K Standards der Sportmedizin - egofit.de · Muskel- und Gesamtkörpermasse sogar günstig auf die...

14
Jahrgang 54, Nr. 5 (2003) DEUTSCHE ZEITSCHRIFT FÜR SPORTMEDIZIN 153 Körperfettmessung Standards der Sportmedizin K.-P. Herm Methoden der Körperfettbestimmung Körperdepotfettbestimmungen werden regelmäßig an Sportlern durch- geführt, um Körperfett und fettfreie Masse anteilmäßig zu beurteilen. Dadurch kann der Bezug zum Trainings-, Gesundheits- oder Ernährungszustand hergestellt werden. Es gibt drei Methodenbereiche zur Körperfettbestimmung: Die anthropometrische Methode (z.B.: Kali- permetrie), die Labormethode (z.B.: Densitometrie) und neuere Metho- den (z.B.: Bioelektrische Impedanz Analyse - BIA). Hinsichtlich ihrer Vor- und Nachteile werden die verschiedenen Methoden verglichen und kritisch bewertet. Die Kalipermetrie ist eine ausreichend genaue Metho- de zur Körperfettbestimmung bei Sportlern. Das Körperdepotfett ist nicht nur Ballastsubstanz, sondern auch eine wichtige aerobe Energiequelle. Bei niedrig intensiven und langdauern- den Belastungen ist es am Stoffwechselprozess wesentlich beteiligt. In der Regel soll sein Anteil an der Körpermasse möglichst niedrig, jedoch je nach Sportart in einem optimalen Bereich gehalten werden. In ver- schiedenen Sportarten (z.B. Kugelstoßen, Gewichtheben, Sumoringen) kann sich ein prozentual höherer Körperdepotfettanteil bei einer hohen Muskel- und Gesamtkörpermasse sogar günstig auf die sportartspezifi- sche Leistungsfähigkeit auswirken. Die Höhe der Fettwerte lässt Rück- schlüsse auf den Ernährungszustand (Über-, Untergewicht, Adipositas), den Gesundheitszustand (Herz–Kreislauf- oder Stoffwechselerkrankun- gen) und die sportliche Leistungsfähigkeit (Kraft, Schnelligkeit, Aus- dauer) zu. Mit der Bestimmung des Körperdepotfettes sind Rückschlüs- se auf die aktive Körpersubstanz (Muskulatur und Knochenbau) mög- lich. Diese Teilkörpermassen gestatten eine bessere Bewertung des Körperbauzustandes als einfache Körperbauindizes wie z.B. der Körper- masseindex (Body Mass Index = BMI; früher KAUP - Index), der BRO- CA - Index oder auch der Index der Körperfülle (ROHRER – Index). Die- se schätzen nur das Verhältnis von Körperhöhe und Körpermasse zu- einander, bei differenzierter Dimensionalität der Körperhöhe ein. Sportler mit viel Muskelmasse können einen hohen BMI aufweisen, so dass fälschlicherweise ein zu hoher Fettanteil angenommen wird. Aus dem Bestreben, möglichst exakt das Körperdepotfett des Organismus zu bestimmen, wurden die heute existierenden verschiedenen Methoden entwickelt (Tab. 1). Die Anteile des Körperdepotfettes werden auf der Grundlage einer me- trischen Erfassung der Hautfaltendicke an verschiedenen Stellen des Körpers, bei einer Orientierung anhand von morphologischen Merkma- len, bestimmt. Die einfachste Methode ist die Kalipermetrie. Mit einem Kaliper (z.B. Slim Guide, Harpenden, Holtain oder Lange Hautfalten Ka- liper) wird die doppelte Hautfalte durch Abheben der Haut mittels Zei- gefinger und Daumen gemessen. Diese Methode ist kostengünstig und mit einem Messfehler von 3 % hinreichend genau.. Durch vorgegebene Messvorschriften ist eine Untersuchung leicht und präzise zu handha- ben. Die Hautfaltenmessung ist sowohl im Labor als auch bei Feldun- Anthropometrische Methoden Einleitung Zusammenfassung tersuchungen (Training, Wettkampf) anwendbar. Durch die vorhandene standardisierte Messtechnik und -methodik kann der Untersucher ein- zelne oder mehrere Hautfaltenmessungen mittels Kaliper vornehmen. Auf Grund der Hautfaltensumme wird das gesamte Körperdepotfett er- fasst bzw. anhand einzelner Messstellen die Verteilung des Unterhaut- fettgewebes verschiedener Bereiche des Körpers beurteilt. Vor den Mes- sungen ist zu klären, nach welcher Methode, die durch Art und Anzahl der Hautfalten charakterisiert sein kann, gemessen werden soll. In der Sportpraxis werden standardisierte Messvorschriften (1, 2, 5, 6) mit den entsprechenden Vorgaben genutzt. Im weiteren Sinne gehören zu den anthropometrischen Methoden auch teure und aufwändige Verfahren wie die Weichteilröntgenografie, die Computertomografie, die Magnetresonanztomografie sowie die Sono- grafie. Dabei wird das auf einem Bildschirm abgebildete Fettgewebe ver- messen und die Stärke des Körperfettes an den gewünschten Stellen er- mittelt. Die röntgenologischen Methoden haben eine hohe Messgenau- igkeit, sind aber zum Teil strahlenbelastend und die Auswertung erfordert qualifiziertes Fachpersonal. Die nicht strahlenbelastende Ultraschallmessung des Körperfettes ist ge- genüber der Kalipermetrie zeitaufwändiger und erfordert eine Ultra- schallbefähigung. Die Korrelation zwischen Hautfalten- und Ultra- schallmessung wird mit r = 0.8 angegeben. Mit der Densitometrie wird durch Unterwasserwägung - deshalb auch Hy- drodensitometrie genannt - die Körperdichte ermittelt. Diese ergibt sich aus der Formel: Körperdichte (g · cm -3 ) = Körpermasse (g) / Körpervolumen (cm 3 ). Über das Verhältnis von Körpermasse zu Körpervolumen werden Fett und fettfreie Masse bestimmt. Die Densitometrie ist auch die Referenzmethode für die Kalipermetrie. Eine densitometrische Untersuchung ist sehr zeit- aufwändig. Beispielsweise ist vor der Unterwasserwägung eine Restluftbe- stimmung nötig, um möglichst exakte Dichtewerte zu erhalten. Dieses Ver- fahren wird nur für ausgewählte Untersuchungen in einem Labor mit Was- sertank herangezogen. Die Körperwasserbestimmung oder Hydrometrie, auch Gesamtkörper- wasserschätzung (GKW) genannt, beruht auf dem Verdünnungsprinzip von Flüssigkeiten (Blut), wobei mit Hilfe von Deuterium, Tritium und Harnstoff entsprechende Analysen erfolgen. Grundlage ist die Annahme, dass Körperwasser einen konstanten Anteil von 73,2 % fettfreier Körper- masse ausmacht (GKW = ffM · 0,73). Die Korrelation zwischen Körper- masse und Gesamtkörperwasser ist mit r = 0,96 bis 0,99 sehr hoch. Diese Methode ist nur in entsprechend technisch gut ausgerüsteten Labors mit qualifiziertem Personal möglich. Die Messgenauigkeit ist sehr gut. Ähnliches trifft auch für die Bestimmung des Körperkaliums zu. In der Kaliometrie wird das Gesamtkörperkalium über das Isotop 42 K bestimmt. Die Untersuchungen erfordern intravenöse Zugänge, analysieren den Ka- liumbestand mittels Gammastrahlen und beurteilen das Verhältnis von körpereigenem Kalium und fettfreiem Gewicht. Die hohen Kosten sowie eine lange Untersuchungsdauer lassen diese Methode im Sport als nicht praxisrelevant erscheinen. Zu den neueren Methoden gehören Impedanzmessung und Infrarotmes- sung. Beide wurden zunächst für andere Bereiche, z.B. in der Landwirt- schaft und für die Bestimmung des Feuchtigkeits- oder Eiweißanteils von Getreidesorten, entwickelt. Am verbreitetsten ist die Impedanzmessung, bei der die elektrische Leitfähigkeit des Organismus bestimmt wird. Das magere Muskelgewebe hat wegen des höheren Flüssigkeits- und Elektro- lytgehaltes eine größere elektrische Leitfähigkeit als das Fettgewebe, so Neuere Methoden Klassische Labormethoden

Transcript of K Standards der Sportmedizin - egofit.de · Muskel- und Gesamtkörpermasse sogar günstig auf die...

Page 1: K Standards der Sportmedizin - egofit.de · Muskel- und Gesamtkörpermasse sogar günstig auf die sportartspezifi- ... (Training, Wettkampf) anwendbar. Durch die vorhandene ... X

Jahrgang 54, Nr. 5 (2003) DEUTSCHE ZEITSCHRIFT FÜR SPORTMEDIZIN 153

Körperfettmessung Standards der SportmedizinK.-P. Herm

Methoden der Körperfettbestimmung

Körperdepotfettbestimmungen werden regelmäßig an Sportlern durch-geführt, um Körperfett und fettfreie Masse anteilmäßig zu beurteilen.Dadurch kann der Bezug zum Trainings-, Gesundheits- oderErnährungszustand hergestellt werden. Es gibt drei Methodenbereichezur Körperfettbestimmung: Die anthropometrische Methode (z.B.: Kali-permetrie), die Labormethode (z.B.: Densitometrie) und neuere Metho-den (z.B.: Bioelektrische Impedanz Analyse - BIA). Hinsichtlich ihrerVor- und Nachteile werden die verschiedenen Methoden verglichen undkritisch bewertet. Die Kalipermetrie ist eine ausreichend genaue Metho-de zur Körperfettbestimmung bei Sportlern.

Das Körperdepotfett ist nicht nur Ballastsubstanz, sondern auch einewichtige aerobe Energiequelle. Bei niedrig intensiven und langdauern-den Belastungen ist es am Stoffwechselprozess wesentlich beteiligt. Inder Regel soll sein Anteil an der Körpermasse möglichst niedrig, jedochje nach Sportart in einem optimalen Bereich gehalten werden. In ver-schiedenen Sportarten (z.B. Kugelstoßen, Gewichtheben, Sumoringen)kann sich ein prozentual höherer Körperdepotfettanteil bei einer hohenMuskel- und Gesamtkörpermasse sogar günstig auf die sportartspezifi-sche Leistungsfähigkeit auswirken. Die Höhe der Fettwerte lässt Rück-schlüsse auf den Ernährungszustand (Über-, Untergewicht, Adipositas),den Gesundheitszustand (Herz–Kreislauf- oder Stoffwechselerkrankun-gen) und die sportliche Leistungsfähigkeit (Kraft, Schnelligkeit, Aus-dauer) zu. Mit der Bestimmung des Körperdepotfettes sind Rückschlüs-se auf die aktive Körpersubstanz (Muskulatur und Knochenbau) mög-lich. Diese Teilkörpermassen gestatten eine bessere Bewertung desKörperbauzustandes als einfache Körperbauindizes wie z.B. der Körper-masseindex (Body Mass Index = BMI; früher KAUP - Index), der BRO-CA - Index oder auch der Index der Körperfülle (ROHRER – Index). Die-se schätzen nur das Verhältnis von Körperhöhe und Körpermasse zu-einander, bei differenzierter Dimensionalität der Körperhöhe ein.Sportler mit viel Muskelmasse können einen hohen BMI aufweisen, sodass fälschlicherweise ein zu hoher Fettanteil angenommen wird. Ausdem Bestreben, möglichst exakt das Körperdepotfett des Organismus zubestimmen, wurden die heute existierenden verschiedenen Methodenentwickelt (Tab. 1).

Die Anteile des Körperdepotfettes werden auf der Grundlage einer me-trischen Erfassung der Hautfaltendicke an verschiedenen Stellen desKörpers, bei einer Orientierung anhand von morphologischen Merkma-len, bestimmt. Die einfachste Methode ist die Kalipermetrie. Mit einemKaliper (z.B. Slim Guide, Harpenden, Holtain oder Lange Hautfalten Ka-liper) wird die doppelte Hautfalte durch Abheben der Haut mittels Zei-gefinger und Daumen gemessen. Diese Methode ist kostengünstig undmit einem Messfehler von 3 % hinreichend genau.. Durch vorgegebeneMessvorschriften ist eine Untersuchung leicht und präzise zu handha-ben. Die Hautfaltenmessung ist sowohl im Labor als auch bei Feldun-

Anthropometrische Methoden

Einleitung

Zusammenfassung

tersuchungen (Training, Wettkampf) anwendbar. Durch die vorhandenestandardisierte Messtechnik und -methodik kann der Untersucher ein-zelne oder mehrere Hautfaltenmessungen mittels Kaliper vornehmen.Auf Grund der Hautfaltensumme wird das gesamte Körperdepotfett er-fasst bzw. anhand einzelner Messstellen die Verteilung des Unterhaut-fettgewebes verschiedener Bereiche des Körpers beurteilt. Vor den Mes-sungen ist zu klären, nach welcher Methode, die durch Art und Anzahlder Hautfalten charakterisiert sein kann, gemessen werden soll. In derSportpraxis werden standardisierte Messvorschriften (1, 2, 5, 6) mit denentsprechenden Vorgaben genutzt.Im weiteren Sinne gehören zu den anthropometrischen Methoden auchteure und aufwändige Verfahren wie die Weichteilröntgenografie, dieComputertomografie, die Magnetresonanztomografie sowie die Sono-grafie. Dabei wird das auf einem Bildschirm abgebildete Fettgewebe ver-messen und die Stärke des Körperfettes an den gewünschten Stellen er-mittelt. Die röntgenologischen Methoden haben eine hohe Messgenau-igkeit, sind aber zum Teil strahlenbelastend und die Auswertungerfordert qualifiziertes Fachpersonal.Die nicht strahlenbelastende Ultraschallmessung des Körperfettes ist ge-genüber der Kalipermetrie zeitaufwändiger und erfordert eine Ultra-schallbefähigung. Die Korrelation zwischen Hautfalten- und Ultra-schallmessung wird mit r = 0.8 angegeben.

Mit der Densitometrie wird durch Unterwasserwägung - deshalb auch Hy-drodensitometrie genannt - die Körperdichte ermittelt. Diese ergibt sichaus der Formel: Körperdichte (g · cm-3) = Körpermasse (g) / Körpervolumen (cm3). Über das Verhältnis von Körpermasse zu Körpervolumen werden Fett undfettfreie Masse bestimmt. Die Densitometrie ist auch die Referenzmethodefür die Kalipermetrie. Eine densitometrische Untersuchung ist sehr zeit-aufwändig. Beispielsweise ist vor der Unterwasserwägung eine Restluftbe-stimmung nötig, um möglichst exakte Dichtewerte zu erhalten. Dieses Ver-fahren wird nur für ausgewählte Untersuchungen in einem Labor mit Was-sertank herangezogen.Die Körperwasserbestimmung oder Hydrometrie, auch Gesamtkörper-wasserschätzung (GKW) genannt, beruht auf dem Verdünnungsprinzipvon Flüssigkeiten (Blut), wobei mit Hilfe von Deuterium, Tritium undHarnstoff entsprechende Analysen erfolgen. Grundlage ist die Annahme,dass Körperwasser einen konstanten Anteil von 73,2 % fettfreier Körper-masse ausmacht (GKW = ffM · 0,73). Die Korrelation zwischen Körper-masse und Gesamtkörperwasser ist mit r = 0,96 bis 0,99 sehr hoch. DieseMethode ist nur in entsprechend technisch gut ausgerüsteten Labors mitqualifiziertem Personal möglich. Die Messgenauigkeit ist sehr gut.Ähnliches trifft auch für die Bestimmung des Körperkaliums zu. In derKaliometrie wird das Gesamtkörperkalium über das Isotop 42 K bestimmt.Die Untersuchungen erfordern intravenöse Zugänge, analysieren den Ka-liumbestand mittels Gammastrahlen und beurteilen das Verhältnis vonkörpereigenem Kalium und fettfreiem Gewicht. Die hohen Kosten sowieeine lange Untersuchungsdauer lassen diese Methode im Sport als nichtpraxisrelevant erscheinen.

Zu den neueren Methoden gehören Impedanzmessung und Infrarotmes-sung. Beide wurden zunächst für andere Bereiche, z.B. in der Landwirt-schaft und für die Bestimmung des Feuchtigkeits- oder Eiweißanteils vonGetreidesorten, entwickelt. Am verbreitetsten ist die Impedanzmessung,bei der die elektrische Leitfähigkeit des Organismus bestimmt wird. Dasmagere Muskelgewebe hat wegen des höheren Flüssigkeits- und Elektro-lytgehaltes eine größere elektrische Leitfähigkeit als das Fettgewebe, so

Neuere Methoden

Klassische Labormethoden

Jörg Tomczak
4 Vor- und Nachteile...verglichen und kritisch bewertet. Vor- und Nachteile müssen genau definiert werden, was im gesamten Text nicht erfolgt. Ein Vergleich kann auch nur mit genau definierten Standards erfolgen. Dieser Ankündigung wird im folgenden Text nicht entsprochen, wohl aber wird kritisch bewertet, wobei die Bewertungskriterien wiederum nicht genannt werden.
Jörg Tomczak
5 Körperdepotfett...aerobe Energiequelle...am Stoffwechsel wesentlich beteiligt. Körperdepotfett bleibt weiterhin eine undefinierte Fettmasse. Im weiteren Text kann jedoch suggeriert werden (Umfangmessungen von Extremitäten...), dass hiermit das Unterhautfettgewebe gemeint ist. Auf das Unterhautfettgewebe trifft die Aussage nicht, bzw. in nur sehr limitiertem Umfang zu, dass es als aerobe Energiequelle unter Belastungssituationen am Stoffwechsel wesentlich beteiligt sein soll. Die primär den Blutfettspiegel bestimmenden, aus der Leber synthetisierten Fette und die Fette aus den enzymatisch "trainierten" intramuskulären "Fettzellen" stellen die Versorgung bei Ausdauerbelastungen dar. Das Unterhautfettgewebe stellt (leider) ein eher als stoffwechselinaktiv zu definierendes Fettgewebe dar - zumindest und grade während aktiven Stoffwechselphasen bei Belastung. Diese Diskussion würde zu weit führen und gehört nicht mehr in das Kapitel Körperanalysen, doch ist die Betrachtung im anderen Zusammenhang sinnvoll, denn Hautfaltenmessungen eignen sich darum nur in sehr geringem Maße als Beobachtungskriterium zur Beurteilung des Fettstoffwechsels, selbst bei länger dauernden Beobachtungszyklen (Wochen) und würden aus diesem Grund als keine geeignete Methode zur Körperfettbestimmung in diesen Zusammenhängen gelten.
Jörg Tomczak
6 Mit der Bestimmung des Körperdepotfettes sind Rückschlüsse...Muskulatur und Knochenbau... Nein. Das stimmt nicht. Mir ist keine wissenschaftliche Publikation bekannt, die diese Aussage gemacht haben will.
Jörg Tomczak
7 Kalipermetrie - ungewöhnliche Bezeichnung (Calipometrie, international: Skinfold thickness)
Jörg Tomczak
8 Slim Guide Nach einer internationalen Konsenskonferenz wurden bereits in den sechziger Jahren (1963) alle Standards für die wissenschaftlichen Hautfaltenmessungen genau definiert. Ein "Plastik-Caliper", wie der hier aufgeführte genügt diesen Anforderungen definitiv nicht (die wenigen Literaturstellen, die der Autor zitiert, sollte er einmal genauer studieren - oder z.B. Jana Parizkova einmal fragen, die er ja auch zitiert hat?).
Jörg Tomczak
9 ...kostengünstig... Caliper, die wissenschaftlichen Standards genügen, kosten etwa zwischen € 350 und € 1000. Die Aussage kostengünstig ist ohnehin nach belieben relativ, doch kann hier spekuliert werden, dass die unbrauchbare Variante "Slim Guide" für ca. € 30 gemeint ist.
Jörg Tomczak
10 ...Messfehler von 3% hinreichend genau... Leider fehlt an entscheidenden Stellen wie dieser ein Literaturhinweis unter welchen Voraussetzungen ein "Messfehler von 3%" gemacht worden ist. Würde man den Begriff Messfehler wissenschaftlich verstehen, wäre ein Instrument, welches an sich schon einen internen Messfehler von 3% aufweist als ungenau bezeichnen. Hier sind die Standards zur Beurteilung z.B. die Reproduzierbarkeit, Reliabilität oder die Variabilität.
Jörg Tomczak
11 ...Messvorschriften... Die Messvorschriften, wie etwa zur genauen Beschreibung der zu messenden Hautfalten sind alles andere als einfach. Es wird nur selten darauf hingewiesen, in welche Richtung die Hautfalte abgegriffen werden soll. Auch ist nur selten eine genaue Beschreibung vorhanden, wie weit die Handöffnungsbreite sein soll, um eine Hautfalte abzugreifen..., darum soll ein Caliper-Untersucher zuvor eine entsprechende Schulung von einem erfahrenen Untersucher erhalten, wobei vereinbart ist, dass diese Person eine akzeptierte Prüfung beim Weltverband der Anthropologen abgelegt haben soll, wobei selbst diese Prüfung in regelmäßigen Abständen erneuert werden muss. Bei der Prüfung darf im direkten Vergleich zwischen Prüfling und Tester an ein und derselben gemessenen Person die Abweichung in der Summe der gemessenen Hautfalten (MW aus 3 Wiederholungsmessungen) nicht größer als 3% sein.
Jörg Tomczak
12...leicht und präzise zu Handhaben... Der Variationskoeffizient von direkt aufeinanderfolgenden Hautfaltenmessungen liegt im Mittel bei 5%, wobei ein geübter Tester eine Genauigkeit von 3% erreichen kann. Dieser Koeffizient erhöht sich im Vergleich verschiedener Tester auf ca. 10%, was den Grund für die Anforderung darstellt, dass Wiederholungsmessungen vor allem bei Langzeitstudien immer von der gleichen Testperson durchzuführen sind...
Jörg Tomczak
13 ...die Verteilung des Unterhautfettgewebes verschiedener Bereiche des Körpers beurteilt. Mir ist keine wissenschaftliche Publikation bekannt, die das leisten würde. Wenn man die Methodenkritik der Hautfaltenmessmethode studiert, beschreiben Autoren, dass man bis heute keine Hautfalte als aussagestark definieren könne in dem Sinn, dass mittels dieser Hautfalte eine hohe positive Korrelation zum Gesamtkörperfettgehalt vorhanden wäre. Die Ursache besteht darin, dass das Unterhautfettgewebe (egal ob als Summe von Hautfalten oder als einzelne Hautfaltenschichtendicke) nur mit etwa r=.5 mit dem Gesamtkörperfett korreliert! Was dies für die Brauchbarkeit der "Kalipermetrie" bedeutet wäre interessant zu diskutieren, besonders für die Aussagequalität "Körperfettbestimmung".
Jörg Tomczak
14 (1,2,5,6) Hinweis auf Literaturstelle ist falsch - eine 6 gibt es nicht
Jörg Tomczak
15 ...anthropometrische Verfahren...CT... Diese Verfahren zu den anthropometrischen Verfahren zu zählen halte ich nicht für sinnvoll, da der Sinn des Wortelemtes "metrisch" nicht erfüllt wird. Mit diesen Methoden wird nicht mehr "metrisch" gemessen, sondern mittels anderen Verfahren oder Medien. "ComputerTomographie"
Jörg Tomczak
16 ...vor der Unterwasserwägung... Bei der Hydrodensitometrie ist es heute üblich, dass man die Massenbestimmung im Wasser parallel mit der Verdünnungs-Spirometrie durchführt. Dieses Prozedere erst entspricht dem "Golden Standard" dieser Referenzmethode, denn das Restvolumen in der Lunge muß genau dann bestimmt werden, wenn das "Gewicht" erfasst wird, sonst ist die Quelle für mögliche Abweichungen zu groß.
Jörg Tomczak
17 GKW Die Abkürzung ist international nicht bekannt. Das Ganzkörperwasser wird als TBW abgekürzt. Die Methode der Wahl ist die massenspektroskopische Bestimmung des 2H2O (bzw. D2O, Deuteriumoxid).
Jörg Tomczak
18 ...technisch gut ausgerüstet... Ist man im Labor "gut ausgerüstet" wenn man ein Massenspektrometer besitzt? Das Personal sollte immer an den Analysegeräten auch ausgebildet sein, sonst hat es dort nichts zu suchen.
Jörg Tomczak
19 Kaliometrie Diese Bezeichnung für die Kaliumbestimmung ist mir unbekannt. Die Methode wird international als potassium 40 bezeichnet und mit 40K abgekürzt. Die invasive Messung mittels eine Infusion von 42K ist in früheren Zeiten getestet worden, doch ist die nicht-invasive Methode der 40K - Messung im Whole-Body-Counter viel eleganter und in den heutigen wissenschaftlichen Publikationen, in denen es um Kaliumbestimmungen als Referenzmethode für die Körperzellmassenbestimmung geht wird 40K genutzt (Kalium ist zu ca. 98% intrazelluläres Ion).
Jörg Tomczak
20 ...lange Untersuchungsdauer... Eine valide eingerichtete 40K - Messung im Whole-body-counter ist eine High-Tech-Methode auf hohem Niveau, die nur wenigen Universitätskliniken zur Verfügung steht. Die Messzeit ist darum nicht grade ein Faktor, der über den Einsatz entscheidet, wobei ca. 1000 s nicht als überaus lange gelten müssen.
Jörg Tomczak
21 Neuere Methoden Über diese Klassifizierung und deren unspezifische Eigenheit habe ich bereits unter Anmerkung 3 ausführlich Stellung bezogen. Es wäre sicherlich interessant festzustellen wo in der Historie der Körperanalytik die Vergangenheit liegt und ab wann Methoden als "Neu" bezeichnet werden dürfen... Wobei ich grundsätzlich zustimme, dass die Hautfaltenmessung in ihrer Anwendung zur Abschätzung des Unterhautfettgewebes seit Richet (1870) im Vergleich zur Etablierung der Impedanzmessung zum Zwecke der Körperwasserbestimmung (1963) als die traditionsreichere definiert werden kann.
Jörg Tomczak
22 Beide... Die Infrarot-Methode (NEAR-IR) ist mit einem weitaus umfangreicheren Spektrum, also mit einer komplexeren Messtechnik in dem Bereich der "Landwirtschaft" eingesetzt worden, wobei mir der Einsatz zum Test der Zusammensetzung von Konserveninhalt eine der bekannten Anwednungen ist... Die BIA findet in diesem Bereich keine Anwendung.
Jörg Tomczak
23 ...hat...eine größere Leitfähigkeit... Formulierung ist ungebräuchlich. Bei elektrischen Widerständen oder Leitern spricht man umgangssprachlich von "guten und schlechten Leitern"...
Jö Tom
1 Körperdepotfettbestimmungen Die Nomenklatur "Körperdepotfettbestimmung" ist im Zusammenhang mit Körperanalytik ungebräuchlich. Depotfett definiert eine von vielen Eigenschaften von Fetten bzw. Fettgeweben innerhalb des Körpers, wie etwa auch Polsterfett u.a., Verwendung findet vielmehr der Terminus Körperfettbestimmung auch darum, weil die verschiedenen Fettgewebe mit Mitteln der Ganzkörperanalysen nicht eindeutig voneinander differenzierbar sind.
Jö Tom
2 ...um Körperfett und fettfreie Masse anteilmäßig zu beurteilen. Wenn Aussagen über die fettfreie Masse, definiert als Ganzkörpermasse minus Körperfettmasse getroffen werden sollen, dann wird üblicherweise eine Methode zur Bestimmung ebendieser fettfreien Masse gewählt werden, denn eine Differenzierung über die Fettmasse bedingt immer einen vermeidbaren "Schätzfehler".
Jö Tom
3 Es gibt drei Methodenbereiche... Diese Art der folgenden Klassifizierung habe nicht nur ich noch nie gehört, sondern sie ist völlig unüblich und rein willkürlich. Hier werden drei völlig verschiedene Bereiche klassifiziert: Anthropometrische Methoden - hiermit sind Methoden gemeint, die "metrisch" am und vom Menschen durchgeführt werden, also die "Art der Messprozedur" als Zuordnungsmerkmal, Labormethoden - hier ist das Unterscheidungsmerkmal ein komplett anderes, nämlich der Ort der Durchführung, wohlwissend, dass man anthropometrische Methoden natürlich auch im Labor durchführen kann, also eine Vermischung bei einer gewollten Differenzierung, Neuere Methoden - aus dem vielfältigen Spektrum von neuen Körperanalyseverfahren werden hier willkürlich zwei Methoden als neu herausdefiniert, wiederum ist eine Abgrenzung zu den bisherigen "Unterscheidungsmerkmalen" gar nicht möglich, denn auch "neue" Körperanalysen können sowohl im Labor stattfinden als auch könnten sie anthropometrischer Natur sein (wie etwa ein optischer 3-D-Scan mittels eines DIA-Projektions-Verfahrens, wobei ein Gitterraster über einen Körper projiziert wird und die Krümmungen der Linien metrisch abgemessen werden...). In dem Forschungsbereich Körperanalytik haben sich andere Differenzierungsmerkmale etabliert: Die häufigste Betrachtungsweise ist die nach "Körperkompartimentenanzahl". Wie etwa 2-Komponenten-Methode (fett- fettfreie Masse) , 3-Komponenten-Methode (Zellmasse, extrazelluläre Flüssigkeit, sonst. extrazelluläre Substanzen), 4- , 5- etc. Komponenten Methoden, eine weitere gebräuchliche Unterscheidung ist die nach invasiven und nicht-invasiven Methoden oder auch nach pro-Toto oder pars-pro-Toto Methoden, Körperbaubezogene Methoden und Kompartimentbezogene Methoden... Um eine Abschätzung der Aussagekraft einer Methode vorzunehmen, (Validität) bedarf es jedoch immer der genauen Klassifizierung in die Art der "Verwandschaft" mit der direkten Analyse, nämlich der Leichenanalyse über sogenannte Referenzmethoden. Diese Referenzmethoden gelten als allg. akzeptierter wissenschaftlicher Standard zur Beurteilung zumeist eines Körperkompartimentes, wie etwa die Densitometrien den Standard für das 2-Komponenten-System darstellen (fett- und fettfreie Masse). Die vom Autor erwähnte Körperwasserbestimmung mittels Deuteriumoxid stellt die Referenzmethode oder den sogenannten "golden Standard" für die Bestimmung des Ganzkörperwassers dar. Die Messung der Strahlung des nativen Kalium Isotops 40K ist die Referenz zur Berechnung der Körperzellmasse. Vom Autor erwähnte invasive Verfahren mittels 42K oder Tritiumoxid sind völlig unüblich, würden von keiner Ethikkommission bewilligt werden und gehören der empirischen "Steinzeit" der Körperanalytik an. Wenn die Leichenanalytik als direkte Analyse gilt, so werden diese Referenzmethoden als indirekte Analysen klassifiziert. Methoden, die mittels dieser Referenzmethoden validiert wurden gelten als zweifach indirekte Analysen (bzw. doppelt-indirekte) , wozu z.B. die Calipometrie (Kalipermetrie), die Infrarot-Analyse (near-infrared interactance NEAR-IR) und die bioelektrische Impedanzanalyse (bioelectrical impedance analysis BIA) zählen...
Jö Tom
Page 2: K Standards der Sportmedizin - egofit.de · Muskel- und Gesamtkörpermasse sogar günstig auf die sportartspezifi- ... (Training, Wettkampf) anwendbar. Durch die vorhandene ... X

dass mittels eines geringen Stromflusses durch den Körper und des dabeigemessenen Widerstandes auf die im Organismus vorhandene Fett- undMagermasse geschlossen wird.

ImpedanzmessungEs gibt zwei Gerätetendenzen für die Impedanzmessungen, erstens den Bo-dy-Impedanz-Analyser (BIA), der über Elektroden einer „Hand zu Fuß“Messung funktioniert und zweitens, die BIA-Waage zur Körpermassebe-stimmung mit integriertem Modul der Impedanzmessung auf der Basis ei-ner „Fuß zu Fuß" Stromflussmessung. Der Preis der Geräte ist je nach Aus-führung sehr unterschiedlich. Inwieweit durch den Gerätepreis auch dieQualität der Messungen betroffen ist, kann nicht eingeschätzt werden. Kri-tisch müssen die fehlenden, im System benutzten Referenzverfahren so-wie der unzureichend bekannte wissenschaftliche und methodische Hin-tergrund der Fettbestimmung mittels BIA hervorgehoben werden. Außer-dem besteht durch die Vielzahl der auf dem Markt inzwischenangebotenen sogenannten Fettwaagen ein unüberschaubares Bild derAussagekraft der Messungen. Die Messgenauigkeit soll bei 2,7 % liegen.Eine methodenkritische Auseinandersetzung der Body-Impedanz-Mes-sung erscheint notwendig. Auf Grund eigener Vergleiche von Körperfett-messungen mittels Body-Impedanz-Messgerät mit den kalipermetrischenHautfaltenmessungen bestehen erhebliche Zweifel an der Genauigkeit derImpedanzmessung. Es ergaben sich erhebliche Differenzen sowohl hin-sichtlich der Absolutwerte als auch bei Wiederholungsmessungen. Bei derImpedanzmessung wurden bis zu 6,8 % höhere Fettanteile gegenüber je-nen der Hautfaltenmessungen (z.B. Handball-Nationalspielerinnen, Haut-faltenfett = 16,8 %, Impedanz-Fett = 23,6 %) ermittelt. Andere, auch in derLiteratur bestätigte Befunde über Fettmessungen vor und nach einer Bela-stung (z.B. Fahrradergometer, Sauna, Laufband) zeigen, dass die Streuungder Messwerte bei der Impedanzmethode größer ist als bei der Kaliperme-trie. Offensichtlich sind die beeinflussenden inneren und äußeren Faktorenbei der Impedanzmethode vielfältig. Dazu gehört der äußerlich nicht zu er-kennende Flüssigkeitshaushalt des Organismus, auf dem die Impedanz-messung beruht. So ist die Flüssigkeitsaufnahme und –abgabe durch dieVersuchsperson vor einer Impedanzmessung meist nicht nachvollzieh- undkontrollierbar. Schweißbildung durch Belastung oder auch psychische Er-

regung (Schweißfüße oder -hände) beein-flusst die Messgenauigkeit. UnterschiedlicheTemperaturen der Hautoberfläche an denHänden und Füßen, besonders bei trai-nings- oder wettkampfnahen Untersuchun-gen, führen während der Elektrodenmes-sungen offensichtlich nicht nur zu systema-tischen Fehlern. Hinzu kommt, dass durchein verschiedenartiges Positionieren derElektroden an den Händen und Füßen er-hebliche Messdifferenzen auftreten können.Diese Beeinträchtigungen sollten bei sport-medizinischen Untersuchungen mit BIA-Geräten bedacht werden. Auch wäre eineStandardisierung der Impedanzmessungdurch eine Beschränkung der Gerätevielfaltnotwendig. Gänzlich unbekannt sind Norm-werte.

InfrarotmessungDie Messung der Infrarotstrahlung amMuskel wird als leicht handhabbare und ge-naue Methode beschrieben. Während desMessvorganges erfolgt eine Neutronen-Ak-tivierung mit der gleichzeitigen Analysedes extrazellulären Raumes (Körperwasser)

und des Körpereiweißes. Bekannt ist das Gerät Futrex, welches auf dieHaut des Oberarmes (Bizeps) aufgesetzt wird und sowohl einfach als auchschnell zu bedienen ist. Durch den Messvorgang wird mittels einer demUntersucher unbekannten Schätzfunktion der Fettanteil des Organismusautomatisch bestimmt. Eine methodische Beschreibung der Fettmessungerfolgt nicht. Daher lässt sich der Messvorgang ebenso wenig nachvoll-ziehen wie jener der Impedanzmessung. Eine methodenkritische Ausein-andersetzung ist deshalb auch für dieses Verfahren notwendig.

Für die Sportmedizin ist die Körperfettbestimmung mittels Kaliperme-trie definierter Hautfalten eine ausreichend zuverlässige und praktika-ble Methode. Veränderungen des Körperfettanteils, die für den Gesund-heitszustand und die sportliche Leistungsfähigkeit relevant sind, könnenerfasst werden. Auch außerhalb des Labors unter Feldbedingungen istdie Hautfaltenmessung ohne Verlust an Genauigkeit anwendbar. Ande-re, auf den ersten Blick einfach durchführbare Methoden müssen hin-sichtlich ihrer Zuverlässigkeit kritisch hinterfragt werden.

1. Durnin JVGA, Womersley J: Body fat assessed from total body density andits estimation from skinfold thickness: measurements on 481 men andwomen aged 16 to 72 years. Br J Nutrition 32 (1974) 77-97.

2. Heath BH, Carter JEL: A modified somatotype method. Am J Phys An-throp 27 (1967) 57-74.

3. Herm K-P: Die Messung der Hautfalte (Kalipermetrie) und Ermittlung desKörperdepotfettes. Bundesinstitut für Sportwissenschaft. Die essgestörteAthletin, 5 (1996) 69-74.

4. Matiegka J: The testing of physical efficiency. Am J Phys Anthrop 4(1921) 223-230.

5. Parizkova J: Particularities of lean body mass and fat development ingrowing boys related to their motor activity. Acta paediatrics belgium 28(1974) 233-243.

Dr. Klaus-Peter Herm Wöhrstr. 19, 32549 Bad Oeyenhausen

Literatur

Praktische Schlussfolgerung

154 DEUTSCHE ZEITSCHRIFT FÜR SPORTMEDIZIN Jahrgang 54, Nr. 5 (2003)

Standards der Sportmedizin Körperfettmessung

Tabelle 1: Methodenvergleich zur Teilkörpermassenbestimmung

Methode

Anthropometrische Methoden

Kalipermetrie

Ultraschall

MRT, CT

Klassische Laboratoriumsmethoden

Densitometrie

KörperwasserbestimmungDeuterium-Oxid/Tritiummarkiertes Wasser

Gesamtkörperkalium-Bestimmung

Neuere Methoden

BioelektrischeImpedanz-Messung

Infrarotstrahlungsmessungen

Anschaffungs-kosten

(€)

18-500

1.500-50.000

> 500.000

25.000-30.000

5.000

>300.000

78-5.000

bis 2.000

Genauigkeit(%)

3

3-10

<2

2,5

2,5

5

2,7

2

Untersuchungs-dauer(Min.)

1-3

3-5

1-10

20-30

120-240

60

1-5

1

Handhabung

bis 15 Hautfalten,einfach

einfach

Spezialistenerforderlich,Strahlenbelastung

schwer

schwer, invasivStrahlungsbelastung

teilweise invasiv

Waage einfach,Hand zu FußMessung schwieriger

einfach

Jörg Tomczak
23 Wie ist "Genauigkeit" definiert? - Validität - Reproduzierbarkeit - Varianz - Reliabilität - Variationskoeffizient ....?
Jörg Tomczak
24 ...geringen Stromflusses... Auch diese Formulierung ist in der Elektronik ungebräuchlich. Durch den Wechselstromimpuls mit einer Stromstärke von ca. 800 µAmpere wird im Körper ein elektromagnetisches Feld aufgebaut, wäre i.e. das, was hier wohl mit Stromfluss gemeint ist. Nach dieser Verwendung der Nomenklatur gehe ich davon aus, dass dem Autor auch der Terminus "Impedanz" unbekannt ist. Er bedeutet: Wechselstromwiderstand. Im Vergleich zum Gleichstrom geht man hier bildlich nicht von einem Stromfluss aus...
Jörg Tomczak
25 Body-Impedanz-Analyser (BIA) Die Abkürzung BIA bedeutet: bioelectrical impedance analysis. Auch im deutschen ist die identische Abkürzung möglich, wie der Autor in seiner Zusammenfassung feststellt: Bioelektrische Impedanz Analyse. Bei Body-Impedanz-Analyser (BIA) handelt es sich um einen Produktnamen, der sich die international gebräuchliche Abkürzung zu nutzen macht.
Jörg Tomczak
26 ...Gerätepreis...Qualität der Messungen... Ich behaupte einfach einmal, dass dem Autor die messtechnischen Differenzen und damit natürlich auch die Bauteile bzw. die Ausstattung einzelner Gerätetypen gänzlich unbekannt sind. Ein grundlegender Unterschied - auch preislich - ist zunächst die Wahl der Bauteile auf ihre Präzision hin, das auszuführen wäre zu komplex. Einfacher wird die Unterscheidung in Bezug auf die Option der Phasensensitivität. Damit ist gemeint, dass neben dem recht trivial zu ermittelndem Wert des Gesamtwiderstandes (Impedanz) auch die Phasenverschiebung, bzw. die Messung des Scheinwiderstandes (Reaktanz) möglich ist, um kondensatorähnliche Effekte innerhalb des Körpers von Leitfähigkeits-Momenten, welche durch den Ohmschen Widerstandsanteil bzw. die Resistanz dargestellt werden differenzieren zu können... Billigstgerätetypen verzichten sogar gänzlich auf einen sinusförmigen Wechselstromimpuls und verwenden (aus Kostengründen) einen billigen Rechteckstrom, der dann integriert wird, bis so etwas wie eine Kurve interpretiert wird... Was Multifrequenzgeräte leisten und was BIS (bioelectrical impedance spectroscopy) bedeutet erspare ich mir an dieser Stelle zu erläutern. Ich denke, dass auch so deutlich wird, dass sich die Geräte durchaus auch preislich voneinander unterscheiden werden.
Jörg Tomczak
27...fehlenden...Referenzverfahren...Es kann wohl sein, dass die einzelnen Hersteller nicht auf den Geräten vermerken, mit welchen Referenzverfahren sie "normiert" sind. Auf meinem Zollstock fehlt übrigens auch der Hinweis, dass sich der Kalibrierungsmaßstab als "Ur-Meter" definiert in Paris befindet...Dieser kritische Hinweis auf fehlende Referenzverfahren zeigt die Unkenntnis des Autors über die BIA-Literatur, bzw. die Literatur über "Neuere Methoden der Körperanalysen", denn in mehr als 1000 Studien wurde das BIA auch in einigen parallel mit NEAR-IR und Hautfaltenmessungen an Referenzmethoden "normiert" besser bezeichnet als validiert. Für die Validierung der verschiedenen Aussageparameter, z.B. Fettgehalt, Körperwasser, Körperzellmasse, Extrazellulärraum wurden jeweils hierzu spezifische Referenzverfahren angewendet: Für den Fettgehalt gilt die Densitometrie als "golden Standard", für den Wassergehalt die D2O, für die Köperzellmasse die 40K - Messung und für den Extrazellulärraum "Bromid-Space", also Tracer-Methoden...
Jörg Tomczak
29 ...besteht durch die Vielzahl...von...Fettwaagen ein unüberschaubares Bild der Aussagekraft der Messungen. Ja, aber nur dann, wenn man über keine Möglichkeit der Bewertung der verschiedenen Geräte verfügt. Dann sollte man dies allerdings auch gar nicht tun!
Jörg Tomczak
30 eine methodenkritische Auseinandersetzung...erscheint notwendig. Die findet fortwährend in der Literatur, auf Kongressen, bei Arbeitstagungen statt. Sehr umfangreich ist diese methodenkritische Auseinandersetzung publiziert in einem Sonderband einer etablierten wissenschaftlichen Zeitschrift (1994).
Jörg Tomczak
31 Auf Grund eigener Vergleiche... bestehen erhebliche Zweifel an der Genauigkeit der Impedanzmessung. Es ist unmöglich aus einem Vergleich von BIA und Hautfaltenmessungen eine Aussage über die "Genauigkeit" einer dieser Verfahren abzuleiten, da man zu einer solchen Aussage den Vergleich zu einem Referenzverfahren benötigt! Was möglich ist und das ist relativ einfach zu untersuchen, sind Aussagen wie Reproduzierbarkeit oder Variabilität. Damit ist z.B. die Wiederholungsgenauigkeit gemeint, mit der diese Methoden z.B. Messergebnisse, die an einem Teilnehmer direkt hintereinander erhoben werden zu vergleichen. Hier würde jedoch ein zum Autor völlig im Widerspruch stehendes Ergebnis erfolgen, da die hohe Reproduzierbarkeit eines elektrisch ermittelten Widerstandes einer definierten Messstrecke am Menschen eindeutig der Ungenauigkeit von manuell erhobenen Hautfaltenmessungen überlegen ist. Auch diese Untersuchungen sind vielfach durchgeführt und durchaus auch in Erfahrung zu bringen. Was immer hier mit "Genauigkeit" gemeint sein mag ist fraglich. Spekulativ ist anzunehmen, dass der Autor meint, dass ihm seine traditionell erhobenen Hautfaltenmessungen zu gewohnteren Ergebnissen führen, als die der BIA oder NEAR-IR? Dazu möchte ich frecherweise bemerken: was Gewohnheit nicht alles aus Menschen macht...!
Jörg Tomczak
32 In der Literatur bestätigte Befunde... Nach Angaben der Hersteller sollen keine BIA - Untersuchungen nach körperlichen Aktivitäten oder Sauna durchgeführt werden. Um diese spontanen Änderungen im Flüssigkeitshaushalt richtig bewerten zu können, benötigt man eine spezielle Software, wie etwa die für Hämodialysen oder Intensivpatienten und auch eine entsprechende Schulung! Die methodischen Voraussetzungen müssen eingehalten werden, um realistische, bewertbare Messergebnisse zu erreichen. Es werden auch keine Kaliummessungen durchgeführt, wenn der Proband nicht von der Umgebungsstrahlung weitgehend abgeschirmt ist, sie führen auch keine Hautfaltenmessungen durch an unterkühlten Probanden, denn da finden Sie veränderte Hauteigenschaften vor, da etwa die Elastizität eine andere ist, denn das Fett ändert die Konsistenz temperaturabhängig...
Jörg Tomczak
33 ...äußerlich nicht zu erkennende Flüssigkeitshaushalt... Wie genau der Flüssigkeitshaushalt physiologisch konstant gehalten wird, können wir gerne diskutieren, doch sind die multiplen Regressionsgleichungen der BIA für die Fettbestimmung auf einen normalen Flüssigkeitszustand bezogen. Die ernährungsabhängigen Schwankungen sind in den Formeln berücksichtigt, auch kleinere Flüssigkeitsabgaben durch Scheiß oder Harn stellen die Signifikanz nicht in Frage und sind in den Validitätsstudien berücksichtigt.
Jörg Tomczak
34 Flüssigkeitsaufnahme... Wenn es sich nicht um absolut ungewöhnlich hyper- oder hypotonische Getränke handelt (dest. Wasser / Meersalz) wird die Veränderung der Impedanz durch die Berücksichtigung der Körpermasse in den multiplen Reggressionsgleichungen (s.o.) kompensiert.
Jörg Tomczak
35...verschiedenartiges Positionieren der Elektroden... Selbstverständlich ändern sich die Widerstände, wenn die Messtrecke verändert wird. Erfahrungsgemäß können Anwender nach einer Schulung die Elektroden auf einen Millimeter reproduzierbar aufkleben, was einen Einfluß auf die Impedanzwerte von unter 1% ausmacht. Übrigens ist die Fähigkeit selbst eines erfahrenen "Hautfaltenmessers" sehr viel geringer dieses hohe Maß an Reproduzierbarkeit zu erreichen. Grade darin liegt ein großer methodischer Vorteil der BIA!
Jörg Tomczak
36 Beeinträchtigung In dieser Beachtung von Untersuchungsvorschriften wird von meiner Seite aus keine Beeinträchtigung gesehen, denn wie gesagt, bereits nach kurzer Schulung ist der Untersucher in der Lage hinreichend genaue Elektrodenplatzierungen zu erreichen.
Jörg Tomczak
37 ...Beschränkung der Gerätevielfalt... Wie soll das denn verstanden werden? Der Versuch der Einflussnahme auf die freie Marktwirtschaft sei jedem politischen Menschen gestattet! Wenn damit gemeint ist, dass es an einer Instanz mangelt, die kompetent und neutral Caliper, BIA-Geräte, NEAR-IR bewerten möge - ja - schön wäre es - hätte mir eine Menge Lernaufwand, Forschungsarbeit und Recherche erspart! Doch: Man überlege jedoch nur einmal, mit welchen Testergebnissen man rechnen müsste, wenn beispielsweise der Autor eine solche Instanz darstellen würde!
Jörg Tomczak
38 Gänzlich unbekannt sind Normwerte Ihnen sind diese Normwerte unbekannt. Kann ich mir vorstellen. Es gibt mehrere Validitätsstudien (BIA Vergleich mit einer Referenzmethode), die mit einer hohen Probandenzahl (>1000) durchgeführt wurden. Durnin und Womersley (1974), die immer wieder (auch vom Autor) zitierte Referenzstudie (Caliper mit Referenzmethode Densitometrie) wurde an 481 Personen gemessen. Für die BIA gibt es mehrere wissenschaftliche Publikationen, wobei eine in der Schweiz durchgeführte der ethischen Zuordnungskriterien für Kaukasier am besten genügt mit über 8000 Probanden.
Jörg Tomczak
39...erfolgt eine Neutronenaktivierung... Nein! Die Funktionalität der NEAR-IR ist ebenfalls genau nachlesbar. Dass mittels Infrarotimpulsen dieser geringen Energie Neutronenaktivierungen erfolgen sollen ist mir neu - wäre wohl eine wissenschaftliche Sensation, wenn sich das bewahrheiten würde... Nobelpreisverdächtig!
Jörg Tomczak
40...einfach als auch schnell... Die genaue Messung mittels NEAR-IR auf der "mittleren Oberseite des musculus biceps" ist keineswegs so einfach und schnell zu definieren. Reproduzierbare Untersuchungen erfordern eine sehr genaue Platzierung.
Jörg Tomczak
41...methodische Beschreibung...erfolgt nicht...ebenso wenig nachvollziehen wie...Impedanzmessung Die NEAR-IR ist ebenso, wie die BIA in der entsprechenden Literatur beschrieben. Insbesondere sind einige Arbeiten über das FUTREX - NEAR-IR publiziert worden
Jö Tom
28 ...unzureichend bekannte wissenschaftliche und methodische Hintergrund der Fettbestimmung mittels BIA... Ja! Diese fehlenden Kenntnisse des Autors diesbezüglich bewerte ich als durchaus kritisch - da absolut defizitär! Mir sind ca. 500 wissenschaftliche Publikationen (weltweit) bekannt und nach Recherchen gibt es über 1000 Publikationen über die BIA in wissenschaftlichen Fachjournalen. Ich würde das - im Gegensatz zum Autor - als einen sehr großen Fundus an Wissenspotential ansehen, wenn man ihn denn auch nutzen würde... (zumindest dann, wenn man vorgibt eine wissenschaftliche Publikation zu erstellen). In vielen dieser Arbeiten findet sich eine genaue Beschreibung des methodischen Hintergrundes...
Page 3: K Standards der Sportmedizin - egofit.de · Muskel- und Gesamtkörpermasse sogar günstig auf die sportartspezifi- ... (Training, Wettkampf) anwendbar. Durch die vorhandene ... X

Dies war der spontane erste Vorschlag eines Leserbriefes an die Schriftführung der Deutschen Zeitschrift für Sportmedizin (die Anmerkungen sind im Original gelistet): Leserbrief Nr.1 "Methoden der Körperfettbestimmung" ...wäre trefflicher tituliert worden mit: "Meine Meinung über diverse Körperfettmessungen" Zu einer wissenschaftlichen "Bewertung" verschiedener Körperanalyse-Methoden, wie in diesem Artikel der Calipometrie (Kalipermetrie), der Bioelektrischen Impedanz Analyse (BIA), der NEAR-IR body fat measurement-Methode (Infrarotmessung), gehört der Vergleich mit mindestens einer Standard- bzw. Referenzmethode. Dieser Vergleich fehlt in diesem Artikel. Somit dürften keine Aussagen über die "Genauigkeit" und die Zuverlässigkeit (Validität, Reliabilität) getroffen werden, es sei denn, es handelte sich um eine zusammenfassende Diskussion der Literatur des aktuellen Forschungsstandes. Auch dies ist nicht der Fall! Methodisch zulässig wäre es, wenn Eigenschaften der Methoden, wie etwa die Reproduzierbarkeit unter genau definierten Bedingungen erhoben und untereinander verglichen würden. Auch dieser Vergleich fehlt, nicht aber die Bewertungen der Methoden! Zudem werden sehr viele Behauptungen aufgestellt, die weder fundiert sind noch begründet werden, allesamt zeichnen sich durch fehlende entsprechende Literaturhinweise aus: 31 - Auf Grund eigener Vergleiche..BIA und Caliper...bestehen erhebliche Zweifel an der Genauigkeit der Impedanzmessung. Wenn derartige Behauptungen aufgestellt werden, gehört es sich, die eigenen Vergleiche in Form von nachvollziehbaren Ergebnissen zu präsentieren. Das erfolgt nicht! Darum bleibt dies einfach eine Behauptung und eine in dieser Form absolut unsachgemäße und ungerechtfertigte Bewertung! 8, 10 - Mit einem Kaliper (z.B. Slim Guide...) ... mit einem Messfehler von 3% hinreichend genau..., Was mit einem "Messfehler" gemeint ist, kann nur erraten werden. Es wird suggeriert, dass es sich um die Abweichung der Ergebnisse dieser Methode von der realen biologischen Situation, also z.B. dem Körperfettgehalt handelt, zumindest liegt das nahe, weil dieser 3%-Wert "Messfehler" in der Methodenvergleich-Tabelle nomenklatorisch zu "Genauigkeit" mutiert. In der Caliper-Literatur wird, abgesehen von Aussagen über die Validität, von einer Varianz oder trefflicher gesagt von einem Variationskoeffizienten allein in der Reproduzierbarkeit zwischen 3% bis 10% berichtet. (Es ist an dieser Stelle vielleicht kein Platz für eine Wette, aber ich wette, dass der Autor nicht in der Lage sein wird, mit einem Caliper seiner Wahl eine Wiederholungsgenauigkeit von 3% (definiert als Variationskoeffizienten) mit Messungen an ein und derselben Person in einem Abstand von 10 Minuten zwischen den Messungen zu erreichen! - das brauchen Sie nicht zu publizieren, wenn das "wider die guten Sitten wäre"...). Auf keinen Fall ist mittels Plastik-Caliper, wie dem hier benannten der Firma "Slim Guide" eine Körperfettanalyse zu erreichen. Dieser Caliper entspricht absolut nicht den internationalen wissenschaftlichen anthropometrischen Standards, die bereits in den sechziger Jahren auch für die Hautfaltenmessungen genau definiert wurden.

Page 4: K Standards der Sportmedizin - egofit.de · Muskel- und Gesamtkörpermasse sogar günstig auf die sportartspezifi- ... (Training, Wettkampf) anwendbar. Durch die vorhandene ... X

36 - ...verschiedenartiges Positionieren der Elektroden an Händen und Füßen...Messdifferenzen auftreten... Diese Beeinträchtigung... Wie kommt der Autor darauf eine für die Messung notwendige einfache Standardisierung, wie das Ankleben von Elektroden als "Beeinträchtigung" zu bewerten? Nach unseren Erfahrungen stellt das bereits nach kurzer Lernphase kein Problem dar, da man nach kurzer Zeit die Elektroden mit einer Genauigkeit von 1mm genau platzieren kann. Dagegen erreicht man eine vergleichbare Genauigkeit in der Erfassung der Hautfaltenschichtendicke wenn überhaupt, dann nicht mit dieser Lerngeschwindigkeit! 41 - ...methodische Beschreibung der Fettmessung (BIA und NEAR-IR) erfolgt nicht... In vielen Publikationen wird die BIA ausführlich beschrieben. Auch über die NEAR-IR liegt mir eine Methodenbeschreibung vor. Die Quellen für diese Literatur sind öffentlich... 38 - BIA...gänzlich unbekannt sind Normwerte. Nur mehr ein weiterer Hinweis, dass dem Autor die wesentliche Literatur bislang nicht "zur Verfügung" stand. Greift man die vom Autor zitierte Caliper-Literatur auf, z.B. von Durnin und Womersley, so handelt es sich um eine Validitätsstudie der Calipometrie mittels Hydrodensitometrie mit 481 Probanden. Viele der aktuellen Caliperuntersuchungen leiten sich von diesen "Normwerten" ab. Dieser Art wurden vielfach Studien mit der BIA durchgeführt mit unterschiedlichen Validierungsmethoden. Die früheste Studie mit mehr als 1000 Probanden wurde von Karen Segal durchgeführt und 1988 publiziert. 39 - ...Infrarotmessung....erfolgt eine Neutronen-Aktivierung Sachlich völlig falsch! Ein weiterer eindeutiger Hinweis für die Unkenntnis des Autors von den Methoden, über die er urteilt! Diese Behauptungen halten allesamt dem bekannten Status Quo des aktuellen Wissenstandes über diese Methoden nicht stand. Hier liegt die Vermutung nahe, dass der Autor nicht über das notwendige fundierte Wissen über diese Methoden verfügt. Darauf weisen nicht nur die über BIA und NEAR-IR komplett fehlenden und ansonsten sehr "veralteten" Literaturhinweise hin, sondern auch die zitierten "Wünsche" des Autors nach Referenzdaten oder umfangreichen wissenschaftlichen Validitätsstudien hin: über die BIA sind über 1000 wissenschaftliche Publikationen zu finden und im geringen Umfang auch für die NEAR-IR-Methode! Die Aussage, "Auch wäre eine Standardisierung der Impedanzmessung durch eine Beschränkung der Gerätevielfalt notwendig." (37) scheint positiv betrachtet als eine Suche nach Ordnung gelten zu können, wäre jedoch schlichtweg ungesetzlich, quasi ein manipulativer Eingriff in die freie Marktwirtschaft und insofern ein unverständliches Ansinnen! Es ist höchst bedauernswert und unseriös, dass über bedeutsame aktuelle Forschungen der Sportmedizin nicht nur ignorant, sondern zudem noch falsch berichtet wird. Dass durch einen derart oberflächlichen Artikel ein falsches Bild von den einzelnen Körperanalyse-Methoden gezeichnet wird liegt auf der Hand. Ich bin gespannt und freue mich auf die Stellungnahme des Autors zu meiner Kritik. Köln, den 7.07.03 Jörg Tomczak

Page 5: K Standards der Sportmedizin - egofit.de · Muskel- und Gesamtkörpermasse sogar günstig auf die sportartspezifi- ... (Training, Wettkampf) anwendbar. Durch die vorhandene ... X

Dieser Vorschlag wurde nicht in dieser Form nicht akzeptiert. Die Ausführungen und Kritikpunkte sollten allesamt begründet werden und mit Literaturhinweisen versehen sein. Diese Anforderung ist natürlich gerechtfertigt, doch hätte diese Anforderung unbedingt auch für den Originalartikel gelten müssen.

Der neue "Leserbrief Nr.2" musste bei der Anzahl der Kritikpunkte unvermeidbar zu einem wissenschaftlichen Artikel anwachsen, den ich hier gerne vorstellen möchte, weil er "natürlich" nicht veröffentlicht werden konnte mit der Begründung, dass er zu lang sei (siehe hierzu 1-seitiger Leserbrief in DZSM 2003,1: Leserbrief zu "Gewichtmachen", Braumann, Urhausen; Dtsch Z Sportmed 53(2002) 254-255 von Dr. Hans Müller-Deck, Röcken).

Leserbrief Nr.2

Aus physiologischer und damit auch aus sportmedizinischer Sicht sind Körperanalysen dann interessant, wenn sie Aussagen über Eigenschaften liefern, die von sportmotorischer und energetischer Bedeutung sind. Das postulierte Rubner bereits 1902 (1). Daraus folgt, dass nicht primär die Fettmasse für die Qualität der sportmotorischen Leistungsfähigkeit maßgeblich ist, sondern die stoffwechselaktive Körperzellmasse (BCM) (2). Auf diese wäre der Fokus des Interesses an Körperanalysen für die Sportmedizin dann auch auszurichten. Der Autor diskutiert unter dem Thema "Standard der Sportmedizin" die Körperfettanalyse, vergleicht und bewertet drei in der Sportpraxis eingesetzte Methoden miteinander: Bioelektrische Impedanzanalyse (BIA), Calipometrie (Kalipermetrie) und die Infrarotmessung (Near-IR). Der Autor gibt weder zur BIA, noch zur Near-IR-Methode Literaturhinweise und bemängelt infolgedessen auch fehlende Normierungen und Vergleichsstudien für diese Methoden. Auch liegen dem Autor keine Beschreibungen der Methoden vor. Das ist erstaunlich, denn es sind mehr als 1000 Publikationen in den wissenschaftlichen Datenbanken (Medline-Recherche) über die BIA verfügbar. In einer frühen Arbeit von Lukaski wird die BIA-Methode sehr umfassend hergeleitet und erklärt (3). Über die Near-IR-Methode kommt man in den Studien zwar zu widersprüchlichen Aussagen, doch wurde auch über diese Methode in mehreren wissenschaftlichen Publikationen berichtet (4,5,6). Eine Methodenbeschreibung der Near-IR befindet sich auch auf der Internet-Home-Page des einzigen Anbieters. Einige methodische Defizite, wie das schwierige Handling und die damit verbundene mangelhafte Reproduzierbarkeit der Calipometrie sind bekannt (7), weniger bekannt sind die Voraussetzungen an die Caliper-Messgeräte selbst (8). Diese sind bereits 1963 genau definiert worden (9), werden jedoch bis heute nicht immer eingehalten, wodurch es beispielsweise auch in diesem Artikel zu einer Empfehlung eines Plastik-Calipers (Slim-Guide) kommt, der diesen Anforderungen nicht genügt. Die entscheidende Methodenkritik an der Calipometrie ist jedoch nur wenig bekannt. Der Zusammenhang zwischen gemessenen Hautfalten als Repräsentanten des Unterhautfettgewebes und dem Gesamtkörperfettanteil hat mit einer Korrelation von r=.5 nur einen geringen Zusammenhang. Die Forscher sehen den Grund dafür in den von den sonstigen Fettdepots unabhängig ausgebildeten internen , z.B. visceralen Fettgeweben (10,11). Der Zusammenhang zwischen Hautfaltenmessungen und visceralen Fettdepots wird sogar nur mit einem Zusammenhang von r= .38 ermittelt (12). Die Kenntnis der Bedeutung gerade der visceralen Fettdepots als Risikofaktor sei hier

Page 6: K Standards der Sportmedizin - egofit.de · Muskel- und Gesamtkörpermasse sogar günstig auf die sportartspezifi- ... (Training, Wettkampf) anwendbar. Durch die vorhandene ... X

vorausgesetzt. Für sportmedizinische oder auch diätetische Untersuchungen ist die Calipometrie zudem dadurch limitiert, dass das Unterhautfettgewebe im Vergleich zu anderen Fettdepots ein weitgehend stoffwechselinaktives Gewebe ist und daher Veränderungen nur bedingt oder nur über größere Zeitabschnitte erkennbar macht. Daher reduziert sich die Information der Hautfaltenmessung für die Sportmedizin auf die quantitative Aussage über Energiedepots in Form von Unterhautfettgewebe oder weiterhin noch auf die Trägheits- und Ballasteigenschaften bei biomechanischen Fragestellungen. Die BIA findet zwar auch zur Bestimmung der Körperfettmasse (FM) Einsatz, doch ist dies nicht die eigentliche Kapazität dieser Methode. Der Zusammenhang der Wechselstrom-Leitfähigkeit mit dem Fettanteil ist umgekehrt proportional. Der fettfreien Masse (FFM) wird ein statistischer mittlerer Flüssigkeitsanteil von 73% zugeordnet. Hierüber ergibt sich der Zusammenhang zwischen Leitfähigkeit und Fettgewebe, der in den Validitätsstudien im Vergleich mit der Hydrodensitometrie, dem "golden Standard" für die Bestimmung der FM und der FFM mit Korrelationen um r=.9 (13,14,15,16) beschrieben wird. Leider geht der Autor nicht auf die vielen Validitätsstudien und Anwendungsuntersuchungen ein, die über die bioelektrische Impedanz Analyse (BIA) publiziert wurden, so wie die große Validitäts-Studie von Karen Segal, die 1537 Probanden inkludiert (17) oder die Arbeit der Schweizer Kollegen, die BIA-Messungen von 3393 Personen erhoben und Referenzwerte aufgestellt haben (18). Auch die weiteren Eigenschaften dieser Methode werden nicht dargestellt. Das Prinzip der Wechselstrom-Leitfähigkeitsmessung ist sehr geeignet um den Flüssigkeitsstatus des Körpers zu definieren. Die Korrelationen aus diesen Studien im Vergleich zur Deuteriumoxid-Analyse (D2O) dem "golden Standard" für Körperwasseranalysen, liegen über r=0.95 (19,20,21) und die Aussagequalitäten über die Körperzellmasse BCM (22, 23) bzw. die extrazellulären Flüssigkeitsräume (ECM) wurden mittels weiteren Standards (Bromid-Space) validiert (24,25). Gerade diese Parameter sind überaus interessant für die Sportmedizin. Jede Veränderung durch Training, Übertraining, Ernährung, Regeneration, Wettkampf, Pause oder Erkrankung zeigt sich in direkter Auswirkung auf diese Körperkompartimente. (26,27,28,29). Die Forderung des Autors nach einer objektiven Bewertung von den vielen BIA-Geräten ist sicherlich nicht zu erreichen, indem man den Markt um einige Geräte reduziert. Darum ein Tipp, wie man selbst die diversen Geräte testen kann: Setzt man voraus, dass eine Körperanalysenmethode darauf basiert mit dem jeweils typischen Messwert dieser Methode die Analyse zu berechnen, so sollte dieser Messwert einen, bzw. den größten Einfluss in der Kalkulation der Analysenergebnisse haben. In den meisten Fällen der Endkunden-BIA-Geräte, so benenne ich einmal die Geräte, die auch in den Verbrauchermärkten angeboten werden, wird man feststellen, dass der Messwert nur einen untergeordneten Stellenwert in der Bewertung z.B. des Fettanteils hat. Zumeist sind die Angaben Größe und Körpergewicht in den multiplen Regressionsgleichungen stärker gewichtet als der eigentliche Messwert. Das genau macht diese "Analysen" dann auch vom Verbraucher verstehbar, denn er ist primär auf das Gewicht als Aussage über seinen Fettgehalt fixiert. Wenn zudem noch das Aktivitätsniveau einen Einfluss auf die berechneten Analysenergebnisse hat, handelt es sich nicht mehr um eine Analysenmethode, sondern um eine Wahrscheinlichkeitsrechnung, die mehr oder weniger willkürliche Faktoren enthält, die einem "stark aktiven" Menschen mit weniger Fett ausstattet als eine "inaktive" Messperson. Dies ist etwa bei der Near- Infrared-Methode der Fall. Die methodische Kurz-Beschreibung der Near-Infrared Methode, ist im übrigen mit der Erklärung des Autors, dass durch die Infrarotstrahlung Neutronenaktivierungen stattfänden, physikalisch völlig unzutreffend charakterisiert. Vielmehr werden einige der IR-Frequenzen charakteristisch für jeden Gewebetypen absorbiert und einige Frequenzbereiche wiederum reflektiert. Anzumerken wäre über diese Near-IR Methode, dass eine Reduzierung der Messung auf eine Messstelle (Mitte Bizeps)

Page 7: K Standards der Sportmedizin - egofit.de · Muskel- und Gesamtkörpermasse sogar günstig auf die sportartspezifi- ... (Training, Wettkampf) anwendbar. Durch die vorhandene ... X

zwar sehr praktikabel erscheint, doch eine Pars-Pro-Toto Messung sich immer nur limitiert eignet um eine Pro-Toto, also eine Ganzkörper- Aussage zu treffen. Um Körperanalysen - Standards für die Sportmedizin zu entwickeln, empfiehlt es sich die benannten einzelnen Methoden nicht im direkten Vergleich, sondern validierend mit den "golden Standards", den Referenzmethoden , der Hydrodensitometrie (FM, FFM), Kalium 40 (BCM) und Deuteriumoxid (Total Body Water, TBW) zu beurteilen und diese Ergebnisse zu vergleichen. Diese Studien wurden bereits vielfach durchgeführt (30) und sind in den Standardwerken der "Body Composition" (31,32,33) nachzulesen. Es würde sich jedoch sicherlich anbieten, den aktuellen Status Quo in einer deutschsprachigen Arbeit darzustellen. Eine zwar schon "ältere" doch immer noch brauchbare Tabelle der Bewertung einiger Körperanalysemethoden findet man bei Lukaski (34). Tabelle als pdf-Datei angehängt. Literatur: 1. Rubner, M.: Die Gesetze des Energieverbrauchs bei der Ernährung. Deuticke, Leipzig und Vienna, 1902 2. Moore FD, Olesen KH, McMurrey JD, Parker HV, Ball MR, Boyden CM. The body cell mass and its supporting enviroment in body composition in health and disease. Philadelphia, PA, Saunders 1963 3. Lukaski HC, Johnson PE, Bolonchuk WW, Lykken GI. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr 1985; 41:810-817. 4. Smith DB, Johnson GO, Stout JR, Housh TJ, Housh DJ, Evetovich TK. Validity of near-infrared interactance for estimating relative body fat in female high school gymnasts. Int J Sports Med 1997 Oct;18(7):531-7 5. Flynn MA, Nolph GB, Krause G. Comparison of body composition measured by total body potassium and infrared interactance. J Am Coll Nutr 1995 Dec;14(6):652-5 6. Wilmore KM, McBride PJ, Wilmore JH. Comparison of bioelectric impedance and near-infrared interactance for body composition assessment in a population of self-perceived overweight adults. Int J Obes Relat Metab Disord 1994 Jun;18(6):375-81 7. Lohman TG. Skinfolds and body density and their relation to body fatness: A review. Hum Biol 1981;53:181-225.

8. Lohman TG, Roche AF, Martorell R (eds). Anthropometric Standardization Reference Manual. Champaign, IL, Human Kinetics, 988, page 177.

9. Brozek J, Kihlberg JK, Taylor HC, Keys A. Skinfold distributions in middle aged american men: a contribution to norms of leaness-fatness. Ann. N.Y. Acad. Sci. 110, 492, 1963

10. Baumgartner RN, Heymsfield SB, Roche AF, Bernardino M. Abdominal composition quantified by computed tomography. Am J Clin Nutr 1988;48:936-945.

Page 8: K Standards der Sportmedizin - egofit.de · Muskel- und Gesamtkörpermasse sogar günstig auf die sportartspezifi- ... (Training, Wettkampf) anwendbar. Durch die vorhandene ... X

11. Wang Z-M, Pierson RN Jr., Heymsfield SB. The five-level model: a new approach to organizing body-composition research. Am J Clin Nutr 1992;56:19-28.

12. Ferland M, Despres JP, Tremblay A, Pinault S, Nadeau A, Moorjani S, Lupien PJ, Theriault G, Bouchard C. Assessment of adipose tissue distribution by computed axial tomography in obese women: association with body density and anthropometric measurements. Brit J Nutr 1989;62:139-148.

13. Van Loan MD, Boileau RA, Slaughter MH, Stillman RJ, Lohman TG, Going SB, Carswell C. Association of bioelectrical resistance with estimates of fat-free mass determined by densitometry and hydrometry. Am J Hum Biol 1990;2:219-226. 14. Kushner RF. Bioelectrical Impedance Analysis: A Review of Principles and Applications. J Am College Nutr 1992; 11:199-209. 15. Jackson AS, Pollock ML, Graves JE, Mahar MT. Reliability and validity of bioelectrical impedance in determining body composition. J Appl Physiol 1988; 64:529-534. 16. Van Loan MD, Boileau RA, Slaughter MH, Stillman RJ, Lohman TG, Going SB, Carswell C. Association of bioelectrical resistance with estimates of fat-free mass determined by densitometry and hydrometry. Am J Hum Biol 1990;2:219-226. 17. Segal KR, Van Loan M, Fitzgerald PI, Hodgdon JA, Van Itallie TB. Lean body mass estimation by bioelectrical impedance analysis: a four-site cross-validation study. Am J Clin Nutr 1988;47:7-14. 18. Pichard C, Kyle UG, Bracco D, Slosman DO, Morabia A, Schutz Y. Reference values of fat-free and fat masses by bioelectrical impedance analysis in 3393 healthy subjects, Nutrition 16 (4) (2000) pp. 245-254. 19. Hoffer EC, Meador CK, Simpson DC. Correlation of whole-body impedance with total body water volume. J Appl Phys 1969; 27:531-534. 20. Khaled MA, McCutcheon MJ, Reddy S, Pearman PL, Hunter GR, Weinsier RL. Electrical impedance method in assessing human body composition: the BIA method. Am J Clin Nutr 1988; 47:789-792. 21. Lukaski HC, Bolonchuk WW, Hall CB, Siders WA. Validation of tetrapolar bioelectrical impedance method to assess human body composition. J Appl Phys 1986; 61:1327-1332.

22. Donald P Kotler, Santiago Burastero, Jack Wang, and Richard N Pierson Jr .Prediction of body cell mass, fat-free mass, and total body water with bioelectrical impedance analysis: effects of race, sex, and disease. Am J Clin Nutr 1996:64(suppl):4S9S-97S

23. Donald P Kotler, Santiago Burastero, Jack Wang, and Richard N Pierson Jr. Prediction of Body Cell Mass, Fat-Free Mass, and Total Body Water with Bioelectrical Impedance Analysis: Effects of Race, Sex, and Disease Am J Clin Nutr 1996;64(suppl):489S-97S.

24. Espejo MG; Neu J; Hamilton L; Eitzman B. Determination of Extracellular Fluid Volume Using IMpedance Measurements Critical Care Med 1939 Apr:17 (4):360-3

Page 9: K Standards der Sportmedizin - egofit.de · Muskel- und Gesamtkörpermasse sogar günstig auf die sportartspezifi- ... (Training, Wettkampf) anwendbar. Durch die vorhandene ... X

25. Vache C, Rousset P, Gachon AM, Morio B, Boulier A, Coudert J, Beaufrere B, Ritz P. Bioelectrical impedance analysis measurements of total body water and extracellular water in healthy elderly subjects. Int J Obes Relat Metab Disord 1998 (6) ;22:537-43

26. Deurenberg P, Weststrate JA, van der Kooy K. Body composition changes assessed by bioelectrical impedance measurements. Am J Clin Nutr 1989; 49:401-403.

27. JA Hodgdon, KE Friedl, MB Beckett, KA Westphal, and RL Shippee. Use of bioelectrical impedance analysis measurements as predictors of physical performance. Am J Clin Nutr 1996 64: 463-468.

28. KR Segal. Use of bioelectrical impedance analysis measurements as an evaluation for participating in sports. Am J Clin Nutr 1996 64: 469-471. 29. Ott M, Fischer H, Polat H, Helm EB, Frenz M, Caspary WF, Lemcke B. Bioelectrical Impedance Analysis as a Predictor of Survival in Patients with Human Immunodeficiency Virus Infection. J Acquir Immune Defic Syndr 1995 9:20-25 30. Pierson, Jr. RN, Wang J, Heymsfield SB, Russell-Aulet M, Mazariegos M, Tierney M, Smith R, Thornton JC, Kehayias J, Weber DA, Dilmanian FA. Measuring body fat: calibrating the rulers. Intermethod comparisons in 389 normal Caucasian subjects. Am J Physiol 1991; 261 31. Forbes GB. Human Body Composition: Growth, Aging, Nutrition, and Activity. New York, Springer-Verlag, 1987 32. Heyward VH, Stolarczyk LM. Applied Body Composition Assessment. Human Kinetics 1996 33. Roche AF, Heymsfield SB, Lohmann TG. Human Body Composition. Human Kinetics 1996 34. Lukaski HC. Methods for the assessment of human body composition: traditional and new. Am J Clin Nutr 1987; 46:537-56. Dieser Leserbrief ist tatsächlich noch länger als eine Seite, doch geht er differenziert auf die vielen offenen Fragen des Artikels sachlich und mit wissenschaftlichem Hintergrund ein, doch er musste gekürzt werden.

Page 10: K Standards der Sportmedizin - egofit.de · Muskel- und Gesamtkörpermasse sogar günstig auf die sportartspezifi- ... (Training, Wettkampf) anwendbar. Durch die vorhandene ... X

Leserbrief Nr.3 Standards der Sportmedizin: Körperfettanalysen Der Autor vergleicht und bewertet drei in der Sportpraxis eingesetzte Methoden: Bioelektrische Impedanzanalyse (BIA), Kalipermetrie (Calipometrie) und die Infrarotmessung (Near-IR). Um Körperanalysen als Standard für die Sportmedizin zu definieren, empfiehlt es sich, die benannten einzelnen Methoden nicht im direkten Vergleich, sondern validierend mit den "golden Standards" bzw. den Referenzmethoden zu beurteilen und diese Ergebnisse zu vergleichen. Diese Studien wurden bereits vielfach durchgeführt (1,2) und sind in den Standardwerken der "Body Composition" (3,4,5) nachzulesen. Eine zwar schon "ältere", doch immer noch brauchbare Tabelle der Bewertung einiger Körperanalysemethoden findet man bei Lukaski (6). Der Autor gibt weder zur BIA, noch zur Near-IR-Methode Literaturhinweise und bemängelt infolgedessen auch fehlende Normierungen, Beschreibungen und Vergleichsstudien hierfür. Das ist erstaunlich, denn es sind mehr als 1000 Publikationen in den wissenschaftlichen Datenbanken (Medline-Recherche) über die BIA verfügbar. In frühen Arbeiten wird die BIA-Methode sehr umfassend hergeleitet und erklärt (7,8). Der Zusammenhang zwischen Leitfähigkeit (BIA) und Fettgewebe wird in den Validitätsstudien im Vergleich mit der Hydrodensitometrie, dem "golden Standard" für die Bestimmung der FM und der FFM mit Korrelationen um r = 0.9 (9,10,11,12) beschrieben. Die umfangreichste Validitäts-Studie (1537 Probanden) stammt von K. Segal (13). Mit Fragen der Normierung beschäftigt sich ausführlich eine Schweizer Arbeit, in der BIA-Messungen von 3393 Personen erhoben und Referenzwerte aufgestellt wurden (14). Die methodische Kurz-Beschreibung der Near-Infrared Methode (15,16,17) ist im übrigen mit der Erklärung des Autors, dass durch die Infrarotstrahlung Neutronenaktivierungen stattfänden, physikalisch völlig unzutreffend charakterisiert. Vielmehr nutzt das Verfahren gewebetypische Absorptionen bzw. Reflexionen bestimmter IR-Frequenzbereiche. Aus physiologischer und damit auch aus sportmedizinischer Sicht sind Körperanalysen dann interessant, wenn sie Aussagen über Eigenschaften liefern, die von sportmotorischer und energetischer Bedeutung sind (18). Daraus folgt, dass die Sportmedizin den Fokus ihres Interesses nicht primär auf die Fettmasse richten sollte, sondern auf die für die sportmotorische Leistungsfähigkeit maßgebliche stoffwechselaktive Körperzellmasse (BCM) (19). Jede Veränderung durch Training, Übertraining, Ernährung, Regeneration, Wettkampf, Trainingspause oder Erkrankung zeigt sich in direkter Auswirkung auf dieses Körperkompartiment, bzw. auf Flüssigkeitsverschiebungen zwischen Extra- und Intrazellulärräumen und ist mittels BIA spontan messbar (20,21,22,23,24,25,26,27,28,29). Gerade dies kann die Calipermethode nicht leisten. Sie vermag lediglich Änderungen im Unterhautfettgewebe, und dies auch erst nach relativ langen Zeitintervallen (Wochen / Monaten) aufzuzeigen. Tabelle als pdf-Datei angehängt. Literatur:

Page 11: K Standards der Sportmedizin - egofit.de · Muskel- und Gesamtkörpermasse sogar günstig auf die sportartspezifi- ... (Training, Wettkampf) anwendbar. Durch die vorhandene ... X

1. Pierson, Jr. RN, Wang J, Heymsfield SB, Russell-Aulet M, Mazariegos M, Tierney M, Smith R, Thornton JC, Kehayias J, Weber DA, Dilmanian FA. Measuring body fat: calibrating the rulers. Intermethod comparisons in 389 normal Caucasian subjects. Am J Physiol 1991; 261

2. Kenneth J. Ellis, Human Body Composition: In Vivo Methods, Physiol. Rev. 80: 649-680, 2000

3. Forbes GB. Human Body Composition: Growth, Aging, Nutrition, and Activity. New York, Springer-Verlag, 1987 4. Heyward VH, Stolarczyk LM. Applied Body Composition Assessment. Human Kinetics 1996 5. Roche AF, Heymsfield SB, Lohmann TG. Human Body Composition. Human Kinetics 1996 6. Lukaski HC. Methods for the assessment of human body composition: traditional and new. Am J Clin Nutr 1987; 46:537-56. 7. Lukaski HC, Johnson PE, Bolonchuk WW, Lykken GI. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr 1985; 41:810-817. 8. Hoffer EC, Meador CK, Simpson DC. Correlation of whole-body impedance with total body water volume. J Appl Phys 1969; 27:531-534. 9. Van Loan MD, Boileau RA, Slaughter MH, Stillman RJ, Lohman TG, Going SB, Carswell C. Association of bioelectrical resistance with estimates of fat-free mass determined by densitometry and hydrometry. Am J Hum Biol 1990;2:219-226. 10. Kushner RF. Bioelectrical Impedance Analysis: A Review of Principles and Applications. J Am College Nutr 1992; 11:199-209. 11. Jackson AS, Pollock ML, Graves JE, Mahar MT. Reliability and validity of bioelectrical impedance in determining body composition. J Appl Physiol 1988; 64:529-534. 12. Van Loan MD, Boileau RA, Slaughter MH, Stillman RJ, Lohman TG, Going SB, Carswell C. Association of bioelectrical resistance with estimates of fat-free mass determined by densitometry and hydrometry. Am J Hum Biol 1990;2:219-226. 13. Segal KR, Van Loan M, Fitzgerald PI, Hodgdon JA, Van Itallie TB. Lean body mass estimation by bioelectrical impedance analysis: a four-site cross-validation study. Am J Clin Nutr 1988;47:7-14. 14. Pichard C, Kyle UG, Bracco D, Slosman DO, Morabia A, Schutz Y. Reference values of fat-free and fat masses by bioelectrical impedance analysis in 3393 healthy subjects, Nutrition 16 (4) (2000) pp. 245-254. 15. Smith DB, Johnson GO, Stout JR, Housh TJ, Housh DJ, Evetovich TK. Validity of near-infrared interactance for estimating relative body fat in female high school gymnasts. Int J Sports Med 1997 Oct;18(7):531-7

Page 12: K Standards der Sportmedizin - egofit.de · Muskel- und Gesamtkörpermasse sogar günstig auf die sportartspezifi- ... (Training, Wettkampf) anwendbar. Durch die vorhandene ... X

16. Flynn MA, Nolph GB, Krause G. Comparison of body composition measured by total body potassium and infrared interactance. J Am Coll Nutr 1995 Dec;14(6):652-5 17. Wilmore KM, McBride PJ, Wilmore JH. Comparison of bioelectric impedance and near-infrared interactance for body composition assessment in a population of self-perceived overweight adults. Int J Obes Relat Metab Disord 1994 Jun;18(6):375-81 18. Rubner, M.: Die Gesetze des Energieverbrauchs bei der Ernährung. Deuticke, Leipzig und Vienna, 1902 19. Moore FD, Olesen KH, McMurrey JD, Parker HV, Ball MR, Boyden CM. The body cell mass and its supporting enviroment in body composition in health and disease. Philadelphia, PA, Saunders 1963 20. Khaled MA, McCutcheon MJ, Reddy S, Pearman PL, Hunter GR, Weinsier RL. Electrical impedance method in assessing human body composition: the BIA method. Am J Clin Nutr 1988; 47:789-792. 21. Lukaski HC, Bolonchuk WW, Hall CB, Siders WA. Validation of tetrapolar bioelectrical impedance method to assess human body composition. J Appl Phys 1986; 61:1327-1332.

22. Donald P Kotler, Santiago Burastero, Jack Wang, and Richard N Pierson Jr .Prediction of body cell mass, fat-free mass, and total body water with bioelectrical impedance analysis: effects of race, sex, and disease. Am J Clin Nutr 1996:64(suppl):4S9S-97S

23. Donald P Kotler, Santiago Burastero, Jack Wang, and Richard N Pierson Jr. Prediction of Body Cell Mass, Fat-Free Mass, and Total Body Water with Bioelectrical Impedance Analysis: Effects of Race, Sex, and Disease Am J Clin Nutr 1996;64(suppl):489S-97S.

24. Espejo MG; Neu J; Hamilton L; Eitzman B. Determination of Extracellular Fluid Volume Using Impedance Measurements Critical Care Med 1939 Apr:17 (4):360-3

25. Vache C, Rousset P, Gachon AM, Morio B, Boulier A, Coudert J, Beaufrere B, Ritz P. Bioelectrical impedance analysis measurements of total body water and extracellular water in healthy elderly subjects. Int J Obes Relat Metab Disord 1998 (6) ;22:537-43

26. Deurenberg P, Weststrate JA, van der Kooy K. Body composition changes assessed by bioelectrical impedance measurements. Am J Clin Nutr 1989; 49:401-403.

27. JA Hodgdon, KE Friedl, MB Beckett, KA Westphal, and RL Shippee. Use of bioelectrical impedance analysis measurements as predictors of physical performance. Am J Clin Nutr 1996 64: 463-468.

28. KR Segal. Use of bioelectrical impedance analysis measurements as an evaluation for participating in sports. Am J Clin Nutr 1996 64: 469-471. 29. Ott M, Fischer H, Polat H, Helm EB, Frenz M, Caspary WF, Lemcke B. Bioelectrical Impedance Analysis as a Predictor of Survival in Patients with Human Immunodeficiency Virus Infection. J Acquir Immune Defic Syndr 1995 9:20-25

Page 13: K Standards der Sportmedizin - egofit.de · Muskel- und Gesamtkörpermasse sogar günstig auf die sportartspezifi- ... (Training, Wettkampf) anwendbar. Durch die vorhandene ... X

Nun waren es noch zu viele Literaturstellen. Diese sollten auf 5 begrenzt werden: Leserbrief Nr.4 Standards der Sportmedizin: Körperfettanalysen Der Autor vergleicht und bewertet drei in der Sportpraxis eingesetzte Methoden: Bioelektrische Impedanzanalyse (BIA), Kalipermetrie (Calipometrie) und die Infrarotmessung (Near-IR). Um Körperanalysen als Standard für die Sportmedizin zu definieren, empfiehlt es sich, die benannten einzelnen Methoden nicht im direkten Vergleich, sondern validierend mit den "golden Standards" bzw. den Referenzmethoden zu beurteilen und diese Ergebnisse zu vergleichen. Diese Studien wurden bereits vielfach durchgeführt und sind in den Standardwerken der "Body Composition" (1) nachzulesen. Eine zwar schon "ältere", doch immer noch brauchbare Tabelle der Bewertung einiger Körperanalysemethoden findet man bei Lukaski (2). Der Autor gibt weder zur BIA, noch zur Near-IR-Methode Literaturhinweise und bemängelt infolgedessen auch fehlende Normierungen, Beschreibungen und Vergleichsstudien hierfür. Das ist erstaunlich, denn es sind mehr als 1000 Publikationen in den wissenschaftlichen Datenbanken (Medline-Recherche) über die BIA verfügbar. In frühen Arbeiten wird die BIA-Methode sehr umfassend hergeleitet und erklärt. Der Zusammenhang zwischen Leitfähigkeit (BIA) und Fettgewebe wird in den Validitätsstudien im Vergleich mit der Hydrodensitometrie, dem "golden Standard" für die Bestimmung der FM und der FFM mit Korrelationen um r = 0.9 beschrieben. Die umfangreichste Validitäts-Studie (1537 Probanden) stammt von K. Segal (3). Mit Fragen der Normierung beschäftigt sich ausführlich eine schweizer Arbeit, in der BIA-Messungen von 3393 Personen erhoben und Referenzwerte aufgestellt wurden (4). Die methodische Kurz-Beschreibung der Near-Infrared Methode ist im übrigen mit der Erklärung des Autors, dass durch die Infrarotstrahlung Neutronenaktivierungen stattfänden, physikalisch völlig unzutreffend charakterisiert. Vielmehr nutzt das Verfahren gewebetypische Absorptionen bzw. Reflexionen bestimmter IR-Frequenzbereiche. Aus physiologischer und damit auch aus sportmedizinischer Sicht sind Körperanalysen dann interessant, wenn sie Aussagen über Eigenschaften liefern, die von sportmotorischer und energetischer Bedeutung sind. Daraus folgt, dass die Sportmedizin den Fokus ihres Interesses nicht primär auf die Fettmasse richten sollte, sondern auf die für die sportmotorische Leistungsfähigkeit maßgebliche stoffwechselaktive Körperzellmasse (BCM). Jede Veränderung durch Training, Übertraining, Ernährung, Regeneration, Wettkampf, Trainingspause oder Erkrankung zeigt sich in direkter Auswirkung auf dieses Körperkompartiment, bzw. auf Flüssigkeitsverschiebungen zwischen Extra- und Intrazellulärräumen und ist mittels BIA spontan messbar (5). Gerade dies kann die Calipermethode nicht leisten. Sie vermag lediglich Änderungen im Unterhautfettgewebe, und dies auch erst nach relativ langen Zeitintervallen (Wochen / Monaten) aufzuzeigen.

Page 14: K Standards der Sportmedizin - egofit.de · Muskel- und Gesamtkörpermasse sogar günstig auf die sportartspezifi- ... (Training, Wettkampf) anwendbar. Durch die vorhandene ... X

Tabelle aus (2) als pdf-Datei angehängt. Literatur: 1. Roche AF, Heymsfield SB, Lohmann TG. Human Body Composition. Human Kinetics 1996 2. Lukaski HC. Methods for the assessment of human body composition: traditional and new. Am J Clin Nutr 1987; 46:537-56. 3. Segal KR, Van Loan M, Fitzgerald PI, Hodgdon JA, Van Itallie TB. Lean body mass estimation by bioelectrical impedance analysis: a four-site cross-validation study. Am J Clin Nutr 1988;47:7-14. 4. Pichard C, Kyle UG, Bracco D, Slosman DO, Morabia A, Schutz Y. Reference values of fat-free and fat masses by bioelectrical impedance analysis in 3393 healthy subjects, Nutrition 16 (4) (2000) pp. 245-254. 5. Ott M, Fischer H, Polat H, Helm EB, Frenz M, Caspary WF, Lemcke B. Bioelectrical Impedance Analysis as a Predictor of Survival in Patients with Human Immunodeficiency Virus Infection. J Acquir Immune Defic Syndr 1995 9:20-25 Mittlerweile ist Oktober, die Chance zu einer zeitnahen Kritik ist somit gar nicht mehr gegeben. An dieser Stelle wäre eine angemessene Meinungsäußerung zu dem sogenannten wissenschaftlichen Anspruch einer Fachzeitschrift, doch wir denken, dass Sie Ihre Meinung auch ohne unser dazutun bilden werden. Köln, Oktober 2003