ebene der Art (syn. Spezies). Die taxonomische

Page 88: Identifizierung des Keims Streptococcus mutans

76

Einteilung der Bakterien erfolgt mittels phylogenetischer Analyse des 16S rRNS Gens (Woe-

se et al. 1985). Um Bakterien mit Hilfe der MALDI-TOF-Technologie identifizieren zu kön-

nen, muss zunächst die Reproduzierbarkeit der Spektren gewährleistet werden. Daher wurden

die Messparameter standardisiert, um die Spektren untereinander vergleichbar zu machen.

Hierzu zählt sowohl die Standardisierung in den Vorbereitungsschritten, die Faktoren wie die

Konstanz der Wachstums- und Kulturbedingungen der Bakterien (Krader und Emerson, 2004)

und die Probenpräparation beinhaltet, als auch identische Geräteeinstellungen vor den Mes-

sungen. Die erhaltenen Summenspektren wurden zu Masterspektren addiert und auf ein Su-

perspektrum angepasst.

Bei den Peakmassen wurde die Häufigkeit und Intensität ihres Vorkommens betrachtet. Sol-

che, die in jedem Summenspektrum vorkamen, erhielten im Masterspektrum ein stärkeres

Gewicht als solitär vorkommende Peakmassen. So war es möglich genauere und reproduzier-

barere Daten zu erhalten. Innerhalb der Masterspektren kam es durch eine Mittelung der rela-

tiven Intensitäten zu einer Verbesserung der Reproduzierbarkeit gegenüber den Summenspek-

tren. Da in vorhergegangenen Arbeiten beobachtet werden konnte, dass es einen Unterschied

macht, ob die Spektren aus einem Flüssigmedium oder von einem Festmedium gewonnen

wurden (Conway et al. 2001), entschieden wir uns einheitlich für das Flüssigmedium. Die in

der klinischen Studie erhaltenen Bakterienkolonien wurden von einem Festmedium (MSB-

Agar) in ein Flüssigmedium überführt. Vor jeder Messung wurde das Gerät mittels eines E.

coli Standards kalibriert. Hierbei üben nach Williams et al. (2003) vor der Messung ein-

wirkende Größen den größten Einfluss auf die Qualität und Reproduzierbarkeit der Spektren

aus. Als Matrix wurde ausschließlich α-Cyano-4-Hydroxyzimtsäure verwendet. Die Vorteile

liegen hier in der höheren Messgenauigkeit, vor allem im Messbereich zwischen 2000-5000

Da, und der größeren Homogenität. Andere Matrices weisen ab 5000 Da eine höhere Genau-

igkeit auf. In der Literatur beschrieben wurden α-Cyano-4-Hydroxyzimt-, Sinapin- und Feru-

lasäure für die Aufnahme der Spektren (Jarman et al. 1999, Lynn et al. 1999, Nilsson 1999).

Page 89: Identifizierung des Keims Streptococcus mutans

77

5.3 Folgerungen

Zusammenfassend kann anhand der Ergebnisse dieser Arbeit bestätigt werden, dass mit der

MALDI-TOF MS ein relativ sicheres Verfahren zur Speziesidentifikation auf Taxon-Ebene

vorliegt, da fast alle untersuchten Bakterienisolate korrekt identifiziert werden konnten. Be-

dingt eignet sich das Verfahren auch für die Identifikation von Bakteriengemischen, wobei

hier eine große Anzahl von Bakterienarten im Gemisch sowie eine Verwandtschaft zwischen

den zu analysierenden Spezies klar als limitierende Faktoren angesehen werden müssen. Die

Problematik der Identifikation eng verwandter Arten ist auch in der Literatur beschrieben (Sa-

leeb et al. 2011). Hier gälte es in nachfolgenden Arbeiten zu überprüfen, ob die Aufnahme

weiterer Datenbankeinträge pro Spezies zu einer verbesserten Identifikation mit der MALDI-

TOF MS führen könnte. Einige Autoren fordern für eine valide Identifikation mit diesem Ver-

fahren einen Ausbau der existierenden Datenbanken mit mindestens fünf bis zehn Einträgen

pro Bakterienart, um die Unterschiede innerhalb einzelner Spezies besser zu dokumentieren

(Alatoom et al. 2011, Lartigue et al. 2009). In diversen aktuellen Studien sind Berichte über

falsche Speziesidentifikationen zu finden, die auf ungenaue und falsche Datenbankeinträge

zurückzuführen sind (Seng et al. 2009, Bizzini et al. 2010, van Veen et al. 2011).

Die Vorteile der MALDI-TOF MS, die anhand der vorliegenden Arbeit nachgewiesen werden

konnten, liegen zum Einen in den geringen Mengen, die von einer gewachsenen Kolonie oder

einem Bakteriengemisch für die Analyse zur Verfügung stehen müssen, und zum Anderen im

zeitlichen Erhalt des Ergebnisses. Der mikrobiologische Befund ist bis zu zwei Tage schneller

verfügbar als bei herkömmlichen biochemischen Methoden zur Identifizierung von Bakte-

rienarten. Besonders bei Krankheitserregern, die eine schnelle Therapie erfordern, ist dies von

großem Interesse für die Humanmedizin und kann mitunter einen schweren Krankheitsverlauf

mit möglicher Todesfolge verhindern. Darüber hinaus greift die MALDI-TOF MS das Prob-

lem der Selektivkultivierung auf. Sie ermöglicht eine Bestimmung und Zuordnung sowohl

bekannter als auch unbekannter Isolate und Gemische, was einer Fehlinterpretation durch aus-

schließliche Selektivkultivierung vorbeugen kann. Mit einem Zeitaufwand von ca. 1 Minute

für den Probenauftrag auf die Targetplatte und weiteren 2 Minuten für die Messung handelt es

sich weiterhin um ein sehr schnelles Verfahren. Die Materialverbrauchskosten für die MAL-

DI-TOF MS sind überdies sehr gering. All diese Eigenschaften sprechen für einen routinemä-

ßigen Einsatz zur Identifikation von S. mutans und auch anderer Mikroorganismen in Ergän-

zung zu herkömmlichen molekulargenetischen Methoden.

Page 90: Identifizierung des Keims Streptococcus mutans

78

6. Literaturverzeichnis

1. Aas JA, Griffen AL, Diadis SR, Lee AM, Olsen I, Dewhirst FE, Leys EJ, Paster BJ (2008) Dental caries in primary and permanent teeth in children and young adults. J Clin Micro-biol 46: 1407–1417

2. Addy M, Dummer PM, Griffiths G, Hicks R, Kingdom A, Shaw WC (1986) Prevalence of plaque, gingivitis and caries in 11-12-year-old children in South Wales. Comm Dent Oral Epidemiol. 14: 115-118

3. Adriaens PA, de Boever JA, Loesche WJ (1988) Bacterial invasion in root cementum and radicular dentin of periodontally diseased teeth in humas. A reservoir of periodontopathic bacteria. J Periodontol 59: 222-230

4. Ajdic D, McShan WM, McLaughlin RE, Savic G, Chang J, Carson MB, Primeaux C, Tian R, Kenton S, Jia H, Lin S, Qian Y, Li S, Zhu H, Najar F, Lai H, White J, Roe BA, Ferretti JJ (2002) Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A. 99: 14434-14439

5. Al-Robaiy S, Rupf S, Eschrich K. (2001) Rapid competitive PCR using melting curve analysis for DNA quantification. Biotech-niques 31: 1382-1388

6. Alaluusua S, Renkonen OV (1983) Streptococcus mutans establishment and dental caries experience in children from 2 to 4 years old. Scand J Dent Res 91: 453-457

7. Alatoom AA, Cinningham SA, Ihde SM, Mandrekar J, Patel R (2011) Comparison of direct colony method versus extraction method for identification of gram-positive cocci by use of Bruker Biotyper matrix-assisted laser desoprtion ionization-time of flight mass spectrometry. J Clin Microbiol 49: 2868-2873

8. Allmaier G, Schaffer C, Messner P, Rapp U, Mayer-Posner FJ (1995) Accurate determination of the molecular weight of the major surface layer protein isolated from Clostridium thermosaccharolyticum by time-of-flight mass spectrometry. J Bacteriol 177: 1402-1404

9. Anhalt JP, Fenselau C (1975) Identification of bacteria using mass spectrometry. Anal Chem 47: 219-225

10. Arnold RJ, Reilly JP (1998) Fingerprint matching of E. coli strains with Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of whole cells using a modified correlation approach. Rapid Commun Mass Spectrom 12: 630-636

11. Attin T, Siegel S, Buchalla W, Lennon AM, Hannig C, Becker K (2004) Brushing abrasion of softened and remineralised dentin: An in situ study. Caries Res 38: 62-66

Page 91: Identifizierung des Keims Streptococcus mutans

79

12. Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, Romero H, Simón-Soro A, Pignatelli M, Mira A (2012) The oral metagenome in health and disease. ISME J. 1: 46-56

13. Banas JA und Vickerman MM (2003) Glucan-binding proteins of the oral streptococci. Crit Rev Oral Biol Med. 14: 89–99

14. Barbuddhe SB, Maier T, Schwarz G, Kostrzewa M, Hof H, Domann E, Chakraborty T, Hain T (2008) Rapid identification and typing of Listeria species by matrix-assisted laser desorp-tion/ionization time-of-flight mass spectrometry. Appl Environ Microbiol 74: 5402-5407

15. Baron EJ (1996) Section 1: Bacteriology, Chapter 3: Classification. In: Baron S. Medical Microbiology. University of Texas Medical Branch, Galveston

16. Becker MR, Paster BJ, Leys EJ, Moeschberger ML, Kenyon SG, Galvin JL, Boches SK, Dewhirst FE, Griffen AL (2002) Bacterial species associated with childhood caries. J Clin Microbiol 40: 1001–1009

17. Becker MR, Weizenegger M, Bartel J (1999) Reverse Hybridization Assay for Rapid Identification of Periodontitis-Associated Inter-leukin-1 Allele. Clin Lab 9+10: 499-505

18. Beighton D, Hardie JM, Whiley RA (1991) A scheme for the identification of viridans streptococci. J Med Microbiol 35: 367–372

19. Beighton D, Russell RR, Hayday H (1981) The isolation of characterization of Streptococcus mutans serotype h from dental plaque of monkeys (Macaca fascicularis). J Gen Microbiol 124: 271-279

20. Beltran-Aguilar ED, Goldstein JW, Lockwood SA (2000) Fluoride varnishes. A review of their clinical use, cariostatic mechanism, efficacy and safety. J Am Dent Assoc 131: 589-596

21. Berkowitz RJ, Jordan HV, White G (1975b) The early establishment of Streptococcus mutans in the mouths of infants. Arch Oral Biol 20: 171-174

22. Bizzini A, Durussel C, Bille J, Greub G, Prod’hom G (2010) Performance of matrix-assisted laser desorption ionization-time of flight mass spectrome-try for identification of bacterial strains routinely isolated in a clinical microbiology labor-atory. J Clin Microbiol 48: 1549-1554

23. Blagus R, Lusa L (2013) Improved shrunken centroid classifiers for high-dimensional class-imbalanced data. BMC bioinformatics 14: 64

24. Bowden GH (1997) Possibilities for modifying the caries attack by altering the oral microflora. J Can Dent Assoc 50: 169–172

Page 92: Identifizierung des Keims Streptococcus mutans

80

25. Bowden GH, Hamilton IR (1987) Environmental pH as a factor in the competition between strains of the oral streptococci Streptococcus mutans, S. sanguis, and „S. mitior“ growing in continuous culture. Can J Microbiol 33: 824-827

26. Bowen WH (1996) Salivary influences on the oral microflora. In: Saliva and oral health. Edgar WM, O’Mullane DM, eds. 2nd ed. British Dental Journal: 95-103

27. Bowen WH, Koo H (2011) Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res 45: 69-86

28. Brailsford SR, Sheehy EC, Gilbert SC, Clark DT, Kidd EA, Zoitopoulos L, Adams SE, Visser JM, Beighton D (2005) The microflora of the erupting first permanent molar. Caries Res 39: 78-84

29. Breitung K (2007) Untersuchung von Mutans-Streptokokken mittels “Intakt cell matrix- assisted laser desorption/ ionisation time-of-flight Massenspektrometrie. Zahnmedizinische Dissertation Universität Leipzig

30. Busse HJ, Denner EB, Lubitz W (1975) Classification and identification of bacteria: current approaches to an old problem. Over-view of methods used in bacterial systematics. J Biotechnol 47: 3-38

31. Catalanotto FA, Shklair IL, Keene HJ (1975) Prevalence and localization of Streptococcus mutans in infants and children. J Am Dent Assoc 91: 606-609

32. Caufield PW, Walker TM (1989) Genetic diversity within Streptococcus mutans evident from chromosomal DNA re-striction fragment polymorphism. J Clin Microbiol 27: 274-278

33. Caufield PW, Wannemuehler Y, Hansen JB (1982) Familial clustering of the Streptococcus mutans cryptic plasmid strain in a dental clinic population. Infect Immun 38: 785-787

34. Chen P, Novak J, Kirk M, Barnes S, Qu F, Caufield PW (1998) Structure-activity study of the lantibiotic mutacin II from Streptococcus mutans T8 by a gene replacement strategy. Appl Environ Microbiol 64: 2335-2340

35. Chen T, Abbey K, Deng WJ, Cheng MC (2005) The bioinformatics resource for oral pathogens. Nucleic Acids Res 33 (Web Server issue): W734-740

36. Chen T, Hosogi Y, Nishikawa K, Abbey K, Fleischmann RD, Walling J, Duncan MJ (2004) Comparative whole-genome analysis of virulent and avirulent strains of Porphyromonas gingivalis. J Bacteriol 186: 5473-5479

Page 93: Identifizierung des Keims Streptococcus mutans

81

37. Cherkaoui A, Hibbs J, Emonet S, Tangomo M, Girard M, Francois P, Schrenzel J (2010) Comparison of two matrix-assisted laser desorption ionization-time of flight mass spec-trometry methods with conventional phenotypic identification for routine identification of bacteria to the species level. J Clin Microbiol 48(4): 1169–75

38. Chhour KL, Nadkarni MA, Byun R, Martin FE, Jacques NA, Hunter N (2005) Molecular analysis of microbial diversity in advanced caries. J Clin Microbiol 43: 843–849

39. Cirino SM, Scantlebury S (1998) Dental caries in developing countries. Preventive and restorative approaches to treatment. N Y State Dent J 64: 32-39

40. Clarke JK (1924) On the bacterial factor in the aetiology of dental caries. British J Exp Pathol 5: 141-147

41. Claydon MA, Davey SN, Edwards-jones V, Gordon DB (1996) The rapid identification of intact microorganisms using mass spectrometry. Nat Biotechnol 14: 1584-1586

42. Conway GC, Smole SC, Sarracino DA, Arbeit RD, Leopold PE (2001) Phyloproteomics: species identification of Enterobacteriaceae using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mol Microbiol Biotechnol 3: 103-112

43. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Ann Rev Microbiol 49: 711-745

44. Cotter RJ (1992) Anal Chem 64: 1027A-1039A

45. Couturier MR, Mehinovic E, Croft AC, Fisher MA (2011) Identification of HACEK clinical isolates by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 49: 1104-1106

46. Coykendall JB (1989) Classification and identification of the viridans streptococci. Clin Microbiol Rev 2: 315-328

47. Davis CP (1996) Section 1: Bacteriology. Chapter 6: Normal Flora. In: Baron S. Medical Microbiology. University of Texas Medical Branch, Galveston

48. de Soet JJ, van Dalen PJ, Russell RR, de Graaff J (1990) Identification of mutans streptococci with monoclonal antibodies. Antonie Van Leeuwen-hoek 58: 219-225

49. de Soet JJ, Weerheijm KL, van Amerongen WE, de Graaff J (1995) A comparison of the microbial flora in carious dentine of clinically detectable and unde-tectable occlusal lesions. Caries Res 29: 46-49

50. Demirev PA, Lin JS, Pineda FJ, Fenselau C (2001) Bioinformatics and mass spectrometry for microorganism identification: proteome-wide

Page 94: Identifizierung des Keims Streptococcus mutans

82

post-translational modifications and database search algorithms for characterization of in-tact H. pylori. Anal Chem 73: 4566-4573

51. Dreizen S, Brown LR, Handler S, Levy BM (1976) Radiation-induced xerostomia in cancer patients. Effect on salivary and serum electro-lytes. Cancer 38: 273-278

52. Duchin S, van Houte J (1978) Colonization of teeth in humans by Streptococcus mutans as related to its concentration in saliva and host age. Infect Immun 20: 120-125

53. Duncan MJ (2003) Genomics of oral bacteria. Crit Rev Oral Biol Med 14: 175-187

54. Edwards-Jones V, Claydon MA, Evason DJ, Walker J, Fox AJ, Gordon DB (2000) Identifizierung methicillinresistenter Staphylococcus aureus Stämme . J Med Microbiol 49 (3): 295-300

55. Edwardsson S, Mejare B (1978) Streptococcus milleri (Guthof) and Streptococcus mutans in the mouths of infants before and after tooth eruption. Arch Oral Biol 23: 811-814

56. Ekstrand KR, Zero DT (2012) Die Ökologie der Mundhöhle. In: Karies -Wissenschaft und Klinische Praxis, 1. Auflage Stuttgart: Thieme-Verlag 2012

57. Ericson D, Zimmerman M, Raber H, Gotrick B, Bornstein R, Thorell J (1999) Clinical evaluation of efficacy and safety of a new method for chemo-mechanical removal of caries. A multi-centre study. Caries Res 33: 171-177

58. Ester M, Sander J, Aßfalg J, Böhm C, Borgwardt K, Januzaj E, Kailing K, Kröger P, Schubert M, Zimek A (2003) Knowledge Discovery in Databases, KDD I : Kapitel 5 Clustering.

59. Evason DJ, Claydon MA, Gordon DB (2001) Exploring the limits of bacterial identification by intact cell-mass spectrometry. J Am Soc Mass Spectrom 12: 49-54

60. Facklam R (2002) What happened to the streptococci: overview of taxonomic and nomenclature changes. Clin Microbiol Rev 15: 613-30

61. Fenselau C, Demirev PA (2001) Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom Rev 20: 157-171

62. Fitzgerald RJ, Keyes PH (1960) Demonstration of the etiologic role of streptococci in experimental caries in the hamster. J Am Dent Assoc 61: 9-19

63. Flemmig TF, Christgau M, Karch H (1999) Mikrobiologische Diagnostik marginaler Parodontopathien, (Gemeinsame Stellungnahme von DGP und DGZMK), Hygiene und Mikrobiologie 4/99: 15-16

Page 95: Identifizierung des Keims Streptococcus mutans

83

64. Foster KR (2005) Hamiltonian Medicine: Why the social lives of pathogens matter. Science 308: 1269-1270

65. Fox GE, Pechmann KR, Woese CR (1977) Comparative cataloging of 16S ribosomal ribonucleic acid: Molecular approach to procar-yotic systematics. Int J Syst Bacteriol 27: 44-57

66. Gibbons RJ (1989) Bacterial adhesion to oral tissue: a model for infectious diseases. J Dent Res 68: 750–760

67. Gold OG, Jordan HV, van Houte J (1973) A selective medium for Streptococcus mutans. Arch Oral Biol 18: 1357-1364

68. Goldman M, Kronman JH (1976) A preliminary report on a chemomechanical means of removing caries. J Am Dent Assoc 93: 1149-1153

69. Gorm Jensen T, Bossen Konradsen H, Bruun B (1999) Evaluation of the Rapid ID 32 Strep system. Clin Microbiol Infect 5: 417–423

70. Gorski A, Weber-Dabrowska B (2005) The potential role of endogenous bacteriophages in controlling invading pathogens. Cell Mol Life Sci 62: 511-519

71. Greiss HK und Ivanusch L (2006) Elektronenmikroskopische Untersuchungen zur Adhärenz von Streptococcus mutans an zahnärztlichen Werkstoffen .Medizinische Dissertation, Universität Heidelberg

72. Grönroos L, Alaluusua S (2000) Site-specific oral colonization of mutans streptococci detected by arbitrarily primed PCR fingerprinting. Caries Res 34: 474-480

73. Grönroos L, Saarela M, Mättö J, Tanner-Salo U, Vuorela A, Alaluusua S (1998) Mutacin production by Streptococcus mutans may promote transmission of bacteria from mother to child. Infect Immun 66: 2595-2600

74. Gu F, Lux R, Anderson MH, del Aguila MA, Wolinsky L, Hume WR, Shi W (2002) Analyses of Streptococcus mutans in saliva with species-specific monoclonal antibodies. Hybrid Hybridomics 21: 225-232

75. Guilhaus M (1995) J Mass Spectrom 30: 1519-1532

76. Hahn H, Kaufmann SHE, Schulz T, Suerbaum S (2009) Medizinische Mikrobiologie und Infektiologie, 6. Auflage, Springer 2009

77. Hamada S, Slade HD (1980b) Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev 44: 331-384

78. Hannig M (1999) Effect of Carisolv solution on sound, demineralized and denatured dentin—an ultrastruc-tural investigation. Clin Oral Investig 3: 155-159

Page 96: Identifizierung des Keims Streptococcus mutans

84

79. Hannig C, Ruggeri A, Al-Khayer B, Schmitz P, Spitzmüller B, Deimling D, Huber K, Hoth-Hannig W, Bowen WH, Hannig M (2008) Electron microscopic detection and activity of glucosyltransferase B, C, and D in the in situ formed pellicle. Arch Oral Biol 53: 1003-10

80. Hardie JM (1986) Oral streptococci. In: Bergey’s manual of systematic bacteriology. Volume 2. Sneath PHA, Mair NS, Sharpe ME, Holt JG, Hrsg. Baltimore, Maryland: Williams & Wilkins: 1059-1063

81. Hellwig E (1999) Einführung in die Zahnerhaltung / Elmar Hellwig, Joachim Klimek, Thomas Attin. - 2. Aufl. - München; Jena: Urban und Fischer 1999

82. Henderson B, Wilson M (1998) Commensal communism and the oral cavity. J Dent Res 77: 1674-1683

83. Hillenkamp F, Karas M, Beavis RC, Chait BT (1991) Anal Chem 63: A1193-A1203

84. Hillenkamp F, Karas M (1988) Matrix-assisted laser desoprtion/ionization mass spectrometry of biopolymers. Anal Chem 60: 2299-2301

85. Hillman JD, Novak J, Sagura E, Guierrez JA, Brooks TA, Crowley PJ, Hess M, Azizi A, Leung K, Cvitkovitch D, Bleiweis AS (1998) Genetic and biochemical analysis of mutacin 1140, a lantibiotic from Streptococcus mu-tans. Infect Immun 66: 2743-2749

86. Holt JG (1984-1989) Bergey’s Manual of Systematic Bateriology. First edition. Vol. 1. Williams& Wilkins, Baltimore

87. Hsieh SY, Tseng CL, Lee YS, Kuo AJ, Sun CF, Lin YH, Chen JK (2008) Highly Efficient Classification and Identification of Human Pathogenic Bacteria by MALDI-TOF MS, Mol Cell Proteomics. 7(2): 448-56

88. Ida H, Igarashi T, Goto N, Sasa R (1998) Identification of Streptococcus mutans by dexA DNA probe. Pediatr Dent J 8: 1-5

89. Ida H, Igarashi T, Yamamoto A, Goto N, Sasa R (1999) A DNA probe specific to Streptococcus sobrinus. Oral Microbiol Immunol 14: 233-237

90. Iwami Y, Yamada T (1985) Regulation of glycolytic rate in Streptococcus sanguis grown under glucose-limited and glucose-excess conditions in a chemostat. Infect Immun 2: 378-381

91. Jarman KH, Cebula ST, Saenz AJ, Petersen CE, Valentine NB, Kingsley MT, Wahl KL (2000) An algorithm for automated bacterial identification using matrix-assisted laser deso-prtion/ionization mass spectrometry. Anal Chem 72: 1217-1223

Page 97: Identifizierung des Keims Streptococcus mutans

85

92. Jensen B, Bratthall D (1989) A new method for the estimation of mutans streptococci in human saliva. J Dent Res 68, 468-471.

93. Jordan HV (1986) Cultural methods for the identification and quantitation of Streptococcus mutans and lac-tobacilli in oral samples. Oral Microbiol Immunol 1: 23-27

94. Jordan C, LeBlanc DJ (2002) Influences of orthodontic appliances on oral populations of mutans streptococci. Oral Mi-crobiol Immunol 17: 65-71

95. Kaetzke A, Eschrich K (2002) Simultaneous determination of different DNA sequences by mass spectrometric evalua-tion of Sanger sequencing reactions. Nucleic Acids Res 30: e117

96. Kalsbeek H und Verrips GH (1990) Dental caries prevalence and the use of fluorides in different European countries. J Dent Res 69 Spec No: 728-32: discussion 820-823

97. Karoly P, Orsolya S, Kissc A and Naar Z (2012) Comparison and evaluation of molecular methods used for identification and discrimina-tion of lactic acid bacteria. J Sci Food Agric 92: 1931–1936

98. Kawamura Y, Hou XG, Sultana F, Miura H, Ezaki T (1995) Determination of 16S rRNA sequences of Streptococcus mitis and Streptococcus gordonii and phylogenetic relationships among members of the genus Streptococcus. Int J Syst Bacteriol 45: 406-408

99. Kaufman L, Rousseeuw PJ (1990) Finding Groups in Data. An Introduction to Cluster Analysis. Wiley, New York

100. Kelstrup J, Richmond S, West C, Gibbons RJ (1970) Fingerprinting human oral streptococci by bacteriocin production and sensitivity. Arch Oral Bio1 15: 1109-1116

101. Kikuchi K, Enari T, Totsuka K, Shimizu K (1995) Comparison of phenotypic characteristics, DNA-DNA hybridization results, and results with a commercial rapid biochemical and enzymatic reaction system for identification of viridans group streptococci. J Clin Microbiol 33: 1215–1222

102. Kilian M (2001) Recommended conservation of the names Streptococcus sanguis, Streptococcus rattus, Streptococcus cricetus, and seven other names included in the Approved List of Bacterial Names. Request for an opinion. Int J Syst Evol Microbiol 51: 723-724

103. Klein SP, Bohannan HM, Bell RM, Disney JA, Foch CB, Graves RC (1985) The cost and effectiveness of school-based preventive dental care. Am J Public Health 75: 382-391

104. Kleinberg I (2002) A mixed-bacteria ecological approach to understanding the role of the oral bacteria in den-

Page 98: Identifizierung des Keims Streptococcus mutans

86

tal caries causation: an alternative to Streptococcus mutans and the specific-plaque hy-pothesis. Crit Rev Oral Biol Med 13: 108-125

105. Kneist S, Heinrich-Weltzien R, Tietze W, Stößer L (1998) Die mikrobielle Mundhöhlenbesiedlung als Grundvoraussetzung des Kariesrisikos – Eine Übersicht der Befunde der Kinder aus der Erfurter Studie. In: Stößer, L. (Hrsg.): Karies-dynamik und Kariesrisiko. Berlin: Quintessenz-Verl.: 201-213

106. Köhler B, Bratthall D (1978) Intrafamilial levels of Streptococcus mutans and some aspects of the bacterial transmis-sion. Scand J Dent Res 86: 35-42

107. Kolenbrander PE (2000) Oral microbial communities: biofilms, interactions, and genetic systems. Annu Rev Mi-crobiol 54: 413–437

108. König KG (1990) Root lesions. Int Dent J. 40: 283-288

109. König KG (1971) Karies und Kariesprophylaxe. München: Goldmann

110. Krishnamurthy R, Ross PL (1996b) Rapid identification of bacteria by direct matrix-assisted laser desorption/ionisation mass spectrometry analysis of whole cells. Rap Commun Mass Spectrom 10: 1992-1996

111. Krishnamurthy T, Ross PL, Rajamani U (1996 a) Detection of pathogenic and non-pathogenic bacteria by matrix-assisted laser deso-prtion/inoization time-of-flight mass spectrometry. Rap Commun Mass Spectrom 10: 883-888

112. Kuramitsu HK (1993) Virulence factors of mutans streptococci: role of molecular genetics. Crit Rev Oral Biol Med 4: 159-176

113. Lager A, Thornqvist E, Ericson D (2003) Cultivatable bacteria in dentine after caries excavation using rose-bur or carisolv. Caries Res 37: 206-211

114. Lartigue M-F, Héry-Arnaud G, Haguenoer E, Domelier A-S, Schmit P-O, van der Mee-Marquet N, Lanotte P, Mereghetti L, Kostrzewa M, Quentin R (2009) Identification of Streptokokkus agalactiae isolates from various phylogenetic lineages by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Mi-crobiol 47: 2284-2287

115. Larzul D, Guigue F, Sninsky JJ, Mack DH, Brechot C, Guesdon JL (1998) Detection of hepatitis B virus sequences in serum by using in vitro enzymatic amplifica-tion. J Virol Methods 20: 227-237

116. Laurisch L (1997) Neues selektives Nährmedium zum Nachweis von Streptococcus mutans. München: Pa-tentschrift Nr. 197 24 970.1

Page 99: Identifizierung des Keims Streptococcus mutans

87

117. Len AC, Harty DW, Jacques NA (2004) Stress-responsive proteins are upregulated in Streptococcus mutans during acid tolerance. Microbiology 150: 1339-1351

118. Li J, Helmerhorst, Leone CW, Troxler RF, Yaskell T, Haffajee AD, Socrasnsky SS, Op-penheim FG (2004) Identification of early microbial colonizers in human dental biofilm. J Appl Microbiol 97: 1311–1318

119. Li Y, Caufield PW (1995) The fidelity of initial acquisition of mutans streptococci by infants from their mothers. J Dent Res 74: 681-685

120. Li Y, Caufield PW (1998) Arbitrarily primed polymerase chain reaction fingerprinting for the genotypic identifica-tion of mutans streptococci from humans. Oral Microbiol Immunol 13, 17-22

121. Li Y, Wang W, Caufield PW (2000) The fidelity of mutans streptococci transmission and caries status correlate with breast-feeding experience among Chinese families. Caries Res 34: 123-132

122. Listgarten MA (1986) Pathogenesis of periodontitis. J Clin Periodontol 13: 418-430

123. Loesche WJ (1986) Role of Streptococcus mutans in human dental decay. Microbiol Rev 50: 353-380

124. Lottspeich F, Zorbas H (1998a) Bioanalytik. Kapitel 14: Massenspektrometrie. Spektrum, Akademischer Verlag, Heidel-berg, Berlin

125. Lottspeich F, Zorbas H (1998b) Bioanalytik. Kapitel 24: Polymerase-Kettenreaktion. Spektrum. Akademischer Verlag, Heidelberg, Berlin

126. Ma Y, Marquis RE (1997) Thermophysiology of Streptococcus mutans and related lactic-acid bacteria. Antonie van Leeuwenhoek 72: 91-100

127. Madonna AJ, Voorhees KJ, Taranenko NI, Laiko VV, Doroshenko VM (2003) Detection of cyclic lipopeptide biomarkers from Bacillus species using atmospheric pres-sure matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 75: 1628-1637

128. Marquis RE (1990) Diminished acid tolerance of plaque bacteria caused by fluoride. J Dent Res 69 672-675, Diskussion 682-683

129. Marsh P, Martin MV, Deutsche Übersetzung von Callaway A (2003) Orale Mikrobiologie. 1. Aufl. Stuttgart: Thieme-Verlag

Page 100: Identifizierung des Keims Streptococcus mutans

88

130. Marsh PD (1989) Host defenses and microbial homeostasis: role of microbial interactions. J Dent Res 68: 1567-1575

131. Marvin LF, Roberts MA, Fay LB (2003) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in clinical chemistry. Clinica Chimica Acta 337: 11-21

132. Matsumoto K, Hossain M, Hossain MM, Kawano H, Kimura Y (2002) Clinical assessment of Er,Cr:YSGG laser application for cavity preparation. J Clin Laser Med Surg 20: 17-21

133. Mattos-Graner RO, Smith DJ, King WF, Mayer MP (2000) Water-insoluble glucan synthesis by mutans streptococcal strains correlates with caries in-cidence in 12- to 30-month-old children. J Dent Res 79: 1371-1377

134. Minah GE, Loesche WJ (1977) Sucrose metabolism by prominent members of the flora isolated from cariogenic and non-cariogenic dental plaques. Infect Immun 17: 55-61

135. Mombelli A, Samaranayake LP (2004) Topical and systemic antibiotics in the management of periodontal diseases. Int Dent J 54: 3-14

136. Monjardino J (1996) Replication of hepatitis delta virus. J Viral Hepat 3: 163-166

137. Moussaoui W, Jaulhac B, Hoffmann AM, Ludes B, Kostrzewa M, Riegel P, Prévost G (2010) Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identifies 90% of bacteria directly from blood culture vials. Clin Microbiol Infect. 16 (11): 1631-1638

138. Mullis K, Fallona F, Scharf S, Saiki R, Horn G, Erlich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51: 263-273

139. Munson MA, Banerjee A, Watson, TF, Wade WG (2004) Molecular analysis of the microflora associated with dental caries. J Clin Microbiol 42: 3023–3029

140. Nelson KE, Fleischmann RD, DeBoy RT, Paulsen IT, Fouts DE, Eisen JA, Daugherty SC, Dodson RJ, Durkin AS, Gwinn M, Haft DH, Kolonay JF, Nelson WC, Mason T, Tallon L, Gray J, Granger D, Tettelin H, Dong H, Galvin JL, Duncan MJ, Dewhirst FE, Fraser CM (2003) Complete genome sequence of the oral pathogenic bacterium Porphyromonas gingivalis strain W83. J Bacteriol 185: 5591-5601. Erratum in: J Bacteriol 186: 593

141. Neville SA, Le Cordier A, Ziochos H, Chater MJ, Gosbell IB, Maley MW, van Hal SJ (2011) Utility of matrix-assisted laser desorption ionization-time of flight mass spectrometry fol-

Page 101: Identifizierung des Keims Streptococcus mutans

89

lowing introduction for routine laboratory bacterial identification. J Clin Microbiol 49: 2980-2984

142. Nilsson CL (1999) Fingerprinting of Helicobacter pylori strains by matrix-assisted laser desoprtion/ionization mass spectrometric analysis. Rapid Commun Mass Spectrom. 13: 1067-1071

143. Novak J, Kirk M, Caufield PW, Barnes S, Morrison K, Baker J (1996) Detection of modified amino acids in lantibiotic peptide mutacin II by chemical derivation and alectrospray ionization-mass spectroscopic analysis. Anal Biochem 236: 358-360

144. Nyvad B (1993) Microbial colonization of human tooth surfaces. APMIS 1993; 101(suppl 32): 7–45

145. Nyvad B, Kilian M (1987) Microbiology if the early microbial colonization of human enamel and root surfaces in vi-vo. Scand J Dent Res 95: 369–380

146. Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR, Stahl DA (1986) Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev Microbiol. 40: 337-365

147. Page RC, Kornman KS (1997) The pathogenesis of human periodontitis: an introduction. Periodontology 2000, 14: 9-11

148. Page RC, Schroeder H (1982) Periodontitis in man and other animals. A comparative review. Basel and New York, S. Karger

149. Paster BJ, Olsen I, Aas JA, Dewhirst FE (2006) The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 2000, 42: 80-87

150. Perch B, Kjems E, Ravn T (1974) Biochemical and serological properties of Streptococcus mutans from various human and animal sources. Acta Pathol Microbiol Scand [B] Microbiol Immunol 82: 357-370

151. Porter SR (2003) Prion disease: possible implications for oral health care. J Am Dent Assoc 134: 1486-1491

152. Raoult D, Fournier PE, Drancourt M (2004) What does the future hold for clinical microbiology? Nat Rev Microbiol. 2: 151-159

153. Raskin L, Rirrman BE, Stahl DA (1996) Competition and coexistence of sulfate-reducing and methanogenic populations in anaer-obic biofilms. Appl Environ Microbiol. 62: 3847-3857

154. Raßhofer R (1999) Mikrobiologische Diagnostik bei Parodontopathien; ZMK, 3/ 99: 1-6

155. Reischl U , Lehn N, Simnacher U, Marre R, Essig A (2003) Rapid and standardized detection of Chlamydia pneumoniae using LightCycler real-time fluorescence PCR. Eur J Clin Microbiol Infect Dis. 22(1): 54-57.

Page 102: Identifizierung des Keims Streptococcus mutans

90

156. Rhodin NR, Cutalo JM, Tomer KB, McArthur WP, Brady LJ (2004) Chracterization of the Streptococcus mutans P1 epitope recognized by immunomodulato-ry monoclonal antibody 6-11A. Infect Immun 72: 4680-4688

157. Rickard GD, Richardson R, Johnson T, McColl D, Hooper L (2004) Ozone therapy for the treatment of dental caries. Cochrane Database Syst Rev. :CD004153

158. Risch M, Radjenovic D, Han JN, Wydler M, Nydegger U, Risch L (2010) Comparison of MALDI TOF with conventional identification of clinically relevant bacte-ria Swiss Med Wkly.: 140

159. Robbins JB, Schneerson R, Szu SC (1996) Section 1: Bacteriology. Chapter 6: Specific Acquired Immunity. In: Baron S. Medical Microbiolgy. University of Texas Medical Branch, Galveston

160. Roeters FJ, van der Hoeven JS, Burgersdijk RC, Schaeken MJ (1995) Lactobacilli, mutants streptococci and dental caries: a longitudinal study in 2-year-old children up to the age of 5 years. Caries Res 29: 272-279

161. Ruby JD, Li Y, Luo Y, Caufield PW (2002) Genetic characterization of the oral Actinomyces. Archives of Oral Biology 47: 457–463

162. Rudney JD, Larson CJ (1999) Identification of oral mitis group streptococci by arbitrarily primed polymerase chain re-action. Oral Microbiol Immunol 14: 33-42

163. Rupf S, Kneist S, Merte K, Eschrich K (1999) Quantitative determination of Streptococcus mutans by using competitive polymerase chain reaction. Eur J Oral Sci 107: 75-81

164. Rupf S, Merte K, Eschrich K, Stösser L, Kneist S (2001) Peroxidase reaction as a parameter for discrimination of Streptococcus mutans and Strep-tococcus sobrinus. Caries Res 35: 258-264

165. Rupf S, Breitung K, Schellenberger W, Merte K, Kneist S, Eschrich K (2005) Differentiation of mutans streptococci by intact cell matrix-assisted laser desorp-tion/ionization time-of-flight mass spectrometry. Oral Microbiol Immunol 20(5): 267-73

166. Rupf S (2006) Geno- und Phänotypisierung oraler Bakterien mit Polymerasekettenreaktion und Mas-senspektrometrie – Einsatz moderner diagnostischer Methoden in der Zahnerhaltung. Habilitationschrift Universität Leipzig

167. Rupf S, Hannig M, Breitung K, Schellenberger W, Eschrich K, Remmerbach T, Kneist S (2008) Phenotypic heterogeneity of Streptococcus mutans in dentin. J Dent Res 87(12): 1172-1176

168. Ryzhov V, Fenselau C (2001) Characterization of the protein subset desorbed by MALDI from whole bacterial cells. Anal Chem 73: 746-750

Page 103: Identifizierung des Keims Streptococcus mutans

91

169. Saarela M, Alaluusua S, Takei T, Asikainen S (1993) Genetic diversity within isolates of mutans streptococci recognized by an rRNA gene probe. J Clin Microbiol 31: 584-587

170. Saarela M, Hannula J, Mättö J, Asikainen S, Alaluusua S (1996) Typing of mutans streptococci by arbitrarily primed polymerase chain reaction. Arch Oral Biol 41: 821-826

171. Saffert RT, Cunningham SA, Ihde SM, Monson Jobe KE, Mandrekar J, Patel R (2011) Comparison of Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry to BD Phoenix automated microbiology system for identification of gram-negative bacilli. J Clin Microbiol 49: 887-892

172. Saleeb PG, Drake SK, Murray PR, Zelazny AM (2011) Identification of mycobacteria in solid-culture media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 49: 1790-1794

173. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A74: 5463-5467

174. Sansone C, van Houte J, Joshipura K, Kent R, Margolis HC (1993) The association of mutans streptococci and non-mutans streptococcicapable of acidogene-sis at a low pH with dental caries on enamel and root surfaces. J Dent Res 72: 508–516

175. Sauer S, Freiwald A, Maier T, Kube M, Reinhardt R, Kostrzewa M, Geider K (2008) Classification and Identification of Bacteria by Mass Spectrometry and Computational Analysis PLoS One. 3(7): e2843

176. Sbordone L, Bortolaia C (2003) Oral microbial biofilms and plaque-related diseases: microbial communities and their role in the shift from oral health to disease. Clin Oral Investig. 7: 181-188

177. Schenkein H, Cochran DL, Dyke van TE, Blieden T, Cohen RE, Hallmon WW, Hinrichs JE, Mariotti A, Raulin LA, Somerman MJ, Genco RJ, Greenstein G, Iacono VJ (1999) The pathogenisis of periodontal disease. Academy Report. The Committee on Research, Science and Therapy of the American Academy of Periodontology

178. Schriemer DC, Li L (1996) Detection of high molecular weight narrow polydisperse polymers up to 1, 5 million dal-tons by MALDI Mass Spectrometry. J Anal Chem 68: 2721-2725

179. Schröder HE (2000) Orale Strukturbiologie. Stuttgart: Thieme-Verlag

180. Schubert S, Wieser A (2010) Molekulare Speziesdifferenzierung: MALDI-TOF MS in der mikrobiologischen Diagnos-tik. BIOspektrum Special: Molekulare Diagnostik: 760-762

181. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier P-E, Rolain JM, Raoult D (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of –flight mass spectrometry. Clin Infect Dis 49: 543-551

Page 104: Identifizierung des Keims Streptococcus mutans

92

182. Shah HN, Keys CJ, Schmid O, Gharbia SE (2002) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and prote-omics: a new era in anaerobic microbiology. Clin Infect Dis 35: 58-64

183. Siebert PD, Larrick JW (1993) PCR MIMICS : competitive DNA fragments for use as internal standards in quantitative PCR. Biotechniques 14: 244-249

184. Siqueira JF Jr, Rocas IN, Oliveira JC, Santos KR (2001a) Molecular detection of black-pigmented bacteria in infections of endodontic origin. J En-dod 27: 563-566

185. Siqueira JF Jr, Rjcas IN, Oliveira JC, Santos KR (2001b) Detection of putative oral pathogens in acute periradicular abscesses by 16S rDNA-directed polymerase chain reaction. J Endod 27: 164-167

186. Sissons CH (1997) Artificial dental plaque biofilm model systems. Adv Dent Res 11: 110-126

187. Sundqvist G, Figdor D (2003) Life as an endodontic pathogen. Ecological differences between the untreated and root-filled root canals. Endod Topics 6: 3-28

188. Svensater G, Welin J, Wilkins JC, Beighton D, Hamilton IR (2001) Protein expression by planktonic and biofilm cells of Streptococcus mutans FEMS Micro-biol Lett 205: 139-146

189. Takahashi N, Horiuchi M, Yamada T (1997) Effects of acidification on growth and glycolysis of Streptococcus sanguis and Strepto-coccus mutans. Oral Microbiol Immunol 12: 72-76

190. Tanzer JM (1992) Microbiology of dental caries. In: Slots J. und Taubman M. A. Hrsg. Contemporary Oral Microbiology and Immunology. St. Louis: Mosby-Verlag: 377-424

191. Tardif G, Sulavik MC, Jones GW, Clewell DB (1989) Spontaneous switching of the sucrose-promoted colony phenotype in Streptococcus san-guis. Infect Immun 57: 3945–3948

192. Ten Cate JM (1990) In vitro studies on the effects of fluoride on de- and remineralization. J Dent Res 69 Spec No: 614-619; discussion 634-636

193. Tenovuo J (1998) Antimicrobial function of human saliva--how important is it for oral health? Acta Odontol Scand 56: 250-256

194. Tibshirani RJ (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. PNAS 99: 6567-6572

Page 105: Identifizierung des Keims Streptococcus mutans

93

195. Tost J, Gut IG (2005) Genotyping single nucleotide polymorphisms by MALDI mass spectrometry in clinical applications. Clin Biochem 38: 335-350

196. Trimpin S (2002) Methodische Entwicklung der MALDI-TOF- Massenspektrometrie für Grenzbereiche der Makromolekülanalytik

197. Tronstad L, Sunde PT (2003) The evolving new understanding of endodontic infections. Endodontic Topics 6: 57–77

198. van Houte J, Lopman J, Kent R (1994) The predominant cultivable flora of sound and carious human root surfaces. J Dent Res 73: 1727–1734

199. van Houte J, Lopman J, Kent R (1996) The final pH of bacteria comprising the predominant flora on sound and carious human root and enamel surfaces. J Dent Res 75: 1008–1014

200. van Palenstein Helderman WH, Ijsseldijk M, Huis in ‘t Veld JHJ (1983) A selective medium for the two major subgroups of the bacterium Streptococcus mutans isolated from human dental plaque and saliva. Arch Oral Biol 28: 599-603

201. van Veen SQ, Claas ECJ, Kuijper EJ (2010) High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology labora-tories. J Clin Microbiol 48: 900-907

202. van Winkelhoff AJ, Goene RJ, Benschop C, Folmer T (2000) Early colonization of dental implants by putative periodontal pathogens in partially eden-tulous patients. Clin Oral Implants Res. 11: 511-520

203. Vocca-Smith AM, Ng-Evans L, Wunder D, Bowen WH (2000) Studies concerning the glucosyltransferase of Streptococcus sanguis. Caries Res 34: 295–302

204. Wahl KL, Wunschel SC, Jarman KH, Valentine NB, Petersen CE, Kingsley MT, Zartolas KA, Saenz AJ (2002) Analysis of microbial mixtures by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 74: 6191-6199

205. Wan AK, Seow WK, Purdie DM, Bird PS, Walsh LJ, Tudehope DI (2001) Oral colonization of Streptococcus mutans in six-monthold predentate infants. J Dent Res 80: 2060-2065

206. Wang Z, Russon L, Li L, Roser DC, Long SR (1998) Investigation of spectral reproducibility in direct analysis of bacteria proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 12: 456-464

Page 106: Identifizierung des Keims Streptococcus mutans

94

207. Welham KJ, Domin MA, Scannell DE, Cohen E, Ashton DS (1998) The characterization of micro-organisms by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 12: 176

208. Welin J, Wilkins JC, Beighton D, Svensater G (2004) Protein expression by Streptococcus mutans during initial stage of biofilm formation. Appl Environ Microbiol 70: 3736-3741

209. Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18: 7213-7218

210. Whelton H. (1996) The anatomy and physiology of the salivary glands. In: Saliva and oral health. Edgar WM, O’Mullane DM, eds. 2nd ed. British Dental Journal: London : 1-8

211. Whiley RA, Beighton D (1998) Current classification of the oral streptococci. Oral Microbiol Immunol 13: 195-216

212. Wilkins JC, Homer KA, Beighton D (2002) Analysis of Streptococcus mutans proteins modulated by culture under acidic conditions. Appl Environ Microbiol 68: 2382-2390

213. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucle-ic Acids Res 18: 6531-6535

214. Woese CR, Stackebrandt E, Macke TJ, Fox GE (1985) A phylogenetic definition of the major eubacterial taxa. Syst Appl Microbiol. 6: 143-151

215. Zbinden A, Mueller NJ, Tarr PE, Gerhard Eich B, Schulthess A, Bahlmann S, Keller PM, Bloemberg GV (2012) Streptococcus tigurinus, a novel member of the Streptococcus mitis group, causes inva-sive infections. J. Clin. Microbiol. doi10: 1128/JC

Page 107: Identifizierung des Keims Streptococcus mutans

Bakterium A Bakterium B Bakterium C Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse Peakmasse PeakmasseDSM 20523 DSM 20567 DSM 20627 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Gemisch 01 100 2637,4 2676,3 2770,3 2841,3 2999,7 3172,6 3281,4 3291,5 3303,9 3320,4 3351,7 3388,1 3427,6 3490,1 3524,3 3576,0 3595,8 3614,3 3639,7 3649,4 3659,4 3681,1 3718,7 3762,4 3839,3 3850,4 3869,7 3882,4 3953,0 4033,0 4203,9 4455,3 4600,4 4623,9 4657,6 4670,3 4700,7 4718,6 4735,5 4793,2 4809,2 4832,0 4912,7 5073,9 5136,2 5183,8 5191,3 5351,8 5553,0 5931,3 6102,1 6141,9 6258,3 6701,9 6774,6 6847,6 6916,3 7739,8 8038,6 8429,9 9583,5Gemisch 02 100 2538,0 2548,6 2564,3 2610,7 2647,4 2789,4 2811,7 2824,3 2841,2 2857,2 2979,7 3237,1 3286,8 3316,5 3380,0 3408,9 3422,6 3448,8 3480,0 3530,2 3581,1 3591,9 3605,8 3620,4 3641,1 3653,6 3665,1 3680,1 3710,2 3725,7 3754,3 3775,5 3938,3 4168,3 4424,6 4488,1 4511,5 4539,5 4553,4 4569,7 5101,0 5294,4 5438,6 5467,9 5498,0 5767,7 5958,7 6284,1 6632,9 6759,6 6844,9 6959,1 7550,5 8425,9Gemisch 03 100 2537,8 2627,9 2636,2 2665,5 2674,8 2693,7 2708,3 2723,0 2745,5 2882,2 2959,2 2980,3 3324,4 3380,8 3423,9 3451,1 3480,1 3508,3 3623,3 3640,3 3662,3 3679,2 3707,1 3723,3 3770,0 3782,0 3791,1 3817,3 3826,3 3849,2 3998,3 4202,4 4424,7 4539,2 4553,0 4569,8 4596,6 4731,6 5051,0 5271,4 5329,0 5355,6 5372,5 5401,4 5416,1 5828,1 5917,8 5959,7 6018,2 6104,2 6647,8 6760,8 6847,1 6909,1 6959,3 7697,9 7995,6 8403,6Gemisch 04 50 50 2538,9 2591,9 2622,5 2638,6 2649,5 2677,3 2693,3 2771,4 2842,3 2981,9 3000,1 3318,8 3351,6 3382,6 3426,3 3481,6 3531,1 3576,9 3596,3 3612,2 3625,7 3641,2 3668,0 3740,0 3754,4 3778,7 3882,3 3940,4 4034,2 4171,3 4217,0 4427,3 4457,2 4516,4 4571,1 4720,7 4795,2 4861,4 5078,6 5104,1 5158,6 5206,9 5297,9 5353,9 5502,6 5773,6 5962,0 6145,8 6261,3 6289,3 6636,8 6707,4 6764,8 6849,8 6922,6 6961,7 7555,4 8432,5 9589,5Gemisch 05 50 50 2538,1 2560,9 2635,8 2664,9 2675,1 2688,3 2980,0 2998,1 3171,4 3323,9 3380,3 3424,5 3479,4 3507,6 3529,2 3554,4 3575,0 3612,0 3618,9 3639,5 3720,3 3752,7 3798,7 3814,8 3830,1 3849,2 3867,3 3880,5 3895,0 3997,8 4031,7 4202,3 4424,1 4454,1 4539,1 4568,5 4598,6 4717,5 4731,9 4755,5 4793,0 4808,6 4823,9 5050,8 5270,6 5350,7 5374,3 5416,6 5828,1 5959,0 6140,6 6273,3 6646,4 6759,9 6846,5 6958,5 7697,6 7994,1 8403,1Gemisch 06 50 50 2520,4 2537,8 2553,0 2563,2 2636,3 2665,7 2722,8 2801,9 2841,0 2914,8 2959,6 2980,5 3324,7 3381,1 3424,0 3452,3 3480,4 3508,3 3530,8 3551,2 3658,8 3678,4 3708,6 3725,7 3743,7 3753,8 3777,4 3798,8 3825,8 3849,8 3998,9 4169,3 4203,0 4425,4 4488,2 4513,4 4540,7 4570,6 4895,3 4936,0 4950,4 5054,3 5272,3 5353,4 5372,9 5417,0 5829,3 5919,7 5960,9 6105,4 6433,2 6648,8 6762,1 6848,1 6960,3 7700,1 7997,0 8405,6Gemisch 07 40 60 2515,4 2536,0 2547,9 2625,4 2633,9 2663,0 2674,0 2720,6 2742,8 2880,3 2912,3 2956,6 2969,4 2977,8 3135,0 3284,9 3321,4 3377,8 3420,9 3442,1 3477,0 3505,6 3526,9 3540,2 3552,6 3721,2 3773,4 3822,6 3836,8 3846,2 3934,9 3995,1 4165,1 4199,0 4210,3 4420,7 4483,8 4509,9 4536,8 4565,4 4682,3 4692,4 4752,5 4788,5 4819,0 5047,6 5108,4 5266,5 5411,6 5496,2 5765,4 5823,3 5912,1 5954,3 6268,6 6641,3 6754,3 6840,5 6953,1 7690,2 7988,3 8396,1 9071,1Gemisch 08 30 70 2517,4 2535,1 2542,0 2555,9 2564,5 2572,4 2582,7 2627,6 2636,0 2664,6 2721,7 2800,8 2883,0 2913,9 2958,6 2979,6 3027,2 3136,8 3324,2 3379,9 3422,9 3479,4 3507,9 3529,4 3552,3 3694,6 3707,6 3725,7 3755,3 3776,1 3796,7 3819,2 3848,4 3910,3 3938,9 3978,7 3997,4 4168,3 4201,3 4424,2 4488,3 4539,3 4569,6 4755,3 5011,4 5050,5 5270,5 5415,6 5826,5 5915,9 5957,8 6272,0 6646,7 6758,4 6844,5 6908,3 6956,8 7992,4 8400,1 9075,7Gemisch 09 20 80 2521,0 2534,3 2557,8 2565,3 2581,3 2635,1 2664,7 2674,7 2698,8 2707,3 2721,1 2800,8 2811,2 2913,4 2958,3 2979,1 3136,3 3323,1 3379,3 3422,4 3478,6 3507,3 3529,5 3552,4 3691,2 3706,8 3722,0 3746,3 3758,1 3778,7 3847,8 3976,5 3996,9 4167,1 4200,5 4422,9 4486,2 4538,1 4568,0 4695,2 4729,3 4753,9 4822,8 5009,2 5049,5 5269,1 5370,2 5398,9 5413,7 5825,8 5915,3 5957,0 6271,6 6644,7 6757,5 6843,7 6956,2 7694,1 7992,2 8399,7Gemisch 10 10 90 2537,2 2555,6 2566,6 2583,5 2636,9 2666,7 2689,9 2709,1 2723,1 2802,5 2915,5 2960,5 2981,1 3325,3 3381,7 3424,7 3481,0 3509,1 3529,6 3546,1 3698,6 3710,5 3745,7 3785,1 3792,7 3850,5 3881,2 3897,3 3911,5 3999,9 4170,1 4203,8 4426,0 4491,2 4538,6 4571,2 4731,5 4757,8 4824,3 4889,4 5015,7 5053,2 5272,9 5373,9 5417,5 5830,3 5920,0 5961,3 6107,1 6277,0 6649,4 6762,7 6848,7 6960,7 7699,7 7999,0 8406,4Gemisch 11 60 40 2519,7 2537,8 2554,9 2564,1 2571,5 2583,3 2634,9 2664,0 2707,6 2720,8 2800,7 2810,9 2839,9 2913,2 2958,0 2978,9 3136,1 3322,7 3379,1 3422,1 3448,5 3478,6 3506,6 3529,0 3553,0 3700,3 3707,1 3725,5 3752,3 3774,9 3797,3 3816,4 3847,3 3936,5 3996,3 4166,8 4200,4 4422,5 4510,7 4538,2 4567,7 4977,4 5009,3 5048,8 5268,7 5413,2 5767,8 5825,0 5914,8 5956,6 6102,0 6271,4 6644,0 6756,9 6843,0 6955,9 7548,9 7693,5 7990,9 8398,9 9075,8Gemisch 12 70 30 2519,6 2538,1 2551,1 2573,0 2579,3 2619,9 2635,5 2646,8 2665,0 2840,1 2914,1 2958,4 2979,4 3323,2 3379,7 3408,7 3422,7 3448,4 3479,2 3529,7 3550,3 3572,9 3612,8 3625,9 3642,6 3678,9 3706,8 3722,2 3754,6 3775,6 3937,2 3989,2 3997,4 4167,3 4187,6 4201,4 4423,3 4485,7 4512,1 4538,8 4550,9 4568,4 4791,3 5051,1 5105,3 5269,5 5292,6 5498,6 5768,7 5826,5 5915,6 5957,4 6283,4 6644,5 6757,9 6844,1 6956,7 7992,7 8401,6 8424,6 9076,8Gemisch 13 80 20 2519,8 2545,8 2573,8 2583,4 2636,5 2647,9 2745,7 2841,5 2959,9 2980,1 3138,1 3275,2 3317,3 3324,6 3359,6 3380,4 3411,0 3423,3 3449,6 3479,9 3507,5 3530,5 3559,7 3593,5 3598,9 3648,7 3664,2 3677,0 3689,6 3710,8 3727,9 3747,0 3754,8 3776,1 3849,3 3938,8 3998,2 4168,8 4424,8 4487,4 4512,7 4524,4 4539,1 4569,5 4791,9 4919,1 4969,9 5271,2 5294,1 5370,7 5769,2 5827,3 5916,5 5958,4 6273,5 6640,8 6759,1 6844,8 6957,4 7548,8 7993,4 8401,7 8425,5Gemisch 14 90 10 2541,4 2567,3 2614,5 2638,6 2685,2 2714,0 2722,0 2725,5 2827,1 2843,2 2982,9 3214,8 3240,3 3282,8 3326,9 3383,4 3426,2 3450,2 3482,8 3533,3 3551,6 3585,3 3639,1 3650,0 3668,8 3684,7 3692,9 3707,2 3723,3 3742,1 3753,4 3765,6 3780,3 3799,1 3832,5 3852,6 3898,9 3941,1 4001,3 4133,9 4172,2 4428,3 4515,1 4538,5 4573,0 4899,3 4913,4 4950,4 5047,0 5275,5 5365,3 5423,2 5832,7 5923,1 5963,8 6652,0 6765,4 6851,5 8000,1 8409,6Gemisch 15 40 60 2522,1 2535,4 2555,3 2566,2 2636,1 2665,0 2676,0 2709,3 2769,6 2801,2 2841,0 2913,8 2959,5 2980,1 2997,3 3171,3 3324,4 3380,4 3423,5 3452,8 3480,0 3507,3 3529,5 3541,7 3550,2 3560,4 3575,5 3622,8 3677,7 3709,0 3722,5 3848,3 3881,5 3975,4 3996,8 4032,1 4201,4 4424,3 4454,4 4539,1 4569,7 4598,9 4717,4 4730,9 4755,0 4792,5 5050,5 5075,1 5270,9 5351,7 5415,9 5826,2 5958,6 6059,2 6102,8 6647,1 6759,8 6845,0 6958,3 7696,6 7990,6 8400,3Gemisch 16 30 70 2521,8 2536,6 2555,9 2564,6 2573,2 2635,8 2665,4 2675,5 2722,2 2801,1 2914,0 2958,6 2971,4 2979,8 2997,3 3323,9 3380,2 3423,3 3479,7 3508,0 3532,2 3544,0 3553,8 3575,0 3614,0 3678,3 3721,3 3745,5 3848,6 3866,0 3998,1 4031,9 4201,6 4423,9 4454,1 4539,8 4569,2 4597,6 4731,7 5010,0 5031,3 5051,2 5074,8 5270,3 5351,3 5373,3 5415,2 5826,4 5917,1 5958,4 6058,3 6103,2 6646,3 6759,2 6845,4 6958,0 7695,7 7993,3 8401,0 9076,6Gemisch 17 20 80 2520,4 2537,3 2544,8 2554,4 2566,6 2636,2 2665,6 2675,9 2690,4 2722,1 2801,1 2914,0 2959,2 2980,2 3324,5 3380,7 3423,7 3480,0 3508,5 3521,7 3532,3 3556,8 3575,3 3679,1 3697,1 3708,0 3722,3 3746,7 3795,0 3817,8 3848,9 3997,8 4201,9 4424,7 4454,8 4493,0 4539,7 4553,5 4569,8 4597,8 4731,8 5011,9 5051,1 5271,3 5331,6 5352,2 5373,1 5416,1 5827,1 5959,4 6059,6 6103,7 6647,5 6760,6 6846,4 6958,7 7696,1 7994,0 8402,1Gemisch 18 10 90 2522,6 2536,1 2555,7 2565,5 2627,2 2635,2 2664,9 2675,7 2691,9 2707,9 2721,6 2799,7 2881,8 2913,7 2951,1 2958,0 2971,2 2979,1 3323,1 3379,4 3422,5 3458,9 3478,6 3507,4 3534,3 3556,1 3564,9 3574,1 3693,9 3720,7 3747,1 3763,2 3786,6 3847,9 3996,9 4200,8 4349,4 4422,9 4453,1 4485,9 4496,3 4538,2 4568,2 4594,6 5226,8 5269,1 5330,1 5370,7 5413,8 5825,8 5915,0 5956,9 6644,6 6757,3 6843,6 6907,4 6956,1 7693,6 7992,3 8399,3Gemisch 19 40 60 2518,1 2537,7 2565,6 2577,8 2593,8 2620,0 2637,2 2647,2 2675,6 2769,3 2840,5 2965,8 2979,7 2998,5 3171,2 3302,2 3316,3 3349,6 3380,2 3408,8 3424,2 3446,7 3459,9 3479,8 3529,8 3558,2 3574,8 3758,3 3776,1 3869,2 3881,6 3937,2 3989,5 4031,7 4167,9 4214,6 4423,7 4453,9 4513,4 4540,1 4568,5 4598,1 4717,4 4791,8 5073,0 5101,6 5200,4 5293,2 5315,2 5350,3 5769,1 5930,5 5958,1 6140,8 6285,1 6631,1 6759,3 6797,0 6845,3 8427,0 9581,6Gemisch 20 30 70 2515,1 2538,1 2553,1 2579,3 2598,3 2612,2 2638,4 2648,5 2676,7 2688,9 2712,3 2770,5 2842,0 2967,1 2981,1 2999,9 3172,4 3283,3 3289,4 3317,7 3352,0 3381,1 3410,0 3425,5 3449,5 3481,1 3531,1 3547,7 3576,5 3616,8 3630,9 3643,0 3662,1 3677,4 3695,4 3718,3 3747,8 3755,8 3777,5 3869,8 3939,6 4033,7 4169,7 4190,3 4425,6 4455,8 4512,5 4555,2 4570,8 4600,2 5295,9 5352,9 5378,1 5932,8 5960,2 6634,2 6703,8 6761,6 6847,4Gemisch 21 20 80 2613,9 2648,1 2696,1 2711,6 2770,2 2790,0 2841,4 2980,8 2998,5 3237,3 3278,2 3316,8 3353,0 3381,5 3418,3 3481,1 3531,5 3575,6 3613,8 3642,6 3660,2 3677,7 3688,6 3698,4 3713,1 3722,0 3739,1 3746,0 3755,6 3775,8 3938,4 4168,6 4424,5 4453,5 4534,6 4552,7 4568,7 4877,6 4901,5 4929,7 4961,5 5293,6 5350,0 5393,7 5770,2 5957,6 6630,1 6758,4 6843,0 7549,2 8422,3Gemisch 22 10 90 2573,2 2611,6 2621,3 2639,4 2649,9 2661,1 2675,9 2688,7 2696,6 2714,3 2826,0 2842,6 2982,3 3275,8 3318,1 3383,8 3411,2 3424,7 3482,2 3517,9 3532,2 3558,2 3579,6 3598,2 3609,9 3630,8 3640,8 3651,5 3668,4 3685,5 3695,5 3702,4 3710,1 3746,5 3778,1 3794,4 3939,6 4170,7 4215,6 4426,7 4514,8 4570,7 4795,7 4912,9 4946,7 4961,4 4976,2 4989,3 5021,4 5078,7 5105,0 5148,7 5297,0 5502,0 5774,4 5961,7 6290,6 6634,4 6762,3 6848,1 7983,8 8432,5 9589,0Gemisch 23 30 30 40 2521,8 2540,7 2551,3 2557,7 2568,5 2640,1 2679,7 2774,4 2984,4 3001,2 3328,8 3385,7 3428,7 3483,6 3512,5 3535,2 3563,7 3580,4 3609,3 3625,0 3644,4 3656,8 3701,5 3709,4 3726,9 3753,0 3764,1 3779,9 3794,7 3823,5 3830,7 3844,8 3855,4 3872,1 4173,8 4430,2 4459,6 4543,3 4574,7 4601,9 4795,6 4880,0 4910,0 4923,0 4942,1 4960,6 5277,2 5420,6 5834,9 5965,8 6109,9 6653,2 6767,9 6851,7 6921,0 6963,4 7703,5 8002,1 8410,8Gemisch 24 30 40 30 2556,8 2637,3 2676,9 2684,1 2981,7 2999,0 3325,4 3382,2 3425,6 3481,5 3514,9 3533,2 3543,5 3558,2 3576,9 3622,7 3645,0 3658,5 3676,9 3688,8 3705,9 3724,4 3745,3 3779,0 3793,5 3826,3 3839,6 3850,2 4000,4 4170,5 4204,4 4426,2 4540,4 4570,8 4797,3 4880,4 4890,6 4915,6 4925,5 4940,3 4953,8 4963,0 4981,4 5054,9 5273,0 5373,2 5831,5 5961,3 6273,9 6495,7 6647,2 6762,8 6846,7 6960,2 7997,0 8405,4Gemisch 25 40 30 30 2526,3 2556,9 2582,4 2639,5 2679,3 2694,0 2772,8 2960,7 2968,9 2983,8 3000,7 3270,9 3327,7 3384,9 3428,5 3483,9 3511,3 3537,6 3578,7 3597,0 3605,1 3614,2 3629,5 3643,5 3658,2 3663,0 3683,2 3692,3 3704,4 3727,3 3748,1 3766,8 3779,9 3790,8 3831,6 3868,4 3874,0 4003,4 4036,6 4173,5 4429,6 4459,3 4542,7 4574,3 4604,2 4873,5 4924,7 4959,2 4969,7 4984,0 5276,8 5356,0 5421,3 5837,1 5965,2 6106,5 6652,9 6767,4 6851,0 6962,9 8004,7 8413,6Gemisch 26 20 40 40 2510,6 2523,9 2539,7 2562,6 2580,6 2639,0 2677,9 2685,3 2692,4 2983,1 3270,2 3327,0 3384,0 3426,6 3483,4 3508,8 3512,3 3532,4 3556,7 3578,0 3600,5 3608,6 3618,8 3628,4 3635,2 3644,4 3661,2 3678,3 3694,1 3704,1 3713,9 3721,8 3729,1 3742,6 3756,2 3770,1 3782,1 3854,7 4001,6 4172,5 4205,8 4428,5 4515,4 4544,9 4574,1 4796,6 4927,6 4937,1 5058,8 5275,7 5355,8 5781,0 5794,5 5834,3 5964,5 6649,7 6766,2 6850,8 6962,3 8000,7 8410,6 9591,3Gemisch 27 40 20 40 2519,4 2538,4 2556,0 2637,9 2677,5 2772,5 2842,9 2968,4 2982,0 3000,1 3174,1 3326,2 3382,9 3426,1 3481,8 3510,0 3533,1 3560,7 3577,4 3618,2 3643,4 3680,2 3699,3 3709,9 3723,3 3742,3 3764,4 3778,3 3820,7 3851,1 3869,0 4034,5 4170,7 4427,1 4456,9 4515,8 4541,7 4571,8 4601,4 4734,0 4891,0 4911,8 4937,9 4948,3 4966,6 4980,2 5273,8 5353,9 5419,1 5832,0 5961,9 6062,0 6105,9 6650,1 6763,7 6848,5 6960,0 7699,2 7998,1 8405,9Gemisch 28 40 40 20 2539,0 2552,0 2587,8 2640,0 2669,5 2679,7 2773,1 2804,7 2963,9 2970,9 2984,1 3002,7 3175,8 3287,1 3327,3 3385,3 3428,1 3458,0 3483,5 3502,4 3513,7 3532,6 3547,9 3579,1 3620,8 3632,5 3645,8 3723,7 3732,5 3748,1 3760,7 3780,5 3869,0 3875,1 3886,1 3943,0 4003,6 4037,3 4174,0 4207,8 4429,3 4458,9 4516,1 4545,1 4573,9 4603,9 4962,4 4975,7 5049,2 5079,5 5276,6 5356,7 5778,6 5836,8 5966,2 6652,4 6768,5 6853,9 8003,2 8415,6Gemisch 29 10 40 50 2522,1 2543,1 2551,7 2559,6 2569,5 2640,4 2670,9 2711,8 2726,6 2806,4 2815,9 2821,7 2918,7 2984,8 3329,2 3385,9 3428,2 3484,7 3513,1 3535,3 3561,5 3580,7 3658,9 3685,8 3700,0 3707,6 3728,7 3752,2 3762,0 3773,8 3781,4 3813,5 3854,2 3985,6 4004,1 4174,9 4207,8 4431,2 4544,9 4576,5 4799,5 4885,3 4897,4 4923,9 4946,2 4978,7 5059,8 5278,4 5359,9 5377,2 5423,5 5836,4 5966,7 6655,5 6769,1 6852,6 6919,9 6966,4 7702,0 8005,0 8411,4Gemisch 30 10 50 40 2541,8 2582,0 2621,9 2639,1 2670,6 2679,7 2692,7 2748,1 2803,9 2966,3 2983,0 3000,3 3327,0 3384,0 3426,9 3457,1 3483,6 3510,3 3533,8 3547,8 3571,3 3579,8 3593,7 3609,8 3626,3 3639,7 3645,0 3661,7 3673,0 3681,1 3689,8 3696,4 3705,7 3720,6 3741,5 3749,4 3757,3 3765,3 3775,9 3787,7 3941,8 4001,8 4172,3 4206,1 4337,2 4428,4 4528,6 4542,6 4558,8 4894,7 4911,7 5013,2 5055,8 5275,6 5776,5 5832,8 5964,1 6651,3 6765,7 6851,3 7999,9 8409,6Gemisch 31 95 5 2537,5 2609,3 2621,8 2636,2 2646,4 2674,4 2682,7 2690,5 2823,5 2839,5 2965,5 2978,5 3064,0 3283,5 3314,9 3340,3 3348,9 3378,8 3422,2 3478,0 3528,6 3774,3 3865,7 3936,3 4166,0 4422,0 4484,4 4515,3 4520,9 4566,6 4595,3 4790,8 4901,3 5291,4 5364,2 6123,3 6271,1 6629,2 6697,8 6756,8 6843,5 7548,1 8424,2 9024,4 9078,3 9377,7 9582,6Gemisch 32 99 1 2536,9 2608,9 2622,1 2636,9 2646,3 2667,2 2674,2 2682,4 2690,5 2719,0 2786,4 2823,7 2839,5 2964,8 2971,8 2977,8 3064,1 3314,3 3324,9 3340,1 3348,8 3378,9 3407,5 3422,4 3452,6 3478,1 3528,3 3865,6 3935,4 4165,9 4304,9 4421,6 4466,9 4484,3 4499,7 4515,5 4531,4 4548,1 4566,0 5290,9 5348,1 5363,9 5379,7 5950,6 6628,5 6697,6 6756,6 6843,4 8426,5 8607,6Gemisch 33 95 5 2536,5 2620,2 2636,2 2651,3 2675,3 2682,9 2691,3 2768,8 2799,5 2839,9 2965,0 2979,4 2997,8 3170,5 3301,7 3323,6 3348,7 3386,2 3425,4 3574,0 3613,1 3866,8 3880,0 3950,1 4030,5 4200,9 4452,4 4597,8 4791,1 5269,7 5348,9 5364,4 5929,2 6127,2 6255,7 6262,7 6646,2 6698,6 6772,0 6797,0 6845,5 7996,8 8428,6 9071,7 9581,3Gemisch 34 99 1 2510,1 2520,0 2620,4 2636,6 2652,1 2675,5 2682,7 2691,1 2769,2 2840,4 2857,7 2965,1 2985,3 2998,3 3170,8 3302,3 3341,4 3350,1 3386,6 3425,7 3448,6 3574,1 3866,4 3880,4 4030,7 4452,8 4516,8 4533,1 4598,5 4903,6 4919,2 5349,2 5379,8 5928,6 6125,2 6254,9 6698,7 6772,4 6795,7 6845,5 8428,7Gemisch 35 95 5 2598,8 2618,0 2637,8 2655,4 2676,8 2770,7 2841,8 2966,8 2999,7 3172,4 3303,6 3318,3 3330,7 3351,3 3388,6 3425,8 3481,0 3532,1 3575,6 3613,8 3762,7 3869,4 3882,1 4032,8 4203,8 4215,4 4455,1 4530,0 4600,4 4792,8 4905,6 5351,4 5931,6 6128,0 6188,3 6258,4 6702,3 6775,7 6799,6 6847,9 7737,4 8037,8 8430,1 9070,3 9314,4 9585,5 9791,0Gemisch 36 99 1 2675,3 2683,3 2751,6 2768,9 2785,5 2799,0 2840,0 2944,8 2967,5 2984,0 2998,2 3055,6 3131,0 3171,3 3303,0 3316,1 3349,4 3380,8 3426,5 3449,7 3574,1 3866,3 3880,0 3950,8 3973,7 3986,9 4030,7 4201,0 4452,7 4515,9 4556,1 4597,9 4624,2 4668,0 5349,0 5364,8 5379,8 5929,1 6698,8 6772,0 6845,0Gemisch 37 5 95 2627,1 2635,1 2664,6 2691,2 2721,4 2800,5 2913,4 2957,9 2978,9 3063,4 3322,8 3379,1 3422,2 3452,4 3478,4 3506,6 3817,3 3847,5 3865,7 3996,6 4167,0 4200,4 4422,4 4538,5 4567,3 4754,0 4791,2 5049,5 5226,8 5268,7 5313,1 5783,7 5825,3 5915,0 5956,9 6125,8 6271,8 6605,7 6645,0 6757,8 6844,4 6956,7 7512,6 7694,8 7993,2 8401,3 9077,1 9582,2 10100,0 10415,4 10629,7 11002,4Gemisch 38 1 99 2517,7 2627,2 2635,9 2665,3 2675,9 2683,9 2691,7 2700,2 2722,3 2745,0 2881,8 2958,8 2979,8 3064,6 3323,7 3353,6 3380,0 3423,5 3455,0 3479,3 3507,4 3849,2 3866,7 4201,6 4423,4 4485,4 4537,3 4568,1 4729,2 4904,0 5269,7 5349,9 5366,4 5381,7 5827,9 5916,0 5957,9 6126,2 6273,4 6645,9 6701,9 6758,7 6845,8 6957,7 7523,4 7995,2 8402,2 9077,4Gemisch 39 5 95 2612,6 2635,7 2675,8 2683,7 2691,5 2722,6 2746,1 2958,4 2966,1 2979,6 3063,8 3137,3 3302,6 3323,5 3340,4 3350,7 3379,6 3423,4 3453,9 3479,2 3866,8 3997,8 4229,9 4238,0 4423,0 4485,3 4502,7 4532,6 4568,0 4614,0 4792,0 4846,1 5227,7 5269,3 5349,7 5365,7 5381,5 5826,1 5957,2 6125,7 6255,8 6272,6 6645,1 6699,4 6757,9 6845,4Gemisch 40 1 99 2635,6 2666,6 2675,9 2683,6 2691,4 2707,8 2722,2 2958,4 2979,5 3323,4 3352,1 3379,7 3423,1 3453,7 3478,9 3507,1 3848,6 3866,3 4201,3 4423,0 4486,3 4537,6 4567,9 4612,2 4729,3 4902,9 5269,3 5330,6 5349,8 5365,8 5380,8 5828,1 5916,0 5957,5 6102,9 6127,0 6263,3 6645,5 6701,4 6758,3 6803,0 6845,7 6957,4 7695,6 8403,4 8461,9 9077,9Gemisch 41 90 5 5 2621,0 2637,0 2675,9 2769,6 2799,2 2831,8 2840,7 2858,5 2966,2 2983,7 2998,9 3172,0 3303,1 3321,7 3350,8 3387,7 3399,7 3427,3 3449,1 3575,2 3867,5 3881,1 3952,0 3974,5 4031,9 4202,6 4381,3 4424,0 4454,0 4517,2 4554,1 4565,8 4582,5 4598,7 5270,3 5350,8 5930,9 6649,3 6701,0 6772,6 6847,7Gemisch 42 5 90 5 2510,3 2610,6 2624,8 2637,8 2648,6 2659,3 2676,2 2684,6 2692,3 2745,6 2771,1 2825,5 2841,4 2980,4 3066,5 3316,5 3324,8 3342,1 3351,1 3381,0 3409,6 3424,6 3449,1 3480,2 3531,1 3711,0 3868,2 3938,4 4168,6 4424,6 4454,1 4487,6 4533,6 4553,2 4569,5 4905,3 5230,5 5271,7 5294,4 5351,8 5367,4 5382,9 5959,3 6633,6 6701,9 6760,8 6847,6Gemisch 43 5 5 90 2524,1 2538,6 2553,8 2637,3 2666,4 2677,5 2685,4 2723,4 2960,3 2981,2 3325,6 3381,7 3425,1 3480,6 3509,0 3531,6 3726,6 3851,0 3868,6 3999,5 4169,5 4203,4 4308,8 4425,6 4538,7 4570,8 4614,8 4731,2 4906,1 5272,4 5353,1 5368,8 5829,9 5960,7 6105,3 6129,2 6275,3 6649,3 6704,7 6762,0 6848,6 7512,4 7698,5 7997,7 8406,4

7. AnhangPeakmassenliste der 43 Gemische (Tabelle 10)

95

Page 108: Identifizierung des Keims Streptococcus mutans

96

8. Danksagung

Herrn Prof. Dr. Stefan Rupf möchte ich für die Vergabe des Themas, die fachliche Beratung

bei der Vorbereitung und Durchführung der Untersuchungen, sowie für seine Hilfe bei der

Niederschrift dieser Arbeit bedanken. Mein besonderer Dank gilt Herrn Prof. Klaus Eschrich,

Institut für Biochemie der Medizinischen Fakultät der Universität Leipzig, der mich ebenso

konstruktiv bei der Erstellung der Arbeit unterstützt hat. Der gesamten Arbeitsgruppe Prof.

Eschrich am Institut für Biochemie danke ich für die nette Zusammenarbeit, die ständige

Hilfsbereitschaft und die angenehme Atmosphäre. Für die Unterstützung und Hilfe, besonders

bei der Auswertung der MALDI-TOF-Massenspektren, möchte ich Prof. Dr. Wolfgang Schel-

lenberger meinen Dank aussprechen. Des Weiteren möchte ich der Arbeitsgruppe „Vaskuläre

Biologie“ am Fraunhoferinstitut für Zelluläre Immunologie (IZI) in Leipzig unter Leitung von

Herrn Dr. Andreas Schubert für die Hilfe bei der Kultivierung der Bakterien danken. Frau

Zahnärztin Susanne Nowak gilt der Dank für die Beschaffung der klinischen Isolate.

Ich möchte meiner Mutter Silke und meinem Vater Dietrich sowie meiner Frau Karolin dan-

ken, die mich während des gesamten Studiums und besonders in der Zeit meiner Promotions-

arbeit unterstützt haben.

Page 109: Identifizierung des Keims Streptococcus mutans

97