Impact’ofnanomaterialsona’ soilbased ’ecosystem’ · Impact’ofnanomaterialsona’...

16
Impact of nanomaterials on a soilbased ecosystem Catherine Santaella, Mohamed Hamidat, Cécile Simonet, Philippe Ortet, Mohamed Barakat, Wei Liu, Wafa Achouak UMR 7565 CNRS CEAAMU, Lab Ecologie Microbienne de la Rhizophère et Environnements Extrêmes, St Paul lez Durance, France Serenade

Transcript of Impact’ofnanomaterialsona’ soilbased ’ecosystem’ · Impact’ofnanomaterialsona’...

Page 1: Impact’ofnanomaterialsona’ soilbased ’ecosystem’ · Impact’ofnanomaterialsona’ soilbased ’ecosystem’! Catherine!Santaella, MohamedHamidat,Cécile Simonet,’ Philippe’Ortet,Mohamed

Impact  of  nanomaterials  on  a  soil-­‐based  ecosystem  

 Catherine  Santaella,  Mohamed  Hamidat,  Cécile  Simonet,    Philippe  Ortet,  Mohamed  Barakat,  Wei  Liu,  Wafa  Achouak    UMR  7565    CNRS-­‐  CEA-­‐AMU,    Lab  Ecologie  Microbienne  de  la  Rhizophère  et  Environnements  Extrêmes,    St  Paul  lez  Durance,  France  

Serenade

Page 2: Impact’ofnanomaterialsona’ soilbased ’ecosystem’ · Impact’ofnanomaterialsona’ soilbased ’ecosystem’! Catherine!Santaella, MohamedHamidat,Cécile Simonet,’ Philippe’Ortet,Mohamed

Soil  is  a  complex  system  that  hosts  a  complex  food  web  

From  Holden  et  al.  2013  and  www.sbpfoodwebwords    

Page 3: Impact’ofnanomaterialsona’ soilbased ’ecosystem’ · Impact’ofnanomaterialsona’ soilbased ’ecosystem’! Catherine!Santaella, MohamedHamidat,Cécile Simonet,’ Philippe’Ortet,Mohamed

Soil  is  a  complex  system    

Soil  is  the  matrix  of  a  multilayer  food  web  structures  Soil  is  a  complex  interface  between  gases-­‐solid-­‐water-­‐organic/inorganic  matters  and  organisms    

 Assemblage  of  sand,  silt,  clay,  organic  matter,  root  hairs,  microorganisms  and  their  secretions,  and  resulting  pores.  2012  Nature  Education  

A  soil  aggregate  in  the  rhizosphere  

http://www.qld.gov.au/environment/land/soil/soil-­‐properties/water/  

Soil  porosity  

Page 4: Impact’ofnanomaterialsona’ soilbased ’ecosystem’ · Impact’ofnanomaterialsona’ soilbased ’ecosystem’! Catherine!Santaella, MohamedHamidat,Cécile Simonet,’ Philippe’Ortet,Mohamed

Estimated  global  mass  flow  of  ENMs  (in  metric  tons  per  year)    from  production  to  disposal  or  release,  

 considering  high  production  and  release  estimates  as  of  2010  

(Keller  et  al,  ES&T  2013)  

128  900    t/year  

Page 5: Impact’ofnanomaterialsona’ soilbased ’ecosystem’ · Impact’ofnanomaterialsona’ soilbased ’ecosystem’! Catherine!Santaella, MohamedHamidat,Cécile Simonet,’ Philippe’Ortet,Mohamed

Modeled  concentrations  of  engineered  nanomaterials  in  soils    and  soils  treated  with  biosolids  

1.  Mueller  and  Nowack,  2008  high  exposure  scenario  of  diffusive  ENMs  at  regional  level  (Switzerland)    2.  Gottschalk  et  al.,  2009,  exposure  scenario  from  ENM  emissions  at  Europe  level    3.  Musee,  2010    Johannesburg  Metropolitan  City  (South  Africa)  ENM  release  from  cosmetic  products  via  WWTPs  4.  Park  et  al.,  2008.  considering  the  ENM  accumulated  in    soils  near  highways  during  a  40-­‐year  period  ().  

Page 6: Impact’ofnanomaterialsona’ soilbased ’ecosystem’ · Impact’ofnanomaterialsona’ soilbased ’ecosystem’! Catherine!Santaella, MohamedHamidat,Cécile Simonet,’ Philippe’Ortet,Mohamed

Could  nanoparticles  be  the  next  DDT  or  PCB?  (Kevin  Heath)  

 Soil samples taken from unpolluted arctic environments and then contaminated with silver NPs (0,066% Ag, 20 nm) . The soils were examined over a 6 month period

Nano-silver can be toxic to Rhizobiales, nitrogen-fixing symbiotic bacteria

Kumar et al, Journal of Hazardous Materials 2011

Stacked bar representation of 16S rRNA gene sequence association to orders in control and silver-nanoparticles treated soils

Luteibacter    rhizovicinus  (92%)  

Bradyrhizobium  canariense  (99%)  

Page 7: Impact’ofnanomaterialsona’ soilbased ’ecosystem’ · Impact’ofnanomaterialsona’ soilbased ’ecosystem’! Catherine!Santaella, MohamedHamidat,Cécile Simonet,’ Philippe’Ortet,Mohamed

Negative  effects  of  nano-­‐TiO2  on  bacterial  soil  community  (Ge  et  al,  2011)  

Nano-­‐TiO2  semispherical,15-­‐20  nm;    81%  anatase  and  19%  rutile  (Evonyk  Degussa)  

•  Soil  Bacterial  Community  Shifts              and  Diversity  Declines    •  Effects  on  microbial  enzymatic  activities    

•  Negative  effects  of  nano-­‐TiO2            on  substrate  induced  respiration  (SIR)  

•  Nano-­‐TiO2  reduced  extractable  soil  DNA  

Page 8: Impact’ofnanomaterialsona’ soilbased ’ecosystem’ · Impact’ofnanomaterialsona’ soilbased ’ecosystem’! Catherine!Santaella, MohamedHamidat,Cécile Simonet,’ Philippe’Ortet,Mohamed

What  do  we  know  on  the  impact  of  nanos  on  soils  and  plants?  

Ref   Nanos   Plant   Effects  

Rico  et  al.  2013   nCeO2   Rice   No  visible  signs  of  toxicity,  nCeO2  concentration-­‐dependent  modification  of  oxidative  stress  and  antioxidant  defense  system.  Reduction  of  H2O2  generation  in  both  shoots  and  roots  but  enhanced  membrane  damage  and  photosynthetic  stress  in  the  shoots  were  observed  at  500  mg  nCeO2  L−1  

Morales  et  al.  2013  

nCeO2   Coriandrum  sativum  L.  

at  125  mg  kg−1  the  CeO2  NPs  changed  the  conformation  of  carbohydrates.  This  suggests  that  the  CeO2  NPs  could  change  the  nutritional  properties  of  cilantro  

Colman  et  al.2013  

Ag  biosolid  

Sedge;  Rush;      Forb;    Grass  

Reduction  of  biomass,  decrease  of  microbial  enzymatic  activities  (phosphatase,  leucine  amino  peptidase)  ,  fifty  days  to  restore  bacterial  community  composition,  nano  effect  

Priester  et  al.  2012  

nCeO2  nZnO  

Soybean   nano-­‐ZnO  taken  up  in  edible  plant  tissues,    nano-­‐CeO2,  plant  growth  and  yield  diminished,  nitrogen  fixation  was  shut  down  

Page 9: Impact’ofnanomaterialsona’ soilbased ’ecosystem’ · Impact’ofnanomaterialsona’ soilbased ’ecosystem’! Catherine!Santaella, MohamedHamidat,Cécile Simonet,’ Philippe’Ortet,Mohamed

What  do  we  know  on  the  impact  of  nanos  on  soils  and  plants?  

Reference   Nanos   Plant   Days   Conc  tested   Preditecd  environmental  concenration    in  soil  (Biosolid*)  

Rico  et  al,  2013  

nCeO2   Rice   10   62,6  -­‐500  mg/L   0.28  -­‐  1.12  mg/kg  

Morales  et  al.  2013  

nCeO2   Coriandrum  sativum  L.  

30   62  -­‐500  mg/kg   0.28  -­‐  1.12  mg/kg  

Colman  et  al.  2013  

Ag  biosolid  

Sedge;  Rush;    Forb;  Grass  

50   0.14  mg/kg   0.02-­‐0.1  µg/kg  

Priester  et  al.  2012  

nCeO2  nZnO  

Soybean   30   100  -­‐1000  mg/kg  50  -­‐500  

0.28  -­‐  1.12  mg/kg  +3.2  µg/kg/year*    

x60  

x60  

x1000  

X100    

*  Sludge  treated  soil  

Page 10: Impact’ofnanomaterialsona’ soilbased ’ecosystem’ · Impact’ofnanomaterialsona’ soilbased ’ecosystem’! Catherine!Santaella, MohamedHamidat,Cécile Simonet,’ Philippe’Ortet,Mohamed

Cerium  oxide  nanoparticles    

Additives   in   fuels,   chemical   mechanical   planarization,  microelectronics,   catalysis,   and   UV-­‐absorbers   in   surface   coating  and  sunscreen  cosmetics,  biomedical  applications  (SOD)              Based   on   the   sole   use   in   fuels,   environmental   concentrations   of  nano-­‐CeO2  in  soils  over  40  years  are  estimated  in  the  range:  0.28  -­‐  1.12  mg/kg  in  soils  (Park  et  al,  2008)        

Page 11: Impact’ofnanomaterialsona’ soilbased ’ecosystem’ · Impact’ofnanomaterialsona’ soilbased ’ecosystem’! Catherine!Santaella, MohamedHamidat,Cécile Simonet,’ Philippe’Ortet,Mohamed

Terrestrial  mesocosms    Calcareous  soils  pH  7.6,  parcel  under  wheat  

From  Prospect  Global                  Material  Services  2010        From  M.  Auffan   From  M.  Auffan  

Rapeseed  (Brassica  napus)  

Three  types    of  CeO2  nanoparticles  

170,4  (100%)  10,16  nm  (77,3  %)    156,0  nm  (21,4  %)  

 Citrate-­‐coated  CeO2  8,99  (97,3%)    

nCeO2  

TEM  

DLS  

Nanobyk   Umicore  

Metal&Soil%%from%%

Aix+en%–Provence%mg/kg%

Common%range%for%soils%mg/kg%

(Lindsay%1979)%%%

Al&& 15%600% 10%000%+%300%000%

Fe& 11%170% 7%000%+%550%000%Mn& 240% 20%+%3000%Cu& 11% 2%+%100%Cd& 0.8% 1%+%1000%Zn& 95% 10%+%300%Ni& 246% 5%+%500%As& 5.7% 1%+%50%Ag& 0.2% 0.01%+%5%Ce&& 19% 1%+%50%

Page 12: Impact’ofnanomaterialsona’ soilbased ’ecosystem’ · Impact’ofnanomaterialsona’ soilbased ’ecosystem’! Catherine!Santaella, MohamedHamidat,Cécile Simonet,’ Philippe’Ortet,Mohamed

Terrestrial  mesocosms    nCeO2  

CeO2    1  mg/kg  

Sieving  4  mm  

Sieving  4  mm  15%  humidity  

20%  humidity  

Seeding  

Phytotrons  (CEA-­‐IBEB-­‐GRAP)  Atmospheric  gaseous  composition    Temperature  Irradiance  levels  and  light  periods  Watering  30j  

Ce  mass  balance  ICP-­‐AES  

Page 13: Impact’ofnanomaterialsona’ soilbased ’ecosystem’ · Impact’ofnanomaterialsona’ soilbased ’ecosystem’! Catherine!Santaella, MohamedHamidat,Cécile Simonet,’ Philippe’Ortet,Mohamed

Root  tissue  

Bulk  soil  Unplanted  soil  

Root  adhering  soil  

DNA-­‐based  pyrosequencing  to  characterize  the  structure  of  the  bacterial  communities  

associated  to  roots,  rhizospheric  soil  and  bulk  soil  

DNA/RNA  extrac-on  from  each  compartment  

Amplifica-on  of  genes    of  interest  

High  throughput  sequencing  techniques    

Soil  and  root-­‐associated  microbiomes  in  response  to  nCeO2  Soil  enzymatic  activities  

 nCeO2  treated  and  control  plants    nCeO2  treated  and  control  soils  

Bacterial  enzymatic  activities  (protease,  urease,  acid  phosphatase,  β-galactosidase…)  

Page 14: Impact’ofnanomaterialsona’ soilbased ’ecosystem’ · Impact’ofnanomaterialsona’ soilbased ’ecosystem’! Catherine!Santaella, MohamedHamidat,Cécile Simonet,’ Philippe’Ortet,Mohamed

Impact  of  nanoCeO2  on  microbial  community  structure    in  different  soil  compartments:  

Nanos  of  CeO2  strongly  rather    associate  to  organic  matter  in  culture  medium  (Pelletier  et  al.,  2our  study)  or  in  sludge    than  to  cells    In  the  rhizosphere,  bacteria  develop  from  different  organic  sources:  root  exudates  or  soil  organic  matter  (SOM)    Labelling  root  exudates  from  phototransformation  of  13CO2    by  the  plant  allows  to  differentiate  bacteria  developing  from  SOM  or  root  exudates  bacterial  communities      

Coll.  Feth-­‐el-­‐zahar  HAICHAR-­‐BAYA,  Univ  Lyon  

Page 15: Impact’ofnanomaterialsona’ soilbased ’ecosystem’ · Impact’ofnanomaterialsona’ soilbased ’ecosystem’! Catherine!Santaella, MohamedHamidat,Cécile Simonet,’ Philippe’Ortet,Mohamed

•  Environmental    doses  and    realistic  exposition  of  organisms  

•  Potential  ecoreceptors  to  nanoparticles  

•  Cross  effects  of  nanoparticles  and  other  pollutants!  

•  Aged  nanoparticles  /  nanomaterials,  mixed  nanomaterials  and  life  cycle  

•  Caracterization  of  nanos  in  biological  interactions  at  low  concentration  

•  Better  understanding  of  what  properties  govern  nanos  «  Safe  by  design  »    

•  INTERDISCIPLINARITY!    •  Microbial  ecology,  microbiology,chemistry,  physicochemistry,  soil  

science,  plant  physiology,  modeling...  

Our next approaches:  

Serenade

Page 16: Impact’ofnanomaterialsona’ soilbased ’ecosystem’ · Impact’ofnanomaterialsona’ soilbased ’ecosystem’! Catherine!Santaella, MohamedHamidat,Cécile Simonet,’ Philippe’Ortet,Mohamed

Thanks  to  you!    

Mohamed  Hamidat  Cécile  Simonet  Philippe  Ortet  Mohamed  Barakat  Wei  Liu  Wafa  Achouak      Mélanie  Auffan  Jean  Yves  Bottero  Jérome  Rose        CytoViVa,  Byron  Cheatham      ANR  MESONNET  directed  by  Jean  Yves  Bottero  ANR  AgingNano&Troph  directed  by  Jérome  Rose  

And  to:  

Serenade

!!