[email protected] NDWI · 2021. 1. 17. · ILWIS Level 1B HDF Image ENVI 5 UTM. SEB SEBAL S-SEBI...

18
www.isadmc.ir [email protected] NDWI .

Transcript of [email protected] NDWI · 2021. 1. 17. · ILWIS Level 1B HDF Image ENVI 5 UTM. SEB SEBAL S-SEBI...

  • www.isadmc.ir

    [email protected]

    NDWI

    .

    http://www.isadmc.irmailto:[email protected]

  • Dong et al.,2015

    Njoku et al., 1996

    Van

    et al ., 2012

    2011et al.Das2008et al

    Ghulam2007et alMallickNjoku.1996&

    EntekhabiPaloscia et al.2006Pierdicca et

    al.2010Sano et al. 1998et al. 2008VivoniZhang

    Wegehenkel2006

    Lu et al.,2012

    Gokman et al., 2012

    Bastiaanssen et al., 1998

    Allen et al., 2002

  • SEBS

    Gokman et al., 2012

    BEAREX08

    Neale et

    al.,2012

    TSEB

    TSEB

    TSEB

    TSEB

    TSEB

    Ju et al.,2010

    Bushland Evapotranspiration and Agricultural Remote

    Sensing Experiment

    ASCAT MetOP

    AMSR-E Aqua

    Brocca et al.,2011

    AMSR

    SEBAL

    Co

    CoCo

  • MODIS

    ILWIS

    Level 1B

    HDF

    ENVI 5Image

    UTM

  • SEB

    SEBI-SSEBAL

    METRICSEBS

    LE

    )S(T

    2w/mnR2w/mG

    2w/mH2w/m

    SEBAL

    nR

    Allen et al., 2002

    Surface Energy Balance (SEB) Surface Energy Balance Index Surface Energy Balance Algorithm for Land Mapping Evapo Transpiration at high Resolution with

    Internalized Calibration Surface Energy Balance System

  • w/m2

    w/m2

    w/m20

    Allen et al., 2002

    toa;-Radiance

    Bastiaanssen, 2000

    ii

    Esuni

    Bi

    w/m2Rs0.7×106 Kmds

    H1-J.S 34-10×6.262C

    m/s 810×2.998KJ/k 23-10×1.381

    i:T

    Liang, 2001

    scG21367,w/mCos

    dr

    swR2w/m

    Allen et al., 2002

    NDVI

    0

  • NDVI

    0

    VP

    Zhao et al., 2009

    sT

    nB_nTn

    KnLnn

    m810×=1.11910661C410×=1.4382C

    31T32T

    K

    Allen et al., 2002

    a

    4/K2W/m 8-10×5.67aT

    K

    G

    nG/R

    Allen et al., 2002

    sT

    GnR

  • 3Kg/mpC1004

    J/Kg/KdT:2T-1T-1Z

    2ZKahr

    m/s

    rah

    dT

    NDVI

    NDVI

    (dT)

    dT

    .

    .(Bastiaanssen et al., 1998)

    24ET

    24ETfrET

    frET

    rET

    rET

    .(Bastiaanssen, 2000)

    :Rn-day

    J/Kg

    .

    NDVI

    .

  • MODIS MODIS

    LST

    MODIS

    LST

    LST

    LST LST

    MODIS

    MODIS

  • RN

    2W/m RNRN

    MODIS

    MODIS

  • G

    G G

    MODIS

    MODIS

    H

  • H H MODIS MODIS

    RnH

    G

    ETinst

    Bastiansen., 2000

    mm/day

    ET ETMODIS MODIS

  • 0

    10

    20

    30

    40

    0 0.2 0.4 0.6 0.8 1

    ws%

  • ( )

    ( )

    ( )

  • )

    SEBS

    =0.57)2(r

    Gokman et al., 2012

    Neale

    Bearex08

    TSEB

    TSEB

  • SUTSEBAL

    3. Allen, R.G., Tasumi, M., Trezza, R., & Bastiaanssen, W.G.M.( 2002). SEBAL (Surface Energy Balance Algorithms for Land). Advanced Training and Users Manual

    4. Ahmad, S., Kalra, A., Stephen, &Haroon, (2010). Estimating soil moisture using remote sensing data: a machine learning approach. Advances in Water Resources 33, 69 80.

    5. Bastiaanssen, W. (2000). SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology, 229(1): 87-100

    6. Brocca, L.S., Hasenauer, T., Lacava, F., Melone, T., Moramarco, W., Wagner, W., Dorigo, P., Matgen, J., Martínez-Fernández, P., Llorens, J., Latron, C. & Martin, M.Bittelli. (2011). Soil Moisture Estimation through Ascat and Amsr-E Sensors: An Intercomparison and Validation Study Across Europe. Remote Sensing Of Environment J, 115, 3390 3408

    7. Betts, A.K., Ball, J.H., & Beljaars, A.C.M., (1996). The land surface-atmosphere interaction: a rview based on observational and global modeling perspectives. Journal of Geophysical Research 101, 72097225.

    8. Coll, C., & Caselles, V. (1997). A split-window algorithm for land surface temperature from advanced very high resolution radiometer data: Validation and algorithm comparison. Journal of Geophysical Research, 102(D14): 16697-16616, 16713

    9. Courault, D., Lacarrère, P., Clastre, P., Lecharpentier, P., Jacob, F., & Marloie, O., Et al. (2003). Estimation of Surface Fluxes in a Small Agricultural Area Using the Three-Dimensional AtmospHeric Model Meso-Nh and Remote Sensing Data. Canadian Journal Of Remote Sensing, 29(6), 741-754

    10. Das, N.N., Mohanty, B.P., Cosh, M.H., & Jackson, T.J., (2008). Modeling and assimilation of root zone soil moisture using remote sensing observations in Walnut GulchWatershed during SMEX04. Remote Sensing of Environment 112, 412 429.

    11. Dong J, Steele-Dunne SC, Judge J., & van de Giesen N. (2015). A particle batch smoother for soil moisture estimation using soil temperature observations. Advances in Water Resources 83: 111-22

    12. Ju, W., Gao, P., Zhou, Y., & Zhang, X. (2010). Combining an Ecological. Model With Remote Sensing And Gis Techniques To Monitor Soil Water Content Of Croplands With A Monsoon Climate. Agricultural Water Management, 97, 1221-1231.

    13. Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., & Sheffield, J., & Goulden, .M. L., ET Al (2010). Recent Decline In The Global Land Evapotranspiration Trend Due To Limitedmoisture Supply. Nature, 467, 951 954

    14. Ghulam, A., Qin, Q., Teyip, T., & Li, Z., (2007). Modified perpendicular drought index (MPDI): a real-time drought monitoring method. ISPRS Journal of Photogrammetry and Remote Sensing 62, 150 164.

    15. Gokmen, M., Vekerdy, Z., Verhoef, A., Verhoef, W., Batelaan, O., & Van Der Tol, C. (2012). Integration of Soil Moisture In Sebs For Improving Vapotranspiration Estimation Under Water Stress Conditions. Remote Sensing Of Environment, 121, 261-274

    16. Liang, S. (2001). Narrowband to broadband conversions of land surface albedo I: Algorithms. Remote Sensing of Environment, 76(2): 213-238

    17. Lu, H., Koike, T., Yang, K., Hu, Z., Xu, X., Rasmy, M., & Tamagawa, K. (2012). Improving land surface soil moisture and energy flux simulations over the Tibetan plateau by the assimilation of the microwave

  • remote sensing data and the GCM output into a land surface model. International Journal of Applied Earth Observation and Geoinformation, 17, 43-54.

    18. Mallick, K., Bhattacharya, B.K., & Patel, N.K., (2009). Estimating volumetric surface moisture content for cropped soils using a soil wetness index based on surface temperature and NDVI. Agricultural and Forest Meteorology 149, 1327 1342.

    19. Neale, C. M., Geli, H. M., Kustas, W. P., Alfieri, J. G., Gowda, P. H., Evett, S. R., & Howell, T. A. (2012). Soil water content estimation using a remote sensing based hybrid evapotranspiration modeling approach. Advances in Water Resources, 50, 152-161

    20. Njoku, E.G., & Entekhabi, D., (1996). Passive microwave remote sensing of soil moisture. Journal of Hydrology 184, 101 129.

    21. Paloscia, S., Macelloni, G., & Santi, E., (2006). Soil moisture estimates from AMSR-E brightness temperatures by using a dual-frequency algorithm. IEEE Transactions on Geoscience and Remote Sensing 44, 3135 3144.

    22. Pierdicca, N., Pulvirenti, L., Bignami, C., 2010. Soil moisture estimation over vegetated terrains using multitemporal remote sensing data. Remote Sensing of Environment 114, 440 448.

    23. Sano, E.E., Huete, A.R., Troufleau, D., Moran, M.S., & Vidal, A., (1998). Sensitivity analysis of ERS-1 synthetic aperture radar data to the surface moisture content of rocky soils in a semiarid rangeland. Water Resources Research 34, 1491 1498.

    24. Van der Tol, C. (2012). Validation of remote sensing of bare soil ground heat flux. Remote Sensing of Environment, 121, 275-286.

    25. Vivoni, E.R., Gebremichael, M., Watts, C.J., Bindlish, R., & Jackson, T.J., (2008). Comparison of ground-based and remotely-sensed surface soil moisture estimates over complex terrain during SMEX04. Remote Sensing of Environment 112,314 325.

    26. Wang, K. C., Wang, P., Li, Z. Q., Cribb, M., & Sparrow, M. (2007). A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature. Journal of Geophysical Research-Atmospheres, 112, 14

    27. Zhang, Y.Q., & Wegehenkel, M., (2006). Integration ofMODISdata into a simple model for the spatial distributed simulation of soil water content and evapotranspiration. Remote Sensing of Environment 104, 393 408.

    28. Zhao, S., Qin, Q., Yang, Y., Xiong, Y., & Qiu, G. (2009). Comparison of two split-window methods for retrieving land surface temperature from MODIS data. Journal of Earth System Science, 118(4): 345-353

    29. Zhao S, Yang Y, Qiu G, Qin Q, Yao Y, et al. (2010). Remote detection of bare soil moisture using a surface-temperature-based soil evaporation transfer coefficient. International Journal of Applied Earth Observation and Geoinformation

  • No. 6, Autumn & Winter, 2016, pp 90-107

    Deser t Managementwww.isadmc.ir

    Iranian Scientific Association of Desert Management and Control

    Assessment of Surface Energy Balance Algorithm for Land (SEBAL) model and biophysical parameters derived from remotely- sensed data in estimating of soil

    moisture in arid lands (Case study: Jarghoye, Isfahan)

    R. Sadeghzade Poode1, M. Zare2 M. H. Mokhtari3, M. Akhavan Ghalibaf3

    1. MSc of Natural Resources Engineering- Arid Lands Management, Faculty of Natural Resources andEremology, Yazd University, Iran 2. Assistant Professor, Faculty of Natural Resources and Eremology, Yazd University, Iran3. Assistant Professor, Faculty of Natural Resources and Eremology, Yazd University, Iran*Corresponding Author, E-mail: [email protected]

    Received date: 23/01/2016 Accepted date: 08/03/2016

    Abstract

    One of the key components of energy and hydrological processes is soil moisture, which is measured indirectly, because of exiting some problems in measuring directly. Some existing methods such as thermal inertia, vegetation indices, temperature and water indices (e.g. NDWI) has certain limitations such as difficulties in capturing images of day and night times, and differences in method of calculating of thermal inertia for different hours in a day. Therefore, finding a new method for calculating of soil moisture based soil temperature or water and soil spectral changes is very necessary. Although soil moisture is not calculated directly in the Surface Energy Balance Algorithm for Land (SEBAL), since all parameters that have effect on soil moisture changes, consider for calculating evapotranspiration in SEBAL, this model can be used to calculate soil moisture. Jarghoye-Sofla, as the study area, is located adjacent to the Gavkhoni playa, Isfahan province. The study area, has faced with declining in soil moisture, as a result of climatic fluctuations, and drying of the wetlands in recent years. The purpose of this research is assessing of the remote sensed based surface energy balance model, and evaluation of biophysical parameters derived from satellite imagery to estimate soil moisture. Data used in this research, consisted of MODIS satellite images and measurements of 33 soil samples taken at depth of 0-30 cm. By measuring point soil moisture, and calculating volumetric soil moisture, the rate of evapotranspiration was estimated using the SEBAL model. Then, correlation between the parameters used in the SEBAL and ground measurements of soil moisture was evaluated. Results show high correlation between parameters of the SEBAL and soil moisture. The highest correlation was determined between the SEBAL algorithm daily evapotranspiration and soil moisture for days of 16 and 17 November, 2014 with values of 0.51 and 0.68, respectively.

    Keywords: Soil moisture; MODIS; SEBAL; Playa; Arid lands

    http://www.isadmc.irmailto:[email protected]