References - University of Minnesotaolver/ref_/refs.pdf · ... Abraham, R., and Marsden, ... R.,...

109
References [ 1] Abdullaev, F., Darmanyan, S., and Khabibullaev, P., Optical Solitons, Springer–Verlag, New York, 1993. [ 2] Abdulloev, K.O., Bogolubsky, I.L., and Makhankov, V.G., One more example of inelastic soliton interaction, Phys. Lett. A 56 (1976), 427–428. [ 3] Abel, N.H., Untersuchung der funktionen zweier unabh¨ angig ver¨ anderlicher Gr¨ oßen x und y , wie f (x,y ), welche die Eigenschaft haben, daß f (z,f (x,y )) eine symmetrische Funktion von z, x, und y ist, J. Reine Angew. Math. 1 (1826), 11–15. [ 4] Abellanas, L., and Galindo, A., A Harry–Dym class of bihamiltonian evolution equations, Phys. Lett. A 107 (1985), 159–160. [ 5] Ablowitz, M.J., and Clarkson, P.A., Solitons, Nonlinear Evolution Equations and the Inverse Scattering Transform, L.M.S. Lecture Notes in Math., vol. 149, Cambridge University Press, Cambridge, 1991. [ 6] Ablowitz, M.J., Kaup, D.J., Newell, A.C., and Segur, H., The inverse scattering transform — Fourier analysis for nonlinear problems, Stud. Appl. Math. 53 (1974), 249–315. [ 7] Ablowitz, M.J., and Ladik, J.F., Nonlinear differential-difference equations, J. Math. Phys. 16 (1975), 598–603. [ 8] Ablowitz, M.J., Ramani, A., and Segur, H., A connection between nonlinear evolution equations and ordinary differential equations of P -type, J. Math. Phys. 21 (1980), 715–721. [ 18] Ablowitz, M.J., and Segur, H., Solitons and the Inverse Scattering Transform, Stud. Appl. Math., vol. 4, SIAM, Philadelphia, 1981. [ 10] Abraham, R., and Marsden, J.E., Foundations of Mechanics, 2nd ed., The Benjamin–Cummings Publ. Co., Reading, Mass., 1978. [ 11] Abraham, R., Marsden, J.E., and Ratiu, T., Manifolds, Tensor Analysis, and Applications, Springer–Verlag, New York, 1988. [ 12] Abraham–Shrauner, B., Hidden symmetries and nonlocal group generators for ordinary differential equations, IMA J. Appl. Math. 56 (1996), 235–252. [ 13] Abraham–Shrauner, B., Hidden symmetries and linearization of the modified Painlev´ e-Ince equation, J. Math. Phys. 34 (1993), 4809–4816. [ 14] Abraham–Shrauner, B., Hidden symmetries, first integrals and reduction of order of nonlinear ordinary differential equations, J. Nonlinear Math. Phys. 9 Suppl. 2 (2002), 1–9. [ 15] Abraham–Shrauner, B., and Guo, A., Hidden symmetries associated with the projective group of nonlinear first order ordinary differential equations, J. Phys. A 25 (1992), 5597–5608. [ 16] Abraham–Shrauner, B., and Guo, A., Hidden symmetries of energy-conserving differential equations, IMA J. Appl. Math. 51 (1993), 147–153. 1

Transcript of References - University of Minnesotaolver/ref_/refs.pdf · ... Abraham, R., and Marsden, ... R.,...

References

[1] Abdullaev, F., Darmanyan, S., and Khabibullaev, P., Optical Solitons,Springer–Verlag, New York, 1993.

[2] Abdulloev, K.O., Bogolubsky, I.L., and Makhankov, V.G., One more example ofinelastic soliton interaction, Phys. Lett. A 56 (1976), 427–428.

[3] Abel, N.H., Untersuchung der funktionen zweier unabhangig veranderlicher Großenx und y, wie f(x, y), welche die Eigenschaft haben, daß f(z, f(x, y)) einesymmetrische Funktion von z, x, und y ist, J. Reine Angew. Math. 1 (1826),11–15.

[4] Abellanas, L., and Galindo, A., A Harry–Dym class of bihamiltonian evolutionequations, Phys. Lett. A 107 (1985), 159–160.

[5] Ablowitz, M.J., and Clarkson, P.A., Solitons, Nonlinear Evolution Equations andthe Inverse Scattering Transform, L.M.S. Lecture Notes in Math., vol. 149,Cambridge University Press, Cambridge, 1991.

[6] Ablowitz, M.J., Kaup, D.J., Newell, A.C., and Segur, H., The inverse scatteringtransform — Fourier analysis for nonlinear problems, Stud. Appl. Math. 53

(1974), 249–315.

[7] Ablowitz, M.J., and Ladik, J.F., Nonlinear differential-difference equations, J. Math.Phys. 16 (1975), 598–603.

[8] Ablowitz, M.J., Ramani, A., and Segur, H., A connection between nonlinearevolution equations and ordinary differential equations of P -type, J. Math.Phys. 21 (1980), 715–721.

[18] Ablowitz, M.J., and Segur, H., Solitons and the Inverse Scattering Transform, Stud.Appl. Math., vol. 4, SIAM, Philadelphia, 1981.

[10] Abraham, R., and Marsden, J.E., Foundations of Mechanics, 2nd ed., TheBenjamin–Cummings Publ. Co., Reading, Mass., 1978.

[11] Abraham, R., Marsden, J.E., and Ratiu, T., Manifolds, Tensor Analysis, andApplications, Springer–Verlag, New York, 1988.

[12] Abraham–Shrauner, B., Hidden symmetries and nonlocal group generators forordinary differential equations, IMA J. Appl. Math. 56 (1996), 235–252.

[13] Abraham–Shrauner, B., Hidden symmetries and linearization of the modifiedPainleve-Ince equation, J. Math. Phys. 34 (1993), 4809–4816.

[14] Abraham–Shrauner, B., Hidden symmetries, first integrals and reduction of order ofnonlinear ordinary differential equations, J. Nonlinear Math. Phys. 9 Suppl. 2(2002), 1–9.

[15] Abraham–Shrauner, B., and Guo, A., Hidden symmetries associated with theprojective group of nonlinear first order ordinary differential equations, J. Phys.A 25 (1992), 5597–5608.

[16] Abraham–Shrauner, B., and Guo, A., Hidden symmetries of energy-conservingdifferential equations, IMA J. Appl. Math. 51 (1993), 147–153.

1

[17] Abraham–Shrauner, B., and Guo, A., Hidden and nonlocal symmetries of nonlineardifferential equations, in: Modern Group Analysis: Advanced Analytical andComputational Methods in Mathematical Physics, N.H. Ibragimov, M. Torrisi,and A. Valenti, eds., Kluwer, Dordrecht, The Netherlands, 1993, pp. 1–5.

[18] Abramowitz, M., and Stegun, I., Handbook of Mathematical Functions, NationalBureau of Standards Appl. Math. Series, #55, U.S. Govt. Printing Office,Washington, D.C., 1970.

[19] Ackerman, M., and Hermann, R., Sophus Lie’s 1880 Transformation Group Paper,Lie Groups: History, Frontiers and Applications, vol. 1, Math Sci Press,Brookline, Mass., 1975.

[20] Ackerman, M., and Hermann, R., Sophus Lie’s 1884 Differential Invariant Paper,Lie Groups: History, Frontiers and Applications, vol. 3, Math Sci Press,Brookline, Mass., 1976.

[21] Ackerman, M., and Hermann, R., Hilbert’s Invariant Theory Papers, Lie Groups:History, Frontiers and Applications, vol. 8, Math Sci Press, Brookline, Mass.,1978.

[22] Adams, B.G., Cızek, J., and Paldus, J., Lie algebraic methods and their applicationsto simple quantum systems, Adv. Quantum Chem. 19 (1988), 1–85.

[23] Adams, M., Ratiu, T., and Schmidt, R., A Lie group structure for pseudodifferentialoperators, Math. Ann. 273 (1986), 529–551.

[24] Adams, M., Ratiu, T., and Schmidt, R., A Lie group structure for Fourier integraloperators, Math. Ann. 276 (1986), 19–41.

[25] Adams, W.W., and Loustaunau, P., An Introduction to Grobner Bases, GraduateStudies in Math., vol. 3, Amer. Math. Soc., Providence, RI, 1994.

[26] Adem, A., Maginnis, J., and Milgram, R.J., Symmetric invariants and cohomologyof groups, Math. Ann. 287 (1990), 391–411.

[27] Adler, M., On a trace functional for formal pseudo-differential operators and thesymplectic structure of the Korteweg–deVries type equations, Invent. Math. 50

(1979), 219–248.

[28] Adler, V., Gurel, B., Gurses, M., and Habibullin, I., Boundary conditions forintegrable equations, J. Phys. A 30 (1997), 3505–3513.

[29] Ado, I.D., The representations of Lie algebras by matrices, Uspekhi Mat. Nauk 2

(1947), 159–173; Amer. Math. Soc. Transl. #2, New York, 1949.

[30] Ahlfors, L., Complex Analysis, McGraw–Hill, New York, 1966.

[31] Airy, G.B., On the intensity of light in the neighborhood of a caustic, Trans.Cambridge Phil. Soc. 6 (1838), 379–402.

[32] Akhatov, I.S., Gazizov, R.K., and Ibragimov, N.H., Nonlocal symmetries. Heurisiticapproach, J. Sov. Math. 55 (1991), 1401–1450.

[33] Aki, K., and Richards, P.G., Quantitative Seismology, W.H. Freeman, SanFrancisco, 1980.

[34] Akin, K., Buchsbaum, D. A., and Weyman, J., Schur functors and Schur complexes,Adv. Math. 44 (1982), 207–278.

2

[35] Akivis, M.A., and Goldberg, V.V., Projective Differential Geometry of Submanifolds,North-Holland, Amsterdam, 1993.

[36] Akivis, M.A., and Goldberg, V.V., Conformal Differential Geometry and itsGeneralizations, John Wiley & Sons, Inc., New York, 1996.

[37] Akivis, M.A., and Rosenfeld, B.A., Elie Cartan (1869-1951), Translations Math.Monographs, vol. 123, American Math. Soc., Providence, R.I., 1993.

[38] Alber, M.S., Camassa, R., Holm, D.D., and Marsden, J.E., The geometry of peakedsolitons and billiard solutions of a class of integrable PDE’s, Lett. Math. Phys.32 (1994), 137–151.

[39] Alber, M.S., Camassa, R., Holm, D.D., and Marsden, J.E., On the link betweenumbilic geodescis and soliton solutions of nonlinear PDEs, Proc. Roy. Soc.London A 450 (1995), 677–692.

[40] Albert, J.P., and Bona, J.L., Comparisons between model equations for long waves,J. Nonlinear Sci. 1 (1991), 345–374.

[41] Albert, J.P., Bona, J.L., and Felland, M., A criterion for the formation ofsingularities for the generalized Korteweg–de Vries equation, Mat. Appl.Comp. 7 (1988), 3–11.

[42] Alekseevsky, D.V., and Michor, P.W., Differential geometry of g-manifolds, Diff.Geom. Appl. 5 (1995), 371–403.

[43] Alexandroff, P.S., Introduction to the Theory of Groups, Blackie/Hafner, London,1959.

[44] Alhassid, Y., Engel, J., and Wu, J., Algebraic approach to the scattering matrix,Phys. Rev. Lett. 53 (1984), 17–20.

[45] Alhassid, Y., Gursey, F., and Iachello, F., Group theory approach to scattering,Ann. Phys. 148 (1983), 346–380.

[46] Alhassid, Y., Gursey, F., and Iachello, F., Group theory approach to scattering. II.The euclidean connection, Ann. Phys. 167 (1986), 181–200.

[47] Alligood, K.T., Sauer, T.D., and Yorke, J.A., Chaos. An Introduction to DynamicalSystems, Springer-Verlag, New York, 1997.

[48] Alonso, L. M. , On the Noether map, Lett. Math. Phys. 3 (1979), 419–424.

[49] Alvarez, L., Guichard, F., Lions, P.L., and Morel, J.M., Axiomatisation et nouveauxoperateurs de la morphologie mathematique, C. R. Acad. Sci. Paris Ser. I 315

(1992), 265–268.

[50] Alvarez, L., Guichard, F., Lions, P.L., and Morel, J.M., Axioms and fundamentalequations of image processing, Arch. Rat. Mech. Anal. 123 (1993), 199–257.

[51] Alvarez, L., Lions, P.L., and Morel, J.M., Image selective smoothing and edgedetection by nonlinear diffusion, SIAM J. Numer. Anal. 29 (1992), 845–866.

[89] Alvarez, O., Singer, I.M., and Windey, P., Quantum mechanics and the geometry ofthe Weyl character formula, Nuc. Phys. B337 (1990), 467–486.

[53] Amaldi, U., Contributo all determinazione dei gruppi continui finiti dello spazioordinario I, Giornale Mat. Battaglini Prog. Studi Univ. Ital. 39 (1901), 273–316.

3

[54] Amaldi, U., Contributo all determinazione dei gruppi continui finiti dello spazioordinario II, Giornale Mat. Battaglini Prog. Studi Univ. Ital. 40 (1902),105–141.

[55] Amaldi, U., I gruppi continui reali di trasformazioni conformi dello spazio, Mem.Reale Accad. Sci. Torino 55 (1905), 311–341.

[56] Amaldi, U., Sui gruppi continui infiniti di trasformazioni di contatto dello spazo,Mem. Reale Accad. Sci. Torino 57 (1907), 141–219.

[57] Amaldi, U., I gruppi continui infiniti di trasformazioni puntuali dello spazio a tredimensioni, Modena Mem. 10 (1912), 277–349.

[58] Amaldi, U., I gruppi continui infiniti di trasformazioni puntuali dello spazio a tredimensioni II, Modena Mem. 10 (3), (1913) 3–367.

[59] Amaldi, U., Introduzione alla Teoria dei Gruppi Continui Infiniti di Trasformazioni,2 vols., Libreria Universita Roma, Rome, 1942 & 1944.

[60] Ambrosio, L., and Soner, H.M., Level set approach to mean curvature flow inarbitrary codimension, J. Diff. Geom. 43 (1996), 693–737.

[61] Ambrosio, L., and Soner, H.M., A measure-theoretic approach to highercodimension mean curvature flows, Ann. Scuola Norm. Sup. Pisa Cl. Sci.,(4) 25 (1997), 27–49.

[62] Ames, A.D., Jalkio, J.A., and Shakiban, C., Three-dimensional object recognitionusing invariant Euclidean signature curves, in: Analysis, Combinatorics andComputing, T.–X. He, P.J.S. Shiue, and Z. Li, eds., Nova Science Publ., Inc.,New York, 2002, pp. 13–23.

[63] Ames, W.F., Nonlinear Partial Differential Equations in Engineering, AcademicPress, New York, 1965, 1972.

[64] Ames, W.F., Nonlinear Ordinary Differential Equations in Transport Processes,Academic Press, New York, 1968.

[65] Amick, C.J., Fraenkel, L.E., and Toland, J.F., On the Stokes conjecture for thewave of extreme form, Acta Math. 148 (1982), 193–214.

[66] Amick, C.J., and Kirchgassner, K., Solitary water waves in the presence of surfacetension, in: Dynamical Problems in Continuum Physics, J.L. Bona et. al., eds,Springer–Verlag, New York, 1987.

[67] Amick, C.J., and McLeod, J.B., A singular perturbation problem in water waves,Stability Appl. Anal. Contin. Media 1 (1991), 127–148.

[68] Amick, C.J., and Toland, J.F., On solitary waves of finite amplitude, Arch. Rat.Mech. Anal. 76 (1981), 9–95.

[69] Amick, C.J., and Toland, J.F., Homoclinic orbits in the dynamic phase-spaceanalogy of an elastic strut, European J. Appl. Math. 3 (1992), 97–114.

[70] Anderson, I.M., Aspects of the inverse problem of the calculus of variations,Archivum Mathematicum (Brno) 24 (1988), 181–202.

[71] Anderson, I.M., Introduction to the variational bicomplex, Contemp. Math. 132

(1992), 51–73.

[72] Anderson, I.M., The Variational Bicomplex, unpublished manuscript.

4

[74] Anderson, I.M., The Variational Bicomplex, Utah State Technical Report, 1989,http://math.usu.edu/∼fg mp.

[74] Anderson, I.M., The Variational Bicomplex, Technical Report, Utah StateUniversity, 1989.

[76] Anderson, I.M., The Vessiot Handbook, Technical Report, Utah State University,2000.

[76] Anderson, I.M., The Vessiot Handbook, Technical Report, Utah State University,2000; Vessiot is now superseded by the package DifferentialGeometry whichis included in Maple 11.

[77] Anderson, I.M., and Bezdek, J.C., Curvature and tangential deflection of discretearcs: a theory based on the commutator of scatter matrix pairs and itsapplication to vertex detection in planar shape data, IEEE Trans. PatternAnal. Machine Intel. 6 (1984), 27–40.

[78] Anderson, I.M., and Duchamp, T.E., Variational principles for second-orderquasi-linear scalar equations, J. Diff. Eq. 51 (1984), 1–47.

[79] Anderson, I.M., and Fels, M., Symmetry reduction of variational bicomplexes andthe principle of symmetric criticality, Amer. J. Math. 119 (1997), 609–670.

[80] Anderson, I.M., and Fels, M., Exterior differential systems with symmetry, ActaAppl. Math. 87 (2005), 3–31.

[81] Anderson, I.M., Fels, M., and Torre, C.G., Group invariant solutions withouttransversality, Commun. Math. Phys. 212 (2000), 653–686.

[82] Anderson, I.M., and Kamran, N., The variational bicomplex for second order scalarpartial differential equations in the plane, Duke Math. J. 87 (1997), 265–319.

[83] Anderson, I.M., and Pohjanpelto, J., Variational principles for differential equationswith symmetries and conservation laws I. Second order scalar equations, Math.Ann. 299 (1994), 191–222.

[84] Anderson, I.M., and Pohjanpelto, J., Variational principles for differential equationswith symmetries and conservation laws II. Polynomial differential equations,Math. Ann. 301 (1995), 627–653.

[85] Anderson, I.M., and Pohjanpelto, J., The cohomology of invariant of variationalbicomplexes, Acta Appl. Math. 41 (1995), 3–19.

[86] Anderson, I.M., and Pohjanpelto, J., Infinite-dimensional Lie algebra cohomologyand the cohomology of invariant Euler-Lagrange complexes: a preliminaryreport, in: Differential Geometry and Applications, J. Janyska, I. Kolar, and J.Slovak, eds., Masaryk Univ., Brno, 1996, pp. 427–448.

[87] Anderson, I.M., and Thompson, G., The Inverse Problem of the Calculus ofVariations for Ordinary Differential Equations, Memoirs Amer. Math. Soc.,vol. 98, no. 473, Providence, R.I., 1992.

[88] Anderson, I.M., and Torre, C.G., Two component spinors and natural coordinatesfor the prolonged Einstein equation manifolds, preprint, Utah State University,1997.

5

[89] Anderson, R.L., Harnad, J., and Winternitz, P., Systems of nonlinear ordinarydifferential equations with nonlinear superposition principles, Physica 4D

(1982), 164–182.

[90] Anderson, R.L., and Ibragimov, N.H., Lie–Backlund Transformations inApplications, SIAM, Philadelphia, 1979.

[91] Andreev, V.K., Kaptsov, O.V., Pukhnachov, V.V., and Rodionov, A.A.,Applications of Group–Theoretical Methods in Hydrodynamics, Mathematics andits Applications, vol. 450, Kluwer Academic Publishers, Dordrecht, Holland,1998.

[92] Andrews, G.E., Askey, R., and Roy, R., Special Functions, Cambridge UniversityPress, Cambridge, 1999.

[93] Andrianov, A.N., and Zhuravlev, V.G., Modular Forms and Hecke Operators, Transl.Math. Monographs, vol. 145, Amer. Math. Soc., Providence, R.I., 1995.

[94] Angenent, S., Sapiro, G., and Tannenbaum, A., On the affine heat equation fornon-convex curves, J. Amer. Math. Soc. 11 (1998), 601–634.

[95] Ankerst, M., Kastenmuller, G., Kriegel, H.–P., and Seidl, T., 3D shape histogramsfor similarity search and classification in spatial databases, in: Advances inSpatial Databases, R.H. Guting, D. Papadias, and F. Lochovsky, eds., LectureNotes in Comp. Sci., vol. 1651, Springer–Verlag, New York, 1999, pp. 207–226.

[96] Antman, S.S., Nonlinear Problems of Elasticity, Appl. Math. Sci., vol. 107,Springer–Verlag, New York, 1995.

[97] Antonowicz, M., and Fordy, A.P., Coupled KdV equations with multi-Hamiltonianstructures, Physica D 28 (1987), 345–357.

[98] Antonowicz, M., and Fordy, A.P., Coupled Harry Dym equations withmulti-Hamiltonian structures, J. Phys. A 21 (1988), L269–L275.

[99] Antonowicz, M., and Sym, A., New integrable nonlinearities from affine geometry,Phys. Lett. A 112 (1985), 1–2.

[100] Anzelloti, G., Baldo, S., and Visitin, A., Asymptotic behaviour of theLandau–Lifshitz model of ferromagnetism, Appl. Math. Optim. 23 (1991),171–192.

[101] Apostol, T.M., Calculus, Blaisdell Publishing Co., Waltham, Mass., 1967–69.

[104] Apostol, T.M., Linear Algebra, John Wiley & Sons, Inc., New York, 1997.

[103] Apostol, T.M., Introduction to Analytic Number Theory, Springer–Verlag, NewYork, 1976.

[104] Apostol, T.M., Mathematical Analysis, Second Edition, Addison–Wesley Publ. Co.,Reading, Mass., 1974.

[105] Arima, A., and Iachello, F., Interacting boson model of collective nuclear states. I –The vibrational limit, Ann. Phys. 99 (1976), 253–317.

[106] Arima, A., and Iachello, F., Interacting boson model of collective nuclear states. II –The rotational limit, Ann. Phys. 111 (1978), 201–238.

[107] Arkin, M., Chew, P., Huttenlocher, D.P., Kedem, K., and Mitchell, J.S.B., Anefficiently computable metric for comparing polygonal shapes, IEEE Trans.Pattern Anal. Machine Intel. 13 (1991), 209–216.

6

[108] Arnol’d, V.I., Sur la geometrie differentielle des groupes de Lie de dimension infinieet ses applications a l’hydrodynamique des fluides parfaits, Ann. Inst. FourierGrenoble 16 (1966), 319-361.

[109] Arnol’d, V.I., The Hamiltonian nature of the Euler equations in the dynamics of arigid body and an ideal fluid, Usp. Mat. Nauk 24 (1969), 225–226.

[110] Arnol’d, V.I., Mathematical Methods of Classical Mechanics, Graduate Texts inMathematics, vol. 60, Springer–Verlag, New York, 1978.

[111] Arnol’d, V.I., Geometrical Methods in the Theory of Ordinary DifferentialEquations, Springer–Verlag, New York, 1983.

[112] Arnol’d, V.I., Poisson structures on the plane and other powers of volume forms, J.Soviet Math. 47 (1989), 2509–2516.

[113] Arnol’d, V.I., Gusein–Zade, S.M., and Varchenko, A.N., Singularities ofDifferentiable Maps, Birkhauser, Boston, 1985, 1988.

[114] Arnol’d, V.I., and Novikov, S.P., eds., Dynamical Systems IV, Encyclopaedia ofMathematical Sciences, vol. 4, Springer–Verlag, New York, 1990.

[115] Aronhold, S., Zur Theorie der homogenen Functionen dritten Grades von dreiVariablen, J. Reine Angew. Math. 39 (1850), 140–159.

[116] Aronhold, S., Theorie der homogenen Functionen dritten Grades von dreiVeranderlichen, J. Reine Angew. Math. 55 (1858), 97–191.

[117] Aronhold, S., Ueber eine fundamentale Begrundung der Invariantentheorie, J. ReineAngew. Math. 62 (1863), 281–345.

[118] Ashford, G., An Unstructured Grid Generation and Adaptive Solution Techniquefor High-Reynolds-Number Compressible Flows, Ph.D. Thesis, University ofMichigan 1996.

[119] Astashov, A.M., and Vinogradov, A.M., On the structure of Hamiltonian operatorsin field theory, J. Geom. Phys. 3 (1986), 263–287.

[120] Astrom, K., Fundamental limitations on projective invariants of planar curves,IEEE Trans. Pattern Anal. Machine Intel. 17 (1995), 77–81.

[121] Athorne, C., Algebraic invariants and generalized Hirota derivatives, Phys. Lett. A256 (1999), 20-24.

[122] Athorne, C., and Fordy, A.P., Generalised KdV and MKdV equations associatedwith symmetric spaces, J. Phys. A 20 (1987), 1377–1386.

[123] Atiyah, M.F., Bott, R., and Shapiro, A., Clifford modules, Topology 3, Suppl. 1(1964), 3–38.

[124] Atiyah, M.F., and Bott, R., The moment map and equivariant cohomology,Topology 23 (1984), 1–28.

[125] Atiyah, M.F., and Macdonald, I.G., Introduction to Commutative Algebra,Addison–Wesley Publ. Co., Reading, Mass., 1969.

[126] Attneave, F., Some informational aspects of visual perception, Psychology Rev. 61

(1954), 183–193.

7

[127] Auberson, G., On a class of spectral problems admitting partial algebraization, in:Rigorous Methods in Particle Physics, S. Ciulli, F. Scheck, W. Thirring, and A.Martin, eds., Springer Tracts Modern Phys., vol. 119, Springer–Verlag, Berlin,1990.

[128] Axford, R.A., Neutronics computational applications of symmetry algebras, in:Advances in Nuclear Engineering Computation and Radiation Shielding, SantaFe, N.M., 1989.

[129] Backlund, A.V., Ueber Flachentransformationen, Math. Ann. 9 (1876), 297–320.

[309] Baikov, V.A., Gazizov, R.K., and Ibragimov, N.H., Approximate symmetries, Math.USSR Sbornik 64 (1989), 427–441.

[131] Baikov, V.A., Gazizov, R.K., and Ibragimov, N.H., Approximate symmetries andconservation laws, Proc. Steklov Inst. Math. 200 (1993),, 35–47.

[132] Bailey, T.N., Eastwood, M.G., and Graham, C.R., Invariant theory for conformaland CR geometry, Ann. Math. 139 (1994), 491–552.

[133] Baker, G.A., Jr., and Graves–Morris, P., Pade Approximants, Encyclopediaof Mathematics and Its Applications, v. 59, Cambridge University Press,Cambridge, 1996.

[134] Bakirov, I.M., On the symmetries of some system of evolution equations, preprint,1991.

[135] Bakholdin, I., and Il’ichev, A., Radiation and modulational instability described bythe fifth-order Korteweg–deVries equation, Contemp. Math. 200 (1996), 1–15.

[136] Balandin, S.P., and Sokolov, V.V., On the Painleve test for nonabelian equations,preprint, Ufa, 1996.

[137] Balazs, N.L., and Voros, A., Chaos on the pseudosphere, Physics Reports 143

(1986), 109–240.

[138] Ball, J.M., Convexity conditions and existence theorems in nonlinear elasticity,Arch. Rat. Mech. Anal. 63 (1977), 337–403.

[139] Ball, J.M., Global invertibility of Sobolev functions and the interpenetration ofmatter, Proc. Roy. Soc. Edinburgh A 88 (1981), 315–328.

[140] Ball, J.M., Differentiability properties of symmetric and isotropic functions, DukeMath. J. 51 (1984), 699–728.

[141] Ball, J.M., and James, R.D., Fine phase mixtures as minimizers of energy, Arch.Rat. Mech. Anal. 100 (1987), 13–52.

[142] Ball, J.M., and Mizel, V.J., One-dimensional variational problem whose minimizersdo not satisfy the Euler-Lagrange equation, Arch. Rat. Mech. Anal. 90 (1985),325–388.

[143] Barbancon, G., Theoreme de Newton pour les fonctions de class Cr, Ann. Sci. EcoleNorm. Sup. (4) 5 (1972), 435–457.

[144] Barbancon, G., Invariants de classe Cr des groupes finis engendres par des reflexionset theoreme de Chevalley en classe Cr, Duke Math. J. 53 (1986), 563–584.

[145] Barbancon, G., and Raıs, M., Sur le theoreme de Hilbert differentiable pour lesgroupes lineaires finis (d’apres E. Noether), Ann. Sci. Ecole Norm. Sup. (4) 16

(1983), 355–373.

8

[146] Barenblatt, G.I., Similarity, Self-Similarity, and Intermediate Asymptotics,Consultants Bureau, New York, 1979.

[147] Bargmann, V., Irreducible unitary representations of the Lorentz group, Ann. Math.48 (1947), 568–640.

[148] Barnich, G., Brandt, F., and Henneaux, M., Local BRST cohomology in theantifield formalism. I. General theorems, Comm. Math. Phys. 174 (1995),57–91.

[149] Barnich, G., Brandt, F., and Henneaux, M., Local BRST cohomology in theantifield formalism. II. Application to Yang-Mills theory, Comm. Math. Phys.174 (1995), 93–116.

[150] Barut, A.O., and Bohm, A., Dynamical groups and mass formula, Phys. Rev. B 139

(1965), 1107–1112.

[151] Basarab–Horwath, P., Integrability by quadratures for systems of involutive vectorfields, Ukrainian Math. J. 43 (1991), 1330–1337.

[152] Bass, H., Connell, E.H., and Wright, D., The Jacobian conjecture: reduction ofdegree and formal expansion of the inverse, Bull. Amer. Math. Soc. 7 (1982),287–330.

[153] Batchelor, G.K., An Introduction to Fluid Dynamics, Cambridge University Press,Cambridge, 1967.

[154] Bateman, H., Some recent researches on the motion of fluids, Monthly Weather Rev.43 (1915), 63–170.

[155] Bateman, H., On dissipative systems and related variables, Phys. Rev. 38 (1931),815–819.

[156] Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., and Sternheimer, D.,Deformation theory and quantization. I. Deformations of symplectic structures,Ann. Physics 111 (1978), 61–110.

[157] Bazin, P.–L., and Boutin, M., Structure from motion: theoretical foundations of anovel approach using custom built invariants, SIAM J. Appl. Math. 64 (2004),1156–1174.

[158] Beale, J.T., Exact solitary water waves with capillary ripples at infinity, Commun.Pure Appl. Math. 44 (1991), 211–257.

[159] Beals, R., and Sattinger, D.H., Complete integrability of completely integrablesystems, Commun. Math Physics 138 (1991), 409–436.

[160] Beals, R., and Sattinger, D.H., Action-angle variables for the Gel’fand–Dikii flows,Zeit. Angew. Math. Physik 43 (1993), 219–242.

[161] Beals, R., and Sattinger, D.H., Integrable systems and isomonodromy deformations,Physica D 65 (1993), 17–47.

[162] Beals, R., Sattinger, D.H., and Szmigielski, J., Acoustic scattering and the extendedKorteweg–deVries hierarchy, preprint, University of Minnesota, 1998.

[163] Beardon, A.F., The Geometry of Discrete Groups, Graduate Texts in Mathematics,vol. 91, Springer–Verlag, New York, 1983.

9

[164] Becker, T., and Weispfenning, V., Grobner Bases: A Computational Approachto Commutative Algebra, Graduate Texts in Mathematics, vol. 141,Springer–Verlag, New York, 1993.

[165] Beckers, J., Patera, J., Perroud, M., and Winternitz, P., Subgroups of the Euclideangroup and symmetry breaking in nonrelativistic quantum mechanics, J. Math.Phys. 18 (1977), 72–83.

[166] Behrends, E., Introduction to Markov Chains, Vieweg, Braunschweig/Wiesbaden,Germany, 2000.

[167] Bekaert, X., and Boulanger, N., Tensor gauge fields in arbitrary representations ofGL(D,R). Duality and Poincare lemma, Commun. Math. Phys. 245 (2004),27–67.

[168] Bell, E.T., Exponential polynomials, Ann. Math. 35 (1934), 258–277.

[169] Belongie, S., Malik, J., and Puzicha, J., Shape matching and object recognitionusing shape contexts, IEEE Trans. Pattern Anal. Mach. Intell. 24 (2002),509–522.

[170] Bender, C.M., and Dunne, G.V., Quasi-exactly solvable systems and orthogonalpolynomials, J. Math.Phys. 37 (1996), 6–11.

[171] Bender, C.M., Dunne, G.V., and Moshe, M., Semiclassical analysis of quasi-exactsolvability, Phys. Rev. Lett. , to appear.

[172] Benenti, S., Separability structures on Riemannian manifolds, in: DifferentialGeometrical Methods in Mathematical Physics, P.L. Garca, A. Perez-Rendon,and J.M. Souriau, eds., Lecture Notes in Math., vol. 836, Springer, Berlin,1980, pp. 512–538.

[173] Benenti, S., and Francaviglia, M., The theory of separability of the Hamilton-Jacobiequation and its applications to general relativity, in: General Relativityand Gravitation,, Vol. 1, A. Held, ed., Plenum, New York-London, 1980, pp.393–439.

[174] Benilov, E.S., Grimshaw, R., and Kuznetsova, E.P., The generation of radiatingwaves in a singularly-perturbed Korteweg–deVries equation, Physica D 69

(1993), 270–278.

[175] Benjamin, T.B., The stability of solitary waves, Proc. Roy. Soc. London A 328

(1972), 153–183.

[176] Benjamin, T.B., Bona, J.L., and Bose, D., Solitary-wave solutions of nonlinearproblems, Phil. Trans. Roy. Soc. London A 331 (1990), 195–244.

[177] Benjamin, T.B., Bona, J.L., and Mahony, J.J., Model equations for long waves innonlinear dispersive systems, Phil. Trans. Roy. Soc. London A 272 (1972),47–78.

[178] Benney, D.J., A general theory for interactions between short and long waves, Stud.Appl. Math. 56 (1977), 81–94.

[179] Berest, Y., and Winternitz, P., Huygens’ principle and separation of variables, Rev.Math. Phys. 12 (2000), 159–180.

[180] Berestetskii, V.B., Lifschitz, E.M., and Pitaevskii, L.P., Quantum Electrodynamics,Second Edition, Pergamon Press, New York, 1982.

10

[181] Berezin, F.A., The Method of Second Quantization, Academic Press, New York,1966.

[182] Berry, M.V., and Bodenschatz, E., Caustics, multiply-reconstructed by Talbotinterference, J. Mod. Optics 46 (1999), 349–365.

[183] Berry, M.V., and Goldberg, J., Renormalization of curlicues, Nonlinearity 1 (1988),1–26.

[184] Berry, M.V., and Klein, S., Integer, fractional and fractal Talbot effects, J. Mod.Optics 43 (1996), 2139–2164.

[185] Berry, M.V., Marzoli, I., and Schleich, W., Quantum carpets, carpets of light,Physics World 14(6) (2001), 39–44.

[186] Bessel–Hagen, E., Uber die Erhaltungssatze der Elektrodynamik, Math. Ann. 84

(1921), 258–276.

[187] Bethe, H.A., and Jackiw, R., Intermediate Quantum Mechanics, Third Edition,Benjamin/Cummings Publ. Co., Menlo Park, CA, 1986.

[188] Betounes, D.E., Extension of the classical Cartan form, Phys. Rev. D 29 (1984),599–606.

[189] Beukers, F., Sanders, J.A., and Wang, J.P., One symmetry does not implyintegrability, J. Diff. Eq. 146 (1998), 251–260.

[190] Beukers, F., Sanders, J.A., and Wang, J.P., On integrability of systems of evolutionequations, J. Diff. Eq. 172 (2001), 396–408.

[191] Beyer, W.A.., Lie-group theory for symbolic integration of first order ordinarydifferential equations, in: Proceedings of the 1979 Macsyma Users Conference,V.E. Lewis, ed., MIT Laboratory for Computer Science, Cambridge, Mass.,1979, pp. 362–384.

[192] Bianchi, L., Lezioni sulla Teoria dei Gruppi Continui Finiti di Transformazioni,Enrico Spoerri, Pisa, 1918.

[193] Biedenharn, L.C., and Louck, J.D., Angular Momentum in Quantum Physics,Addison–Wesley, Reading, Mass., 1981.

[194] Bıla, N., Mansfield, E.L., and Clarkson, P.A., Symmetry group analysis of theshallow water and semi-geostrophic equations, Quart. J. Mech. Appl. Math. 59

(2006), 95–123.

[195] Bilge, A.H., On the equivalence of linearization and formal symmetries asintegrability tests for evolution equations, J. Phys. A 26 (1993), 7511–7519.

[196] Bilge, A.H., A systems with a recursion operator but one higher local symmetry, LieGroups Appl. 1 (1994), 132–139.

[197] Birkhoff, G., Lie groups isomorphic with no linear group, Bull. Amer. Math. Soc. 42

(1936), 882–888.

[198] Birkhoff, G., Galois and group theory, Osiris 3 (1937), 260–268.

[199] Birkhoff, G., Analytic groups, Trans. Amer Math. Soc. 43 (1938), 61–101.

[200] Birkhoff, G., Hydrodynamics — A Study in Logic, Fact and Similitude, 1st ed.,Princeton University Press, Princeton, 1950.

[201] Birkhoff, G., Hydrodynamics — A Study in Logic, Fact and Similitude, 2nd ed.,Princeton University Press, Princeton, 1960.

11

[202] Birkhoff, G., The algebra of multivariate interpolation, in: Constructive Approachesto Mathematical Models, C.V. Coffmann and G.J. Fix, eds., Academic Press,New York, 1979, pp. 345–363.

[203] Birkhoff, G., and Rota, G.–C., Ordinary Differential Equations, Blaisdell Publ. Co.,Waltham, Mass., 1962.

[204] Bjorck, A., and Pereyra, V., Solution of Vandermonde systems of equations, Math.Comp. 24 (1970), 893–903.

[205] Bjork, J.–E., Rings of Differential Operators, Kluwer Acad. Publ., Boston, 1993.

[206] Black, F., and Scholes, M., The pricing of options and corporate liabilities, J.Political Economy 81 (1973), 637–654.

[207] Blake, A., and Yuille, A., eds., Active Vision, MIT Press, Cambridge, Mass., 1992.

[208] Blanchard, P., Devaney, R.L., and Hall, G.R., Differential Equations, Brooks–ColePubl. Co., Pacific Grove, Calif., 1998.

[209] Blaschke, W., Vorlesungen uber Differentialgeometrie, vol. II, J. Springer, Berlin,1923.

[210] Bleecker, D., Gauge Theory and Variational Principles, Addison–Wesley Publ. Co.,Reading, Mass., 1981.

[211] Blichfeldt, H.F., Finite Collineation Groups, University of Chicago Press, Chicago,1917.

[212] Bloom, G.S., A counterexample to a theorem of S. Piccard, J. Comb. Theory, Ser.A 22 (1977), 378–379.

[213] Bluman, G.W., and Anco, S.C., Symmetry and Integration Methods for DifferentialEquations, Springer–Verlag, New York, 2002.

[214] Bluman, G.W., Cheviakov, A.F., and Anco, S.C., Applications of Symmetry Methodsto Partial Differential Equations, Appl. Math. Sci., vol. 168, Springer–Verlag,New York, 2010.

[215] Bluman, G.W., and Cole, J.D., The general similarity solution of the heat equation,J. Math. Mech. 18 (1969), 1025–1042.

[216] Bluman, G.W., and Cole, J.D., Similarity Methods for Differential Equations, Appl.Math. Sci. #13, Springer–Verlag, New York, 1974.

[217] Bluman, G.W., and Kumei, S., Symmetry-based algorithms to relate partialdifferential equations: I. Local symmetries, Euro. J. Appl. Math. 1 (1990),189–216.

[218] Bluman, G.W., and Kumei, S., Symmetry-based algorithms to relate partialdifferential equations: II. Linearization by nonlocal symmetries, Euro. J. Appl.Math. 1 (1990), 217–223.

[219] Bluman, G.W., and Kumei, S., Symmetries and Differential Equations,Springer–Verlag, New York, 1989.

[220] Bluman, G.W., Kumei, S., and Reid, G., New classes of symmetries for partialdifferential equations, J. Math. Phys. 29 (1988), 806–811.

[221] Bluman, G.W., and Reid, G., New classes of symmetries for ordinary differentialequations, IMA J. Appl. Math. 40 (1988), 87–94.

12

[222] Blumenthal, L.M., Theory and Applications of Distance Geometry, OxfordUniversity Press, Oxford, 1953.

[223] Bobenko, A.I., Reyman, A.G., and Semenov-Tian-Shansky, M.A., The Kowalewskitop 99 years later: a Lax pair, generalizations and explicit solutions, Commun.Math. Phys. 122 (1989), 321–354.

[224] Bobenko, A.I., and Schoder, P., Discrete Willmore flow, in: International Conferenceon Computer Graphics and Interactive Techniques, J. Fujii, ed., Assoc. Comput.Mach., New York, NY, 2005.

[225] Bobylev, A., and Dorodnitsyn, V., Symmetries of evolution equations with non-localoperators and applications to the Boltzmann equation, Discrete Cont. Dyn.Syst. Ser. A 24 (2009), 35–57.

[226] Bocharov, A.V., Sokolov, V.V., and Svinolupov, S.I., On some equivalence problemsfor differential equations, preprint, Erwin Schrodinger Institute, Vienna, 1993.

[227] Bocher, M., Introduction to Higher Algebra, Macmillan Co., New York, 1907.

[228] Bochner, S., Uber Sturm–Liouvillesche Polynomsysteme, Math. Zeit. 29 (1929),730–736.

[229] Bodnar, A.C., The Cartan equivalence problem for first order Lagrangians in mindependent and N dependent variables, M.Sc. Thesis, University of Waterloo,Ontario, Canada, 1986.

[230] Bogomolov, F. A., Rationality of the moduli of hyperelliptic curves of arbitrarygenus, in: Proceedings of the 1984 Vancouver Conference in Algebraic Geometry,CMS Conf. Proc., vol. 6, Amer. Math. Soc., Providence, R.I., 1986, pp. 17–37.

[231] Bogoyavlenskij, O., Invariant incompatible Poisson structures, Proc. Roy. Soc.London A 450 (1995), 723–730 .

[232] Bohm, A., and Ne’eman, Y., Dynamical groups and spectrum generating algebras,in: Dynamical Groups and Spectrum Generating Algebras, Bohm, A., Ne’eman,Y., and Barut, A.O., eds., World Scientific, Singapore, 1988, pp. 3–68.

[233] Bohm, A., Ne’eman, Y., and Barut, A.O., eds., Dynamical Groups and SpectrumGenerating Algebras, World Scientific, Singapore, 1988.

[234] Boisvert, M.F., Quasi-exactly solvable Schrodinger operators in three dimensions,SIGMA 3 (2007), 109.

[235] Bollobas, B., Graph Theory : an Introductory Course, Graduate Texts inMathematics, vol. 63, Springer–Verlag, New York, 1993.

[236] Bona, J.L., Chen, M., and Saut, J.–C., Boussinesq equations and other systems forsmall-amplitude long waves in nonlinear dispersive media. I. Derivation andlinear theory, J. Nonlinear Sci. 12 (2002), 283–318.

[237] Bona, J.L., Chen, M., and Saut, J.–C., Boussinesq equations and other systems forsmall-amplitude long waves in nonlinear dispersive media. II. The nonlineartheory, Nonlinearity 17 (2004), 925–952.

[238] Bona, J.L., Colin, T., and Lannes, D., Long wave approximations for water waves,Arch. Rat. Mech. Anal. 178 (2005), 373–410.

13

[239] Bona, J.L., Dougalis, V.A., Karakashian, O.A., and McKinney, W.R., Conservative,high-order numerical schemes for the generalized Korteweg–de Vries equation,Phil. Trans. Roy. Soc. London A 351 (1995), 107–164 .

[240] Bona, J.L., and Fokas, A.S., Initial-boundary-value problems for linear andintegrable nonlinear dispersive partial differential equations, Nonlinearity21 (2008), T195–T203.

[241] Bona, J.L., and Li, Y.A., Decay and analyticity of solitary waves, J. Math. PuresAppl. 76 (1997), 377–430.

[242] Bona, J.L., Pritchard, W.G., and Scott, L.R., Solitary–wave interaction, Phys.Fluids 23 (1980), 438–441.

[243] Bona, J.L., Pritchard, W.G., and Scott, L.R., An evaluation of a model equation forwater waves, Phil. Trans. Roy. Soc. London 302 (1981), 457–510.

[244] Bona, J.L., Pritchard, W.G., and Scott, L.R., A comparison of solutions of twomodel equations for long waves, in: Fluid Dynamics in Astrophysics andGeophysics, N.R. Lebovitz, ed., Lectures in Appl. Math., vol. 20, AmericanMath. Soc., Providence, R.I., 1983, pp. 235–267.

[245] Bona, J.L., and Saut, J.–C., Dispersive blowup of solutions of generalizedKorteweg–de Vries equations, J. Diff. Eq. 103 (1993), 3–57 .

[246] Bona, J.L., and Smith, R., The initial value problem for the Korteweg–de Vriesequation, Phil. Trans. Roy. Soc. London A 278 (1975), 555–601.

[247] Bona, J.L., and Smith, R., A model for the two-way propagation of water waves ina channel, Math. Proc. Camb. Phil. Soc. 79 (1976), 167–182.

[248] Bona, J.L., Souganidis, P.E., and Strauss, W.A., Stability and instability of solitarywaves, Proc. Roy. Soc. London A 411 (1987), 395–412.

[249] Bookstein, F.L., The Measurement of Biological Shape and Shape Change, LectureNotes in Biomath., vol. 24, Springer–Verlag, New York, 1978.

[250] Bookstein, F.L., Morphometric Tools for Landmark Data: Geometry and Biology,Cambridge University Press, New York, 1991.

[251] Boole, G., Exposition of a general theory of linear transformations, Camb. Math. J.3 (1841–2), 1–20, 106–119.

[252] Boothby, W.M., An Introduction to Differentiable Manifolds and RiemannianGeometry, Academic Press, New York, 1975.

[253] Born, M., and Wolf, E., Principles of Optics, Fourth Edition, Pergamon Press, NewYork, 1970.

[254] Bott, R., Homogeneous vector bundles, Ann. Math. 66 (1957), 203–248.

[255] Bott, R., and Tu, L.W., Differential Forms in Algebraic Topology, Springer–Verlag,New York, 1982.

[256] Bourbaki, N., Groupes et Algebres de, Chapitre 1, Elements de Mathematique,Diffusion C.C.L.S., Paris, 1971.

[257] Bourbaki, N., Groupes et Algebres de, Chapitres 2–3, Elements de Mathematique,Diffusion C.C.L.S., Paris, 1972.

[258] Bourbaki, N., Algebra I, Chapters 1–3, Hermann, Paris, 1974.

14

[259] Bourbaki, N., Groupes et Algebres de, Chapitres 1–9, Elements de Mathematique,Diffusion C.C.L.S., Paris, 1971–1975.

[260] Bourbaki, N., Lie groups and Lie algebras, Chapters 1–3, Elements of Mathematics,Springer–Verlag, New York, 1989.

[261] Bourbaki, N., Fonctions d’une Variable Reelle: Theorie Elementaire, DiffusionC.C.L.S., Paris, 1976.

[262] Bourgain, J., Exponential sums and nonlinear Schrodinger equations, Geom. Funct.Anal. 3 (1993), 157–178.

[263] Bourgain, J., Periodic Korteweg de Vries equation with measures as initial data,Selecta Math. 3 (1997), 115–159.

[264] Boussinesq, J., Theorie de l’intumescence liquide appelee onde solitaire ou detranslation se propageant dans un canal rectangulaire, Comptes Rendus Acad.Sci. Paris 72 (1871), 755–759.

[265] Boussinesq, J., Theorie generale des mouvements qui sont propages dans un canalrectangulaire horizontal, Comptes Rendus Acad. Sci. Paris 73 (1871), 256–260.

[266] Boussinesq, J., Theorie des ondes et des remous qui se propagent le long d’un canalrectangulaire horizontal, en communiquant au liquide contenu dans ce canal desvitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl. 17(2)(1872), 55–108.

[267] Boussinesq, J., Essai sur la theorie des eaux courants, Mem. Acad. Sci. Inst. Nat.France 23 (1) (1877), 1–680.

[268] Boutin, M., Numerically invariant signature curves, Int. J. Computer Vision 40

(2000), 235–248.

[269] Boutin, M., On Invariants of Lie Group Actions and their Application to SomeEquivalence Problems, Ph.D. Thesis, University of Minnesota, 2001.

[270] Boutin, M., On orbit dimensions under a simultaneous Lie group action on n copiesof a manifold, J. Lie Theory 12 (2002), 191–203.

[271] Boutin, M., Polygon recognition and symmetry detection, Found. Comput. Math. 3

(2003), 227–271.

[272] Boutin, M., and Kemper, G., On reconstructing n-point configurations from thedistribution of distances or areas, Adv. Appl. Math. 32 (2004), 709–735.

[273] Boutin, M., and Kemper, G., Which point configurations are determined by thedistribution of their pairwise distances?, Internat. J. Comput. Geom. Appl. 17

(2007), 31–43.

[274] Boutin, M., and Kemper, G., On reconstructing configurations of points in P2 from

a joint distribution of invariants, Appl. Algebra Engrg. Comm. Comput. 15

(2005), 361–391.

[275] Boyce, W.E., and DiPrima, R.C., Elementary Differential Equations and BoundaryValue Problems, 7th ed., John Wiley, New York, 2001.

[276] Boyd, J.P., Weakly non-local solitons for capillary–gravity waves: fifth-degreeKorteweg–deVries equation, Physica D 48 (1991), 129–146.

[277] Boyer, C.B., A History of Mathematics, J. Wiley & Sons, New York, 1968.

15

[278] Boyer, C.P., and Plebanski, J.F., General relativity and G-structures I. Generaltheory and algebraically degenerate spaces, Rep. Math. Phys. 14 (1978),111–145.

[279] Boyko, V., Patera, J., and Popovych, R., Computation of invariants of Lie algebrasby means of moving frames, J. Phys. A 39 (2006), 5749–5762.

[280] Boyko, V., Patera, J., and Popovych, R., Invariants of solvable Lie algebras withtriangular nilradicals and diagonal nilindependent elements, Linear AlgebraAppl. 428 (2008), 834–854.

[281] Bradie, B., A Friendly Introduction to Numerical Analysis, Prentice–Hall, Inc.,Upper Saddle River, N.J., 2006.

[282] Braibant, S., and Brihaye, Y., Quasi exactly-solvable system and sphaleron stability,J. Math. Phys. 34 (1993), 2107–2114.

[283] Braun, M., Differential Equations and their Applications: an Introduction to AppliedMathematics, Springer–Verlag, New York, 1993.

[286] Briggs, W.L., Henson, V.E., The DFT. An Owner’s Manual for the Discrete FourierTransform; SIAM, Philadelphia, PA, 1995.

[285] Brigham, E.O., The Fast Fourier Transform, Prentice–Hall, Inc., Englewood Cliffs,N.J., 1974.

[286] Briggs, W.L., Henson, V.E., The DFT. An Owner’s Manual for the Discrete FourierTransform; SIAM, Philadelphia, PA, 1995.

[287] Brihaye, Y., and Kosinski, P., Quasi exactly solvable 2 × 2 matrix equations, J.Math. Phys. 35 (1994), 3089–3098.

[288] Broadbridge, P., and Tritscher, P., An integrable fourth-order nonlinear evolutionequation applied to thermal grooving of metal surfaces, IMA J. Appl. Math. 53

(1994), 249–265.

[289] Broer, B., Hilbert Series in Invariant Theory, Ph.D. Thesis, University of Utrecht,1990.

[290] Broer, B., On the generating functions associated to a system of binary forms,Indag. Math. 1 (1990), 15–25.

[291] Broer, L.J.F., Approximate equations for long water waves, Appl. Sci. Res. 31

(1975), 377–395.

[292] Bronstein, M., Symbolic integration I: Transcendental Functions, Springer–Verlag,New York, 1997.

[293] Bronstein, M., and Lafaille, S., Solutions of linear ordinary differential equations interms of special functions, in: Proceedings of the 2002 International Symposiumon Symbolic and Algebraic Computation, T. Mora, ed., ACM, New York, 2002,pp. 23–28.

[294] Brown, C., Numerical evaluation of differential and semi-differential invariants, in:Geometric Invariance in Computer Vision, J.L. Mundy and A. Zisserman, eds.,MIT Press, Cambridge, Mass., 1992, pp. 215–227.

[295] Brown, D., and Houston, R.S., Cancellative semigroups on manifolds, SemigroupForum 35 (1987), 279–302.

16

[296] Brown, J.W., and Churchill, R.V., Fourier Series and Boundary Value Problems,McGraw-Hill, New York, 1993.

[297] Brouzet, R., Systemes bihamiltoniens et complete integrabilite en dimension 4,Comptes Rendus Acad. Sci. Paris, Serie I, 311 (1990), 895–898.

[298] Brouzet, R., About the existence of recursion operators for completely integrableHamiltonian systems near a Liouville torus, J. Math. Phys. 34 (1993),1309–1313.

[299] Bruckstein, A.M., Holt, R.J., Netravali, A.N., and Richardson, T.J., Invariantsignatures for planar shape recognition under partial occlusion, CVGIP: ImageUnderstanding 58 (1993), 49–65.

[300] Bruckstein, A.M., Katzir, N., Lindenbaum, M., and Porat, M., Similarity invariantsignatures and partially occluded planar shapes, Int. J. Comput. Vision 7

(1992), 271–285.

[301] Bruckstein, A.M., and Netravali, A.N., On differential invariants of planar curvesand recognizing partially occluded planar shapes, Ann. Math. Artificial Intel.13 (1995), 227–250.

[302] Bruckstein, A.M., Rivlin, E., and Weiss, I., Scale space semi-local invariants, ImageVision Comp. 15 (1997), 335–344.

[303] Bruckstein, A.M., and Shaked, D., Skew-symmetry detection via invariantsignatures, Pattern Recognition 31 (1998), 181–192.

[304] Bruckstein, A.M., and Shaked, D., On projective invariant smoothing and evolutionsof planar curves and polygons, J. Math. Imaging Vision 7 (1997), 225–240.

[305] Bryant, R.L., A duality theorem for Willmore surfaces, J. Diff. Geom. 20 (1984),23–53.

[306] Bryant, R.L., Some Aspects of the Local and Global Theory of Pfaffian Systems,Ph.D. Thesis, University of North Carolina, Chapel Hill, NC, 1979.

[307] Bryant, R.L., On notions of equivalence of variational problems with oneindependent variable, Contemp. Math. 68 (1987), 65–76.

[308] Bryant, R.L., Chern, S.-S., Gardner, R.B., Goldschmidt, H.L., and Griffiths,P.A., Exterior Differential Systems, Math. Sci. Res. Inst. Publ., vol. 18,Springer–Verlag, New York, 1991.

[309] Bryant, R.L., and Griffiths, P.A., Characteristic cohomology of differential systemsI: General Theory, J. Amer. Math. Soc. 8 (1995), 507–596.

[310] Bryant, R.L., and Griffiths, P.A., Characteristic cohomology of differential systemsII: Conservation laws for a class of parabolic equations, Duke Math. J. 78

(1995), 531–676.

[311] Bryant, R., Griffiths, P., and Grossman, D., Exterior Differential Systems andEuler–Lagrange Partial Differential Equations, Univ. Chicago Press, Chicago,2003.

[312] Bryant, R.L., Griffiths, P.A., and Hsu, L., Hyperbolic exterior differential systemsand their conservation laws, Part I, preprint, Selecta Math.; 1 (1995) 21–112.

17

[313] Buchberger, B., Grobner bases: an algorithmic method in polynomial ideal theory,in: Multidimensional Systems Theory, N.K. Bose, ed., D. Reidel Publ. Co.,Boston, 1985, pp. 184–232.

[314] Buchberger, B., Applications of Grobner bases in non-linear computationalgeometry, in: Mathematical Aspects of Scientific Software, J.R. Rice, ed.,IMA Volumes in Mathematics and its Applications, vol. 14, Springer–Verlag,New York, 1988, pp. 59–87.

[315] Buckwar, E., and Luchko, Y., Invariance of a partial differential equation offractional order under the Lie group of scaling transformations, J. Math. Anal.Appl. 227 (1998), 81–97.

[316] Budd, C.J., and Collins, C.B., Symmetry based numerical methods for partialdifferential equations, in: Numerical analysis 1997, D.F. Griffiths, D.J. Higham,and G.A. Watson, eds., Pitman Res. Notes Math., vol. 380, Longman, Harlow,1998, pp. 16–36.

[317] Budd, C.J., and Iserles, A., Geometric integration: numerical solution of differentialequations on manifolds, Phil. Trans. Roy. Soc. London A 357 (1999), 945–956.

[318] Budd, C.J., and Piggott, M.D., Geometric integration and its applications, in:Handbook of Numerical Analysis, Vol. XI, North-Holland, Amsterdam, 2003, pp.35–139.

[319] Budiansky, B., and Rice, J.R., Conservation laws and energy release rates, J. Appl.Mech 40 (1973), 201–203.

[320] Buhmann, M.D., Radial basis functions, Acta Numerica 9 (2000), 1–38.

[321] Burchnall, J.L., and Chaundy, T.W., Commutative ordinary differential operators,Proc. London Math. Soc. 21 (1923), 420–440.

[322] Burchnall, J.L., and Chaundy, T.W., Commutative ordinary differential operators,Proc. Roy. Soc. London A 118 (1928), 557–583.

[323] Burchnall, J.L., and Chaundy, T.W., Commutative ordinary differential operatorsII, Proc. Roy. Soc. London A 134 (1932), 471–485.

[324] Burden, R.L., and Faires, J.D., Numerical Analysis, Seventh Edition, Brooks/Cole,Pacific Grove, CA, 2001.

[325] Burgers, J.M., A mathematical model illustrating the theory of turbulence, Adv.Appl. Mech. 1 (1948), 171–199.

[326] Burges, C.J.C., A tutorial on support vector machines for pattern recognition, DataMining Knowledge Discovery 2 (1998), 121–167.

[327] Burges, C.J.C., Geometry and invariance in kernel based methods, in: Advances inKernel Methods — Support Vector Learning, B. Scholkopf, C. Burges, and ASmola, eds., MIT Press, Cambridge, USA, 1998.

[328] Burgisser, P., Clausen, M., and Shokrollahi, M.A., Algebraic Complexity Theory,Springer–Verlag, New York, 1997.

[329] Bureau, F.J., Integration of some nonlinear systems of differential equations, Ann.Mat. Pura Appl. (IV) 94 (1972), 345–360.

18

[330] Bureau, F.J., Sur des systemes non lineaires du troisieme ordre et les equationsdifferentielles non lineaires associees, Acad. Roy. Belg. Bull. Cl. Sc. (5) 73

(1987), 335–353.

[331] Buss, S.A., 3D Computer Graphics, Cambridge University Press, Cambridge, 2003.

[1476] Nitsche, J.C.C., Lectures on Minimal Surfaces, Cambridge University Press,Cambridge, 1988.

[333] Butler, P.H., and Wybourne, B.G., Tables of outer S-function plethysms, AtomicData 3 (1971), 133–151.

[334] Byatt–Smith, J.G., On the existence of homoclinic and heteroclinic orbits fordifferential equations with a small parameter, Nonlinearity, to appear.

[335] Calmet, C., Hausdorf, M., and Seiler, W.M., A constructive introduction toinvolution, in: Proc. Int. Symp. Applications of Computer Algebra — ISACA2000, R. Akerkar (ed), Allied Publishers, New Delhi, 2001, pp. 33-50.

[336] Calder, J., Mansouri, A., and Yezzi, A., Image sharpening via Sobolev gradientflows, SIAM J. Imaging Sci. 3 (2010), 981–1014.

[337] Calogero, F., A solvable nonlinear wave equation, Stud. Appl. Math. 70 (1984),189–199.

[338] Camassa, R., and Holm, D.D., An integrable shallow water equation with peakedsolitons, Phys. Rev. Lett. 71 (1993), 1661–1664.

[339] Camassa, R., Holm, D.D., and Hyman, J.M., A new integrable shallow waterequation, Adv. Appl. Mech. 31 (1994), 1–33.

[340] Cantwell, B.J., Introduction to Symmetry Analysis, Cambridge University Press,Cambridge, 2003.

[341] Cao, F., Geometric Curve Evolution and Image Processing, Lecture Notes in Math.,vol. 1805, Springer–Verlag, New York, 2003.

[342] Capelli, A., Ueber die Zuruckfuhrung der Cayley’schen Operation Ω auf gewohnlichePolar-Operationen, Math. Ann. 29 (1887), 331–338.

[343] Caratheodory, C., Uber die Variationsrechnung bei mehrfachen Integralen, Acta Sci.Mat. (Szeged) 4 (1929), 193–216.

[344] Carinena, J.F., del Olmo, M.A., and Winternitz, P., On the relation between weakand strong invariance of differential equations, Lett. Math. Phys. 29 (1993),151–163 .

[345] Carlsson, S., Mohr, R., Moons, T., Morin, L., Rothwell, C., Van Diest, M., VanGool, L., Veillon, F., and Zisserman, A., Semi-local projective invariants for therecognition of smooth plane curves, Int. J. Comput. Vision 19 (1996), 211–236.

[346] Carmichael, R., The Theory of Numbers, Dover Publ., New York, 1959.

[347] Carpenter, M., and Gottlieb, D., Spectral methods on arbitrary grids, J. Comput.Phys. 129 (1996), 74–86.

[348] Carra–Ferro, G., Grobner bases and differential algebra, in: Applied Algebra,Algebraic Algorithms and Error-Correcting Codes, L. Huguet and A. Poli, eds.,Lecture Notes in Comp. Sci., vol. 356, Springer–Verlag, New York, 1989, pp.129–140.

19

[349] Cartan, E., Sur la Structure des Groupes de Transformations Finis et Continus,These, Paris, Nony, 1894; also Oeuvres Completes, part. I, vol. 1,Gauthier–Villars, Paris, 1952, pp. 137–287.

[350] Cartan, E., Lecons sur les Invariants Integraux, Hermann, Paris, 1922.

[351] Cartan, E., La Methode du Repere Mobile, la Theorie des Groupes Continus, et lesEspaces Generalises, Exposes de Geometrie, no. 5, Hermann, Paris, 1935.

[352] Cartan, E., La Topologie des Groupes de Lie, Exposes de Geometrie, no. 8,Hermann, Paris, 1936.

[353] Cartan, E., Lecons sur la Theorie des Espaces a Connexion Projective, CahiersScientifiques, vol. 17, Gauthier–Villars, Paris, 1937.

[354] Cartan, E., La Theorie des Groupes Finis et Continus et la Geometrie DifferentielleTraitees par la Methode du Repere Mobile, Cahiers Scientifiques, vol. 18,Gauthier–Villars, Paris, 1937.

[355] Cartan, E., Les Systemes Differentiels Exterieurs et leurs ApplicationsGeometriques, Exposes de Geometrie, no. 14, Hermann, Paris, 1945.

[356] Cartan, E., Sur la structure des groupes infinis de transformations, in: OeuvresCompletes, part. II, vol. 2, Gauthier–Villars, Paris, 1953, pp. 571–714.

[357] Cartan, E., Les sous-groupes des groupes continus de transformations, in: OeuvresCompletes, part. II, vol. 2, Gauthier–Villars, Paris, 1953, pp. 719–856.

[358] Cartan, E., Les systemes de Pfaff a cinq variables aux derivees partielles du secondorder, in: Oeuvres Completes, part. II, vol. 2, Gauthier–Villars, Paris, 1953, pp.927–1010.

[359] Cartan, E., Sur l’equivalence absolue de certains systemes d’equations differentielleset sur certaines familles de courbes, in: Oeuvres Completes, part. II, vol. 2,Gauthier–Villars, Paris, 1953, pp. 1133–1168.

[360] Cartan, E., Les problemes d’equivalence, in: Oeuvres Completes, part. II, vol. 2,Gauthier–Villars, Paris, 1953, pp. 1311–1334.

[361] Cartan, E., La structure des groupes infinis, in: Oeuvres Completes, part. II, vol. 2,Gauthier–Villars, Paris, 1953, pp. 1335–1384.

[362] Cartan, E., Sur l’integration de certains systemes indetermines d’equationsdifferentielles, in: Oeuvres Completes, part. II, vol. 2, Gauthier–Villars, Paris,1953, pp. 1169–1174.

[363] Cartan, E., Sur la deformation projective des surfaces, in: Oeuvres Completes, part.III, vol. 1, Gauthier–Villars, Paris, 1955, pp. 441–538.

[364] Cartan, E., Sur les varietes a connexion projective, in: Oeuvres Completes, part. III,vol. 1, Gauthier–Villars, Paris, 1955, pp. 825–861.

[365] Cartan, E., Notice historique sur la notion de parallelisme absolu, in: OeuvresCompletes, part. III, vol. 2, Gauthier–Villars, Paris, 1955, pp. 1121–1129.

[366] Cartan, E., Sur un probleme d’equivalence et la theorie des espaces metriquesgeneralises, in: Oeuvres Completes, part. III, vol. 2, Gauthier–Villars, Paris,1955, pp. 1131–1153.

[367] Cartan, E., La geometrie de l’integrale∫F (x, y, y′, y′′) dx, in: Oeuvres Completes,

part. III, vol. 2, Gauthier–Villars, Paris, 1955, pp. 1341–1368.

20

[368] Cartan, E, and Einstein, A., Elie Cartan–Albert Einstein: Letters on AbsoluteParallelism, 1929–1932, J. Leroy, J. Ritter, translators, R. Debever, ed.,Princeton University Press, Princeton, 1979.

[492] Caselles, V., Kimmel, R., and Sapiro, G., Geodesic active contours, Int. J.Computer Vision 22 (1997), 61–79.

[370] Caselles, V., Catte, F., Coll, T., and Dibos, F., A geometric model for activecontours in image processing, preprint, Universitat de les Illes Balears, Palmade Mallorca, Spain, 1993.

[371] Caviglia, G., and Morro, A., Conservation laws in anisotropic elastostatics, Int. J.Eng. Sci. 26 (1988), 393–400.

[372] Cayley, A., The Collected Mathematical Papers, vols. 1–12, Cambridge UniversityPress, Cambridge, England, 1889–1898.

[373] Cayley, A., The Collected Mathematical Papers, vol. 1, Cambridge University Press,Cambridge, England, 1889.

[374] Cayley, A., On a theorem in the geometry of position, Camb. Math. J. 2 (1841),267–271; also The Collected Mathematical Papers, vol. 1, Cambridge UniversityPress, Cambridge, England, 1889, pp. 1–4.

[375] Cayley, A., On the theory of linear transformations, Camb. Math. J. 4 (1845),193–209; also The Collected Mathematical Papers, vol. 1, Cambridge UniversityPress, Cambridge, England, 1889, pp. 80–94.

[376] Cayley, A., On linear transformations, Camb. and Dublin Math. J. 1 (1846),104–122; also The Collected Mathematical Papers, vol. 1, Cambridge UniversityPress, Cambridge, England, 1889, pp. 95–112.

[377] Cayley, A., An introductory memoir upon quantics, Phil. Trans. Roy. Soc.London 144 (1854), 244–258; also The Collected Mathematical Papers, vol.2, Cambridge University Press, Cambridge, England, 1889, pp. 221–234.

[378] Cayley, A., A second memoir upon quantics, Phil. Trans. Roy. Soc. London 146

(1856), 101–126; also The Collected Mathematical Papers, vol. 2, CambridgeUniversity Press, Cambridge, England, 1889, pp. 250–275.

[379] Cayley, A., On Tschirnhausen’s transformation, Phil. Trans. Roy. Soc. London 151

(1861), 561–578; also The Collected Mathematical Papers, vol. 4, CambridgeUniversity Press, Cambridge, England, 1891, pp. 375–394.

[380] Ceyhan, O., Fokas, A.S., and Gurses, M., Deformations of surfaces associated withintegrable Gauss–Mainardi–Codazzi equations, J. Math. Phys. 41 (2000),2251–2270.

[381] Chadan, K., and Sabatier, P.C., Inverse Problems in Quantum Scattering Theory,Springer–Verlag, New York, 1977.

[382] Chakravarty, S., Ablowitz, M.J., and Clarkson, P.A., Reductions of self-dualYang–Mills fields and classical systems, Phys. Rev. Lett. 65 (1990), 1085–1087.

[383] Chalykh, O.A., Darboux transformations for multidimensional Schrodingeroperators, Russian Math. Surveys 53:2 (1998), 377–379.

[384] Chalykh, O.A., and Veselov, A.P., Commutative rings of partial differentialoperators and Lie algebras, Commun. Math. Phys. 126 (1990), 597–611.

21

[385] Cham, T.-J., and Cipolla, R., Symmetry detection through local skewedsymmetries, Image Vision Computing 13 (1995), 439–450.

[386] Cham, T.-J., and Cipolla, R., Geometric saliency of curve correspondences andgrouping of symmetric contours, preprint, Dept. of Engineering, CambridgeUniversity, 1995.

[387] Champagne, B., Hereman, W., and Winternitz, P., The computer calculation ofLie point symmetries of large systems of differential equations, Comp. Phys.Commun. 66 (1991), 319–340.

[388] Champneys, A.R., and Toland, J.F., Bifurcation of a plethora of multi-modalhomoclinic orbits for autonomous Hamiltonian systems, Nonlinearity 6 (1993),665–721.

[389] Chan, T.F., and Vassilevski, P.S., A framework for block ILU factorizations usingblock-size reduction, Math. Comp. 64 (1995), 129–156.

[390] Chandrasekhar, S., The solution of Dirac’s equation in Kerr geometry, Proc. Roy.Soc. London Ser. A 349 (1976), 571–575.

[391] Chandrasekhar, S., The Mathematical Theory of Black Holes, Oxford UniversityPress, Oxford, 1983.

[392] Channell, P.J., and Scovel, C., Symplectic integration of Hamiltonian systems,Nonlinearity 3 (1990), 231–259.

[393] Chari, V., and Pressley, A., A Guide to Quantum Groups, Cambridge UniversityPress, Cambridge, 1994.

[394] Chartrand, G., and Lesniak, L., Graphs & Digraphs, 3rd ed., Chapman & Hall,London, 1996.

[395] Chazy, J., Sur les equations differentielles dont l’integrale generale est uniforme etadmet des singularities essentielles mobiles, C.R. Acad. Sc. Paris 149 (1909),563–565.

[396] Chazy, J., Sur les equations differentielles dont l’integrale generale possede unecoupure essentielle mobile, C.R. Acad. Sc. Paris 150 (1910), 456–458.

[397] Chazy, J., Sur les equations differentielles du troisieme ordre et d’ordre superieurdont l’integrale generale a ses points critiques fixes, Acta Math. 34 (1911),317–385.

[398] Cheh, J., Symmetry Pseudogroups of Differential Equations, Ph.D. Thesis,University of Minnesota, 2005.

[399] Chen, H.H., Lee, Y.C., and Lin, J.-E., On a new hierarchy of symmetries for theintegrable nonlinear evolution equations, in: Advances in Nonlinear Waves,vol. 2, L. Debnath, ed., Research Notes in Math., vol. 111, Pitman Publ.,Marshfield, Mass., 1985, pp. 233–239.

[400] Chen, H.H., Lee, Y.C., and Lin, J.-E., On a new hierarchy of symmetries for theKadomtsev–Petviashvili equation, in: Physica D, 9 (1983) 439–445.

[401] Chen, H.H., Lee, Y.C., and Liu, C.S., Integrability of nonlinear Hamiltoniansystems by inverse scattering method, Physica Scripta 20 (1979), 490–492.

[459] Chen, H.H., and Lin, J.E., On the integrability of multidimensional nonlinearevolution equations, in: J. Math. Phys., 28 (1987) 347-350.

22

[403] Chen, H.H., and Lin, J.E., On the infinite hierarchies of symmetries and constantsof motion for the Kadomtsev–Petviashvili equation, Physica D 26 (1987),171–180.

[404] Chen, J.Q., Group Representation Theory for Physicists, World Scientific,Singapore, 1989.

[405] Chern, S.-S., Sur la geometrie d’un systeme d’equations differentielles du secondordre, Bull. Sci. Math. 63 (1939), 206–212.

[406] Chern, S.-S., The geometry of the differential equation y′′′ = F (x, y, y′, y′′), Sci.Rep. Nat. Tsing Hua Univ. 4 (1940), 97–111.

[407] Chern, S.-S., On the Euclidean connections in a Finsler space, Proc. Nat. Acad. Sci.29 (1943), 33–37.

[408] Chern, S.-S., Local equivalence and Euclidean connections in Finsler spaces, Sci.Rep. Nat. Tsing Hua Univ. 5 (1948), 95–121.

[409] Chern, S.-S., Moving frames, in: Elie Cartan et les Mathematiques d’Aujourn’hui,Soc. Math. France, Asterisque, numero hors serie, 1985, pp. 67–77.

[410] Chern, S.-S., Historical remarks on Gauss-Bonnet, in: Analysis, Et. Cetera, P.H.Rabinowitz and E. Zehnder, eds., Academic Press, Boston, 1990, pp. 209–217.

[411] Chern, S.S., and Moser, J.K., Real hypersurfaces in complex manifolds, Acta Math.133 (1974), 219–271; also Selected Papers, vol. 3, Springer–Verlag, New York,1989, pp. 209–262.

[412] Chern, S.S., and Tenenblat, K., Pseudo–spherical surfaces and evolution equations,Stud. Appl. Math. 74 (1986), 55–83.

[413] Chern, S.S., and Terng, C.L., An analogue of Backlund’s theorem in affinegeometry, Rocky Mountain J. Math. 10 (1980), 105–124.

[414] Cherniha, R.M., New non–Lie ansatze and exact solutions of nonlinearreaction–diffusion–convection equations, J. Phys. A 31 (1998), 8179–8198.

[415] Chetverikov, V.N., and Kudryavtsev, A.G., A method for computing symmetriesand conservation laws of integro-differential equations, Acta Appl. Math. 41

(1995), 45–56.

[416] Chetverikov, V.N., and Kudryavtsev, A.G., Modeling integro-differential equationsand a method for computing their symmetries and conservation laws, Amer.Math. Soc. Transl. 167 (1995), 1–22.

[417] Chevalley, C., Theory of Lie Groups, vol. 1, Princeton University Press, Princeton,N.J., 1946.

[418] Chevalley, C., The Algebraic Theory of Spinors, Columbia University Press, NewYork, 1974.

[419] Chevalley, C., and Eilenberg, S., Cohomology theory of Lie groups and Lie algebras,Trans. Amer. Math. Soc. 63 (1948), 85–124.

[420] Chien, N., Honein, T., and Herrmann, G., Dissipative systems, conservation lawsand symmetries, Inter. J. Solids Structures 33 (1996), 2959–2968.

[421] Choie, Y.–J., and Eholzer, W., Rankin-Cohen operators for Jacobi and Siegel forms,J. Number Theory 68 (1998), 160–177.

23

[422] Choie, Y.–J., Mourrain, B., and Sole, P., Rankin–Cohen brackets and invarianttheory, J. Alg. Combin. 13 (2001), 5–13.

[423] Chou, K.–S., and Qu, C., Integrable equations arising from motions of plane curves,Physica D 162 (2002), 9–33.

[424] Chou, K.–S., and Qu, C., Geometric motions of surfaces and 2 + 1-dimensionalintegrable equations, J. Phys. Soc. Japan 71 (2002), 1039–1043.

[425] Chou, K.–S., and Qu, C.–Z., Integrable equations arising from motions of planecurves II, J. Nonlinear Sci. 13 (2003), 487–517.

[426] Chou, K.–S., and Zhu, X.–P., The Curve Shortening Problem, Chapman &Hall/CRC, Boca Raton, FL, 2001.

[427] Chow, B., On Harnack’s inequality and entropy for the Gaussian curvature flow,Commun. Pure Appl. Math. 44 (1991), 469–483.

[428] Chow, K.W., A second order solution for the solitary wave in a rotational flow,Phys. Fluids A 1 (1989), 1235–1239.

[429] Chrastina, J., Solution of the inverse problem of the calculus of variations, Math.Bohem. 119 (1994), 157–201.

[430] Chrastina, J., The Formal Theory of Differential Equations, Masaryk University,Brno, Czech Rep., 1998.

[431] Christoffel, E.B., Ueber die Transformation der homogenen Differentialausdruckezweiten Grades, J. Reine Angew. Math. 70 (1869), 46–70.

[432] Chui, C.K., and Lai, H.–C., Vandermonde determinants and Lagrange interpolationin R

s, in: Nonlinear and Convex Analysis, B.–L. Lin and S. Simons, eds.;Lecture Notes Pure Appl. Math.; vol. 107, Marcel Dekker, Inc., New York,1988, pp. 23–35.

[433] Chung, K.C., and Yao, T.H., On lattices admitting unique Lagrange interpolation,SIAM J. Numer. Anal. 14 (1977), 735–743.

[434] Ciarlet, P.G., and Rabier, P., Les Equations de von Karman, Lecture Notes inMath., vol. 826, Springer–Verlag, New York, 1980.

[435] Cieslinski, J., Non-local symmetries and a working algorithm to isolate integrablegeometries, J. Phys. A 26 (1993), L267–L271.

[436] Cieslinski, J., Goldstein, P., and Sym, A., Isothermic surfaces in E3 as solitonsurfaces, Phys. Lett. A 205 (1995), 37–43.

[437] Cipolla, R., and Blake, A., Image divergence and deformation from closed curves,Int. J. Robotics Res. 16 (1997), 77–96.

[438] Clairin, M.J., Sur les transformations de Baecklund, Ann. Ecole Norm. Sup. 19

(1902), S3–63.

[439] Clairin, M.J., Sur quelques equations aux derivees partielles, Ann. Fac. Sci. Univ.Toulouse 5(2) (1903), 437–458.

[440] Clarkson, P.A., New similarity solutions for the modified Boussinesq equation, J.Phys. A 22 (1989), 2355–2367.

[441] Clarkson, P.A., New similarity solutions and Painleve analysis for the symmetricregularized long wave and modified Benjamin–Bona–Mahoney equations, J.Phys. A 22 (1989), 3821–3848.

24

[442] Clarkson, P.A., New exact solutions of the Boussinesq equation, Euro. J. Appl.Math. 1 (1990), 279–300.

[443] Clarkson, P.A., Dimensional reductions and exact solutions of a generalizednonlinear Schrodinger equation, Nonlinearity 5 (1992), 453–472.

[444] Clarkson, P.A., Fokas, A.S., and Ablowitz, M.J., Hodograph transformations onlinearizable partial differential equations, SIAM J. Appl. Math. 49 (1989),1188–1209.

[445] Clarkson, P.A., and Hood, S., Symmetry reductions of a generalized cylindricalnonlinear Schrodinger equation, J. Phys. A 26 (1993), 133–150.

[446] Clarkson, P.A., and Kruskal, M., New similarity reductions of the Boussinesqequation, J. Math. Phys. 30 (1989), 2201–2213.

[447] Clarkson, P.A., and Mansfield, E.L., Nonclassical symmetry reductions and exactsolutions of nonlinear reaction-diffusion equations, in: Applications of Analyticand Geometric Methods to Nonlinear Differential Equations, P.A. Clarkson, ed.,Kluwer Acad. Publ., Dordrecht, Netherlands, pp. 375–389.

[448] Clarkson, P.A., and Mansfield, E.L., Symmetries of the nonlinear heat equation, in:Modern Group Analysis: Advanced Analytical and Computational Methods inMathematical Physics, N.H. Ibragimov, M. Torrisi, and A. Valenti, eds., KluwerAcad. Publ., Dordrecht, Netherlands, 1993, pp. 155–171.

[449] Clarkson, P.A., and Mansfield, E.L., Symmetry reductions and exact solutions of aclass of nonlinear heat equations, Physica D 70 (1994), 250–288.

[450] Clarkson, P.A., and Mansfield, E.L., On a shallow water wave equation,Nonlinearity 7 (1994), 975–1000.

[451] Clarkson, P.A., and Tuszynski, J.A., Exact solutions of the multidimensionalderivative nonlinear Schrodinger equation for many-body systems nearcriticality, J. Phys. A 23 (1990), 4269–4288.

[452] Clarkson, P.A., and Winternitz, P., Nonclassical symmetry reductions for theKadomtsev–Petviashvili equation, Physica D 49 (1991), 257–272.

[453] Clebsch, A., Ueber eine Transformation der homogenen Functionen dritten Ordnungmit vier Veranderlichen, J. Reine Angew. Math. 58 (1861), 109–126.

[454] Clebsch, A., Ueber symbolische Darstellung algebraischer Formen, J. Reine Angew.Math. 59 (1861), 1–62.

[455] Clebsch, A., Theorie der Binaren Algebraischen Formen, B.G. Teubner, Leipzig,1872.

[456] Clebsch, A., and Gordan, P., Ueber cubische ternare Formen, Math. Ann. 6 (1873),436–512.

[457] Clenshaw, C.W., and Olver, F.W.J., Beyond floating point, J. Assoc. Comput.Mach. 31 (1984), 319–328.

[458] Clifford, W., Extract of a letter to Mr. Sylvester from Prof. Clifford of UniversityCollege London, Amer. J. Math. 1 (1878),, 126-128.

[459] Coddington, E.A., and Levinson, N., Theory of Ordinary Differential Equations,McGraw–Hill, New York, 1955.

25

[460] Coggeshall, S.V., Abraham–Shrauner, B., and Knapp, C., Hidden symmetries ofpartial differential equations, in: Proceedings of IMACS World Congress, W.F.Ames, ed., Georgia Tech., 1994, Vol. 1, 102-107.

[461] Cohen, H., Sums involving the values at negative integers of L-functions ofquadratic characters, Math. Ann. 217 (1975), 271–285.

[462] Cohen, P.B., Manin, Y., and Zagier, D., Automorphic pseudodifferential operators,in: Algebraic Aspects of Integrable Systems: In Memory of Irene Dorfman, A.S.Fokas and I.M. Gel’fand, eds., Progress in Nonlinear Differential Equations, vol.26, Birkhauser, Boston, 1996, pp. 17–47.

[463] Coleman, B.D., and Noll, W., The thermodynamics of elastic materials with heatconduction and viscosity, Arch. Rat. Mech. Anal. 13 (1963), 167–178.

[464] Cole, J.D., On a quasilinear parabolic equation occurring in aerodynamics, Q. Appl.Math. 9 (1951), 225–236.

[465] Coleman, A.J., The greatest mathematical paper of all time, Math. Intelligencer 11

(1989), 29–38.

[466] Collins, C.B., Algebraic classification of homogeneous polynomial vector fields in theplane, preprint, University of Waterloo, 1991.

[467] Comtet, L., Advanced Combinatorics: The Art of Finite and Infinite Expansions, D.Reidel, Boston, 1974.

[468] Connes, A., Noncommutative Geometry, Academic Press, San Diego, 1994.

[469] Constantin, A., and Escher, J., Global existence and blow-up for a shallow waterequation, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4) 26 (1998), 303–328.

[470] Constantin, A., and Escher, J., Viscosity solutions for a shallow water equation,preprint, University of Basel, 1997.

[471] Constantin, A., and Escher, J., Well-posedness, global existence, and blowupphenomena for a periodic quasi-linear hyperbolic equation, Commun. PureAppl. Math. 51 (1998), 475–504.

[472] Constantin, A., and Escher, J., On the Cauchy problem for a family of quasilinearhyperbolic equations, Comm. Partial Diff. Eq. 23 (1998), 1449–1458.

[473] Constantin, A., and Escher, J., Wave breaking for nonlinear nonlocal shallow waterequations, Acta Math. 181 (1998), 229–243.

[474] Constantin, A., and McKean, H., The integrability of a shallow water equation withperiodic boundary conditions, preprint, Courant Institute, 1997.

[475] Cook, R.G., Infinite matrices and Sequence Spaces, Dover Publ., New York, 1955.

[476] Cooke, D.B., Classification results and the Darboux theorem for low orderHamiltonian operators, J. Math. Phys. 32 (1991), 109–119.

[477] Cooley, J.W., and Tukey, J.W., An algorithm for the machine computation ofcomplex Fourier series, Math. Comp. 19 (1965), 297–301.

[478] Copson, E.T., Partial Differential Equations, Cambridge University Press,Cambridge, 1975.

[479] Cordero, P., and Salamo, S., Algebraic solution for Natanzon hypergeometricpotentials, J. Math. Phys. 35 (1994), 3301–3307.

26

[480] Cotton, E, Sur les invariants differentiels de quelques equations lineaires auxderivees partielles du second ordre, Ann. Ecole Norm. 17 (1900), 211–244.

[481] Cotton, E, Generalisation de la theorie du triedre mobile, Bull. Soc. Math. France33 (1905), 42–64.

[482] Courant, R., Differential and Integral Calculus, 2nd ed., Interscience Publ., NewYork, 1937.

[483] Courant, R., and Hilbert, D., Methoden der Mathematischen Physik, J. Springer,Berlin, 1924; English translation: Methods of Mathematical Physics, IntersciencePubl., New York, 1953.

[484] Courant, R., and Hilbert, D., Methods of Mathematical Physics, Interscience Publ.,New York, 1953.

[485] Courant, R., and Hilbert, D., Methods of Mathematical Physics, vol. I, IntersciencePubl., New York, 1953.

[486] Courant, R., and Hilbert, D., Methods of Mathematical Physics, vol. II, IntersciencePubl., New York, 1953.

[487] Courant, T.J., Dirac manifolds, Trans. Amer. Math. Soc. 319 (1990), 631–661.

[488] Coutinho, S.C., A Primer of Algebraic D-Modules, London Mathematical SocietyStudent Texts 33, Cambridge University Press, New York, 1995.

[489] Cox, D., Little, J., and O’Shea, D., Ideals, Varieties, and Algorithms, 2nd ed.,Springer–Verlag, New York, 1996.

[490] Cowin, S.C., and Mehrabadi, M.M., On the identification of material symmetry foranisotropic elastic materials, Quart. J. Mech. Appl. Math. 40 (1987), 451–476.

[491] Craig, W., An existence theory for water waves, and the Boussinesq andKorteweg–deVries scaling limits, Commun. Partial Diff.Eq. 10 (1985),787–1003.

[492] Craig, W., Kappeler, T., and Strauss, W., Gain of regularity for equations of KdVtype, Ann. Inst. Henri Poincare Anal. Nonlin. 9 (1992), 147–186.

[493] Crampin, M., and Pirani, F.A.E., Applicable Differential Geometry, London Math.Soc. Lecture Note Series, vol. 59, Cambridge University Press, Cambridge,1986.

[494] Crampin, M., Pirani, F.A.E., and Robinson, D.C., The soliton connection, Lett.Math. Phys. 2 (1977), 15–19.

[495] Crowe, M.J., A History of Vector Analysis, Dover Publ., New York, 1985.

[496] Crilly, T., The rise of Cayley’s invariant theory (1841–1862), Hist. Math. 13 (1986),241–254.

[497] Cruceanu, V., Research works of Romanian mathematicians on centro-affinegeometry, Balkan J. Geom. Appl. 10 (2005), 1–5.

[498] Crum, M.M., Associated Sturm–Liouville systems, Quart. J. Math. 6 (1955),121–127.

[499] Crumeyrolle, A., Orthogonal and Symplectic Clifford Algebras, Kluwer Acad. Publ.,Boston, 1990.

[500] Curtis, C.W., and Reiner, I., Representation Theory of Finite Groups andAssociative Algebras, Interscience, New York, 1962.

27

[501] Curtis, C.W., and Reiner, I., Methods of Representation Theory — with Applicationsto Finite Groups and Orders, vol. 1, Wiley, New York, 1990.

[502] Cushman, R., and Sanders, J.A., Nilpotent normal forms and representation theoryof sl(2, R), Contemp. Math. 56 (1986), 31–51.

[503] Cushman, R., and Sanders, J.A., Invariant theory and normal form of Hamiltonianvectorfields with nilpotent linear part, Canadian Math. Soc. Conference Proc. 8

(1987), 353–371.

[504] Cushman, R., and Sanders, J.A., A survey of invariant theory applied to normalforms of vectorfields with nilpotent linear part, in: Invariant Theory andTableaux, D. Stanton, ed., IMA Volumes in Mathematics and Its Applications,vol. 19, Springer–Verlag, New York, 1990, pp. 82–106.

[505] Dacorogna, B., Introduction to the Calculus of Variations, Imperial College Press,London, 2004.

[506] Dalle, D., Comparison of numerical techniques for Euclidean curvature,Rose–Hulman Undergraduate Math. J. 7,#1 (2006), 1–29.

[507] Darboux, G., Sur le probleme de Pfaff, Bull. Sci. Math. (2) 6 (1882), 14–36, 49–68.

[508] Darboux, G., Leons su la Theorie Generale de Surfaces et les ApplicationsGeometriques du Calcul Infinitesimal, third ed., vols. 1–4, Chelsea Publ.Co., New York, 1972.

[509] Darrigol, O., The spirited horse, the engineer, and the mathematician: water wavesin nineteenth-century hydrodynamics, Arch. Hist. Exact Sci. 58 (2003), 21–95.

[510] Das, A., Huang, W.-J., and Roy, S., The zero curvature formulation of theBoussinesq equation, Phys. Lett. A 153 (1991), 186–190.

[511] Daskaloyannis, C., Quadratic Poisson algebras of two-dimensional classicalsuperintegrable systems and quadratic associative algebras of quantumsuperintegrable systems, J. Math. Phys. 42 (2001), 1100–1119.

[512] Daskaloyannis, C., and Ypsilantis, K., Unified treatment and classification ofsuperintegrable systems with integrals quadratic in momenta on a twodimensional manifold, J. Math. Phys. 47 (2006), 042904.

[513] Daubechies, I., Orthonormal bases of compactly supported wavelets, Commun. PureAppl. Math. 41 (1988), 909–996.

[514] Daubechies, I., Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992.

[515] David, D., and Holm, D. D., Multiple Lie-Poisson structures, reductions, andgeometric phases for the Maxwell-Bloch traveling-wave equations, J. Nonlin.Sci. 2 (1992), 241–262.

[516] David, D., Kamran, N., Levi, D., and Winternitz, P., Subalgebras of loop algebrasand symmetries of the Kadomtsev-Petviashivili equation, Phys. Rev. Lett. 55

(1985), 2111–2113.

[517] Davidson, K.R., and Donsig, A.P., Real Analysis with Real Applications,Prentice–Hall, Inc., Upper Saddle River, N.J., 2002.

[518] Davis, P.J., Interpolation and Approximation, Dover Publ., New York, 1975.

[519] Debever, R., Quelques problemes d’equivalence de formes differentielles alternees,Bull. Acad. Roy. de Belgique, Classe des Sciences 31 (1946), 262–277.

28

[520] de Boor, C., Splines as linear combinations of B–splines, in: Approximation theoryII, G.G. Lorentz, C.K. Chui and L.L. Schumaker, eds., Academic Press, NewYork, 1976, pp. 1–47.

[521] de Boor, C., Gauss elimination by segments and multivariate polynomialinterpolation, in: Approximation and Computation, R.V.M. Zahar, ed.,Birkhauser, Boston, 1994, pp. 1–22.

[522] de Boor, C., A multivariate divided difference, in: Approximation theory VIII, Vol.1, C.K. Chui and L.L. Schumaker, eds., World Sci. Publishing, River Edge, NJ,1995, pp. 87–96.

[523] de Boor, C., On the Sauer-Xu formula for the error in multivariate polynomialinterpolation, Math. Comp. 65 (1996), 1231–1234.

[524] de Boor, C., What is the inverse of a basis?, BIT 41 (2001), 880–890.

[525] de Boor, C., and Ron, A., On multivariate polynomial interpolation, Constr.Approx. 6 (1990), 287–302.

[526] de Boor, C., and Ron, A., Computational aspects of polynomial interpolation inseveral variables, Math. Comp. 58 (1992), 705–727.

[527] Deckelnick, K., Dziuk, G., and Elliott, C.M., Computation of geometric partialdifferential equations and mean curvature flow, Acta Numer. 14 (2005),139–232.

[528] DeConcini, C., Eisenbud, D., and Procesi, C., Young diagrams and determinantalvarieties, Invent. Math. 56 (1980), 129–165.

[529] Dedecker, P., Calcul des variations et topologie algebrique, Mem. Soc. Roy. Sci.Liege 19 (1957), 1–216.

[530] De Donder, T., Theorie Invariantive du Calcul de Variations, Gauthier–Villars,Paris, 1935.

[531] Deeley, R.J., Horwood, J.T., McLenaghan, R.G., and Smirnov, R.G., Theoryof algebraic invariants of vector spaces of Killing tensors: methods forcomputing the fundamental invariants, Proc. Inst. Math. NAS Ukraine 50

(2004), 1079–1086.

[532] Deift, P., and Trubowitz, E., Inverse scattering on the line, Commun. Pure Appl.Math. 32 (1979), 121–251.

[533] Delassus, E., Extension du theoreme de Cauchy aux systemes les plus generauxd’equations aux derivees partielles, Ann. Sci. Ecole Norm. Sup. (3) 13 (1896),421–467.

[534] DeGroot, M.H., and Schervish, M.J., Probability and Statistics, Addison–Wesley,Redwood City, Calif., 2002.

[535] Demmel, J.W., Applied Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997.

[594] Derksen, H., and Kemper, G., Computational Invariant Theory, Encyclopaedia ofMath. Sci., vol. 130, Springer–Verlag, New York, 2002.

[537] Desbrun, M., Hirani, A., Leok, M., Marsden, J.E.; Discrete Poincare lemma; CDSTechnical Report, Cal Tech, 2003.

[538] Desbrun, M., Leok, M., and Marsden, J.E., Discrete Poincare lemma, Appl. Numer.Math. 53 (2005), 231–248.

29

[539] Devaney, R.L., An Introduction to Chaotic Dynamical Systems, Addison–Wesley,Redwood City, Calif., 1989.

[540] Dewdney, A.K., The Planiverse. Computer Contact with a Two-dimensional World,Copernicus, New York, 2001.

[541] Dhooghe, P.F., Multilocal invariants, in: Geometry and Topology of Submanifolds,VIII, F. Dillen, B. Komrakov, U. Simon, I. Van de Woestyne, and L.Verstraelen, eds., World Sci. Publishing, Singapore, 1996, pp. 121–137.

[542] Diacu, F., An Introduction to Differential Equations, W.H. Freeman and Co., NewYork, 2000.

[543] Dickey, L., Soliton Equations and Hamiltonian Systems, World Scientific, Singapore,1991.

[544] Dickson, L.E., Modern Algebraic Theories, Benj. H. Sanborn & Co., Chicago, 1926.

[545] Dickson, L.E., Differential equations from the group standpoint, Ann. Math. 25

(1924), 287–378.

[546] Dickson, L.E., On Invariants and the Theory of Numbers, Dover Publ., New York,1966.

[547] Dieudonne, J.A., Foundations of Modern Analysis, Academic Press, New York, 1969.

[548] Dieudonne, J.A., Treatise on Analysis, vol. 4, Academic Press, New York, 1974.

[549] Dieudonne, J.A., and Carrell, J.B., Invariant Theory: Old and New, AcademicPress, New York, 1971.

[550] Di Francesco, P., Mathieu, P., and Senechal, D., Conformal Field Theory,Springer–Verlag, New York, 1997.

[551] Dillen, F., Martınez, A., Milan, F., Garcia Santos, F., and Vrancken, L., On thePick invariant, the affine mean curvature and the Gauss curvature of affinesurfaces, Results Math. 20 (1991), 622–642.

[552] Dirac, P.A.M., The Principles of Quantum Mechanics, Third Edition, ClarendonPress, Oxford, 1947.

[553] Dirac, P.A.M., Lectures on Quantum Mechanics, Belfer Graduate School of ScienceMonographs Series, no. 2, Yeshiva University, New York, 1964.

[554] Dixmier, J., Lectures on Binary Forms, Notes by F. Grosshans, West ChesterUniversity, 1986.

[555] Dixmier, J., Quelques aspects de la theorie des invariants, Gazette des Math. 43

(1990), 39–64.

[556] Dixmier, J., Quelques resultats et conjectures concernant les series de Poincaredes invariants des formes binaires, in: Seminaire d’Algebre Paul Dubreil etMarie-Paule Malliavin, M.-P. Malliavin, ed., Lecture Notes in Math., vol. 1146,Springer–Verlag, New York, 1985, pp. 127–160.

[557] Dixmier, J., and Lazard, D., Le nombre minimum d’invariants fondamentaux pourles formes binaires de degre 7, Portugal. Math. 43 (1986), 377–392.

[558] Dixmier, J., and Lazard, D., Minimum number of fundamental invariants for thebinary form of degree 7, J. Symb. Comp. 6 (1988), 113–115.

[559] do Carmo, M.P., Differential Geometry of Curves and Surfaces, Prentice–Hall, Inc.,Englewood Cliffs, N.J., 1976.

30

[560] Dodd, R.K., Eilbeck, J.C., Gibbon, J.D., and Morris, H.C., Solitons and NonlinearWave Equations, Academic Press, New York, 1982.

[561] Dodd, R.K., The general prolongation formulae for nonlocal symmetries, Phys. Lett.A 195 (1994), 125–127.

[562] Dodonov, V.V., Man’ko, V.I., and Skarzhinsky, V.D., Classically equivalentHamiltonians and ambiguities of quantization: a particle in a magnetic field, Il.Nuovo Cim. 69B (1982), 185–205.

[563] D– okovic, D., and Hofmann, K.H., The exponential in real Lie groups: A statusreport, J. Lie Theory 7 (1997), 171–199.

[564] Dolgachev, I.V., Lectures on Invariant Theory, London Math. Soc. Lecture Notes,vol. 296, Cambridge University Press, Cambridge, 2003.

[565] Doliwa, A., and Santini, P.M., An elementary geometric characterization of theintegrable motions of a curve, Phys. Lett. A 185 (1994), 373–384.

[566] Domokos, M., Vector invariants of a class of pseudoreflection groups andmultisymmetric syzygies, J. Lie Theory 19 (2009), 507–525.

[567] Dorfman, I.Y., On differential operators that generate Hamiltonian structures, Phys.Lett. A 140 (1989), 378–382.

[568] Dorfman, I., Dirac Structures and Integrability of Nonlinear Evolution Equations,John Wiley, New York, 1993.

[569] Dorodnitsyn, V.A., Transformation groups in net spaces, J. Sov. Math. 55 (1991),1490–1517.

[570] Dorodnitsyn, V.A., Finite difference models entirely inheriting continuous symmetryof original differential equations, Int. J. Mod. Phys. C 5 (1994), 723–734.

[571] Dorodnitsyn, V.A., Symmetry of finite difference equations, in: CRC Handbook ofLie Group Analysis of Differential Equations, vol. 1, Ibragimov, N.H., ed., CRCPress, Boca Raton, Fl., 1994, pp. 349–403.

[572] Dorodnitsyn, V.A., Group theoretical methods for finite-difference modeling, in:Proceedings, World Congress of Nonlinear Analysts, de Gruyter, Berlin, 1996,pp. 879–890.

[573] Dorodnitsyn, V.A., Kozlov, R., and Winternitz, P., Lie group classification ofsecond-order ordinary difference equations, J. Math. Phys. 41 (2000), 480–504.

[574] Dothan, Y., Gell–Mann, M., and Ne’eman, Y., Series of hadron energy levels asrepresentations of non-compact groups, Phys. Lett. 17 (1965), 148–151.

[575] Douady, A., Un espace de Banach dont le groupe lineaire n’est pas connexe, Proc.Konink. Nederl. Akad. Wetensch. Ser. A 68 (1965), 787–789 .

[576] Doubrov, B., Contact invariants of ordinary differential equations, RIMS Kokyuroku1150 (2000), 105–113.

[577] Doubrov, B., Generalized Wilczynski invariants for non-linear ordinary differentialequations, in: Symmetries and Overdetermined Systems of Partial DifferentialEquations, M. Eastwood and W. Miller, Jr., eds., IMA Volumes in Mathematicsand Its Applications, vol. 144, Springer–Verlag, New York, 2008, pp. 25–40.

[578] Douglas, J., Solution of the inverse problem of the calculus of variations, TransAmer. Math. Soc. 50 (1941), 71–128.

31

[579] Doyle, P.W., Differential Geometric Poisson Bivectors and Quasilinear Systems inOne Space Variable, Ph.D. Thesis, University of Minnesota, 1992.

[580] Doyle, P.W., Differential geometric Poisson bivectors in one space variable, J. Math.Phys. 34 (1993), 1314–1338.

[581] Doyle, P.W., Symmetry classes of quasilinear systems in one space variable, J.Nonlinear Math. Phys. 1 (1994), 225–266.

[582] Draisma, J., Constructing Lie algebras of first order differential operators, J. Symb.Comp. 36 (2003), 685–698.

[583] Drazin, P.G., and Johnson, R.S., Solitons: An Introduction, Cambridge UniversityPress, Cambridge, 1989.

[584] Drinfel’d, V.G., Quantum groups, in: Proc. Int. Congress Math. Berkeley, A.M.Gleason, ed., vol. 1., Amer. Math. Soc., Providence, R.I., 1987, pp. 798–820.

[585] Drinfel’d, V.G., and Sokolov, V.V., Lie algebras and equations of Korteweg–de Vriestype, in: Current problems in mathematics, vol. 24, VINITI, vol. 24, 1984, pp.81–180 (in Russian).

[586] Drinfel’d, V.G., and Sokolov, V.V., Lie algebras and equations of Korteweg–de Vriestype, J. Soviet Math. 30 (1985), 1975–2036.

[587] Dubois–Violette, M., dN = 0: generalized homology, K–Theory 14 (1998), 371–404.

[588] Dubois–Violette, M., and Henneaux, M., Generalized cohomology for irreducibletensor fields of mixed Young symmetry type, Lett. Math. Phys. 49 (1999),245–252.

[589] Dubois–Violette, M., and Henneaux, M., Tensor fields of mixed Young symmetrytype and N -complexes, Comm. Math. Phys. 226 (2002), 393–418.

[590] Dubrovin, B.A., and Novikov, S.P., Hamiltonian formalism of one-dimensionalsystems of hydrodynamic type and the Bogolyubov-Whitham averagingmethod, Sov. Math. Dokl. 27 (1983), 665–669.

[591] Dubrovin, B.A., and Novikov, S.P., On Poisson brackets of hydrodynamic type, Sov.Math. Dokl. 30 (1984), 651–654.

[592] Dubrovin, B.A., and Novikov, S.P., Hydrodynamics of weakly deformed solitonlattices. Differential geometry and Hamiltonian theory, Russian Math. Surveys44:6 (1989), 35–124.

[593] Dugundji, J., Topology, Allyn and Bacon, Boston, 1976.

[594] Duistermaat, J.J., and Kolk, J.A.C., Lie Groups, Springer–Verlag, New York, 1999.

[595] Dunn, J.E., and Serrin, J., On the thermomechanics of interstitial working, Arch.Rat. Mech. Anal. 88 (1985), 95–133.

[596] Durett, R., Essentials of Stochastic Processes, Springer–Verlag, New York, 1999.

[597] Dushane, T.E., Generalizations of the Korteweg–de Vries equation, Proc. Sympos.Pure Math. 23 (1971), 303–307.

[598] Dutra, A. de S., and Filho, H.B., Dynamical algebra of quasi-exactly-solvablepotentials, Phys. Rev. A 44 (1991), 4721–4724.

[599] Duzhin, S.V., and Tsujishita, T., Conservation laws of the BBM equation, J. Phys.A 17 (1984), 3267–3276.

32

[600] Dym, H., and McKean, H.P., Fourier Series and Integrals, Academic Press, NewYork, 1972.

[601] Eckhaus, W., On water waves at Froude number slightly higher than one and Bondnumber less than 1

3, Z. Angew. Math. Phys. 43 (1992), 254–269.

[602] Eckhaus, W., Singular perturbations of homoclinic orbits in R4, SIAM J. Math.

Anal. 23 (1992), 1269–1290.

[603] Edelen, D.G.B., Aspects of variational arguments in the theory of elasticity: factand folklore, Int. J. Solids Structures 17 (1981), 729–740.

[604] Edelsbrunner, H., Geometry and Topology for Mesh Generation, CambridgeUniversity Press, Cambridge, 2001.

[605] Egecioglu, O., and Remmel, J.B., Symmetric and antisymmetric outer plethysms ofSchur functions, Atomic Data and Nuclear Data Tables 32 (1985), 157–196.

[606] Eholzer, W., and Ibukiyama, T., Rankin–Cohen type differential operators for Siegelmodular forms, Internat. J. Math. 9 (1998), 443–463.

[607] Ehresmann, C., Introduction a la theorie des structures infinitesimales et despseudo-groupes de Lie, in: Geometrie Differentielle, Colloq. Inter. du CentreNat. de la Rech. Sci., Strasbourg, 1953, pp. 97–110.

[608] ten Eikelder, H.M.M., On the local structure of recursion operators for symmetries,Proc. Koninklijke Neder. Akad. Weten. A 89 (1986), 389–403.

[609] Eisenbud, D., Commutative Algebra with a View toward Algebraic Geometry,Graduate Texts in Mathematics, vol. 150, Springer–Verlag, New York, 1995.

[610] Eisenhart, L.P., A Treatise on the Differential Geometry of Curves and Surfaces,Ginn and Company, Boston, 1909.

[611] Eisenhart, L.P., Riemannian Geometry, Princeton University Press, Princeton, 1926.

[612] Eisenhart, L.P., Continuous Groups of Transformations, Princeton University Press,Princeton, 1933 .

[613] Elkana, Y., The Discovery of the Conservation of Energy, Hutchinson EducationalLtd., London, 1974.

[614] Elliott, E.B., An Introduction to the Algebra of Quantics, Oxford University Press,Oxford, 1913.

[615] Elphick, C., Tirapegui, E., Brachet, M.E., Coullet, P., and Ioss, G., A simple globalcharacterization for normal forms of singular vector fields, Physica 29D (1987),95–127.

[616] Enciso, A., Finkel, F., Gonzalez-Lopez, A., and Rodriguez, M. A., A novelquasi-exactly solvable spin chain with nearest-neighbors interactions, NuclearPhys. B 789 (2008), 452–482.

[617] Englefield, M.J., and Quesne, C., Dynamic potential algebras for Gendenshtein andMorse potentials, J. Phys. A 24 (1991), 3557–3574.

[618] Erdelyi, A., and Bateman, H., Higher Transcendental Functions, McGraw–Hill, NewYork, 1953.

[619] Erdogan, M.B., and Tzirakis, N., Global smoothing for the periodic KdV evolution,preprint, 2011.

33

[620] Escherich, G.V., Die Determinanten hoheren Ranges und ihre Verwendung zurBildung von Invarianten, Denkschr. Kais. Aka. Wiss. Wien 43 (1882), 1–12.

[621] Eshelby, J.D., The force on an elastic singularity, Phil. Trans. R. Soc. A 244 (1951),57–112.

[622] Eshelby, J.D., The elastic energy–momentum tensor, J. Elasticity 5 (1975), 321–335.

[623] Eshelby, J.D., Read, W.T., and Shockley, W., Anisotropic elasticity withapplications to dislocation theory, Acta Metal. 1 (1953), 251–259.

[624] Etinghof, P., Gel’fand, I.M., and Retakh, V.S., Factorization of differentialoperators, quasideterminants, and nonabelian Toda field equations, Math.Res. Lett. 4 (1997), 413–425.

[625] Etinghof, P., Gel’fand, I.M., and Retakh, V.S., Nonabelian integrable systems,quasideterminants, and Marchenko lemma, Math. Res. Lett. 5 (1998), 1–12.

[626] Euler, L., Methodus Inveniendi Lineas Curvus, Lausanne, 1744, Opera Omnia; ser.1, vol. 24, Fussli, Zurich, 1960.

[627] Evans, L.C., Partial Differential Equations, Grad. Studies Math. vol. 19, Amer.Math. Soc., Providence, R.I., 1998.

[628] Evans, N.W., Superintegrability in classical mechanics, Phys. Rev. A 41 (1990),5666–5676.

[629] Evans, N.W., and Verrier, P.E., Superintegrability of the caged anisotropicoscillator, J. Math. Phys. 49 (2008), 092902.

[630] Evtushik, L.E., Pseudo-groups of transformations of geometrical-differentialstructures and their invariants, J. Math. Sci. 94 (1999), 1643–1684.

[631] Faa di Bruno, F., Theorie des Formes Binaires, Turin, 1876.

[632] Faa di Bruno, F., Einleitung in die Theorie der Binaren Formen, B.G. Teubner,Leipzig, 1881.

[633] Faddeev, L.D., and Takhtajan, L.A., Hamiltonian Methods in the Theory of Solitons,Springer-Verlag, New York, 1987.

[634] Farin, G.E., Curves and Surfaces for CAGD: A Practical Guide, Academic Press,London, 2002.

[635] Faugeras, O., On the evolution of simple plane curves of the real projective plane,Comptes Rendus Acad. Sci. Paris, Serie I, 317 (1993), 565–570.

[636] Faugeras, O., Cartan’s moving frame method and its application to the geometryand evolution of curves in the euclidean, affine and projective planes, in:Applications of Invariance in Computer Vision, J.L. Mundy, A. Zisserman, andD. Forsyth, eds., Lecture Notes in Computer Science, vol. 825, Springer–Verlag,New York, 1994, pp. 11–46.

[637] Faugeras, O., and Keriven, R., Scale-spaces and affine curvature, in: Proc.Europe–China Workshop on Geometrical Modelling and Invariants forComputer Vision, R. Mohr and C. Wu, eds., 1995, pp. 17–24.

[638] Fazio, R., A similarity approach to the numerical solution of free boundaryproblems, SIAM Review 40 (1998), 616–635.

[639] Federer, H., Geometric Measure Theory, Springer–Verlag, New York, 1969.

34

[640] Fefferman, C., and Graham, C.R., Conformal invariants, in: Elie Cartan et lesMathematiques d’Aujourd’hui, Asterisque, hors serie, Soc. Math. France, Paris,1985, pp. 95–116.

[641] Feigenbaum, M.J., Qualitative universality for a class of nonlinear transformations,J. Stat. Phys. 19 (1978), 25–52.

[642] Feller, W., An Introduction to Probability Theory and its Applications, ThirdEdition., J. Wiley & Sons, New York, 1968.

[643] Fels, M.E., Equivalence of ordinary differential equations, preprint, McGillUnivesity, 1992.

[644] Fels, M.E., Some Applications of Cartan’s Method of Equivalence to the GeometricStudy of Ordinary and Partial Differential Equations, Ph.D. Thesis, McGillUniversity, 1993.

[645] Fels, M.E., The equivalence problem for systems of second-order ordinarydifferential equations, Proc. London Math. Soc. 71 (1995), 221–240.

[646] Fels, M.E., The inverse problem of the calculus of variations for scalar fourth-orderordinary differential equations, Trans. Amer. Math. Soc. 348 (1996),5007–5029.

[647] Feng, S., Kogan, I.A., and Krim, H., Classification of curves in 2D and 3D via affineintegral signatures, Acta. Appl. Math. 109 (2010), 903–937.

[648] Ferapontov, E.V., Differential geometry of nonlocal Hamiltonian operators ofhydrodynamic type, Func. Anal. Appl. 25 (1991), 195–204.

[649] Ferapontov, E.V., and Pavlov, M.V., Quasiclassical limit of coupled KdV equations.Riemann invariants and multi-Hamiltonian structure, Physica D 52 (1991),211–219.

[650] Fermi, E., Pasta, J., and Ulam, S., Studies of nonlinear problems. I., preprint, LosAlamos Report LA 1940, 1955; in: Nonlinear Wave Motion, A.C. Newell, ed.,Lectures in Applied Math., vol. 15, American Math. Soc., Providence, R.I.,1974, pp. 143–156.

[651] Fernandes, R.L., Completely integrable biHamiltonian systems, J. Dyn. Diff. Eq. 6

(1994), 53–69.

[652] Field, J.V., The Invention of Infinity: Mathematics and Art in the Renaissance,Oxford University Press, Oxford, 1997.

[653] Fine, B., and Rosenberger, G., The Fundamental Theorem of Algebra,Undergraduate Texts in Mathematics, Springer–Verlag, New York, 1997.

[654] Finkel, F., Gonzalez-Lopez, A., and Rodrıguez, M.A., Quasi-exactly solvablepotentials on the line and orthogonal polynomials, preprint, UniversidadComplutense, Madrid, 1996.

[655] Finkel, F., Gonzalez-Lopez, A., and Rodrıguez, M.A., Quasi-exactly solvable spin1/2 Schrodinger operators, J. Math. Phys., to appear.

[656] Finkel, F., and Kamran, N., On the equivalence of matrix differential operators toSchrodinger form, Nonlinear Math. Phys., to appear.

35

[657] Finkel, F., and Kamran, N., The Lie algebraic structure of differential operatorsadmitting invariant spaces of polynomials, Adv. Appl. Math. 20 (1998),300–322.

[658] Fisher, C.S., The death of a mathematical theory: a study in the sociology ofknowledge, Arch. Hist. Exact Sci. 3 (1966), 137–159.

[659] Fisher, M., and Schiff, J., The Camassa Holm equation: conserved quantities andthe initial value problem, Phys. Lett. A 259 (1999), 371–376.

[660] Fleming, W.H., Functions of Several Variables, 2d ed., Springer–Verlag, New York,1977.

[661] Fletcher, N.H., and Rossing, T.D., The Physics of Musical Instruments, SecondEdition, Springer–Verlag, New York, 1998.

[662] Fletcher, P., The uniqueness of the Moyal algebra, preprint, 1990.

[663] Florack, L.M.J., ter Haar Romeny, B.M., Koenderink, J.J., and Viergever, M.A.,Cartesian differential invariants in scale-space, J. Math. Imaging Vision 3

(1993), 327–348 .

[664] Floreanini, R., and Vinet, L., Quantum algebras and q-special functions, Lett. Math.Phys. 22 (1991), 45–54.

[665] Fogel, I., and Sagi, D., Gabor filters as texture discriminators, Bio. Cyber. 61

(1989), 103–113.

[666] Fokas, A.S., A symmetry approach to exactly solvable evolution equations, J. Math.Phys. 2 (1980), 1318–1325.

[667] Fokas, A.S., Symmetries and integrability, Stud. Appl. Math. 77 (1987), 253–299.

[668] Fokas, A.S., The Korteweg–deVries equation and beyond, Acta Appl. Math. 39

(1995), 295–305.

[669] Fokas, A.S., On a class of physically important equations, Physica D 87 (1995),145–150.

[670] Fokas, A.S., Painleve Transcendents: the Riemann-Hilbert Approach, Math. Surveysand Monographs, no. 128, American Mathematical Society, Providence, R.I.,2006.

[671] Fokas, A.S., A Unified Approach to Boundary Value Problems, CBMS–NSFConference Series in Applied Math., vol. 78, SIAM, Philadelphia, 2008.

[672] Fokas, A.S., and Fuchssteiner, B., The hierarchy of the Benjamin–Ono equation,Phys. Lett. A 86 (1981), 341–345.

[673] Fokas, A.S., and Fuchssteiner, B., On the structure of symplectic operators andhereditary symmetries, Lett. Nuovo Cimento 28 (1980), 299–303.

[674] Fokas, A.S., and Gel’fand, I.M., Surfaces on Lie groups, on Lie algebras, and theirintegrability, Commun. Math. Phys. 177 (1996), 203–220.

[675] Fokas, A.S., Gel’fand, I.M., Finkel, F., and Liu, Q.M., A formula for constructinginfinitely many surfaces on Lie algebras and integrable equations, Selecta Math.6 (2000), 347–375.

[676] Fokas, A.S., and Liu, Q.M., Generalized conditional symmetries and exact solutionsof non-integrable equations, preprint, Clarkson University, 1993.

36

[677] Fokas, A.S., and Santini, P., Bi-Hamiltonian formulation of theKadomtsev–Petviashvili and Benjamin–Ono equations, J. Math. Phys. 29

(1988), 604–617.

[678] Fokas, A.S., and Santini, P., Recursion operators and biHamiltonian structures inmulti-dimensions. II, Commun. Math. Phys. 116 (1988), 449–474.

[679] Fordy, A.P., Derivative nonlinear Schrodinger equations and Hermitian symmetricspaces, J. Phys. A 17 (1984), 1235–1245.

[680] Fordy, A.P. and J. Gibbons, Factorization of operators. II, J. Math. Phys. 22

(1981), 1170–1175.

[681] Fordy, A.P., and Kulish, P.P., Nonlinear Schrodinger equations and simple Liealgebras, Commun. Math. Phys. 89 (1983), 427–443.

[682] Fornberg, B., and Whitham, G.B., A numerical and theoretical study of certainnonlinear wave phenomena, Phil. Trans. Roy. Soc. London A 289 (1978),373–404.

[683] Forsyth, A.R., Invariants, covariants, and quotient derivatives associated with lineardifferential equations, Phil. Trans. Roy. Soc. London 179 (1888), 377–489.

[684] Forsyth, A.R., The Theory of Differential Equations, Cambridge University Press,Cambridge, 1890, 1900, 1902, 1906.

[685] Forsyth, A.R., The differential invariants of a surface, and their geometricsignificance, Phil. Trans. Roy. Soc. London A 201 (1903), 329–402.

[686] Fourier, J., The Analytical Theory of Heat, Dover Publ., New York, 1955.

[687] Foursov, M.V., On Integrable Evolution Equations in Commutative andNoncommutative Variables, Ph.D. Thesis, University of Minnesota, 1999.

[688] Foursov, M.V., On integrable coupled KdV–type systems, Inverse Problems 16

(2000), 259–274.

[689] Foursov, M.V., and Vorob’ev, E.M., Solutions of the nonlinear wave equationutt = uuxx invariant under conditional symmetries, J. Phys. A 29 (1996),6363–6373.

[690] Frame, J.S., Robinson, G. de B., and Thrall, R.M., The hook graphs of Sn, Can. J.Math. 6 (1954), 316–324.

[691] Francis, J.G.F., The QR transformation I, II, Comput. J. 4 (1961–2), 265–271,332–345.

[692] Frank, A., and Wolf, K.B., Lie algebras for systems with mixed spectra. I. Thescattering Poschl–Teller potential, J. Math. Phys. 26 (1985), 977–983.

[693] Freedman, M.H., Zheng-Xu He, Z.–X., and Wang, Z., Mobius energy of knots andunknots, Ann. Math. 139 (1994), 1–50.

[694] Freeman, H., and Carder, L., Apictorial jigsaw puzzles: the computer solution of aproblem in pattern recognition, IEEE Trans. Elec. Comp. 13 (1964), 118–127.

[695] Friefeld, C., One parameter subgroups do not fill a neighborhood of the identity inan infinite-dimensional Lie (pseudo) group, in: Batelle Rencontes, C.M. DeWittand J.A. Wheeler, eds., W.A. Benjamin, New York, 1968.

[696] Fris, J., Mandrosov, V., Smorodinsky, Ya.A., Uhlir, M., and Winternitz, P., Onhigher symmetries in quantum mechanics, Phys. Lett. 16 (1965), 354–356.

37

[697] Frobenius, G., Uber das Pfaffsche Problem, J. Reine Angew. Math. 82 (1877),230–315.

[698] Fubini, G., Applicabilita proiettiva di due superficie, Rend. Circ. Mat. Palermo 41

(1916), 135–162.

[699] Fubini, G., and Cech, E., Introduction a la Geometrie Projective Differentielle desSurfaces, Gauthier–Villars, Paris, 1931.

[700] Fuchs, D.B., Gabrielov, A.M., and Gel’fand, I.M., The Gauss–Bonnet theorem andAtiyah–Patodi–Singer functionals for the characteristic classes of foliations,Topology 15 (1976), 165–188.

[701] Fuchssteiner, B., Application of hereditary symmetries to nonlinear evolutionequations, Nonlinear Anal. Theory Meth. Appl. 3 (1979), 849–862 .

[702] Fuchssteiner, B., The Lie algebra structure of nonlinear evolution equationsadmitting infinite dimensional abelian symmetry groups, Prog. Theor. Phys. 65

(1981), 861–876.

[703] Fuchssteiner, B., Mastersymmetries, higher order time–dependent symmetries andconserved densities of nonlinear evolution equations, Prog. Theor. Phys. 70

(1983), 1508–1522.

[704] Fuchssteiner, B., Some tricks from the symmetry-toolbox for nonlinear equations:generalizations of the Camassa–Holm equation, Physica D 95 (1996), 229–243.

[705] Fuchssteiner, B., and Fokas, A.S., Symplectic structures, their Backlundtransformations and hereditary symmetries, Physica D 4 (1981), 47–66.

[706] Fujimoto, A., and Watanabe, Y., Polynomial evolution equations of not normal typeadmitting nontrivial symmetries, Phys. Lett. A 136 (1989), 294–299.

[707] Fulling, S.A., King, R.C., Wybourne, B.G., and Cummins, C.J., Normal forms fortensor polynomials: I. The Riemann tensor, Class. Quantum Grav. 9 (1992),1151–1197.

[708] Fushchich, W.I., and Nikitin, A.G., Symmetries of Maxwell’s Equations, D. Reidel,Dordrecht, Holland, 1987.

[709] Fushchich, W.I., and Shtelen, W.M., On approximate symmetry and approximatesolutions of the non-linear wave equation with a small parameter, J. Phys. A22 (1989), L887–L890.

[710] Fushchich, W.I., and Nikitin, A.G., Symmetries of Equations of QuantumMechanics, Allerton Press, New York, 1994.

[711] Fushchych, W.I., and Nikitin, A.G., Higher symmetries and exact solutions oflinear and nonlinear Schrodinger equations, preprint, Arnold Sommerfeld Inst.,ASI-TPA/9/96, 1996.

[712] Fushchich, W.I., Shtelen, W.M., and Serov, N.I., Symmetries Analysis and ExactSolutions of Equations of Nonlinear Mathematical Physics, Kluwer Acad. Publ.,Boston, 1993.

[713] Fushchich, W.I., and Yegorchenko, I.A., Second-order differential invariants of therotation group O(n) and of its extensions: E(n), P (1, n), G(1, n), Acta Appl.Math. 28 (1992), 69–92.

[714] Fushchych, W., Ansatz ’95, J. Nonlinear Math. Phys. 2 (1995), 216–235.

38

[715] Fushchych, W., and Zhdanov, R., Antireduction and exact solutions of nonlinearheat equations, J. Nonlinear Math. Phys. 1 (1994), 60–64.

[716] Gaal, L., Classical Galois theory, 4th ed., Chelsea Publ. Co., New York, 1988.

[717] Gaeta, G., On the conditional symmetries of Levi and Winternitz, J. Phys. A 23

(1990), 3643–3645.

[718] Gaeta, G., Nonlinear Symmetries and Nonlinear Equations, Kluwer Acad. Publ.,Boston, 1994.

[719] Gage, M., and Hamilton, R.S., The heat equation shrinking convex plane curves, J.Diff. Geom. 23 (1986), 69–96.

[720] Galaktionov, V.A., On new exact blow–up solutions for nonlinear heat conductionequations with source and applications, Diff. Int. Eqs. 3 (1990), 863–874.

[721] Galaktionov, V.A., Quasilinear heat equations with general first-ordersign-invariants and new explicit solutions, Nonlin. Anal., Theory, MethodsAppl. 23 (1994), 1595–1621.

[722] Galaktionov, V.A., Invariant subspaces and new explicit solutions to evolutionequations with quadratic nonlinearities, Proc. Roy. Soc. Edinburgh 125A

(1995), 225–246.

[723] Galaktionov, V.A., and Posashkov, S.A., New explicit solutions for quasilinearheat equations with general first-order sign-invariants, Physica D 99 (1996),217–236.

[724] Galaktionov, V.A., and Svirshchevskii, S.R., Exact Solutions and InvariantSubspaces of Nonlinear Partial Differential Equations in Mechanics and Physics,Chapman & Hall/CRC, Boca Raton, FL, 2007.

[725] Galas, F., New non-local symmetries with pseudopotentials, J. Phys. A 25 (1992),L981–L986.

[726] Galaktionov, V.A., Posashkov, S.A., and Svirshchevskii, S.R., Generalizedseparation of variables for differential equations with polynomial nonlinearities,Diff. Eq. 31 (1995), 233–240.

[727] Galaktionov, V.A., Posashkov, S.A., and Svirshchevskii, S.R., On invariant sets andexplicit solutions of nonlinear evolution equations with quadratic nonlinearities,Diff. Int. Eq. 8 (1995), 1997–2024.

[728] Galindo, A., and Pascual, P., Quantum Mechanics I, Springer–Verlag, New York,1990.

[729] Gantmacher, F.R., The Theory of Matrices, Chelsea Publ. Co., New York, 1959.

[730] Gantmacher, F.R., The Theory of Matrices, vol. 2, Chelsea Publ. Co., New York,1959.

[731] Garabedian, P., Partial Differential Equations, 2nd ed., Chelsea Publ. Co., NewYork, 1986.

[732] Gardner, C.S., Greene, J.M., Kruskal, M.D., and Miura, R.M., Method for solvingthe Korteweg–deVries equation, Phys. Rev. Lett. 19 (1967), 1095–1097.

[733] Gardner, C.S., Greene, J.M., Kruskal, M.D., and Miura, R.M., Korteweg–deVriesequation and generalizations. VI. Methods for exact solution, Commun. PureAppl. Math. 27 (1974), 97–133.

39

[734] Gardner, L.R.T., and Gardner, G.A., Solitary waves of the regularised long waveequation, J. Comp. Phys. 91 (1990), 441–459.

[735] Gardner, R.B., Differential geometric methods interfacing control theory, in:Differential Geometric Control Theory, R.W. Brockett et. al., eds., Birkhauser,Boston, 1983, pp. 117–180.

[736] Gardner, R.B., The Method of Equivalence and Its Applications, SIAM,Philadelphia, 1989.

[737] Gardner, R.B., and Kamran, N., Characteristics and the geometry of hyperbolicequations in the plane, J. Diff. Eq. 104 (1993), 60–116.

[738] Gardner, R.B., and Shadwick, W.F., Equivalence of one dimensional Lagrangianfield theories in the plane I, in: Global Differential Geometry and GlobalAnalysis, D. Ferus et. al., eds., Lecture Notes in Math, vol. 1156,Springer–Verlag, New York, 1985, pp. 154–179.

[739] Gardner, R.B., and Shadwick, W.F., An equivalence problem for a two-form and avector field on R

3, in: Differential Geometry, Global Analysis, and Topology, A.Nicas and W.F. Shadwick, eds., Canadian Math. Soc. Conference Proceedings,vol. 12, Amer. Math. Soc., Providence, R.I., 1991, pp. 41–50.

[740] Gardner, R.B., and Wilkens, G.R., The fundamental theorems of curves andhypersurfaces in centro-affine geometry, Bull. Belg. Math. Soc. Simon Stevin 4

(1997), 379–401.

[741] Gasca, M., and Sauer, T., Polynomial interpolation in several variables, Adv.Comput. Math. 12 (2000), 377–410.

[742] Gasca, M., and Sauer, T., On the history of multivariate polynomial interpolation,J. Comput. Appl. Math. 122 (2000), 23–35.

[743] Gat, O., Symmetries of third order differential equations, J. Math. Phys. 33 (1992),2966–2971.

[744] Gazeau, J.P., and Winternitz, P., Symmetries of variable coefficient Korteweg-deVries equations, J. Math. Phys. 33 (1992), 4087–4102.

[745] Gear, C.W., The automatic integration of stiff ordinary differential equations,in: Information Processing 68, Vol. 1, North-Holland, Amsterdam, 1969, pp.187–193.

[746] Gear, J., and Grimshaw, R., A second order theory for solitary waves in shallowfluids, Phys. Fluids 26 (1983), 14–29.

[747] Gegenbauer, L., Uber Determinanten hoheren Ranges, Denkschr. Kais. Aka. Wiss.Wien 43 (1882), 17–32.

[748] Gel’fand, I.M., and Dikii, L.A., Asymptotic behavior of the resolvent ofSturm-Liouville equations and the algebra of the Korteweg–deVries equation,Russian Math. Surveys 30:5 (1975), 77–113; also Collected Papers, vol. 1,Springer-Verlag, New York, 1987, pp. 647–683.

[749] Gel’fand, I.M., and Dikii, L.A., A family of Hamiltonian structures related tointegrable nonlinear differential equations, preprint, Acad. Sci. USSR, no.136, 1978; also Collected Papers, vol. 1, Springer-Verlag, New York, 1987, pp.625–646.

40

[750] Gel’fand, I.M., and Fomin, S.V., Calculus of Variations, Prentice–Hall, Inc.,Englewood Cliffs, N.J., 1963.

[751] Gel’fand, I.M., Gel’fand, S., Retakh, V.S., and Wilson, R., Quasideterminants, Adv.Math. 193 (2005), 56–141.

[752] Gel’fand, I.M., Graev, M.I., and Piatetski-Shapiro, I.I., Representation Theory andAutomorphic Functions, Academic Press, Boston, 1990.

[753] Gel’fand, I.M., Kapranov, M.M., and Zelevinsky, A.V., Discriminants, Resultants,and Multidimensional Determinants, Birkhauser, Boston, 1994.

[754] Gel’fand, I.M., Krob, D., Lascoux, A., Leclerc, B., Retakh, V.S., and Thibon, J.-Y.,Noncommutative symmetric functions, Adv. Math. 112 (1995), 218–348.

[755] Gel’fand, I.M., Minlos, R. A., and Shapiro, Z. Ya., Representations of the Rotationand Lorentz Groups and their Applications, Macmillan, New York, 1963.

[756] Gel’fand, I.M., and Retakh, V.S., Determinants of matrices over noncommutativerings, Func. Anal. Appl. 25 (1991), 91–102.

[757] Gel’fand, I.M., and Retakh, V.S., Theory of noncommutative determinants, andcharacteristic functions of graphs, Func. Anal. Appl. 26 (1992), 231–246.

[758] Gel’fand, I.M., and Retakh, V.S., Quasideterminants. I, Selecta Math. (N.S.) 3

(1997), 517–546.

[759] Gerdt, V.P., and Blinkov, Yu.A., Involutive bases of polynomial ideals, Math. Comp.Simul. 45 (1998), 519–542.

[760] Gessel, I.M., Enumerative applications of symmetric functions, in: Actes 17e

Seminaire Lotharingien, Publ. I.M.R.A., 348/S–17, Strasbourg, 1988, pp. 5–21.

[761] Getzler, E., A Darboux theorem for Hamiltonian operators in the formal calculus ofvariations, Duke Math. J. 111 (2002), 535–560.

[762] Giblin, P.J., and Sapiro, G., Affine versions of the symmetry set, in: Real andComplex Singularities, J.W. Bruce and F. Tari, eds., Res. Notes Math., vol.412, Chapman & Hall/CRC, Boca Raton, FL, 2000, pp. 173–187.

[763] Gilmore, R., Lie Groups, Physics, and Geometry, Cambridge University Press, NewYork, 2008.

[764] Gioia, G., and James, R., Micromagnetics of very thin films, Proc. Roy. Soc. LondonA 453 (1997), 213–223.

[765] Gjunter, N.M., Sur les modules des formes algebraiques, Trudy Tbilisskogo Matem.Inst. 9 (1941), 97–206.

[766] Glaeser, G., Fonctions composees differentiables, Ann. Math. 77 (1963), 193–209.

[767] Glaeser, G., L’interpolation des fonctions differentiables de plusieurs variables, in:Proceedings of Liverpool Singularities Symposium II, C.T.C. Wall, ed., LectureNotes in Math., vol. 209, Springer–Verlag, New York, 1971, pp. 1–33.

[768] Glimm, J., and Jaffe, A., Quantum Physics, Second Edition, Springer–Verlag, NewYork, 1987.

[769] Goff, J.A., Transformations leaving invariant the heat equation of physics, Amer. J.Math. 49 (1927), 117–122.

41

[770] Gohberg, I., Kaashoek, M.A., and Sakhnovich, A.L., Pseudo–canonical systems withrational Weyl functions: explicit formulas and applications, J. Diff. Eq. 146

(1998), 375–398.

[771] Gohberg, I., and Koltracht, I., Triangular factors of Cauchy and Vandermondematrices, Integral Eq. Operator Theory 26 (1996), 46–59.

[772] Goldfeather, J., and Interrante, V., A novel cubic-order algorithm for approximatingprincipal direction vectors, ACM Trans. Graphics 23 (2004), 45–63.

[773] Goldschmidt, H., and Sternberg, S., The Hamilton-Cartan formalism in the calculusof variations, Ann. Inst. Fourier 23 (1973), 203-269.

[774] Goldstein, H., Classical Mechanics, Second Edition, Addison–Wesley, Reading,Mass., 1980.

[775] Goldstein, R.E., and Petrich, D.M., The Korteweg–deVries equation hierarchy asdynamics of closed curves in the plane, Phys. Rev. Lett. 67 (1991), 3203–3206.

[776] Golub, G.H, and Van Loan, C.F., Matrix Computations, Johns Hopkins UniversityPress, Baltimore, 1989.

[777] Golubitsky, M., Primitive actions and maximal subgroups of Lie groups, J. Diff.Geom. 7 (1972), 175–191.

[778] Golubitsky, M., and Guillemin, V., Stable Mappings and their Singularities,Springer–Verlag, New York, 1973.

[841] Golubitsky, M., and Schaeffer, D.G., Singularities and Groups in Bifurcation Theory,vol. I, Appl. Math. Sci. #51, Springer–Verlag, New York, 1985.

[780] Golubitsky, M., Stewart, I., and Schaeffer, D.G., Singularities and Groups inBifurcation Theory, vol. II, Appl. Math. Sci. #69, Springer–Verlag, New York,1988.

[781] Gomez–Ullate, D., Kamran, N., and Milson, R., Quasi–exact solvability and thedirect approach to invariant subspaces, J. Phys. A 38 (2005), 2005–2019.

[782] Gomez–Ullate, D., Kamran, N., and Milson, R., Quasi–exact solvability in a generalpolynomial setting, Inverse Problems 23 (2007), 1915–1942.

[783] Gonzalez–Gascon, F., and Gonzalez–Lopez, A., Symmetries of differential equations.IV, J. Math. Phys. 24 (1983), 2006–2021.

[784] Gonzalez–Lopez, A., Symmetries of Systems of Ordinary Differential Equations:Direct and Inverse Problems, Ph.D. Thesis, Universidad Complutense deMadrid, Spain, 1984 (in Spanish).

[785] Gonzalez–Lopez, A., Symmetries of linear systems of second order differentialequations, J. Math. Phys. 29 (1988), 1097–1105.

[786] Gonzalez–Lopez, A., On the linearization of second order ordinary differentialequations, Lett. Math. Phys. 17 (1989), 341–349.

[787] Gonzalez–Lopez, A., Symmetry bounds of variational problems, J. Phys. A 27

(1994), 1205–1232.

[788] Gonzalez–Lopez, A., Hernandez, R., and Marı–Beffa, G., Invariant differentialequations and the Adler–Gel’fand–Dikii bracket, J. Math. Phys. 38 (1997),5720–5738.

42

[789] Gonzalez–Lopez, A., and Kamran, N., The multi-dimensional Darbouxtransformation, preprint, Universidad Complutense, Madrid, 1996.

[790] Goode, S.W., Differential Equations and Linear Algebra, Second Ed., Prentice Hall,Upper Saddle River, NJ, 2000.

[791] Goodman, R., and Wallach, N.R., Representations and Invariants of the ClassicalGroups, Encyclopedia of Math. Appl., vol. 68, Cambridge University Press,Cambridge, 1998.

[792] Gordan, P., Beweis, dass jede Covariante und Invariante einer binaren Form eineganz Funktion mit numerischen Coefficienten einer endlichen Anzahl solcherFormen ist, J. Reine Angew. Math. 69 (1868), 323–354.

[793] Gordan, P., Ueber ternare Formen dritten Grades, Math. Ann. 1 (1869), 90–128.

[794] Gordan, P., Ueber die Bildung der Resultante zweier Gleichungen, Math. Ann. 3

(1869), 355–414.

[795] Gordan, P., Vorlesungen uber Invariantentheorie, Chelsea Publ. Co., New York,1987.

[796] Gordan, P., and Nother, M., Ueber die algebraischen Formen, deren Hesse’scheDeterminante identisch verschwindet, Math. Ann. 10 (1876), 547–568.

[797] Gordon, C., Webb, D.L., and Wolpert, S., One cannot hear the shape of a drum,Bull. Amer. Math. Soc. 27 (1992), 134–138.

[798] Gorenstein, D., Finite Simple Groups, Plenum Press, New York, 1982.

[799] Gorbatsevich, V.V., Onishchik, A.L., and Vinberg, E.B., Foundations of Lie Theoryand Lie Transformation Groups, Springer–Verlag, New York, 1997.

[800] Gorka, P., and Reyes, E.G., The modified Camassa–Holm equation, Int. Math. Res.Notes 2011 (2011), 2617–2649.

[801] Gorringe, V.M., and Leach, P.G.L., Lie point symmetries for systems of secondorder ordinary differential equations, Quaest. Math. 11 (1988), 96–117.

[802] Gorskiı, A.S., Relationship between exactly solvable and quasiexactly solvableversions of quantum mechanics with conformal-block equations in 2D theories,JETP Lett. 54 (1991), 289–292.

[803] Goshen, S., and Lipkin, H.J., A simple independent-particle system having collectiveproperties, Ann. Phys. 6 (1959), 301–309.

[804] Gotay, M., An exterior differential systems approach to the Cartan form, in:Geometrie Symplectique et Physique Mathematique, P. Donato et. al., eds.,Birkhauser, Boston, 1991, pp. 160–188.

[805] Govinder, K.S., and Leach, P.G.L., On the determination of nonlocal symmetries, J.Phys. A 28 (1995), 5349–5359.

[806] Grace, J.H., and Young, A., The Algebra of Invariants, Cambridge University Press,Cambridge, 1903.

[807] Gradshteyn, I.S., and Ryzhik, I.W., Table of Integrals, Series and Products,Academic Press, New York, 1965.

[808] Graustein, W.C., Differential Geometry, MacMillan, New York, 1935.

[809] Gravel, S., Hamiltonians separable in Cartesian coordinates and third orderintegrals of motion, J. Math Phys. 45 (2004), 1003–1019.

43

[810] Gravel, S., and Winternitz, P., Superintegrability with third-order integrals inquantum and classical mechanics, J. Math Phys. 43 (2002), 5902–5912.

[811] Graver, J.E., Counting on Frameworks: Mathematics to Aid the Design of RigidStructures, Dolciani Math. Expo. No. 25, Mathematical Association of America,Washington, DC, 2001.

[812] Gray, A., Abbena, E., and Salamon, S., Modern Differential Geometry of Curvesand Surfaces with Mathematica, 3rd ed., Chapman & Hall/CRC, Boca Raton,Fl., 2006.

[813] Gray, A., and Vanhecke, L., Riemannian geometry as determined by the volumes ofsmall geodesic balls, Acta Math. 142 (1979), 157–198.

[814] Gray, J., Linear Differential Equations and Group Theory from Riemann toPoincare, Birkhauser, Boston, 1986.

[815] Grayson, M., The heat equation shrinks embedded plane curves to round points, J.Diff. Geom. 26 (1987), 285–314.

[816] Green, A.E., and Zerna, W., Theoretical Elasticity, The Clarendon Press, Oxford,1954.

[817] Green, M.B., Schwarz, J.H., and Witten, E., Superstring Theory, vol. 1, secondedition, Cambridge University Press, Cambridge, 1988.

[818] Green, M.L., The moving frame, differential invariants and rigidity theorems forcurves in homogeneous spaces, Duke Math. J. 45 (1978), 735–779.

[819] Greene, B., The Elegant Universe: Superstrings, Hidden Dimensions, and the Questfor the Ultimate Theory, W.W. Norton, New York, 1999.

[820] Greene, C., and Kleitman, D.J., Proof techniques in the theory of finite sets, in:Studies in Combinatorics, G.–C. Rota, ed., Studies in Math., vol. 17, Math.Assoc. Amer., Washington, D.C., 1978, pp. 22–79.

[821] Greub, W., Halperin, S., and Vanstone, R., Connections, Curvature andCohomology, Academic Press, New York, 1972.

[822] Griffiths, P.A., On Cartan’s method of Lie groups and moving frames as applied touniqueness and existence questions in differential geometry, Duke Math. J. 41

(1974), 775–814.

[823] Griffiths, P.A., Exterior Differential Systems and the Calculus of Variations,Progress in Math. vol. 25, Birkhauser, Boston, 1983.

[837] Griffiths, P.A., and Harris, J., Principles of Algebraic Geometry, John Wiley &Sons, New York, 1978.

[825] Griffiths, P.A., and Jensen, G.R., Differential Systems and Isometric Embeddings,Annals of Math. Studies, vol. 114, Princeton University Press, Princeton, N.J.,1987.

[826] Grillakis, M, Shatah, J, and Strauss, W, Stability theory of solitary waves in thepresence of symmetry. I, J. Funct. Anal. 74 (1987), 160–197.

[827] Grillakis, M., Shatah, J., and Strauss, W., Stability theory of solitary waves in thepresence of symmetry. II., J. Funct. Anal. 94 (1990), 308–348.

44

[828] Grimshaw, R., Malomed, B., and Benilov, E., Solitary waves with dampedoscillatory tails: an analysis of the fifth-order Korteweg–deVries equation,Physica D 77 (1994), 473–489.

[829] Grimson, W.E.L., Object Recognition by Computer: The Role of GeometricConstraints, MIT Press, Cambridge, Mass., 1990.

[830] Grissom, C., Thompson, G., and Wilkens, G., Linearization of second orderordinary differential equations via Cartan’s equivalence method, J. Diff.Eq. 77 (1989), 1–15.

[831] Gromov, M., Structures Metriques pour les Varietes Riemanniennes, J. Lafontaineand P. Pansu, eds., Textes Mathematiques 1, CEDIC/Fernant Nathan, Paris,1981.

[832] Gromov, M., Pseudo holomorphic curves in symplectic manifolds, Inventiones Math.82 (1985), 307–347.

[833] Gromov, M., Partial Differential Relations, Springer–Verlag, New York, 1986.

[834] Gross, A.D., and Boult, T.E., Analyzing skewed symmetries, Int. J. Comput. Vision13 (1994), 91–111.

[835] Grosshans, F.D., Rota, G.–C., and Stein, J.A., Invariant Theory and Superalgebras,CBMS Regional Conference Series, no. 69, American Math. Soc., Providence,R.I., 1987.

[836] Gruber, B., and Otsuka, T., eds., Symmetries in Science VII: Spectrum-GeneratingAlgebras and Dynamic Symmetries in Physics, Plenum Press, New York, 1993 .

[837] Guckenheimer, J., and Holmes, P., Nonlinear Oscillations, Dynamical Systems, andBifurcations of Vector Fields, Appl. Math. Sci., vol. 42, Springer–Verlag, NewYork, 1983.

[838] Guggenheimer, H.W., Differential Geometry, McGraw–Hill, New York, 1963.

[839] Guggenheimer, H.W., Hill equations with coexisting periodic solutions, J. Diff. Eq.5 (1969), 159–166.

[840] Guillemin, V., and Pollack, A., Differential Topology, Prentice–Hall, Inc., EnglewoodCliffs, N.J., 1974.

[841] Guillemin, V., and Sternberg, S., Geometric Asymptotics, American MathematicalSociety, Providence, R.I., 1977.

[842] Gundelfinger, S., Zur Theorie der binaren Formen, J. Reine Angew. Math. 100

(1886), 413–424.

[843] Gunning, R.C., and Rossi, H., Analytic Functions of Several Complex Variables,Prentice–Hall, Inc., Englewood Cliffs, N.J., 1965.

[844] Gunther, W., Uber einige Randintegrale der Elastomechanik, Abh. Braunschw.Wiss. Ges. 14 (1962), 53–72.

[845] Gurel, B., Gurses, M., and Habibullin, I., Boundary value problems compatible withsymmetries, Phys. Lett. A 190 (1994), 231–237.

[846] Gurel, B., Gurses, M., and Habibullin, I., Boundary value problems for integrableequations compatible with the symmetry algebra, J. Math. Phys. 36 (1995),6809–6821.

45

[847] Gurel, B., and Habibullin, I., Boundary conditions for two-dimensional integrablechains, Phys. Lett. A 233 (1997), 68–72.

[848] Gurevich, G.B., Foundations of the Theory of Algebraic Invariants, P. NoordhoffLtd., Groningen, Holland, 1964.

[849] Gurses, M., Motion of curves on two-dimensional surfaces and soliton equations,Phys. Lett. A 241 (1998), 329–334.

[850] Gurses, M., and Karasu, A., Degenerate Svinolupov KdV systems, Phys. Lett. A214 (1996), 21–26.

[851] Gurtin, M.E., The linear theory of elasticity, in: Handbuch der Physik, vol. VIa/2,C. Truesdell, ed., Springer–Verlag, New York, 1972, pp. 1–295.

[852] Gurtin, M.E., An Introduction to Continuum Mechanics, Academic Press, NewYork, 1981.

[853] Gurtin, M.E., Thermomechanics of Evolving Phase Boundaries in the Plane, OxfordUniversity Press, New York, 1993.

[854] Guthrie, G.A., More nonlocal symmetries of the KdV equation, J. Phys. A 26

(1993), L905–L908.

[855] Guthrie, G.A., Recursion operators and non-local symmetries, Proc. Roy. Soc.London A 446 (1994), 107–114.

[856] Guthrie, G.A., and Hickman, M.S., Nonlocal symmetries of the KdV equation, J.Math. Phys. 34 (1993), 193–205.

[857] Haar, A., Zur Theorie der orthogonalen Funktionensysteme, Math. Ann. 69 (1910),331–371.

[858] Haberman, R., Elementary Applied Partial Differential Equations, Third Edition,Prentice Hall, Upper Saddle River, NJ, 1998.

[859] Habibullin, I.T., Symmetry approach in boundary value problems, Nonlinear Math.Phys. 3 (1996), 147151.

[860] Habibullin, I.T., Boundary conditions for integrable chains, Phys. Lett. A 207

(1995), 263–268.

[861] Habibullin, I.T., Sokolov, V.V., and Yamilov, R.I., Multi-component integrablesystems and nonassociative structures, in: Nonlinear Physics: Theory andExperiment, World Scientific, Singapore, 1996, pp. 139–168.

[862] Hadamard, J., Sur une question de calcul des variations, Bull. Soc. Math. France 30

(1902), 253–2562.

[863] Hager, W., Updating the inverse of a matrix, SIAM Rev. 31 (1989), 221–239.

[864] Hairer, E., Lubich, C., and Wanner, G., Geometric Numerical Integration,Springer–Verlag, New York, 2002.

[865] Hairer, E., Nørsett, S.P., and Wanner, G., Solving Ordinary Differential Equations,2nd ed., Springer–Verlag, New York, 1993–1996.

[866] Hakopian, H.A., Multivariate divided differences and multivariate interpolation ofLagrange and Hermite type, J. Approx. Theory 34 (1982), 286–305.

[867] Hale, J.K., Ordinary Differential Equations, Wiley–Interscience, New York, 1969.

[868] Hale, J.K., Ordinary Differential Equations, Second Edition, R.E. Krieger Publ. Co.,Huntington, N.Y., 1980.

46

[869] Hall, R.W., and Josic, K., Planetary motion and the duality of force laws, SIAMReview 42 (2000), 115–124.

[870] Hall, R.W., and Josic, K., The mathematics of musical instruments, Amer. Math.Monthly 108 (2001), 347–357.

[871] Halmos, P.R., Lectures on Boolean Algebras, Van Nostrand, Princeton, N.J., 1963.

[872] Halphen, G.–H., Sur les invariants differentiels, in: Oeuvres, vol. 2, Gauthier–Villars,Paris, 1913, pp. 197–253.

[873] Halphen, G.–H., Sur les invariants des equations differentielles lineaires duquatrieme ordre, in: Oeuvres, vol. 3, Gauthier–Villars, Paris, 1921, pp. 463–514.

[874] Hamann, B., Curvature approximation for triangulated surfaces, Geom. Model.,Comput. Suppl. 8 (1993), 139–153.

[876] Hamermesh, M., Group Theory and Its Application to Physical Problems,Addison–Wesley Publ. Co., Reading, Mass., 1962.

[876] Hamermesh, M., Group Theory and Its Application to Physical Problems, DoverPubl., New York, 1989.

[877] Hammersley, J.M., and Mazzarino, G., Computational aspects of some autonomousdifferential equations, Proc. Roy. Soc. Lond. A 424 (1989), 19–37.

[878] Hamming, R.W., Numerical Methods for Scientists and Engineers, McGraw–Hill,New York, 1962.

[879] Hann, C.E., Recognising Two Planar Objects under a Projective Transformation,Ph.D. Thesis, Ph.D. thesis, University of Canterbury, Christchurch, NewZealand, 2001.

[880] Hann, C.E., and Hickman, M.S., Projective curvature and integral invariants, ActaAppl. Math. 74 (2002), 177–193.

[881] Hannay, J.H., and Berry, M.V., Quantization of linear maps on a torus — Fresneldiffraction by a periodic grating, Physica 1D (1980), 267–290.

[882] Haragus, M., Reduction of PDEs on Unbounded Domains. Application: UnsteadyWater Waves Problem, These Doctorate, Institut Non-Lineaire de Nice, 1993.

[883] Hartl, T., and Athorne, C., Solvable structures and hidden symmetries, J. Phys. A27 (1994), 3463–3474.

[884] Hasimoto, H., A soliton on a vortex filament, J. Fluid Mech. 51 (1972), 477–485.

[885] Hatfield, G.A., Conservation Laws in Anisotropic Elasticity, Ph.D. Thesis,University of Minnesota, 1994.

[886] Hatfield, G., Conservation laws and canonical forms in the Stroh formalism ofanisotropic elasticity, Quart. Appl. Math. 54 (1996), 739–758.

[887] Hatfield, G., Conservation laws in transversely isotropic linear elastic materials,Proc. Roy. Soc. Lond. A 453 (1997), 1005–1017.

[888] Hausdorf, M., and Seiler, W.M., An efficient algebraic algorithm for the geometriccompletion to involution, Appl. Alg. Engin. Commun. Comput. 13 (2002),163–207.

[889] Havel, T.F., Some examples of the use of distances as coordinates for Euclideangeometry, J. Symb. Comp. 11 (1991), 579–593.

47

[890] Hawkins, T., Line geometry, differential equations and the birth of Lie’s theory ofgroups, in: The History of Modern Mathematics, vol. 2, J. McCleary and D.Rowe, eds., Academic Press, New York, 1989, pp. 275–327.

[891] Hawkins, T., Jacobi and the birth of Lie’s theory of groups, Arch. Hist. Exact Sci.42 (1991), 187–278.

[892] Hawkins, T., The Emergence of the Theory of Lie Groups. An Essay on the Historyof Mathematics 1869–1926, Springer–Verlag, New York, 1999.

[893] Heine, V., Group Theory in Quantum Mechanics, Pergamon Press, New York, 1960.

[894] Hel–Or, Y., and Teo, P.C., Canonical decomposition of steerable functions, in:1996 IEEE Computer Society Conference on Computer Vision and PatternRecognition, IEEE Comp. Soc. Press, Los Alamitos, CA, 1996, pp. 809–816.

[895] Helgason, S., Differential Geometry and Symmetric Spaces, Academic Press, NewYork, 1962.

[896] Helgason, S., Groups and Geometric Analysis: Integral Geometry, InvariantDifferential Operators, and Spherical Functions, Academic Press, New York,1983.

[897] Helgason, S., Geometric Analysis on Symmetric Spaces, Math. Surveys andMonographs, vol. 39, American Math. Soc., Providence, R.I., 1994.

[898] Helmke, U., Waring’s problem for binary forms, J. Pure Appl. Alg. 80 (1992),29–45.

[899] Henneaux, M., N–complexes and higher spin gauge fields, Int. J. Geom. MethodsMod. Phys. 5 (2008), 1255–1263.

[900] Henrici, P., Applied and Computational Complex Analysis, vol. 1, J. Wiley & Sons,New York, 1974.

[901] Hereman, W., Review of symbolic software for the computation of Lie symmetries ofdifferential equations, Euromath Bull. 1 (1994), 45–82.

[902] Hereman, W., Banerjee, P.P., Korpel, A., Assanto, G., Van Immerzeele, A., andMeerpoel, A., Exact solitary wave solutions of nonlinear evolution equationsusing a direct algebraic method, J. Phys. A 19 (1986), 607–628.

[903] Hermann, R., The differential geometry of foliations II, J. Math. Mech. 11(1962),303–315.

[904] Hermann, R., A Lie–theoretic setting for the classical interpolation theories, ActaAppl. Math. 6 (1986), 275–292.

[905] Hermite, Ch., Sur la theorie des fonctions homogenes a deux indeterminees, Camb.and Dublin Math. J. 9 (1854), 172–217; also Oeuvres, Gauthier–Villars, Paris,1905, pp. 296–349.

[906] Hernandez Heredero, R., Sokolov, V.V., and Svinolupov, S.I., Classification of thirdorder integrable evolution equations, Physica D 87 (1995), 32–36.

[907] Herrlich, H., and Strecker, G.E., Category Theory ; an Introduction, Allyn andBacon, Boston, 1973.

[908] Herstein, I.N., Abstract Algebra, John Wiley & Sons, Inc., New York, 1999.

48

[909] Hesse, O., Uber die Bedingung, unter welcher eine homogene ganze Functionvon n unabhangigen Variabeln durch lineare Substitutionen von n andernunabhangigen Variabeln auf ein homogene Function sich zuruckfuhren lasst, dieeine Variable weniger enthalt, J. Reine Angew. Math. 42 (1851), 117–124.

[910] Hesse, O., Zur Theorie der ganzen homogenen Functionen, J. Reine Angew. Math.56 (1859), 263–269.

[911] Hestenes, M.R., and Stiefel, E., Methods of conjugate gradients for solving linearsystems, J. Res. Nat. Bur. Standards 49 (1952), 409–436.

[912] Heyting, A., Die Theorie der linearen Gleichungen in einer Zahlenspezies mitnichtkommutativer Multiplikation, Math. Ann. 98 (1928), 465–490.

[913] Hietarinta, J., Gauge symmetry and the generalization of Hirota’s bilinear method,J. Nonlinear Math. Phys. 3 (1996), 260–265.

[914] Hietarinta, J., Hirota’s bilinear method and its generalization, Internat. J. ModernPhys. A 12 (1997), 43–51.

[915] Higham, N.J., Error analysis of the Bjorck–Pereyra algorithms for solvingVandermonde systems, Numer. Math. 50 (1987), 613–632.

[916] Higham, N.J., Accuracy and Stability of Numerical Algorithms, Second Edition,SIAM, Philadelphia, 2002.

[917] Hilbert, D., Uber die invarianten eigenschaften spezieller binaaren Formen,insbesondere der Kugelfunktionen, in: Gesammelte Abhandlungen, vol. 2,Springer–Verlag, Berlin, 1933, pp. 1–33; see [21; p. 51–142] for an Englishtranslation.

[918] Hilbert, D., Uber eine Darstellungsweise der invarianten Gebilde im binarenFormengebiete, Math. Ann. 30 (1887), 15–29; also Gesammelte Abhandlungen,vol. 2, Springer–Verlag, Berlin, 1933, pp. 102–116.

[919] Hilbert, D., Uber die Theorie der algebraischen Formen, Math. Ann. 36 (1890),473–534; also Gesammelte Abhandlungen,vol. 2, Springer–Verlag, Berlin, 1933,pp. 199–257; see [21; pp. 143–224] for an English translation.

[920] Hilbert, D., Uber die vollen Invariantensystem, Math. Ann. 42 (1893), 313–373; alsoGesammelte Abhandlungen, vol. 2, Springer–Verlag, Berlin, 1933, pp. 287–344;see [21; pp. 225–301] for an English translation.

[921] Hilbert, D., Uber den Begriff der Klasse von Differentialgleichungen, Math. Ann. 73

(1912), 95–108; also Gesammelte Abhandlungen, vol. 3, Springer–Verlag, Berlin,1935, pp. 81–93.

[922] Hilbert, D., Uber die Gleichung neunten Grades, Math. Ann. 97 (1927), 243–250;also Gesammelte Abhandlungen, vol. 2, Springer–Verlag, Berlin, 1933, pp.393–400.

[923] Hilbert, D., Theory of Algebraic Invariants, Cambridge University Press,Cambridge, 1993.

[924] Hill, E.L., Hamilton’s principle and the conservation theorems of mathematicalphysics, Rev. Mod. Phys. 23 (1951), 253–260.

[925] Hill, J.M., Differential Equations and Group Methods for Scientists and Engineers,CRC Press, Boca Raton, FL, 1992.

49

[926] Hille, E., Ordinary Differential Equations in the Complex Domain, John Wiley &Sons, New York, 1976.

[927] Hille, E., Complex Analysis, John Wiley & Sons, New York, 1980.

[928] Hillgarter, E., A contribution to the symmetry classification problem forsecond-order PDEs in z(x, y), IMA J. Appl. Math. 71 (2006), 210–231.

[929] Hironaka, H., Resolution of singularities of an algebraic variety over a field ofcharacteristic zero, Ann. Math. 78 (1964), 109–326.

[930] Hirota, R., Direct method for finding exact solutions of nonlinear evolutionequations, in: Backlund Transformations, R.M. Miura, ed., Lecture Notesin Math., vol. 515, Springer–Verlag, New York, 1976, pp. 40–68.

[931] Hirota, R., Bilinearization of soliton equations, in: J. Phys. Soc. Japan, 51 (1982)323–331.

[932] Hirota, R., and Satsuma, J., A variety of nonlinear network equations generatedfrom the Backlund transformation for the Toda lattice, Progr. Theoret. Phys.Suppl. 59 (1976), 64–100.

[933] Hirsch, M.W., and Smale, S., Differential Equations, Dynamical Systems, andLinear Algebra, Academic Press, New York, 1974.

[934] Ho, S.–M., On the isotropic group of a homogeneous polynomial, Trans. Amer.Math. Soc. 183 (1973), 495–498.

[935] Hobson, E.W., The Theory of Spherical and Ellipsoidal Harmonics, Chelsea Publ.Co., New York, 1965.

[936] Hobson, E.W., The Theory of Functions of a Real Variable and the Theory ofFourier’s Series, Dover Publ., New York, 1957.

[937] Hochster, M., and Roberts, J.L., Rings of invariants of reductive groups acting onregular rings are Cohen–Macaulay, Adv. Math. 13 (1974), 115–175.

[938] Hoff, D., Differential invariant signatures for object recognition and automaticsolution of jigsaw puzzles, preprint, University of Minnesota, 2011.

[939] Hoffman, D.D., and Richards, W., Parts of recognition, Cognition 18 (1984), 65–96.

[940] Hofmann, K.H., Lie groups and semigroups, in: The Analytical and TopologicalTheory of Semigroups, K. H. Hofmann, J. D. Lawson, and J.S. Pym, eds., deGruyter, Berlin, 1990, pp. 3–26.

[941] Hofmann, K.H., Zur Geschichte des Halbgruppenbegriffs, Historia Math. 90 (1992),40–59.

[942] Hofmann, K.H., Semigroups and Hilbert’s fifth problem, Math.Slovaca 44 (1994),365–377 .

[943] Hofmann, K.H., and Lawson, J.D., Foundations of Lie semigroups, in: RecentDevelopments in the Algebraic, Analytical, and Topological Theory ofSemigroups, K.H. Hofmann, H. Jurgensen, and H.J. Weinert, eds., LectureNotes in Math., vol. 998, Springer–Verlag, New York, 1983, pp. 128–201.

[944] Hofmann, K. H., and Lawson, J. D., On Sophus Lie’s Fundamental Theorems I,Konink. Neder. Akad. Weten. Proc. A 86 (1983), 453–466.

50

[945] Hofmann, K.H., and Lawson, J.D., Linearly ordered semigroups: a historicaloverview, in: Progress in Semigroups and Related Areas, K.H. Hofmann andM.W. Mislove, eds., Cambridge University Press, to appear.

[946] Hofmann, K.H., Lawson, J.D., and Pym, J.S.., eds., The Analytical and TopologicalTheory of Semigroups, Exp. in Math., vol. 1, De Gruyter, Berlin, 1990.

[947] Hofmann, K.H., Lawson, J.D., and Vinberg, E.B., eds., Semigroups in Algebra,Geometry and Analysis, Exp. in Math., vol. 20, De Gruyter, Berlin, 1995.

[948] Hofmann, K.H., and Strambach, K., Topological and Analytical Loops, in:Quasigroups and Loops: Theory and Applications, O. Chein, H.O. Pflugfelder,and J.D.H. Smith, eds., Heldermann Verlag, Berlin, 1990, pp. 205–262.

[949] Hofmann, K.H., and Weiss, W., More on cancellative semigroups on manifolds,Semigroup Forum 37 (1988), 93–111.

[950] Hoggatt, V.E., Jr., and Lind, D.A., The dying rabbit problem, Fib. Quart. 7 (1969),482–487.

[951] Holm, D.D., Symmetry breaking in fluid dynamics: Lie group reducible motions forreal fluids, Ph.D. Thesis, University of Michigan, 1976.

[952] Holm, D.D., and Ivanov, R.I., Multi-component generalizations of the CH equation:geometrical aspects, peakons and numerical examples, J. Phys. A 43 (2010),492001.

[953] Holm, D.D., and Ivanov, R.I., Two-component CH system: inverse scattering,peakons and geometry, Inverse Problems 27 (2011), 045013.

[954] Holm, D.D., Marsden, J.E., and Ratiu, T.S., The Euler–Poincare equations andsemidirect products with applications to continuum theories, Adv. Math. 137

(1998), 1–81.

[955] Holm, D.D., Trouve, A., and Younes, L., The Euler-Poincare theory ofmetamorphosis, Quart. Appl. Math. 67 (2009), 661–685.

[956] Holmes, J.P., and Anderson, M., Differentiable semigroups are Lie groups, Internat.J. Math. Sci. 18 (1995), 509–530.

[957] Honein, T., Chien, N., and Herrmann, G., On conservation laws for dissipativesystems, Phys. Lett. A 155 (1991), 223–224.

[958] Hopf, E., The partial differential equation ut + uux = µu, Commun. Pure Appl.Math. 3 (1950), 201–230.

[959] Howe, R., Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313

(1989), 539–570.

[960] Howe, R., Transcending classical invariant theory, J. Amer. Math. Soc. 2 (1989),535–552.

[961] Howison, S., Practical Applied Mathematics, Cambridge University Press,Cambridge, 2005.

[962] Hsu, L., and Kamran, N., Symmetries of second-order ordinary differentialequations and Elie Cartan’s method of equivalence, Lett. Math. Phys. 15

(1988), 91–99.

51

[963] Hsu, L., and Kamran, N., Classification of second-order ordinary differentialequations admitting Lie groups of fiber-preserving symmetries, Proc. LondonMath. Soc. 58 (1989), 387–416.

[964] Huang, G–X., Luo, S–Y., and Dai, X–X., Exact and explicit solitary wave solutionsto a model equation for water waves, Phys. Lett. A 139 (1989), 373–374.

[965] Hubert, E., Differential algebra for derivations with nontrivial commutation rules, J.Pure Appl. Algebra 200 (2005), 163–190.

[966] Hubert, E., The Aida Maple package, 2006, available athttp://www.inria.fr/cafe/Evelyne.Hubert/aida.

[967] Hubert, E., Differential invariants of a Lie group action: syzygies on a generatingset, J. Symb. Comp. 44 (2009), 382–416.

[968] Hubert, E., Generation properties of Maurer–Cartan invariants, preprint, INRIA,2007.

[969] Hubert, E., Generation properties of differential invariants in the moving framemethods, and their differential syzygies, in preparation.

[970] Hubert, E., and Kogan, I.A., Rational invariants of a group action. Constructionand rewriting, J. Symb. Comp. 42 (2007), 203–217.

[971] Hubert, E., and Kogan, I.A., Smooth and algebraic invariants of a group action.Local and global constructions, Found. Comput. Math. 7 (2007), 455–493.

[972] Huffman, W.C., Polynomial invariants of finite linear groups of degree two, Can. J.Math. 32 (1980), 317–330.

[973] Hughston, L.P., and Ward, R.S., eds., Advances in Twistor Theory, Research Notesin Math., vol. 37, Pitman Publ., San Francisco, 1979.

[974] Huiskamp, G., Difference formulas for the surface Laplacian on a triangulatedsurface, J. Comp. Phys. 95 (1991), 477–496.

[975] Hunter, J.K., and Scheurle, J., Nonexistence of solitary wave solutions of a modelequation for water waves, preprint, 1989.

[976] Hunter, J.K., and Scheurle, J., Existence of perturbed solitary wave solutions to amodel equation for water waves, Physica D 32 (1988), 253–268.

[977] Hunter, J.K., and Zheng, Y., On a completely integrable nonlinear hyperbolicvariational equation, Physica D 79 (1994), 361–386.

[978] Humphreys, J.E., Introduction to Lie Groups and Lie Algebras, Graduate Texts inMathematics, vol. 9, Springer–Verlag, New York, 1976.

[979] Huo, Y–Z., and Del Piero, G., On the completeness of the crystallographicsymmetries in the description of the symmetries of the elastic tensor, J.Elasticity 25 (1991), 203–246.

[980] Hurwitz, A., Zur Invariantentheorie, Math. Ann. 45 (1894), 381–404.

[981] Husemoller, D., Fiber Bundles, McGraw–Hill, New York, 1966.

[982] Huttenlocher, D.P., Klanderman, G.A., and Rucklidge, W.J., Comparing imagesusing the Hausdorff distance, IEEE Trans. Pattern Anal. Machine Intel. 15

(1993), 850–863.

[983] Huttenlocher, D.P., and Ullman, S., Recognising solid objects by alignment with animage, Int. J. Computer Vision 5 (1990), 195–212.

52

[984] Hydon, P.E., Symmetry Methods for Differential Equations, Cambridge Texts inAppl. Math., Cambridge University Press, Cambridge, 2000.

[985] Hydon, P.E., How to construct the discrete symmetries of partial differentialequations, Euro. J. Appl. Math. 11 (2000), 515–527.

[986] Hydon, P.E., Symmetry analysis of initial-value problems, J. Math. Anal. Appl. 309

(2005), 103–116.

[987] Hydon, P.E., and Mansfield, E.L., A variational complex for difference equations,Found. Comput. Math. 4 (2004), 187–217.

[988] Hyman, J.M., and Rosenau, P., Pulsating multiplet solutions of quintic waveequations, Physica D 123 (1998), 502–512.

[989] Iachello, F., and Levine, R.D., Algebraic approach to rotation–vibration spectra. I –Diatomic molecules, J. Chem. Phys. 77 (1982), 3046–3055.

[990] Iachello, F., and Levine, R.D., Algebraic Theory of Molecules, Oxford UniversityPress, Oxford, 1995.

[991] Iarrobino, A., Hilbert scheme of points: overview of last ten years, Proc. Sympos.Pure Math. 46 (1987), 297–320.

[992] Ibragimov, N.H., On the theory of Lie–Backlund transformation groups, Math.USSR Sbornik 37 (1980), 205–226.

[993] Ibragimov, N.H., Transformation Groups Applied to Mathematical Physics, D.Reidel, Boston, 1985.

[994] Ibragimov, N.H., Group analysis of ordinary differential equations and theinvariance principle in mathematical physics (for the 150th anniversary ofSophus Lie), Russian Math. Surveys 47:4 (1992), 89–156.

[995] Ibragimov, N.H., ed., CRC Handbook of Lie Group Analysis of DifferentialEquations, vols. 1–3, CRC Press, Boca Raton, Fl., 1994–6.

[996] Ibragimov, N.H., ed., CRC Handbook of Lie Group Analysis of DifferentialEquations, vol. 1, CRC Press, Boca Raton, Fl., 1994.

[997] Ibragimov, N.H., ed., CRC Handbook of Lie Group Analysis of DifferentialEquations, vol. 2, CRC Press, Boca Raton, Fl., 1995.

[998] Ibragimov, N.H., ed., CRC Handbook of Lie Group Analysis of DifferentialEquations, vol. 3, CRC Press, Boca Raton, Fl., 1996.

[999] Ibragimov, N.H., ed., CRC Handbook of Lie Group Analysis of DifferentialEquations, vols. 1–3, CRC Press, Boca Raton, Fl., 1994–1996.

[1000] Ibragimov, N.H., and Shabat, A.B., Evolutionary equations with nontrivialLie–Backlund group, Func. Anal. Appl. 14 (1980), 19–28.

[1001] Ibragimov, N.H., and Shabat, A.B., Infinite Lie–Backlund algebras, Func. Anal.Appl. 14 (1980), 313–315.

[1002] Il’ichev, A.T., Existence of a family of soliton-like solutions for the Kawaharaequation, Math. Notes 52 (1992), 662–668.

[1003] Il’ichev, A.T., and Marchenko, V.A., Propagation of long nonlinear waves in aponderable fluid beneath an ice sheet, Fluid Dyn. 24 (1989), 73–79.

53

[1004] Il’ichev, A.T., and Semenov, A.Yu., Stability of solitary waves in dispersive mediadescribed by a fifth-order evolution equation, Theor. Comput. Fluid Dyn. 3

(1992), 307–326.

[1005] Ince, E.L., Ordinary Differential Equations, Dover Publ., New York, 1956.

[1006] Infeld, L., and Hull, T.E.., The factorization method, Rev. Mod. Phys. 23 (1951),21–68.

[1007] Iooss, G., and Kirchgassner, K, Bifurcation d’ondes solitaires en presence d’unefaible tension superficielle, Comptes Rendus Acad. Sci. Paris 311 (1990),265–268.

[1008] Isaacson, E., and Keller, H.B.., Analysis of Numerical Methods, John Wiley & Sons,New York, 1966.

[1009] Iserles, A., A First Course in the Numerical Analysis of Differential Equations,Cambridge University Press, Cambridge, 1996.

[1010] Iserles, A., Munthe–Kaas, H.Z., Nørsett, S.P., and Zanna, A., Lie group methods,Acta Numerica 9 (2000), 215–365.

[1011] Ito, M., Symmetries and conservation laws of a coupled nonlinear wave equation,Phys. Lett. A 91 (1982), 335–338.

[1012] Itskov, V., Orbit reduction of exterior differential systems and group-invariantvariational problems, Contemp. Math. 285 (2001), 171–181.

[1013] Itskov, V., Orbit Reduction of Exterior Differential Systems, Ph.D. Thesis,University of Minnesota, 2002.

[1014] Ivey, T., Integrable geometric evolution equations for curves, Contemp. Math. 285

(2001), 71–84.

[1015] Izumiya, S., and Sano, T., Generic affine differential geometry of space curves, Proc.Roy. Soc. Edinburgh 128 A (1998), 301–314.

[1016] Jacobson, N., Lie Algebras, Interscience Publ., New York, 1962.

[1017] Jacobson, N., Structure and Representations of Jordan Algebras, American Math.Soc. Colloquium Publ., vol. 39, Providence, R.I., 1968.

[1018] Jacoby, R., Some theorems on the structure of locally compact local groups, Ann.Math. 66 (1957), 36–69.

[1019] Jacquet, H., and Langlands, R.P., Automorphic Forms on GL(2), Lecture Notes inMath., vol. 114, Springer–Verlag, New York, 1970.

[1020] Jaegers, P.J., Lie group invariant finite difference schemes for the neutron diffusionequation, Ph.D. Thesis, Los Alamos National Lab Report, LA–12791–T, 1994.

[1021] James, R.D., Objective structures, J. Mech. Phys. Solids 54 (2006), 2354–2390.

[1022] Jameson, L., On the wavelet-optimized finite-dimensional method, preprint, ICASERep. no. 94–9, NASA CR–191582.

[1023] Janet, M., Lecons sur les Systemes d’Equations aux Derivees Partielles, CahiersScientifiques, fasc. IV, Gauthier–Villars, Paris, 1929.

[1024] Janson, S., and Peetre, J., A new generalization of Hankel operators (the case ofhigher weights), Math. Nachr. 132 (1987), 313–328.

[1025] Jensen, G.R., Higher Order Contact of Submanifolds of Homogeneous Spaces,Lecture Notes in Math., vol. 610, Springer–Verlag, New York, 1977.

54

[1026] Jimbo, M., and Miwa, T., Solitons and infinite-dimensional Lie algebras, Publ. Res.Inst. Math. Sci. 19 (1983), 943–1001.

[1027] Johnson, H.H., Classical differential invariants and applications to partialdifferential equations, Math. Ann. 148 (1962), 308–329.

[1028] Jolliffe, I.T., Principal Component Analysis, 2nd ed., Springer–Verlag, New York,2002.

[1029] Jouanolou, J.P., Le formalisme du resultant, Adv. Math. 90 (1991), 117–263.

[1030] Joshi, N., and Kruskal, M.D., A local asymptotic method of seeing the naturalbarrier of the solutions of the Chazy equation, in: Applications of Analytic andGeometric Methods to Nonlinear Partial Differential Equations, P.A. Clarkson,ed., Kluwer Acad. Publ., Dordrecht, Netherlands, pp. 331–340.

[1031] Jost, J., Partial Differential Equations, Graduate Texts in Mathematics, vol. 214,Springer–Verlag, New York, 2007.

[1032] Junker, F., Die Relationen, welche zwischen den elementaren symmetrischenFunctionen bestehen, Math. Ann. 38 (1891), 91–114.

[1033] Junker, F., Ueber symmetrischen Functionen von mehren Reihen vonVeranderlichen, Math. Ann. 43 (1893), 225–270.

[1034] Junker, F., Die symmetrischen Functionen und die Relationen zwischen denElementarfunctionen derselben, Math. Ann. 45 (1894), 1–84.

[1035] Jurs, M., and Anderson, I.M., Generalized Laplace invariants and the method ofDarboux, Duke Math. J. 89 (1997), 351–375.

[1036] Kac, V.G., Infinite Dimensional Lie Algebras, 3rd ed., Cambridge University Press,New York, 1990.

[1037] Kailath, T., Sayed, A.H., and Hassibi, B., Linear Estimation, Prentice–Hall, Inc.,Upper Saddle River, N.J., 2000.

[1038] Kakutani, T., and Ono, H., Weak non-linear hydromagnetic waves in a coldcollisionless plasma, J. Phys. Soc. Japan 26 (1969), 1305–1318.

[1039] Kalnins, E.G., Separation of Variables for Riemannian Spaces of ConstantCurvature, Pitman Monographs and Surveys in Pure and Applied Mathematics,vol. 28, Longman Sci. Tech., Harlow, England, 1986.

[1040] Kalnins, E.G., Kress, J.M., and Miller, W., Second order superintegrable systemsin conformally flat spaces. IV. The classical 3D Stckel transform and 3Dclassification theory, J. Math. Phys. 47 (2006), 043514.

[1041] Kalnins, E.G., Kress, J.M., and Miller, W., Second order superintegrable systemsin conformally flat spaces. V. Two- and three-dimensional quantum systems, J.Math. Phys. 47 (2006), 093501.

[1042] Kalnins, E.G., Kress, J.M., Miller, W., and Post, S., Structure theory for secondorder 2D superintegrable systems with 1-parameter potentials, SIGMA 5

(2009), 008.

[1043] Kalnins, E.G., and Miller, W., Killing tensors and nonorthogonal variable separationfor Hamilton-Jacobi equations, SIAM J. Math. Anal. 12 (1981), 617–629.

55

[1044] Kalnins, E.G., and Miller, W., Intrinsic characterization of variable separation forthe partial differential equations of mechanics, in: Proceedings of Symposium onModern Developments in Analytical Mechanics, Acta Academiae ScientiarumTaurinensis, Torino 1983.

[1045] Kalnins, E.G., and Miller, W., The theory of orthogonal R-separation for Helmholtzequations, Adv. Math. 51 (1984), 91–106.

[1046] Kalnins, E.G., and Miller, W., Related evolution equations and Lie symmetries,SIAM J. Math. Anal. 16 (1985), 221–232.

[1047] Kalnins, E.G., and Miller, W., Separation of variables on n-dimensional Riemannianmanifolds. I. The n-sphere Sn and Euclidean n-space Rn, J. Math. Phys. 27

(1986), 1721–1736.

[1048] Kalnins, E.G., and Miller, W., Equivalence classes of related evolution equationsand Lie symmetries, J. Phys. A 20 (1987), 5434–5446.

[1049] Kalnins, E.G., and Miller, W., Separation of variables methods for systems ofdifferential equations in mathematical physics, in: Lie Theory, DifferentialEquations and Representation Theory, V. Hussin, ed., Centre RecherchesMathematiques, Montreal, 1990.

[1050] Kalnins, E.G., Miller, W., and Pogosyan, G.S., Exact and quasiexact solvabilityof second-order superintegrable quantum systems. I. Euclidean spacepreliminaries, J. Math. Phys. 47 (2006), 033502.

[1051] Kalnins, E.G., Miller, W., and Pogosyan, G.S., Exact and quasiexact solvability ofsecond-order superintegrable quantum systems. II. Relation to separation ofvariables, J. Math. Phys. 48 (2007), 023503.

[1052] Kalnins, E.G., Miller, W., and Pogosyan, G.S., Exact and quasi-exact solvabilityof second order superintegrable quantum systems, in: Symmetries andOverdetermined Systems of Partial Differential Equations, M. Eastwoodand W. Miller, Jr., eds., IMA Volumes in Mathematics and Its Applications,vol. 144, Springer–Verlag, New York, 2008, pp. 431–444.

[1053] Kalnins, E.G., Miller, W., and Post, S., Wilson polynomials and the genericsuperintegrable system on the 2-sphere, J. Phys. A 40 (2007), 11525–11538.

[1054] Kalnins, E.G., Miller, W., and Post, S., Models for quadratic algebras associatedwith second order superintegrable systems in 2D, SIGMA 4 (2008), 008.

[1055] Kalnins, E.G., Miller, W., and Post, S., Models for the 3Dsingular isotropic oscillator quadratic algebra, preprint,http://www.ima.umn.edu/ miller/3DoscillatorGroup27.pdf.

[1056] Kalnins, E.G., Miller, W., and Williams, G.C., Matrix operator symmetries ofthe Dirac equation and separation of variables, J. Math. Phys. 27 (1986),1893–1900.

[1057] Kamke, E., Differentialgleichungen Losungsmethoden und Losungen, vol. 1, Chelsea,New York, 1971.

[1058] Kammler, D.W., A First Course in Fourier Analysis, Prentice Hall, Upper SaddleRiver, NJ, 2000.

56

[1059] Kamran, N., Contributions to the study of the equivalence problem of Elie Cartanand its applications to partial and ordinary differential equations, Mem. Cl. Sci.Acad. Roy. Belg. 45 (1989), Fac. 7.

[1060] Kamran, N., Lamb, K.G., and Shadwick, W.F., The local equivalence problem ford2y/dx2 = F (x, y, dy/dx) and the Painleve transcendents, J. Diff. Geom. 22

(1985), 139–150.

[1061] Kamran, N., and Robart, T., A manifold structure for analytic isotropy Liepseudogroups of infinite type, J. Lie Theory 11 (2001), 57–80.

[1155] Kamran, N., and Shadwick, W.F., Equivalence locale des equations aux deriveespartielles quasi lineaires du deuxieme ordre et pseudo-groupes infinis, ComptesRendus Acad. Sci. Paris, Serie I, 303 (1986), 555–558.

[1063] Kamran, N., and Shadwick, W.F., A differential geometric characterization of thefirst Painleve transcendent, Math. Ann. 279 (1987), 117–123.

[1064] Kamran, N., and Tenenblat, K., On differential equations describing pseudosphericalsurfaces, J. Diff. Eq. 115 (1995), 75–98.

[1065] Kanatani, K., Group–Theoretical Methods in Image Understanding, Springer–Verlag,New York, 1990.

[1066] Kano, K., and Nakayama, T., An exact solution of the wave equationut + uux − u(5x) = 0, J. Phys. Soc. Japan 50 (1981), 361–362.

[1067] Kapcov, O.V., Extension of the symmetry of evolution equations, Sov. Math. Dokl.25 (1982), 173–176.

[1068] Kapitanski, L., and Rodnianski, I., Does a quantum particle know the time?,in: Emerging Applications of Number Theory, D. Hejhal, J. Friedman, M.C.Gutzwiller, and A.M. Odlyzko, eds., IMA Volumes in Mathematics and itsApplications, vol. 109, Springer Verlag, New York, 1999, pp. 355–371.

[1069] Kaplansky, I., An Introduction to Differential Algebra, 2nd ed., Hermann, Paris,1976.

[1070] Kaptsov, O.V., New solutions of two-dimensional steady state Euler equations,Prikl. Mat. Mech. 54 (1990), 409–415 (in Russian).

[1071] Kaptsov, O.V., Nonlinear diffusion equations and invariant manifolds, Mat. Model.4 (1992), 31–46 (in Russian).

[1072] Kaptsov, O.V., B-determining equations: applications to nonlinear partialdifferential equations, preprint, Krasnoyarsk, 1993.

[1073] Karlhede, A., A review of the geometric equivalence of metrics in general relativity,Gen. Rel. Grav. 12 (1980), 693–707.

[1074] Karlhede, A., and Macallum, M.A.H., On determining the isometry group of aRiemannian space, Gen. Rel. Grav. 14 (1982), 673–682.

[1075] Kass, M., Witkin, A., and Terzopoulos, D., Snakes: active contour models, Int. J.Computer Vision 1 (1988), 321–331.

[1076] Kastrup, H.A., Canonical theories of Lagrangian dynamical systems in physics,Phys. Rep. 101 (1983), 1–167.

[1077] Kato, T., On the Cauchy problem for the (generalized) Korteweg–de Vries equation,Adv. Math. Suppl. Stud. Appl. Math. 8 (1983), 93–128.

57

[1078] Kato, T., and Ponce, G., Commutator estimates and the Euler and Navier–Stokesequations, Commun. Pure Appl. Math. 41 (1988), 891–907.

[1079] Katsylo, P.I., Rationality of the orbit space of irreducible representations of thegroup SL2, Math. USSR Izvestiya 22 (1984), 23–32.

[1080] Katsylo, P.I., The rationality of moduli spaces of hyperelliptic curves, Math. USSRIzvestiya 25 (1985), 45–50.

[1081] Kauffman, L.H., Knots and Physics, 2nd ed., World Scientific, Singapore, 1993.

[1082] Kaup, D.J., A higher-order water-wave equation and the method for solving it,Prog. Theor. Physics 54 (1975), 396–408.

[1083] Kaup, D.J., On the inverse scattering problem for cubic eigenvalue problems of theclass ψxxx + 6Qψx + 6Rψ = λψ, Stud. Appl. Math. 62 (1980), 189–216.

[1084] Kaup, D.J., and Malomed, B.A., Soliton trapping and daughter waves in theManakov model, Phys. Rev. A 48 (1993), 599–604.

[1085] Kaup, D.J., and Newell, A.C., An exact solution for a derivative nonlinearSchrodinger equation, J. Math. Phys. 19 (1978), 798–801.

[1086] Kawahara, T., Oscillatory waves in dispersive media, J. Phys. Soc. Japan 33 (1972),260–264.

[1087] Kawamoto, S., Cusp soliton solutions of the Ito–type coupled nonlinear waveequation, J. Phys. Soc. Japan 53 (1984), 1203–1205.

[1088] Keener, J.P., Principles of Applied Mathematics. Transformation andApproximation, Addison–Wesley Publ. Co., New York, 1988.

[1089] Keller, H.B., Numerical Methods for Two-Point Boundary-Value Problems, Blaisdell,Waltham, MA, 1968.

[1090] Kemeny, J., and Snell, J., Finite Markov Chains, Springer–Verlag, New York, 1976.

[1091] Kempe, A.B., On the application of Clifford’s graphs to ordinary binary quantics,Proc. London Math. Soc. 17 (1885), 107–121.

[1092] Kemper, G., and Boutin, M., On reconstructing n-point configurations from thedistribution of distances or areas, Adv. App. Math. 32 (2004), 709–735.

[1093] Kenig, C.E., Ponce, G., and Vega, L., Well-posedness and scattering results for thegeneralized Korteweg–de Vries equation via the contraction principle, Commun.Pure Appl. Math 46 (1993), 527–620.

[1094] Kenig, C.E., Ponce, G., and Vega, L., The Cauchy problem for the Korteweg–deVries equation in Sobolev spaces of negative indices, Duke Math. J. 71 (1993),1–21.

[1095] Kenig, C.E., Ponce, G., and Vega, L., On the hierarchy of the generalized KdVequations, in: Singular Limits of Dispersive Waves, N.M. Ercolani, I.R.Gabitov, C.D. Levermore, and D. Serre, eds., Plenum Press, New York,1994.

[1096] Kenney, J.P., Evolution of Differential Invariant Signatures and Applications toShape Recognition, Ph.D. Thesis, University of Minnesota, 2009.

[1097] Kergin, P., A natural interpolation of Ck functions, J. Approx. Theory 29 (1980),278–293.

58

[1098] Kersten, P.H.M., Software to compute infinitesimal symmetries of exteriordifferential systems, with applications, Acta Appl. Math. 16 (1989), 207–229.

[1099] Kersten, P.H.M., The general symmetry algebra structure of the underdeterminedequation ux = (vxx)2, J. Math. Phys. 32 (1991), 2043–2050.

[1100] Kersten, P.H.M., The Lie-Backlund algebra structure for the generalunderdetermined equation ur = F (x, u, . . . , ur−1, v, . . . , vk), Nonlinearity 5

(1992), 763–770.

[1101] Kevorkian, J., Partial Differential Equations, Second Edition, Texts in AppliedMathematics, vol. 35, Springer–Verlag, New York, 2000.

[1102] Kevorkian, J., and Cole, J.D., Perturbation Methods in Applied Mathematics,Applied Mathematical Sciences, vol. 34, Springer–Verlag, New York, 1981.

[1103] Khalilov, F.A., and Khruslov, E.Ya., Matrix generalisation of the modifiedKorteweg–deVries equation, Inv. Prob. 6 (1990), 193–204.

[1104] Khesin, B.A., and Chekanov, Y.V., Invariants of the Euler equations for ideal orbarotropic hydrodynamics and superconductivity in D dimensions, Physica D40 (1989), 119–131.

[1105] Kichenassamy, S., Breather solutions of the nonlinear wave equation, Commun.Pure Appl. Math. 44 (1991), 789–818.

[1106] Kichenassamy, S., Fuchsian equations in Sobolev spaces and blow-up, J. Diff. Eq.125 (1996), 299–327.

[1107] Kichenassamy, S., The blow-up problem for exponential nonlinearities, Commun.PDE 21 (1996), 125–162.

[1108] Kichenassamy, S., Nonlinear Wave Equations, Marcel Dekker, New York, 1995.

[1109] Kichenassamy, S., Applications of the division theorem in Hs, J. Dynamics Diff. Eq.8 (1996), 407–425.

[1110] Kichenassamy, S., The Perona–Malik paradox, SIAM J. Appl. Math., to appear.

[1111] Kichenassamy, S., Existence of solitary waves for water-wave models, Nonlinearity10 (1997), 133–151.

[1112] Kichenassamy, S., Fuchsian Reduction: Applications to Geometry, Cosmology, andMathematical Physics, Progress in Nonlinear Diff. Eqs., vol. 71, Birkhauser,Boston, 2007.

[1113] Kichenassamy, S., and Srinivasan, G.K., The structure of WTC expansions andapplications, J. Phys. A 28 (1995), 1977–2004.

[1114] Killing, W., Die Zusammensetzung der stetigen, endlichen Transformationgruppen,Math. Ann. 31 (1888), 355–414; 33 (1889), 1–48; 33 (1889), 57–122; 33 (1890),161–189.

[1115] Killing, W., Die Zusammensetzung der stetigen, endlichen Transformationgruppen.I, Math. Ann. 31 (1888), 252–290.

[1116] Killing, W., Die Zusammensetzung der stetigen, endlichen Transformationgruppen.II, Math. Ann. 33 (1889), 1–48.

[1117] Killing, W., Die Zusammensetzung der stetigen, endlichen Transformationgruppen.III, Math. Ann. 34 (1889), 57–122.

59

[1118] Killing, W., Die Zusammensetzung der stetigen, endlichen Transformationgruppen.IV, Math. Ann. 36 (1890), 161–189.

[1119] Killing, W., Erweiterung der Begriffes der Invarianten von Transformationgruppen,Math. Ann. 35 (1890), 423–432.

[1120] Kirillov, A.A., Infinite dimensional groups: their representation, orbits, invariants,in: Proc. of International Congress of Math., Helsinki, 1978, vol. 2, O. Lehto,ed., Acad. Scien. Fennica, Hungary, 1980, pp. 705–708.

[1121] Kirillov, A.A., Merits and demerits of the orbit method, Bull. Amer. Math. Soc. 36

(1999), 433–488.

[1122] Kim, P., Invariantization of Numerical Schemes for Differential Equations UsingMoving Frames, Ph.D. Thesis, University of Minnesota, Minneapolis, 2006.

[1123] Kim, P., Invariantization of numerical schemes using moving frames, BIT 47 (2007),525–546.

[1124] Kim, P., Invariantization of the Crank-Nicolson method for Burgers’ equation,Physica D 237 (2008), 243–254.

[1125] Kimia, B., Tannenbaum, A., and Zucker, S., Shapes, shocks and deformations I:The components of two-dimensional shape and reaction-diffusion space, Int. J.Comp. Vision 15 (1995), 189–224.

[1126] Kimia, B., Tannenbaum, A., and Zucker, S., On the evolution of curves via afunction of curvature, J. Math. Anal. Appl. 163 (1992), 438–458.

[1127] King, J.R., Exact multidimensional solutions to nonlinear diffusion equations,Quart. J. Mech. Appl. Math. 46 (1993), 419–436.

[1128] Klein, F., Vergleichende Betrachtungen uber neuere geometrische Forschungen,A. Deichert, Erlangen, Germany, 1872; also Gesammelte MathematischeAbhandlungen, vol. 1, Julius Springer, Berlin, 1921, pp. 460–497; see Bull. NewYork Math. Soc. 2 (1893) 215–249 for an English translation.

[1129] Klein, F., and Lie, S., Uber diejenigen ebenen Curven, welche durch eingeschlossenes System von einfach unendlich vielen vertauschbaren linearenTransformationen in sich ubergeben, Math. Ann. 4 (1871), 50–84.

[1130] Klotzler, R., Mehrdimensionale Variationsrechnung, Birkhauser Verlag, Basel, 1970.

[1131] Knapp, A.W., Elliptic Curves, Princeton University Press, Princeton, NJ, 1992.

[1132] Knobel, R., An Introduction to the Mathematical Theory of Waves, AmericanMathematical Society, Providence, RI, 2000.

[1133] Knowles, J.K., and Sternberg, E., On a class of conservation laws in linearized andfinite elastostatics, Arch. Rat. Mech. Anal. 44 (1972), 187–211.

[1134] Knox, R.S., and Gold, A., Symmetry in the Solid State, W.A. Benjamin, New York,1964.

[1135] Knuth, D.E., Two notes on notation, Amer. Math. Monthly 99 (1992), 403–422.

[1136] Kobayashi, S., Canonical forms on frame bundles of higher order contact, Proc.Sympos. Pure Math. 3 (1961), 186–193.

[1137] Kobayashi, S., Transformation Groups in Differential Geometry, Springer-Verlag,New York, 1972.

60

[1138] Kobayashi, S., and Nomizu, K., Foundations of Differential Geometry, IntersciencePublishers, New York, 1963, 1969.

[1139] Kobayashi, S., and Nomizu, K., Foundations of Differential Geometry, vol. 1,Interscience Publishers, New York, 1963.

[1140] Kobayashi, S., and Nomizu, K., Foundations of Differential Geometry, vol. 2,Interscience Publishers, New York, 1969.

[1141] Kodama, Y., On integrable systems with higher order corrections, Phys. Lett. A 107

(1985), 245–249.

[1142] Koelink, H.T., and Koornwinder, T.H., The Clebsch-Gordan coefficients for thequantum group SµU(2) and q-Hahn polynomials, Proc. Koninklijke Nederl.Akad. Wetenschappen, Series A 92 (1989), 443–456.

[1143] Kogan, I.A., Inductive Approach to Cartan’s Moving Frame Method withApplications to Classical Invariant Theory, Ph.D. Thesis, University ofMinnesota, 2000.

[1144] Kogan, I.A., Inductive construction of moving frames, Contemp. Math. 285 (2001),157–170.

[1145] Kogan, I.A., Two algorithms for a moving frame construction, Canad. J. Math. 55

(2003), 266–291.

[1146] Kogan, I.A., and Moreno Maza, M., Computation of canonical forms for ternarycubics, in: Proceedings of the 2002 International Symposium on Symbolicand Algebraic Computation, T. Mora, ed., The Association for ComputingMachinery, New York, 2002, pp. 151–160.

[1147] Kolchin, E.R., Differential Algebraic Groups, Academic Press, Orlando, 1985.

[1148] Komrakov, B., Primitive actions and the Sophus Lie problem, in: The SophusLie Memorial Conference, O.A. Laudal and B. Jahren, eds., ScandinavianUniversity Press, Oslo, 1994, pp. 187–269.

[1149] Komrakov, B., Churyumov, A., and Doubrov, B., Two-dimensional homogeneousspaces, preprint, University of Oslo, no. 17, 1993.

[1150] Koornwinder, T.H., The relationship between Zhedanov’s algebra AW(3) and thedouble affine Hecke algebra in the rank one case, SIGMA 3 (2007), 063.

[1151] Korteweg, D.J., and de Vries, G., On the change of form of long waves advancing ina rectangular channel, and on a new type of long stationary waves, Phil. Mag.(5) 39 (1895), 422–443.

[1152] Kosmann-Schwarzbach, Y., Poisson–Drinfel’d groups, in: Topics in Soliton Theoryand Exactly Solvable Nonlinear Equations, M. Ablowitz, B. Fuchssteiner, andM. Kruskal, eds., World Scientific, Singapore, 1987, pp. 191–215.

[1153] Kosmann-Schwarzbach, Y., Les Theoremes de Noether, Editions de EcolePolytechnique, Palaiseau, France, 2004.

[1154] Kosmann-Schwarzbach, Y., Les Theoremes de Noether, Second Edition, Editions deEcole Polytechnique, Palaiseau, France, 2006.

[1155] Kosmann-Schwarzbach, Y., The Noether Theorems. Invariance and ConservationLaws in the Twentieth Century, Springer, New York, 2011.

61

[1156] Kostant, B., An editorial perspective, in: Izrail M. Gel’fand Collected Papers, vol. 3,Springer-Verlag, New York, 1989, pp. 1025–1026.

[1157] Kovalev, V.N., Krivenko, S.V., and Pustovakov, V.V., Symmetry group ofVlasov–Maxwell equations in plasma theory, J. Nonlinear Math. Phys. 3

(1996), 175.

[1158] Krall, A.M., Linear Methods of Applied Analysis, Addison–Wesley, Reading, Mass.,1973.

[1159] Krall, A.M., Applied Analysis, D. Reidel Publishing Co., Boston, 1986.

[1160] Kramer, D., Stephani, H., MacCallum, M., and Herlt, E., Exact Solutions ofEinstein’s Field Equations, VEB Deutscher Verlag Wissen., Berlin, 1980.

[1161] Krantz, S.G., Function Theory of Several Complex Variables, Second Edition,Wadsworth and Brooks/Cole, Pacifica Grove, CA, 1992.

[1162] Krasil’shchik, I.S., and Kersten, P.H.M., Symmetries and and Recursion Operatorsfor Classical and Supersymmetric Differential Equations, Kluwer AcademicPubl., Dordrecht, The Netherlands, 2000.

[1163] Krasil’shchik, I.S., and Vinogradov, A.M., Nonlocal symmetries and the theoryof coverings: an addendum to A.M. Vinogradov’s ‘Local symmetries andconservation laws’, Acta Appl. Math. 2 (1984), 79–96.

[1164] Krasil’shchik, I.S., and Vinogradov, A.M., eds., Symmetries and Conservation Lawsfor Differential Equations of Mathematical Physics, American MathematicalSociety, Providence, R.I., 1998.

[1165] Krasil’shchik, I.S., Lychagin, V.V., and Vinogradov, A.M., Geometry of Jet Spacesand Nonlinear Partial Differential Equations, Gordon and Breach, New York,1986.

[1166] Krattenthaler, C., Advanced determinant calculus, Sem. Lothar. Comb. 42 (1999), .

[1167] Krause, J., and Michel, L., Classification of the symmetries of ordinary differentialequations, in: Group Theoretical Methods in Physics, V.V. Dodonov and V.I.Man’ko, eds., Lecture Notes in Physics, vol. 382, Springer–Verlag, New York,1991, pp. 251–262.

[1168] Kress, J.M., and Kalnins, E.G., Multiseparability and superintegrability in threedimensions, Phys. Atomic Nuclei 65 (2002), 1047–1051.

[1169] Kreysig, E., Advanced Engineering Mathematics, Eighth Edition, J. Wiley & Sons,New York, 1998.

[1170] Krichever, I.M., Commutative rings of ordinary linear differential operators, Func.Anal. Appl. 12 (1978), 175–185.

[1171] Krishnan, E.V., An exact solution of the classical Boussinesq equation, J. Phys. Soc.Japan 51 (1982), 2391–2392.

[1172] Kruglikov, B., and Lychagin, V., Invariants of pseudogroup actions: homologicalmethods and finiteness theorem, Int. J. Geom. Methods Mod. Phys. 3 (2006),1131–1165.

[1173] Krupa, M., Bifurcations of relative equilibria, SIAM J. Math. Anal. 21 (1990),1453–1486.

62

[1174] Krupka, D., Lepagean forms in higher order variational theory, in: Proceedings ofIUTAM-ISIMM Symposium on Modern Developments in Analytic Mechanics,S. Benenti, M. Francaviglia, and A. Lichnerowicz, eds., Acta Acad. Sci.Taurinensis 117 (Suppl.) (1983) 197–238.

[1175] Krupka, D., Variational sequences and variational bicomplexes, in: Differentialgeometry and applications (Brno, 1998 ), I. Kolar, O. Kowalski, D. Krupka, andJ. Slovak, eds., Masaryk Univ., Brno, 1999, pp. 525–531.

[1176] Krupka, D., and Janyska, J., Lectures on Differential Invariants, University J. E.Purkyne, Brno, 1990.

[1177] Krupka, D., and Stepankova, O., On the Hamilton form in second order calculusof variations, in: Proceedings of the Meeting “Geometry and Physics”, M.Modugno, ed., Pitagora Editrice, Bologna, 1983, pp. 85–101.

[1178] Kruskal, M.D., The Korteweg–de Vries equation and related evolution equations, in:Nonlinear Wave Motion, A.C. Newell, ed., Lectures in Applied Math., vol. 15,American Math. Soc., Providence, R.I., 1974, pp. 61–83.

[1179] Kruskal, M., and Segur, H., Asymptotics beyond all orders in a model of dendriticcrystals, preprint, 1987.

[1180] Kublanovskaya, V.N., On some algorithms for the solution of the completeeigenvalue problem, USSR Comput. Math. Math. Phys. 3 (1961), 637–657.

[1181] Kumei, S., Invariance transformations, invariance group transformations andinvariance groups of the sine–Gordon equations, J. Math. Phys. 16 (1975),2461–2468.

[1182] Kumei, S., and Bluman, G.W., When nonlinear differential equations are equivalentto linear differential equations, SIAM J. Appl. Math. 5 (1982), 1157–1173.

[1183] Kumpera, A., Invariants differentiels d’un pseudogroupe de Lie, J. Diff. Geom. 10

(1975), 289–416.

[1184] Kumpera, A., and Spencer, D., Lie Equations, Princeton University Press,Princeton, N.J., 1972.

[1185] Kunin, I.A., Elastic Media with Microstructure I, Springer–Verlag, New York, 1982.

[1186] Kung, J.P.S., Canonical forms for binary forms of even degree, in: Invariant Theory,S.S. Koh, ed., Lecture Notes in Math, vol. 1278, Springer–Verlag, New York,1987, pp. 52–61.

[1187] Kung, J.P.S., Gundelfingers theorem on binary forms, Stud. Appl. Math. 75 (1986),163–170.

[1188] Kung, J.P.S., and Rota, G.–C., The invariant theory of binary forms, Bull. Amer.Math. Soc. 10 (1984), 27–85.

[1189] Kung, J.P.S., and Rota, G.–C., On the differential invariants of a linear ordinarydifferential equation, Proc. Roy. Soc. Edinburgh A 89 (1981), 111–123.

[1190] Kunkle, T., Multivariate differences, polynomials, and splines, J. Approx. Theory 84

(1996), 290–314.

[1191] Kunzinger, M., and Oberguggenberger, M., Group analysis of differential equationsand generalized functions, SIAM J. Math. Anal. 31 (2000), 1192–1213.

63

[1192] Kupershmidt, B.A., Mathematics of dispersive waves, Commun. Math. Phys. 99

(1985), 51–73.

[1193] Kuranishi, M., On E. Cartan’s prolongation theorem of exterior differential systems,Amer. J. Math. 79 (1957), 1–47.

[1194] Kuranishi, M., On the local theory of continuous infinite pseudo groups I, NagoyaMath. J. 15 (1959), 225–260.

[1195] Kuranishi, M., On the local theory of continuous infinite pseudo groups II, NagoyaMath. J. 19 (1961), 55–91.

[1196] Laguerre, E., Sur quelques invariants des equations differentielles lineaires, in:Oeuvres, vol. 1, Gauthier–Villars, Paris, 1898, pp. 424–427.

[1197] Laksov, D., and Thorup, A., These are the differentials of order n, Trans. Amer.Math. Soc. 351 (1999), 1293–1353.

[1198] Lamb, G.L., Solitons on moving space curves, J. Math. Phys. 18 (1977), 1654–1661.

[1199] Lamb, H., Hydrodynamics, Dover Publ., New York, 1945.

[1200] Landau, L.D., and Lifshitz, E.M., Quantum Mechanics (Non-relativistic Theory),Course of Theoretical Physics, vol. 3, Pergamon Press, New York, 1977.

[1201] Lang, S., Elliptic Curves: Diophantine Analysis, Springer–Verlag, New York, 1978.

[1202] Lanford, O., A computer-assisted proof of the Feigenbaum conjecture, Bull. Amer.Math. Soc. 6 (1982), 427–434.

[1203] Langer, J., Recursion in curve geometry, New York J. Math. 5 (1999), 25–51.

[1204] Langer, J., and Perline, R., Poisson geometry of the filament equation, J. Nonlin.Sci. 1 (1991), 71–93.

[1205] Langer, J., and Singer, D.A., Lagrangian aspects of the Kirchhoff elastic rod, SIAMRev. 38 (1996), 605–618.

[1206] Lascoux, A., Syzygies des varietes determinantales, Adv. Math. 30 (1978), 202–237.

[1207] Lascoux, A., and Schutzenberger, M.-P., Interpolation de Newton a plusieursvariables, in: Seminaire d’Algebre Paul Dubreil et Marie–Paule Malliavin, M.-P.Malliavin, ed., Lecture Notes in Math. vol. 1146, Springer–Verlag, New York,1985, pp. 161–175.

[1208] Lawson, J.D., The earliest semigroup paper?, Semigroup Forum 52 (1995), 55–60.

[1209] Lawson, J.D., Embedding semigroups into Lie groups, in: The Analytical andTopological Theory of Semigroups, K.H. Hofmann, J.D. Lawson, and J.S. Pym,eds., de Gruyter, Berlin, 1990, pp. 51–80.

[1210] Ledley, R.S., Analysis of cells, IEEE Trans. Computers 21 (1972), 740–753.

[1211] Lee, T.S., Mumford, D., and Yuille, A., Texture segmentation by minimizingvector-valued energy functionals: the coupled membrane model, in: ComputerVision — ECCV ’92, G. Sandini, ed., Lecture Notes in Computer Sci., vol. 588,Springer–Verlag, New York, 1992, pp. 165–173.

[1212] Lei, Z, Keren, D., and Cooper, D.B., Recognition of complex free-form objectsbased on mutual algebraic invariants for pairs of patches of data, preprint,Brown University, 1995.

[1213] Leitenberger, F., A quantum deformation of invariants of binary forms, Czech. J.Phys. 48 (1998), 1429–1434.

64

[1214] Lekhnitskii, S.G., Theory of Elasticity of an Anisotropic Body, MIR Publishers,Moscow, 1981.

[1215] Leo, M., Leo, R.A., Soliani, G., Solombrino, L., and Mancarella, G., Symmetryproperties and bi-Hamiltonian structure of the Toda lattice, Lett. Math. Phys. 8

(1984), 267–272.

[1216] Leo, M., Leo, R.A., Soliani, G., and Tempesta, P., Non-local symmetries ofnonlinear field equations: an algebraic approach, preprint, Los Alamos PreprintArchives, hep-th/9911122, 1999.

[1217] Leo, M., Leo, R.A., Soliani, G., and Tempesta, P., On the relation between Liesymmetries and prolongation structures of nonlinear field equations, Prog.Theor. Phys. 105 (2001), 77–97.

[1218] Letourneau, P., and Vinet, L., Superintegrable systems: polynomial algebras andquasi-exactly solvable Hamiltonians, Ann. Phys. 243 (1995), 144–168.

[1219] Levi, D., Vinet, L., and Winternitz, P., eds., Symmetries and Integrability ofDifference Equations, CRM Proceedings & Lecture Notes, vol. 9, AmericanMath. Soc., Providence, R.I., 1996.

[1220] Levi, D., and Winternitz, P., Nonclassical symmetry reduction: example of theBoussinesq equation, J. Phys. A 22 (1989), 2915–2924.

[1221] Levi, D., and Winternitz, P., Continuous symmetries of discrete equations, Phys.Lett. A 152 (1991), 335–338.

[1222] Levine, R.D., Lie algebraic approach to molecular structure and dynamics, in:Mathematical Frontiers in Computational Chemical Physics, D.G. Truhlar, ed.,IMA Volumes in Mathematics and its Applications, vol. 15, Springer–Verlag,New York, 1988, pp. 245–261.

[1223] Lewis, D., and Marsden, J.E., A Hamiltonian-dissipative decomposition of normalforms of vector fields, in: Proceedings of the International Conference onBifurcation Theory and its Numerical Analysis, Xi’an Jiaotong University Press,Xi’an, China, 1989, pp. 51–78.

[1224] Lewis, D., and Nigam, N., Geometric integration on spheres and some interestingapplications, J. Comput. Appl. Math. 151 (2003), 141–170.

[1225] Lewis, D., and Simo, J.C., Conserving algorithms for the dynamics of Hamiltoniansystems on Lie groups, J. Nonlin. Sci. 4 (1994), 253–299.

[1226] Lewy, H., An example of a smooth linear partial differential equation withoutsolution, Ann. Math. 64 (1956), 514–522.

[1227] Leznov, A.N., and Saveliev, M.V., Group-Theoretical Methods for Integration ofNonlinear Dynamical Systems, Birkhauser Verlag, Berlin, 1992.

[1228] Li, A.–M., Simon, U., and Zhao, G., Global Affine Differential Geometry ofHypersurfaces, W. de Gruyter, New York, 1993.

[1229] Li, Y.A., Analyticity and Uniqueness of Solitary Wave Solutions, Ph.D. Thesis,Penn State University, 1995.

[1230] Li, Y.A., Weak solutions of a generalized Boussinesq system, preprint, University ofMinnesota, 1997.

65

[1231] Li, Y.A., and Bona, J.L., Analyticity of solitary-wave solutions of model equationsfor long waves, SIAM J. Math. Anal. 27 (1996), 725–737.

[1232] Li, Y.–S., The algebraic structure associated with systems possessing non-hereditaryrecursion operators, in: Nonlinear Evolution Equations and Dynamical Systems,V.G. Makhankov and O.K. Pashaev, eds., Springer-Verlag, New York, 1991, pp.107–109.

[1233] Lickorish, W.B.R., An Introduction to Knot Theory, Graduate Texts inMathematics, vol. 175, Springer–Verlag, New York, 1997.

[1234] Lie, S., Theorie der Transformationsgruppen I, Arch. Mat. Natur. 1 (1876), 19–57;also Gesammelte Abhandlungen, vol. 5, B.G. Teubner, Leipzig, 1924, pp. 9–41.

[1235] Lie, S., Theorie der Transformationsgruppen II, Arch. Mat. Natur. 1 (1876),152–193; also Gesammelte Abhandlungen, vol. 5, B.G. Teubner, Leipzig, 1924,pp. 42–75.

[1236] Lie, S., Theorie der Transformationsgruppen III, Arch. Math. 3 (1878), 93–165; alsoGesammelte Abhandlungen, vol. 5, B.G. Teubner, Leipzig, 1924, pp. 78–133.

[1237] Lie, S., Theorie der Transformationsgruppen IV, Arch. Math. 3 (1878), 375–460;also Gesammelte Abhandlungen, vol. 5, B.G. Teubner, Leipzig, 1924, pp.136–197.

[1238] Lie, S., Theorie der Transformationsgruppen V, Arch. Math. 4 (1879), 232–261; alsoGesammelte Abhandlungen, vol. 5, B.G. Teubner, Leipzig, 1924, pp. 199–223.

[1239] Lie, S., Theorie der Transformationsgruppen I, Math. Ann. 16 (1880), 441–528; alsoGesammelte Abhandlungen, vol. 6, B.G. Teubner, Leipzig, 1927, pp. 1–94; see[19] for an English translation.

[1250] Lie, S., Uber die Integration durch bestimmte Integrale von einer Klasse linearpartielle Differentialgleichungen, Arch. Math. 6 (1881), 328–368; alsoGesammelte Abhandlungen, vol. 3, B.G. Teubner, Leipzig, 1922, pp. 492–523.

[1241] Lie, S., Uber unendlichen kontinuierliche Gruppen, Christ. Forh. Aar. 8 (1883),1–47; also Gesammelte Abhandlungen, vol. 5, B.G. Teubner, Leipzig, 1924, pp.314–360.

[1242] Lie, S., Uber Differentialinvarianten, Math. Ann. 24 (1884), 537–578; alsoGesammelte Abhandlungen, vol. 6, B.G. Teubner, Leipzig, 1927, pp. 95–138; see[20] for an English translation.

[1243] Lie, S., Untersuchungen uber unendliche kontinuierliche Gruppen, Leipzig. Abh. 21

(1895), 43–150; also Gesammelte Abhandlungen, vol. 6, B.G. Teubner, Leipzig,1927, pp. 396–493.

[1244] Lie, S., Klassifikation und Integration von gewohnlichen Differentialgleichungenzwischen x, y, die eine Gruppe von Transformationen gestatten I, II, Math.Ann. 32 (1888), 213–281; also Gesammelte Abhandlungen, vol. 5, B.G.Teubner, Leipzig, 1924, pp. 240–310.

[1245] Lie, S., Theorie der Transformationsgruppen, B.G. Teubner, Leipzig, 1888, 1890,1893.

66

[1246] Lie, S., Die Grundlagen fur die Theorie der unendlichen kontinuierlichenTransformationsgruppen, Leipzig. Ber. 43 (1891), 316–393; also GesammelteAbhandlungen, vol. 6, B.G. Teubner, Leipzig, 1927, pp. 300–364.

[1247] Lie, S., Vorlesungen uber Differentialgleichungen mit Bekannten InfinitesimalenTransformationen, B.G. Teubner, Leipzig, 1891.

[1248] Lie, S., Theorie der Transformationsgruppen, vol. 3, B.G. Teubner, Leipzig, 1893.

[1249] Lie, S., and Scheffers, G., Vorlesungen uber Continuierliche Gruppen mitGeometrischen und Anderen Anwendungen, B.G. Teubner, Leipzig, 1893.

[1250] Lie, S., Zur allgemeinen Theorie der partiellen Differentialgleichungen beliebegerOrdnung, Leipz. Berichte 47 (1895), 53–128; also Gesammelte Abhandlungen,vol. 4, B.G. Teubner, Leipzig, 1929, 320–384.

[1251] Lie, S., Die Theorie der Integralinvarianten is ein Korollar der Theorie derDifferentialinvarianten, Leipz. Berichte 49 (1897), 342–357; also GesammelteAbhandlungen, vol. 6, B.G. Teubner, Leipzig, 1927, 649–663.

[1252] Lie, S., Uber Integralinvarianten und ihre Verwertung fur die Theorie derDifferentialgleichungen, Leipz. Berichte 49 (1897), 369–410; also GesammelteAbhandlungen, vol. 6, B.G. Teubner, Leipzig, 1927, pp. 664–701.

[1253] Lie, S., Gruppenregister, in: Gesammelte Abhandlungen, vol. 5, B.G. Teubner,Leipzig, 1924, pp. 767–773.

[1254] Lie, S., and Scheffers, G., Geometrie der Beruhrungstransformationen, B.G.Teubner, Leipzig, 1896.

[1255] Lighthill, M.J., Waves in Fluids, Cambridge University Press, Cambridge, 1978.

[1256] Lin, J.E., and Chen, H.H., Constraints and conserved quantities of theKadomtsev–Petviashvili equations, Phys. Lett. A 89 (1982), 163–167.

[1257] Lindeberg, T., Scale-Space Theory in Computer Vision, Kluwer Acad. Publ.,Boston, 1994.

[1258] Lions, J.-L., Quelques Methodes de Resolution des Problemes aux LimitesNonlineaires, Dunod, Gauthier–Villars, Paris, 1969.

[1259] Lions, P.L., The concentration-compactness principle in the calculus of variations.The locally compact case, parts 1 & 2, Ann. Inst. Henri Poincare, Anal.Nonlin. 1 (1984), 109–145, 223–283.

[1260] Lisle, I.G., Equivalence Transformations for Classes of Differential Equations,Ph.D. Thesis, University of British Columbia, Vancouver, 1992.

[1261] Lisle, I.G., and Reid, G.J., Geometry and structure of Lie pseudogroups frominfinitesimal defining systems, J. Symb. Comp. 26 (1998), 355–379.

[1262] Lisle, I.G., and Reid, G.J., Cartan structure of infinite Lie pseudogroups, in:Geometric Approaches to Differential Equations, P.J. Vassiliou and I.G.Lisle, eds., Austral. Math. Soc. Lect. Ser., 15, Cambridge University Press,Cambridge, 2000, pp. 116–145.

[1264] Lisle, I.G., and Reid, G.J., Symmetry classification using invariant moving frames,preprint, 2001.

[1264] Lisle, I.G., and Reid, G.J., Symmetry classification using non-commutative invariantdifferential operators, Found. Comput. Math. 6 (2006), 353–386.

67

[1265] Littlejohn, L.L., On the classification of differential equations having orthogonalpolynomial solutions, Ann. di Mat. 138 (1984), 35–53.

[1266] Littlewood, D.E., The Theory of Group Characters, Oxford University Press, NewYork, 1958.

[1267] Liu, Y., Instability and blow-up of solutions to a generalized Boussinesq equation,SIAM J. Math. Anal. 26 (1995), 1527–1546.

[1268] Lloyd, R., and Shakiban, C., Improvements in latent semantic analysis, in: Amer. J.Undergrad Research, 3 (2004) 29–34.

[1269] Lodge, A.S., The transformation to isotropic form of the equilibrium equations for aclass of anisotropic elastic solids, Q. J. Mech. Appl. Math. 8 (1955), 211–225.

[1270] Lorentz, R.A., Multivariate Birkhoff Interpolation, Lecture Notes in Math., vol.1516, Springer–Verlag, New York, 1992.

[1271] Lorentz, R.A., Multivariate Hermite interpolation by algebraic polynomials: Asurvey, J. Comput. Appl. Math. 122 (2000), 167–201.

[1272] Lorenz, E., Deterministic nonperiodic flow, J. Atmospheric Sci. 20 (1963), 130–141.

[1273] Lorigo, L.M., Faugeras, O., Grimson, W.E.L., Keriven, R., Kikinis, R., and Westin,C.-F., Co-dimension 2 geodesic active contours for MRA segmentation,in: Information Processing in Medical Imaging, A. Kuba, M. Samal, andA. Todd-Pokropek, eds., Lecture Notes in Computer Science, vol. 1613,Springer–Verlag, New York, 1999, pp. 126–139.

[1274] Lou, S.-Y., Symmetries of the Kadomtsev–Petviashvili equation, J. Phys. A 26

(1993), 4387–4394.

[1275] Lou, S.-Y., and Hu, X.-B., Infinitely many Lax pairs and symmetry constraints ofthe KP equation, J. Math. Phys. 38 (1997), 6401–6427.

[1276] Lou, S.-Y., and Ma, H.-C., Non–Lie symmetry groups of (2+1)–dimensionalnonlinear systems obtained from a simple direct method, J. Phys. A 38 (2005),L129–L137.

[1277] Lou, S.-Y., Ruan, H.-Y., Chen, D.-F., and Chen, W.-Z., Similarity reductions of theKP equation by a direct method, J. Phys. A 24 (1991), 1455–1467.

[1278] Lou, S.-Y., and Tang, X., Equations of arbitrary order invariant under theKadomtsev–Petviashvili symmetry group, J. Math. Phys. 45 (2004), 1020–1030.

[1279] Lowe, D.G., Object recognition from local scale-invariant features, in: Integration ofSpeech and Image Understanding, IEEE Computer Society, Los Alamitos, CA,1999, pp. 1150–1157.

[1280] Lu, C., Latecki, L.J., Adluru, N., Yang, X., and Ling, H., Proceedings of the 12thInternational Conference on Computer Vision, IEEE Comput. Soc. Press,Washington DC, 2009, pp. 2288–2295.

[1281] Luneburg, R.K., Mathematical Theory of Optics, University of California Press,Berkeley, 1966.

[1282] Lusanna, L., The second Noether theorem as the basis of the theory of singularLagrangians and Hamiltonians constraints, Rivista Nuovo Cim. 14 (1991),1–75.

68

[1283] Macaulay, F.S., Some properties of enumeration in the theory of modular systems,Proc. London Math. Soc. 26 (2) (1927), 531–555.

[1284] Macdonald, I.G., Symmetric Functions and Hall Polynomials, Clarendon Press,Oxford, 1979.

[1285] Mackenzie, K., Lie Groupoids and Lie Algebroids in Differential Geometry, LondonMath. Soc. Lecture Notes, vol. 124, Cambridge University Press, Cambridge,1987.

[1286] Mackenzie, K., General Theory of Lie Groupoids and Lie Algebroids, London Math.Soc. Lecture Notes, vol. 213, Cambridge University Press, Cambridge, 2005.

[1287] Mackey, G.W., The Theory of Unitary Group Representations, University of ChicagoPress, Chicago, 1976.

[1288] Mackey, G.W., Unitary Group Representations in Physics, Probability, and NumberTheory, Benjamin Cummings Publ. Co., Reading, Mass., 1978.

[1289] MacMahon, P.A., The perpetuant invariants of binary quantics, Proc. London Math.Soc. 26 (1895), 262–284.

[1290] MacMahon, P.A., Combinatory Analysis, Cambridge University Press, Cambridge,1915, 1916.

[1291] Maddocks, J.H., and Sachs, R.L., On the stability of KdV multi-solitons, Commun.Pure Appl. Math. 46 (1993), 867–901.

[1292] Maeda, S., The similarity method for difference equations, IMA J. Appl. Math. 38

(1987), 129–134.

[1293] Maeda, S., Application of numerical schemes admitting symmetries, Electron.Comm. Japan, Part III, Fund. Electron. Sci. 73 (9) (1990), 107–113.

[1294] Maeda, S., Certain types of Runge-Kutta-type formulas and reproduction of orbitsof linear systems, Electron. Comm. Japan, Part III, Fund. Electron. Sci. 74 (3)(1991), 98–104.

[1295] Magadeev, B.A., On contact symmetries of nonlinear evolution equations, preprint,1992 (in Russian).

[1296] Magadeev, B.A., On the group classification of nonlinear evolution equations, St.Petersburg Math. J. 5 (1994), 345–359.

[1297] Magid, A.R., Lectures on Differential Galois Theory, University Lecture Series, vol.7, American Math. Soc., Providence, R.I., 1994.

[1298] Magri, F., A simple model of the integrable Hamiltonian equation, J. Math. Phys.19 (1978), 1156–1162.

[1299] Mahomed, F.M., and Leach, P.G.L., The linear symmetries of a nonlinear equation,Quaes. Math. 8 (1985), 241–274.

[1300] Makhankov, V.G., Dynamics of classical solitons (in non-integrable systems), Phys.Rep. 35 (1978), 1–128.

[1301] Malcev, A.I., Sur les groupes topologiques locaux et complets, Comptes RendusAcad. Sci. URSS 32 (1941), 606–608.

[1302] Malomed, B., and Vanden–Broeck, J.–M., Solitary wave interactions for thefifth-order KdV equation, Contemp. Math. 200 (1996), 133–144.

69

[1303] Malgrange, B., Systemes Differentiels Involutifs, Panoramas et Syntheses No. 19,Societe Mathematique de France, Paris, 2005.

[1304] Manakov, S.V., On the theory of two-dimensional stationary self-focusing ofelectromagnetic waves, Sov. Phys. JETP 38 (1974), 248–253.

[1305] Manay, S., Cremers, D., Hong, B.-W., Yezzi, A., and Soatto, S., Integral invariantsand shape matching, in: Statistics and Analysis of Shapes, H. Krim and A.Yezzi, eds., Birkhauser, Boston, 2006, pp. 137–166.

[1306] Mandelbrot, B.B., The Fractal Geometry of Nature, W.H. Freeman, New York,1983.

[1309] Manganaro, N., and Parker, D.F., Similarity reductions for variable coefficientcoupled nonlinear Schrodinger equations, J. Phys. A 26 (1993), 4093–4106.

[1308] Manin, Yu.I., Algebraic aspects of nonlinear differential equations, J. Soviet Math.11 (1979), 1–122.

[1309] Manno, G., Oliveri, F., and Vitolo, R., On differential equations characterized bytheir Lie point symmetries, J. Math. Anal. Appl. 332 (2007), 767–786.

[1310] Mansfield, E.L., A simple criterion for involutivity, J. London Math. Soc. 54 (1996),323–345.

[1311] Mansfield, E.L., Algorithms for symmetric differential systems, Found. Comput.Math. 1 (2001), 335–383.

[1312] Mansfield, E.L., A Practical Guide to the Invariant Calculus, Cambridge UniversityPress, Cambridge, 2010.

[1313] Mansfield, E.L., and Clarkson, P.A., Nonclassical symmetry reductions and exactsolutions of nonlinear reaction-diffusion equations, in: Applications of Analyticand Geometric Methods to Nonlinear Differential Equations, P.A. Clarkson, ed.,Kluwer Acad. Publ., Dordrecht, Netherlands, 1993, pp. 375–389.

[1314] Mansfield, E.L., and Clarkson, P.A., Applications of the differential algebra packagediffgrob2 to classical symmetries of differential equations, in: J. Symb. Comp.,23 (1997) 517–533.

[1315] Mansfield, E.L., and Hydon, P.E., Towards approximations of difference equationswhich preserve first integrals, in: Proceedings ISSAC2001, B. Mourrain, ed.,ACM, New York, 2001, pp. 217–222.

[1316] Marchenko, V.A., Nonlinear Equations and Operator Algebras, D. Reidel Pub. Co.,Boston, 1988.

[1317] Marchenko, V.A., Long waves in shallow liquid under ice cover, J. Appl. Math.Mech. 52 (1988), 180–183.

[1318] Marchant, A., and Smyth, A., , IMA J. Appl. Math. 5 (1974), 121–130.

[1319] Marchant, T.R., and Smyth, N.F., The extended Korteweg–deVries equationand the resonant flow of a fluid over topography, J. Fluid Mech. 221 (1990),263–288.

[1320] Marı Beffa, G., The theory of differential invariance and infinite dimensionalHamiltonian evolutions, in: Poisson Geometry (Warsaw, 1998), Banach CenterPubl., 51, Polish Acad. Sci., Warsaw, 2000, pp. 187–196.

70

[1321] Marı Beffa, G., The theory of differential invariants and KdV Hamiltonianevolutions, Bull. Soc. Math. France 127 (1999), 363–391.

[1322] Marı Beffa, G., Conformal analogue of the Adler–Gel’fand–Dikii bracket in twodimensions, J. Phys. A 33 (2000), 4689–4707.

[1323] Marı Beffa, G., Relative and absolute differential invariants for conformal curves, J.Lie Theory 13 (2003), 213–245.

[1324] Marı Beffa, G., Poisson brackets associated to the conformal geometry of curves,Trans. Amer. Math. Soc. 357 (2005), 2799–2827.

[1325] Marı Beffa, G., Poisson geometry of differential invariants of curves in somenonsemisimple homogeneous spaces, Proc. Amer. Math. Soc. 134 (2006),779–791.

[1326] Marı Beffa, G., Projective-type differential invariants and geometric curve evolutionsof KdV-type in flat homogeneous manifolds, Ann. Institut Fourier 58 (2008),1295–1335.

[1327] Marı Beffa, G., Hamiltonian Structures on the space of differential invariants ofcurves in flat semisimple homogenous manifolds, Asian J. Math. 12 (2008),1–33.

[1328] Marı Beffa, G., Bi-Hamiltonian flows and their realizations as curves in realsemisimple homogeneous manifolds, Pacific J. Math. 247 (2010), 163–188.

[1329] Marı Beffa, G., and Sanders, J.A., Transvection and differential invariants ofparametrized curves, J. Lie Theory 18 (2008), 93–123.

[1330] Marı Beffa, G., Sanders, J.A., and Wang, J.P., On integrable systems in three-dimensional Riemannian geometry, J. Nonlinear Sci. 12 (2002), 143–167.

[1331] Marquette, I., Superintegrabilite avec Integrales d’Order Trois, AlgebrasPolynomiales et Mechanique Quantique Supersymetrique, Ph.D. Thesis,Universite de Montreal, Canada, 2009.

[1332] Marsden, J.E., Applications of Global Analysis in Mathematical Physics, Math.Lecture Series, vol. 2, Publish or Perish, Boston, Ma, 1974.

[1333] Marsden, J.E., Lectures on Mechanics, Cambridge University Press, Cambridge,1992.

[1334] Marsden, J.E., and Ratiu, T., Reduction of Poisson manifolds, Lett. Math. Phys. 11

(1986), 161–169.

[1335] Marsden, J.E., and Ratiu, T.S., eds., The Breadth of Symplectic and PoissonGeometry, Progress in Math., vol. 232, Birkhauser, Boston, 2005.

[1336] Marsden, J.E., and Tromba, A.J., Vector Calculus, 4th ed., W.H. Freeman, NewYork, 1996.

[1337] Marsden, J.E., and Weinstein, A., Reduction of symplectic manifolds withsymmetry, Rep. Math. Phys. 5 (1974), 121–130.

[1338] Martina, L., Sheftel, M.B., and Winternitz, P., Group foliation and non-invariantsolutions of the heavenly equation, J. Phys. A 34 (2001), 9243–9263.

[1339] Martinet, J., Sur les singularities des forms differentielles, Ann. Inst. Fourier 20

(1970), 95–178.

71

[1340] Masayoshi, M., and Mukasa, T., Parabolic regularizations for the generalizedKorteweg–de Vries equation, Funkcialaj Ekvacioj 14 (1971), 89–110.

[1341] Maschke, H., A new method for determining the differential parameters andinvariants of quadratic differential quantics, Trans. Amer. Math. Soc. 1 (1900),197–204.

[1342] Maschke, H., A symbolic treatment of the theory of invariants of quadraticdifferential quantics of n variables, Trans. Amer. Math. Soc. 4 (1903), 445–469.

[1343] Maschke, H., Invariants of Differential Quantics, Decennial Publications, 1st ser., v.9, The University of Chicago Press, Chicago, 1903.

[1425] Maslov, V.P., and Fedoryuk, M.V., Semi-classical Approximation in QuantumMechanics, D. Reidel Publishing Co., Boston, 1981.

[1345] Matsuda, M., Two methods of integrating Monge–Ampere’s equations, Trans.Amer. Math. Soc. 150 (1970), 327–343.

[1346] Matsuno, Y., Properties of conservation laws of nonlinear evolution equations, J.Phys. Soc. Japan 59 (1990), 3093–3100.

[1347] Matveev, V.B., and Yavor, M.I., Solutions presque periodiques et a N -solitons del’equation hydrodynamique non lineaire de Kaup, Ann. Inst. Henri Poincare,Sec. A 31 (1979), 25–41.

[1348] Mayer, O., and Myller, A., La geometrie centroaffine des courbes planes, Ann. Sci.Univ. Jassy 18 (1933), 234–280.

[1349] McDuff, D., and Salamon, D., Introduction to Symplectic Topology, OxfordUniversity Press, Oxford, 1995.

[1350] McKean, H.P., Boussinesq’s equation on the circle, Commun. Pure Appl. Math. 34

(1981), 599–691.

[1351] McLachlan, R.I., and Atela, P., The accuracy of symplectic integrators, Nonlinearity5 (1992), 541–562.

[1352] McLachlan, R.I., and Quispel, G.R.W., Six lectures on the geometric integration ofODEs, in: Foundations of Computational Mathematics, R. DeVore, A. Iserles,and E. Suli, eds., London Math. Soc. Lecture Note Series, vol. 284, CambridgeUniversity Press, Cambridge, 2001, pp. 155–210.

[1353] McLachlan, R.I., and Quispel, G.R.W., What kinds of dynamics are there? Liepseudogroups, dynamical systems and geometric integration, Nonlinearity 14

(2001), 1689–1705.

[1354] McLachlan, R.I., Quispel, G.R.W., and Robidoux, N., Geometric integration usingdiscrete gradients, Phil. Trans. Roy. Soc. London A 357 (1999), 1021–1045.

[1355] McLachlan, R.I., Quispel, G.R.W., and Turner, G.S., Numerical integrators thatpreserve symmetries and reversing symmetries, SIAM J. Numer. Anal. 35

(1998), 586–599.

[1356] McLachlan, R.I., and Segur, H., A note on the motion of surfaces, Phys. Lett. A194 (1994), 165–172.

[1357] McLaughlin, D.W., and Scott, A.C., A restricted Backlund transformation, J. Math.Phys. 14 (1973), 1817–1828.

72

[1358] McLenaghan, R.G., and Smirnov, R.G., Hamilton–Jacobi theory via CartanGeometry, World Scientific, Singapore, to appear.

[1359] McLenaghan, R.G., Smirnov, R.G., and The, D., An extension of the classicaltheory of algebraic invariants to pseudo-Riemannian geometry and Hamiltonianmechanics, J. Math. Phys. 45 (2004), 1079–1120.

[1360] McOwen, R.C., Partial Differential Equations: Methods and Applications,Prentice–Hall, Inc., Upper Saddle River, N.J., 2002.

[1361] Medolaghi, P., Sulla teoria dei gruppi infiniti continui, Ann. Mat. Pura Appl. 25 (2)(1897), 179–218.

[1362] Medolaghi, P., Classificazione delle equazioni alle derivate parziali del secondoordine, che ammettono un gruppo infinito di trasformazioni puntuali, Ann.Mat. Pura Appl. 1 (3) (1898), 229–263.

[1363] Meleshko, S.V., Differential constraints and one-parameter Lie-Backlund groups,Sov. Math. Dokl. 28 (1983), 37–41.

[1364] Meleshko, S.V., Methods For Constructing Exact Solutions of Partial DifferentialEquations, Springer–Verlag, New York, 2005.

[1365] Melzak, Z.A., Companion to Concrete Mathematics, Wiley-Interscience, New York,1973.

[1366] Memoli, F., On the use of Gromov–Hausdorff distances for shape comparison, in:Symposium on Point Based Graphics, M. Botsch, R. Pajarola, B. Chen, andM. Zwicker, eds., Eurographics Association, Prague, Czech Republic, 2007, pp.81–90.

[1367] Memoli, F., Spectral Gromov-Wasserstein distances for shape matching, in:Workshop on Non-Rigid Shape Analysis and Deformable Image Alignment,ICCV workshop, NORDIA’09; to appear.

[1368] Memoli, F., Gromov-Wasserstein distances and the metric approach to objectmatching, Found. Comput. Math. 11 (2011), 417-487.

[1369] Mendenhall, W., Scheaffer, R.L., and Wackerly, D.D., Mathematical Statistics withApplications, 3rd ed., Duxbury Press, Boston, 1986.

[1370] Menger, K., Untersuchungen uber allgemeine Metrik, Math. Ann. 100 (1928),75–163.

[1371] Menyuk, C.R., Nonlinear pulse progagation in birefringent optical fibers, IEEE J.Quantum Electronics (1987), 174–176.

[1372] Menyuk, C.R., Stability of solitons in birefringent optical fibers. I: Equalpropagation amplitudes, Optics Lett. 12 (1987), 614–616.

[1373] Merton, R.C., Theory of rational option pricing, Bell J. Econ. Management Sci. 4

(1973), 141–183.

[1374] Messiah, A., Quantum Mechanics, John Wiley & Sons, New York, 1976.

[1375] Meyer, F., Bericht uber den gegenwartigen Stand der Invariantentheorie,Jahresberichte Deutschen Math.–Verein. 1 (1890), 79–290.

[1376] Meyer, P.A., Qu’est ce qu’une differentielle d’ordre n?, Expo. Math. 7 (1989),249–264.

73

[1377] Micchelli, C.A., A constructive approach to Kergin interpolation in Rk: multivariate

B–splines and Lagrange interpolation, Rocky Mountain J. Math. 10 (1980),485–497.

[1378] Micchelli, C.A., and Milman, P., A formula for Kergin interpolation in Rk, J.

Approx. Theory 29 (1980), 294–296.

[1379] Mikhailov, A.V., Novikov, V.S., and Wang, J.P., On classification of integrablenonevolutionary equations, Stud. Appl. Math. 118 (2007), 419–457.

[1380] Mikhailov, A.V., Shabat, A.B., and Sokolov, V.V., The symmetry approach toclassification of integrable equations, in: What is Integrability?, V.E. Zakharov,ed., Springer Verlag, New York, 1991, pp. 115–184.

[1381] Mikhailov, A.V., Shabat, A.B., and Yamilov, R.I., The symmetry approach toclassification of nonlinear equations. Complete lists of integrable systems,Russian Math. Surveys 42:4 (1987), 1–63.

[1382] Mikhailov, A.V., Shabat, A.B., and Yamilov, R.I., Extension of the module ofinvertible transformations. Classification of integrable systems, Commun. Math.Phys. 115 (1988), 1–19.

[1383] Mikula, K., and Sevcovic, D., Evolution of plane curves driven by a nonlinearfunction of curvature and anisotropy, SIAM J. Appl. Math. 61 (2001),1473–1501.

[1384] Mikula, K., and Sevcovic, D., Computational and qualitative aspects of evolution ofcurves driven by curvature and external force, Comput. Visual. Sci. 6 (2004),211–225.

[1385] Mikula, K., and Sevcovic, D., Evolution of curves on a surface driven by thegeodesic curvature and external force, Appl. Anal. 85 (2006), 345–362.

[1386] Milan, F., Pick invariant and affine Gauss–Kronecker curvature, Geom. Dedicata 45

(1993), 41–47.

[1387] Miller, W., Jr., Lie Theory and Special Functions, Academic Press, New York, 1968.

[1388] Miller, W., Jr., Symmetry Groups and Their Applications, Academic Press, NewYork, 1972.

[1389] Miller, W., Jr., Symmetry and Separation of Variables, Encyclopedia of Mathematicsand Its Applications, vol. 4, Addison–Wesley Publ. Co., Reading, Mass., 1977.

[1390] Miller, W., Jr., Mechanisms for variable separation in partial differential equationsand their relationship to group theory, in: Symmetries and NonlinearPhenomena, D. Levi and P. Winternitz, eds., CIF Series, Vol. 9, WorldScientific, Singapore, 1988, pp. 188–221.

[1391] Milne–Thompson, L.M., The Calculus of Finite Differences, Macmillan and Co.,Ltd., London, 1951.

[1392] Milson, R., Multi-Dimensional Lie Algebraic Operators, Ph.D. Thesis, McGillUniversity, Montreal, 1995.

[1393] Milson, R., Flat Lie-algebraic systems and separation of variables, preprint,University of Minnesota, 1995.

[1394] Milson, R., and Richter, D., Quantization of cohomology in semi-simple Liealgebras, J. Lie Theory 8 (1998), 401–414.

74

[1395] Milton, G.W., and Movchan, A.V., A correspondence between plane elasticity andthe two-dimensional real and complex dielectric equations in anisotropic media,Proc. Roy. Soc. London A 450 (1995), 293–317.

[1396] Min-oo and Ruh, E.A., Comparison theorems for compact symmetric spaces, Ann.Sci. Ecole Norm. Sup. 12 (1979), 335–353.

[1397] Minzoni, A., Rosenbaum, M., and Turbiner, A.V., Quasi-exactly-solvablemany-body problems, preprint, hep-th/9606092, ICN-UNAM 96-07, Mexico,1996.

[1398] Misawa, T., Conserved quantities and symmetry for stochastic dynamical systems,Phys. Lett. A 195 (1994), 185–189.

[1399] Misawa, T., Conserved quantities and symmetries related to stochastic dynamicalsystems, Ann. Inst. Statist. Math. 51 (1999), 779–802.

[1400] Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, W.H. Freeman, SanFrancisco, 1973.

[1401] Miura, R.M., Korteweg–deVries equation and generalizations. I. A remarkableexplicit nonlinear transformation, J. Math. Phys. 9 (1968), 1202–1204.

[1402] Miura, R.M., Gardner, C.S., and Kruskal, M.D., Korteweg–deVries equation andgeneralizations. II. Existence of conservation laws and constants of the motion,J. Math. Phys. 9 (1968), 1204–1209.

[1403] Moakher, M., and Maddocks, J.H., A double-strand elastic rod theory, Arch.Rational Mech. Anal. 177 (2005), 53–91.

[1404] Mokhov, O.I., Hamiltonian systems of hydrodynamic type and constant curvaturemetrics, Phys. Lett. A 166 (1992), 215–216.

[1405] Mokhov, O.I., Symplectic and Poisson structures on loop spaces of smoothmanifolds, and integrable systems, Russian Math. Surveys 53:3 (1998), 85–192.

[1406] Mokhov, O.I., and Ferapontov, E.V., Non-local Hamiltonian operators ofhydrodynamic type related to metrics of constant curvature, Russian Math.Surveys 45:3 (1990), 218–219.

[1407] Moller, H.M., Grobner bases and numerical analysis, in: Grobner Bases andApplications, B. Buchberger and F. Winkler, eds., London MathematicalSociety Lecture Note Series 251, Cambridge University Press, Cambridge, 1998,pp. 159–178.

[1408] Montgomery, D., and Zippin, L., Topological Transformation Groups, John Wiley &Sons, New York, 1955.

[1409] Montgomery, J., O’Raifeartaigh, L., and Winternitz, P., Two-variable expansions ofrelativistic amplitudes and the subgroups of the SU(2, 1) group, Nucl. Phys. B11 (1969), 39–54.

[1410] Moon, F.C., Chaotic Vibrations, John Wiley & Sons, New York, 1987.

[1411] Moon, P., and Spencer, D.E., Field Theory Handbook, Springer-Verlag, New York,1971.

[1412] Moons, T., Pauwels, E., Van Gool, L., and Oosterlinck, A., Foundations ofsemi-differential invariants, Int. J. Comput. Vision 14 (1995), 25–48.

75

[1413] Moore, J.D., Lectures on Seiberg–Witten Invariants, Lecture Notes in Math., vol.1629, Springer–Verlag, New York, 1996.

[1414] Morel, J.–M., and Solimini, S., Variational Methods in Image Segmentation,Progress in Nonlinear Diff. Eqs., vol. 14, Birkhauser, Boston, 1995.

[1415] Morgan, F., Geometric Measure Theory: a Beginner’s Guide, Academic Press, NewYork, 2000.

[1416] Morikawa, H., Some analytic and geometric applications of the invariant theoreticmethod, Nagoya Math. J. 80 (1980), 1–47.

[1417] Morimoto, T., Transitive Lie algebras admitting differential systems, HokkaidoMath. J. 17 (1988), 45–81.

[1418] Morosi, C., The R-matrix theory and the reduction of Poisson manifolds, J. Math.Phys. 33 (1992), 941–952.

[1419] Morosi, C., and Pizzocchero, L., New results on multiplication in Sobolev spaces,Adv. Appl. Math. 44 (2010), 393–432.

[1420] Morozov, O., Moving coframes and symmetries of differential equations, J. Phys. A35 (2002), 2965–2977.

[1421] Morozov, O., Cartan structure of symmetry pseudo-groups of differential equationsvia the moving coframes method, preprint, 2002.

[1422] Morozov, O.I., Structure of symmetry groups via Cartan’s method: survey of fourapproaches, SIGMA: Symmetry Integrability Geom. Methods Appl. 1 (2005),006.

[1423] Morozov, A.Y., Perelomov, A.M., Rosly, A.A., Shifman, M.A., and Turbiner, A.V.,Quasi-exactly solvable quantal problems: one-dimensional analogue of rationalconformal field theories, Int. J. Mod. Phys. A 5 (1990), 803–832.

[1424] Morrey, C.B., Jr., Multiple Integrals in the Calculus of Variations, Springer–Verlag,New York, 1966.

[1425] Morse, P.M., and Feshbach, H., Methods of Theoretical Physics, McGraw–Hill, NewYork, 1953.

[1426] Morton, K.W., and Mayers, D.F., Numerical Solution of Partial DifferentialEquations, 2nd ed., Cambridge University Press, Cambridge, 2005.

[1427] Moser, J., A rapidly convergent iteration method and non-linear partial differentialequations. I,II, Ann.Scuola Norm. Sup. Pisa 20 (1966), 265–315, 499–535 .

[1428] Moser, J., and Veselov, A.P., Discrete versions of some classical integrable systemsand factorization of matrix polynomials, Commun. Math. Phys. 139 (1991),217–243.

[1429] Mostow, G.D., The extensibility of local Lie groups of transformations and groupson surfaces, Ann. Math. 52 (1950), 606–636.

[1430] Mostow, G.D., Equivariant embeddings in Euclidean space, Ann. Math. 65 (1957),432–446.

[1431] Mount, K.R., A remark on determinantal loci, J. London Math. Soc. 42 (1967),595–598.

[1432] Moyal, J.E., Quantum mechanics as a statistical theory, Proc. Camb. Phil. Soc. 45

(1949), 99–124.

76

[1433] Muhlbach, G., A recurrence formula for generalized divided differences and someapplications, J. Approx. Theory 9 (1973), 165–172.

[1434] Muhlbach, G., A recurrence relation for generalized divided differences with respectto ECT-systems, Numer. Algorithms 22 (1999), 317–326.

[1435] Mumford, D., Algebraic Geometry I Complex Projective Varieties, Springer–Verlag,New York, 1976.

[1436] Mumford, D., Tata Lectures on Theta. I, Birkhauser, Boston, Mass., 1983.

[1437] Mumford, D., The problem of robust shape descriptors, in: Proceedings of the FirstInternational Conference in Computer Vision, IEEE Comput. Soc. Press,Washington DC, 1987, pp. 602–606.

[1438] Mumford, D., Mathematical theories of shape: Do they model perception?, in:Geometrical Methods in Computer Vision, SPIE Proceedings, vol. 1570, SanDiego, 1991, pp. 2–10.

[1439] Mumford, D., Elastica and computer vision, in: Algebraic Geometry and itsApplications, C. Bajaj, ed., Springer–Verlag, 1994, pp. 491–506.

[1440] Mumford, D., Geometric Invariant Theory, 3rd ed., Springer–Verlag, New York,1994.

[1441] Mundy, J.L., and Zisserman, A., eds., Geometric Invariance in Computer Vision,MIT Press, Cambridge, Mass., 1992.

[1442] Mundy, J.L., and Zisserman, A., Projective geometry for machine vision, appendix

in: Geometric Invariance in Computer Vision, J.L. Mundy and A. Zisserman,eds., MIT Press, Cambridge, Mass., 1992, pp. 463–519.

[1443] Mundy, J.L., Zisserman, A., and Forsyth, D., eds., Applications of Invariance inComputer Vision, Springer–Verlag, New York, 1994.

[1444] Munoz, J., Muriel, F.J., and Rodrıguez, J., On the finiteness of differentialinvariants, J. Math. Anal. Appl. 284 (2003), 266–282.

[1445] Munthe–Kaas, H.Z., Runge–Kutta methods on Lie groups, BIT 38 (1998), 92–111.

[1446] Muraki, D.J., and Kath, W.L., Hamiltonian dynamics of solitons in optical fibers,Physica D 48 (1991), 53–64.

[1447] Muriel, C., and Romero, J.L., C∞–symmetries and non-solvable symmetry algebras,IMA J. Appl. Math. 66 (2001), 477–498.

[1448] Muriel, C., and Romero, J.L., C∞–symmetries and reduction of equations withoutLie point symmetries, J. Lie Theory 13 (2003), 167–188.

[1449] Murillo, R., Cartan’s Equivalence Method and an Application to Second OrderEvolution Equations, Ph.D. Thesis, University of Minnesota, 1994.

[1450] Murphy, G.J.., C∗–Algebras and Operator Theory, Academic Press, San Diego, 1990.

[1451] Murray, R.N., Li, Z.X., and Sastry, S.S., A Mathematical Introduction to RoboticManipulation, CRC Press, Boca Raton, FL, 1994.

[1452] Muskhelishvili, N.I., Some Basic Problems in the Mathematical Theory of Elasticity,Noordhoff, Groningen, 1953.

[1453] Musso, E., and Nicolodi, L., Invariant signature of closed planar curves, J. Math.Imaging Vision 35 (2009), 68–85.

77

[1454] Muto, V., Soliton oscillations for DNA dynamics, Acta Appl. Math. 115 (2011),5–15.

[1455] Nagano, T., Linear differential systems with singularities and an application totransitive Lie algebras, J. Math. Soc. Japan 18 (1966), 398–404.

[1456] Nagata, M., Lectures on the 14th Problem of Hilbert, Lecture Notes, vol. 31, TataInst. Fund. Research, Bombay, India, 1965.

[1457] Nagata, M., On the 14-th Problem of Hilbert, Amer. J. Math. 81 (1959), 766–772.

[1458] Nagashima, H., Experiment on solitary waves in the nonlinear transmission linedescribed by the equation ∂u/∂t+ u∂u/∂x− ∂5u/∂x5, J. Phys. Soc. Japan 47

(1979), 1387–1388.

[1459] Nagashima, H., and Kuwahara, M., Computer simulation of solitary waves of thenonlinear wave equation ut + uux − u(5x) = 0, J. Phys. Soc. Japan 50 (1981),3792–3800.

[1460] Naimark, M. A., Linear Representations of the Lorentz Group, Macmillan, NewYork, 1964.

[1461] Naimark, M.A., and Stern, A.I., Theory of Group Representations, Springer–Verlag,New York, 1982.

[1462] Nakajima, H., Lectures on Hilbert Schemes of Points on Surfaces, AmericanMathematical Society, Providence, R.I.,1999.

[1463] Nakayama, K., Segur, H., and Wadati, M., Integrability and motion of curves, Phys.Rev. Lett. 69 (1992), 2603–2606.

[1464] Nakayama, K., and Wadati, M., The motion of surfaces, J. Phys. Soc. Japan 62

(1993), 1895–1901.

[1465] Narasimhan, R., Analysis on Real and Complex Manifolds, North Holland Publ. Co.,Amsterdam, 1968.

[1466] Neamtu, M., Multivariate divided difference. I. Basic properties, SIAM J. Numer.Anal. 29 (1992), 1435–1445.

[1467] Netto, E., Vorlesungen uber Algebra, vol. 2, B.G. Teubner, Leipzig, 1900.

[1468] Neuenschwander, D.E., Emmy Noether’s Wonderful Theorem, Johns HopkinsUniversity Press, Baltimore, MD, 2011.

[1469] Neuman, F., Criterion of global equivalence of linear differential equations, Proc.Roy. Soc. Edinburgh A 97 (1984), 217–221.

[1470] Neuman, F., Ordinary linear differential equations — a survey of the global theory,in: Equadiff 6, J. Vosmansky and M. Zlamal, eds., Lecture Notes in Math. vol.1192, Springer–Verlag, New York, 1986.

[1471] Neuman, F., Global Properties of Linear Ordinary Differential Equations, KluwerAcademic Publ., Boston, 1991.

[1472] Newell, A., Solitons in Mathematics and Physics, CBMS–NSF Conference Series inApplied Math., vol. 48, SIAM, Philadelphia, 1985.

[1473] Nwogu, O., Alternative form of Boussinesq equations for nearshore wavepropagation, J. Waterway Port Coastal Ocean Eng. 119 (1993), 618–638.

[1474] Niethammer, M., Tannenbaum, A., and Angenent, S., Dynamic active contours forvisual tracking, IEEE Trans. Auto. Control 51 (2006), 562–579.

78

[1475] Nilsson, J.W., and Riedel, S., Electric Circuits, 7th ed., Prentice–Hall, Inc., UpperSaddle River, N.J., 2005.

[1476] Nitsche, J.C.C., Lectures on Minimal Surfaces, Cambridge University Press,Cambridge, 1988.

[1477] Noether, E., Uber die Bildungen des Formensystems der ternaren biquadratischenForm, J. Reine Angew. Math. 134 (1908), 23–90.

[1478] Noether, E., Invariante Variationsprobleme, Nachr. Konig. Gesell. Wissen.Gottingen, Math.–Phys. Kl. (1918), 235–257. (See Kosmann-Schwarzbach,Y., The Noether Theorems. Invariance and Conservation Laws in the TwentiethCentury , Springer, New York, 2011, for an English translation.)

[1479] Noether, E., Invariante Variationsprobleme, Nachr. Konig. Gesell. Wissen.Gottingen, Math.–Phys. Kl. (1918), 235–257. (See Transport Theory andStat. Phys. 1 (1971), 186–207 for an English translation.)

[1480] Northcott, D.G., Some remarks on the theory of ideals defined by matrices, Quart.J. Math. Oxford 85 (1963), 193–204.

[1481] Novikov, S.P., The periodic problem for the Korteweg–deVries equation, Func. Anal.Appl. 8 (1974), 236–246.

[1482] Novikov, S.P., The geometry of conservative systems of hydrodynamic type. Themethod of averaging for field theoretical systems, Russian Math. Surveys 40:4(1985), 85–98.

[1483] Novikov, S.P. (ed.), Topology I, Encyclopedia of Mathematical Sciences, vol. 12,Springer–Verlag, New York, 1996.

[1484] Nucci, M.C., Iterating the nonclassical symmetries method, Physica D 78 (1994),124–134.

[1485] Nucci, M.C., and Clarkson, P., The nonclassical method is more general than thedirect method for symmetry reductions. An example of the Fitzhugh–Nagumoequation, Phys. Lett. A 164 (1992), 49–56.

[1486] Nutbourne, A.W., and Martin, R.R., Differential Geometry Applied to Curve andSurface Design, Vol. 1: Foundations, Ellis Horwood, Chichester, UK, 1988.

[1487] Nutku, Y., On a new class of completely integrable nonlinear wave equations. II.Multi-Hamiltonian structure, J. Math. Phys. 28 (1987), 2579–2585.

[1488] Nutku, Y., and Sheftel, M.B., Differential invariants and group foliation for thecomplex Monge–Ampere equation, J. Phys. A 34 (2001), 137–156.

[1489] Oaku, T., Some algorithmic aspects of the D-module theory, in: New Trends inMicrolocal Analysis, J.–M. Bony, M. Morimoto, eds, Springer–Verlag, NewYork, 1997.

[1490] Oaku, T., and Takayama, N., An algorithm for de Rham cohomology groups ofthe complement of an affine variety via D-module computation, J. Pure Appl.Algebra 139 (1999), 201–233.

[1491] Oberhettinger, F., Tables of Bessel Transforms, Springer-Verlag, New York, 1972.

[1492] Oberhettinger, F., Tables of Fourier Transforms and Fourier Transforms ofDistributions, Springer-Verlag, New York, 1990.

79

[1493] Oberhettinger, F., and Badii, L., Tables of Laplace Transforms, Springer-Verlag,New York, 1973.

[1494] Oevel, W., Master symmetries: weak action/angle structure for hamiltonian and nonhamiltonian systems, preprint, 1986.

[1495] Oldenburger, R., Higher dimensional determinants, Amer. Math. Monthly 47 (1940),25–33.

[1496] Ollivier, F., Standard bases of differential ideals, in: Applied Algebra, AlgebraicAlgorithms and Error-Correcting Codes, S. Sakata, ed., Lecture Notes in Comp.Sci., vol. 508; Springer–Verlag, New York, 1990, pp. 304–321.

[1497] Olshevsky, V., Unitary Hessenberg matrices and the generalizedParker–Forney–Traub algorithm for inversion of Szego–Vandermonde matrices,preprint, Georgia State University, 2003.

[1498] Olshevsky, V., Associated polynomials, unitary Hessenberg matrices andfast generalized Parker–Traub and Bjorck–Pereyra algorithms forSzego–Vandermonde matrices, in: Structured Matrices: Recent Developmentsin Theory and Computation, D. Bini, E. Tyrtyshnikov, and P. Yalamov., eds.,NOVA Science Publ., Hauppauge, NY, 2001, pp. 67-78.

[1499] Olver, F.W.J., Asymptotics and Special Functions, Academic Press, New York, 1974.

[1500] Olver, F.W.J., Lozier, D.W., Boisvert, R.F., and Clark, C.W., eds., NIST Handbookof Mathematical Functions, Cambridge University Press, Cambridge, 2010.

[1501] Omori, H., On the group of diffeomorphisms of a compact manifold, Proc. Symp.Pure Math. 15 (1970), 115–162.

[1502] Omori, H., Infinite-Dimensional Lie Transformation Groups, Lecture Notes inMath., vol. 427, Springer–Verlag, New York, 1974.

[1503] Ondich, J., Partially Invariant Solutions of Partial Differential Equations,Ph.D. Thesis, University of Minnesota, 1989.

[1504] Ondich, J., The reducibility of partially invariant solutions of partial differentialequations, Euro. J. Appl. Math. 6 (1995), 329–354.

[1505] Ondich, J., A differential constraints approach to partial invariance, Euro. J. Appl.Math. 6 (1995), 631–638.

[1506] O’Neil, P.V., Advanced Engineering Mathematics, Fourth Edition, Wadsworth Publ.Co., Belmont, Ca., 1995.

[1507] Onishchik, A.L. (ed.), Lie Groups and Lie Algebras I, Encyclopedia of MathematicalSciences, vol. 20, Springer–Verlag, New York, 1993.

[1508] Onishchik, A.L., and Vinberg, E.B., eds., Lie Groups and Lie Algebras III,Encyclopedia of Mathematical Sciences, vol. 41, Springer–Verlag, New York,1994.

[1509] Oostendorp, T.F., van Oosterom, A., and Huiskamp, G., Interpolation on atriangulated 3D surface, J. Comp. Phys. 80 (1989), 331–343.

[1510] Oron, A., and Rosenau, P., Some symmetries of the nonlinear heat and waveequations, Phys. Lett. A 118 (1986), 172–176.

[1511] Ortega, J.M., Numerical Analysis; A Second Course, Academic Press, New York,1972.

80

[1512] Oruc, H., and Phillips, G.M., Explicit factorization of the Vandermonde matrix,Linear Algebra Appl. 315 (2000), 113–123.

[1513] Osada, R., Funkhouser, T., Chazelle, B., and Dobkin, D., Shape distributions, ACMTrans. Graphics 21 (2002), 807–832.

[1514] Osher, S.J., and Rudin, L.I., Feature-oriented image enhancement using shockfilters, SIAM J. Numer. Anal. 27 (1990), 919–940.

[1515] Osher, S.J., and Sethian, J.A., Front propagation with curvature dependent speed:Algorithms based on Hamilton–Jacobi formulations, J. Comp. Phys. 79 (1988),12–49.

[1516] Oskolkov, K.I., Schrodinger equation and oscillatory Hilbert transforms of seconddegree, J. Fourier Anal. Appl. 4 (1998), 341–356.

[1517] Oskolkov, K.I., A class of I.M. Vinogradov’s series and its applications in harmonicanalysis, in: Progress in Approximation Theory , Springer Ser. Comput. Math.,19, Springer, New York, 1992, pp. 353–402.

[1518] Ovsiannikov, L.V., Determination of the group of a linear second order differentialequation, Sov. Math. Dokl. 1 (1960), 481–485.

[1519] Ovsiannikov, L.V., Group Analysis of Differential Equations, Academic Press, NewYork, 1982.

[1520] Ovsienko, V., Exotic deformation quantization, J. Diff. Geom. 45 (1997), 390–406.

[1521] Ovsienko, O.D., and Ovsienko, V.Y., Lie derivatives of order n on the line. Tensormeaning of the Gelfand–Dikii bracket, Adv. Soviet Math. 2 (1991), 221–231.

[1522] Ovsienko, V., and Redou, P., Generalized transvectants–Rankin–Cohen brackets,Lett. Math. Phys. 63 (2003), 19–28.

[1523] Owen, A.B., Multidimensional variation for quasi-Monte Carlo, in: ContemporaryMultivariate Analysis and Design of Experiments, J. Fan and G. Li, eds, WorldScientific Press, Series in Biostatistics, vol. 2, Singapore, 2005, pp. 49–74.

[1524] Ozer, T., The group-theoretical analysis of nonlocal Benney equation, Rep. Math.Phys. 60 (2007), 1–37.

[1525] Page, L., Brin, S., Motwani, R., and Winograd, T., The PageRank citation ranking:bringing order to the web, preprint, Stanford University, 1998.

[1526] Palais, R.S., A Global Formulation of the Lie Theory of Transformation Groups,Memoirs Amer. Math. Soc., no. 22, Providence, R.I., 1957.

[1527] Palais, R.S., Imbedding of compact, differentiable transformation groups inorthogonal representations, J. Math. Mech. 6 (1957), 673–678.

[1528] Palais, R.S., Seminar on the Atiyah-Singer Index Theorem, Ann. Math. Studies, no.57, Princeton University Press, Princeton, N.J., 1965.

[1529] Pankrat’ev, E.V., Computations in differential and difference modules, Acta Appl.Math. 16 (1989), 167–189.

[1530] Pascal, E., Sopra le relazioni che possono sussistere identicamente fra formacionisimbolische del tipo invariantivo nella teoria generale delle forme algebriche,Rom. Acc. Lincei Mem. 5 (1888), 375–387.

81

[1531] Patera, J., Winternitz, P., and Zassenhaus, H., Continuous subgroups of thefundamental groups of physics I. General method and the Poincare group, J.Math. Phys. 16 (1975), 1597–1614.

[1532] Pauwels, E., Moons, T., Van Gool, L.J., Kempenaers, P., and Oosterlinck, A.,Recognition of planar shapes under affine distortion, Int. J. Comput. Vision 14

(1995), 49–65.

[1533] Peano, G., Formazioni invariantive delle corrispondenze, Giornale Mat. Univ. Ital.20 (1882), 79–100.

[1534] Peetre, J., Une caracterisation abstraite des operateurs differentiels, Math. Scand. 7

(1959), 211–218.

[1535] Pego, R., and Weinstein, M., Eigenvalues, and instability of solitary waves, Phil.Trans. Roy. Soc. London A 340 (1992), 47–94.

[1536] Pego, R., and Weinstein, M., Asymptotic stability of solitary waves, Commun.Math. Phys. 164 (1994), 305–349.

[1537] Peitgen, H.-O., and Richter, P.H., The Beauty of Fractals: Images of ComplexDynamical Systems,Springer–Verlag, New York, 1986.

[1538] Peksen, O., and Khadjiev, D., On invariants of curves in centro-affine geometry, J.Math. Kyoto Univ. 44 (2004), 603–613.

[1539] Pele, O., and Werman, M., A linear time histogram for improved SIFT matching,in: Computer Vision - ECCV 2008, part III, D. Forsyth, P. Torr, and A.Zisserman, eds., Lecture Notes in Computer Science, vol. 5304, Springer–Verlag,Berlin, 2008, pp. 495–508.

[1540] Peregrine, D.H., Calculations of the development of an undular bore, J. Fluid Mech.25 (1966), 321–330.

[1541] Perona, P., and Malik, J., Scale-space and edge detection using anisotropic diffusion,IEEE Trans. Pattern Anal. Machine Intel. 12 (1990), 629–639.

[1542] Peter, F., and Weyl, H., Die Vollstandigkeit der primitiven Darstellungen einergeschlossenen kontinuerlichen Gruppe, Math. Ann. 97 (1927), 737–755.

[1543] Petiau, G., Sur des fonctions d’ondes d’un type nouveau, solutions d’equationsnon lineaires generalisant l’equation des ondes de la mecanique ondulatoire,Comptes Rendus Acad. Sci. Paris A–B 244 (1957), 1890–1893.

[1544] Petiau, G., Sur un generalisation non lineaire de la mecanique ondulatoire et lesproprietes des fonctions d’onde correspondantes, Nuovo Cimento 9 (1958),542–568.

[1545] Pfaff, J.F., Methodus generalis, aequationes differentiarum partialium nec nonaequationes differentiales vulgates, ultrasque primi ordinis, inter quotcunquevariables, complete integrandi, Abh. Konig. Akad. Wissen. Berlin (1814–5),76–136. (See Ostwald’s Klassiker der Exacten Wissenschaften, vol. 129, Verlagvon Wilhelm Engelman, Leipzig, 1902, for a German translation.)

[1546] Pham, D.T., and Karaboga, D., Intelligent Optimisation Techniques: GeneticAlgorithms, Tabu Search, Simulated Annealing and Neural Networks,Springer–Verlag, New York, 2000.

82

[1547] Pinchover, Y., and Rubinstein, J., An Introduction to Partial Differential Equations,Cambridge University Press, Cambridge, 2005.

[1548] Plaut, C., Metric curvature, convergence, and topological finiteness, Duke Math. J.66 (1992), 43–57.

[1549] Plaut, C., Associativity and the local version of Hilbert’s fifth problem, notes,University of Tennesee, 1993.

[1550] Pochhammer, L., Ueber hypergeometrische Functionen nter Ordnung, J. ReineAngew. Math. 71 (1870), 316–352.

[1551] Pohjanpelto, P.J., Symmetries of Maxwell’s Equations, Ph.D. Thesis, University ofMinnesota, 1989.

[1552] Pohjanpelto, J., First order generalized symmetries of Maxwell’s equations, Phys.Lett. A 129 (1988), 148–150.

[1553] Pohozaev, S.I., On the eigenfunctions of the equation ∆u + λf(u) = 0, Dokl. Akad.Nauk SSSR 165 (1965), 36–39; Soviet Math. Dokl.; 6 (1965) 1408–1411.

[1554] Pohozaev, S.I., On eigenfunctions of quasilinear elliptic problems, Mat. Sbornik 82

(1970), 192–212; Math. USSR Sbornik; 11 (1970) 171–188.

[1555] Poincare, H., Papers on Fuchsian Functions, J. Stillwell, transl., Springer–Verlag,New York, 1985.

[1556] Polyanin, A.D., Handbook of Linear Partial Differential Equations for Engineers andScientists, Chapman & Hall/CRC, Boca Raton, Fl., 2002.

[1557] Polyanin, A.D., and Zaitsev, V.F., Handbook of Exact Solutions for OrdinaryDifferential Equations, 2nd ed., Chapman & Hall/CRC, Boca Raton, Fl., 2003.

[1558] Polyanin, A.D., and Zaitsev, V.F., Handbook of Nonlinear Partial DifferentialEquations, Chapman & Hall/CRC, Boca Raton, Fl., 2004.

[1559] Pomeau, Y., Ramani, A., and Grammaticos, B., Structural stability of theKorteweg–deVries solitons under a singular perturbation, Physica D 31 (1988),127–134.

[1560] Pommaret, J.F., Systems of Partial Differential Equations and Lie Pseudogroups,Gordon and Breach, New York, 1978.

[1561] Pommaret, J.F., Differential Galois Theory, Gordon and Breach, New York, 1983.

[1562] Pommaret, J.F., Partial Differential Equations and Group Theory, Kluwer Acad.Publ., Dordrecht, Netherlands, 1994.

[1563] Ponce, G., Regularity of solutions to nonlinear dispersive equations, J. Diff. Eq. 78

(1989), 122–135.

[1564] Ponce, G., Lax pairs and higher order models for water waves, J. Diff. Eq. 102

(1993), 360–381.

[1565] Pontrjagin, L., Topological Groups, Princeton University Press, Princeton, N.J.,1946.

[1566] Popov, V.L., Invariant theory, Amer. Math. Soc. Transl. 148 (1991), 99–111.

[1567] Popov, V.L., Groups, Generators, Syzygies, and Orbits in Invariant Theory, Transl.Math. Monographs, vol. 100, Amer. Math. Soc., Providence, R.I., 1992.

[1568] Porteous, I., Clifford Algebras, Cambridge Studies in Advanced Mathematics, vol.50, Cambridge University Press, Cambridge, 1995.

83

[1569] Posluszny, J., and Rubel, L.A., The motions of an ordinary differential equation, J.Diff. Eq. 34 (1979), 291–302.

[1570] Post, G., Classification of graded, finite-dimensional Lie algebras of vector fields,preprint, no. 1178, Universiteit Twente, Netherlands.

[1571] Post, G., and van den Hijligenberg, N., gl(λ) and differential operators preservingpolynomials, Acta Appl. Math. 44 (1996), 257–268.

[1572] Post, G., and Turbiner, A.V., Classification of linear differential operators with aninvariant subspace of monomials, Russian J. Math. Phys. 3 (1995), 113–122.

[1573] Pottmann, H., Wallner, J., Huang, Q., and Yang, Y.–L., Integral invariants forrobust geometry processing, Comput. Aided Geom. Design 26 (2009), 37–60.

[1574] Powell, M.J.D., Approximation Theory and Methods, Cambridge University Press,Cambridge, 1981.

[1575] Prelle, M.J., and Singer, M.F., Elementary first integrals of differential equations,Trans. Amer. Math. Soc. 279 (1982), 215–229.

[1576] Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., NumericalRecipes in C: The Art of Scientific Computing, 2nd ed., Cambridge UniversityPress, Cambridge, 1995.

[1577] Pucci, E., Similarity reductions of partial differential equations, J. Phys. A 25

(1992), 2631–2640.

[1578] Pucci, P., and Serrin, J., A general variational identity, Indiana Univ. Math. J. 35

(1986), 681–703.

[1579] Pukhnachev, V.V., Equivalence transformations and hidden symmetries of evolutionequations, Sov. Math. Dokl. 35 (1987), 555–558.

[1580] Quesne, C., An sl(4,R) Lie algebraic treatment of the first family of Poschl-Tellerpotentials, J. Phys. A 21 (1988), 4487–4500.

[1581] Quesne, C., Quadratic algebra approach to an exactly solvable position-dependentmass Schrodinger equation in two dimensions, SIGMA 3 (2007), 067.

[1582] Rabut, C., Multivariate divided differences with simple knots, SIAM J. Numer.Anal. 38 (2000), 1294–1311.

[1583] Radack, G.M., and Badler, N.I., Jigsaw puzzle matching using a boundary-centeredpolar encoding, Comp. Graphics Image Proc. 19 (1982), 1–17.

[1584] Ramakrishnan, V., and Schaettler, H., Controlled invariant distributions and groupinvariance, J. Math. Syst. Est. Control 1 (1991), 263–278.

[1585] Rankin, R.A., The construction of automorphic forms from the derivatives of agiven form, J. Indian Math. Soc. 20 (1956), 103–116.

[1586] Rauch Wojciechowski, S., Superintegrability of the Calogero–Moser system, Phys.Lett. A 95 (1983), 279–281.

[1628] Reed, M., and Simon, B., Methods of Modern Mathematical Physics, AcademicPress, New York, 1972.

[1588] Reed, M., and Simon, B., Methods of Modern Mathematical Physics, vol. 1,Academic Press, New York, 1972.

[1589] Reed, M., and Simon, B., Functional Analysis, vol. 2, Academic Press, New York,1975.

84

[1590] Reichel, W., Uniqueness Theorems for Variational Problems by the Methodof Transformation Groups, Lecture Notes in Mathematics, vol. 1841,Springer–Verlag, New York, 2004.

[1591] Reichstein, B., On symmetric operators of higher degree and their application,Linear Algebra Appl. 75 (1986), 155–172.

[1592] Reichstein, B., On expressing a cubic form as a sum of cubes of linear forms, LinearAlgebra Appl. 86 (1987), 91–122.

[1593] Reid, G.R., Algorithms for reducing a system of PDEs to standard form,determining the dimension of its solution space and calculating its Taylorseries solution, Euro. J. Appl. Math. 2 (1991), 293–318.

[1594] Reid, G.R., Finding abstract Lie symmetry algebras of differential equationswithout integating determining equations, Euro. J. Appl. Math. 2 (1991),319–340.

[1595] Reid, G.J., Boulton, A., and Lisle, I.G., Characterizing Lie equations by theirinfinitesimal symmetries, preprint, 2001.

[1596] Reid, G.J., and Lisle, I.G., Symmetry classification using non-commutative invariantdifferential operators, preprint, Found. Comput. Math.; a(2006).

[1597] Reid, G.J., Wittkopf, A.D., and Boulton, A., Reduction of systems of nonlinearpartial differential equations to simplified involutive forms, Euro. J. Appl.Math. 7 (1996), 635–666.

[1598] Renardy, M., and Rogers, R.C., An Introduction to Partial Differential Equations,Academic Press, New York, 1993.

[1599] Renschuch, B., Roloff, H., and Rasputin, G.G., Vergessene Arbeit des LenengraderMathematikers N.M. Gjunter zur Theorie der Polynomideale, Wiss. Zeit.Padagogische Hochschule Potsdam 31 (1987), 111–126. (See ACM SIGSAMBull. 37 (2003), 35–48 for an English translation.)

[1600] Reyes, E.G., Pseudo-spherical surfaces and integrability of evolution equations, J.Diff. Eq. 147 (1998), 195–230. Erratum: J. Diff. Eq. 153 (1999) 223–224.

[1601] Reyes, E.G., Some geometric aspects of integrability of differential equations in twoindependent variables, Acta Appl. Math. 64 (2000), 75–109.

[1602] Reyes, E.G., On geometrically integrable equations and hierarchies ofpseudo-spherical type, Contemp. Math. 285 (2001), 145–155.

[1603] Reyes, E.G., Geometric integrability of the Camassa–Holm equation, Lett. Math.Phys. 59 (2002), 117–131.

[1604] Reznick, B.A., Sums of Even Powers of Real Linear Forms, Memoirs Amer. Math.Soc., vol. 96, no. 463, Providence, R.I., 1992.

[1605] Reznick, B.A., Homogeneous polynomial solutions to constant coefficient PDEs,Adv. Math. 117 (1996), 179–192.

[1606] Ribet, K.A., Galois representations and modular forms, Bull. Amer. Math. Soc. 32

(1995), 375–402.

[1607] Rice, J.R., A path-independent integral and the approximate analysis of strainconcentrations by notches and cracks, J. Appl. Mech. 35 (1968), 376–386.

85

[1608] Richards, I., and Youn, H., Theory of Distributions: a Non-Technical Introduction,Cambridge University Press, Cambridge, 1990.

[1609] Richards, W., Dawson, B., and Whittington, D., Encoding contour shape bycurvature extrema, J. Opt. Soc. Amer. A 3 (1986), 1483–1491.

[1610] Richman, D.R., The fundamental theorems of vector invariants, Adv. Math. 73

(1989), 43–78.

[1611] Richter, D.A., Lie algebras of differential operators obtained from primitivenon-reductive actions, preprint, University of Minnesota, 1996.

[1612] Richter, D.A., Z–gradations of Lie algebras and infinitesimal generators, J. LieTheory 9 (1999), 113–123.

[1613] Richter, D.A., Semisimple Lie algebras of differential operators, Acta Appl. Math.66 (2001), 41–65.

[1614] Richtmyer, R.D., Principles of Advanced Mathematical Physics, vol. 1,Springer–Verlag, New York, 1978.

[1615] Riemann, B., Commentatio mathematica, qua respondere tentatur quaestioni abIllma Academia Parisiensi propositae, in: Gesammelte Mathematische Werkeund Wissenschaftlicher Nachlass, B.G. Teubner, Leipzig, 1892, pp. 391–423.

[1616] Reinhart, B.L., Differential Geometry of Foliations: the Fundamental IntegrabilityProblem, Springer-Verlag, New York, 1983.

[1617] Riordan, J., An Introduction to Combinatorial Analysis, Princeton University Press,Princeton, N.J., 1980.

[1618] Riquier, C., Sur une question fondamentale du calcul integrale, Acta Math. 23

(1900), 203–332.

[1619] Riquier, C., Les Systemes d’Equations aux Derivees Partielles, Gauthier–Villars,Paris, 1910.

[1620] Ritt, J.F., Differential Algebra, Dover Publ., New York, 1966.

[1621] Robart, T., and Kamran, N., Sur la theorie locale des pseudogroupes detransformations continus infinis I, Math. Ann. 308 (1997), 593–613.

[1622] Roberts, D., The general Lie group and similarity solutions for the one-dimensionalVlasov–Maxwell Equations, J. Plasma Phys. 33 (1985), 219–236.

[1623] Rodnianski, I., Continued fractions and Schrodinger evolution, Contemp. Math. 236

(1999), 311–323.

[1624] Rodnianski, I., Fractal solutions of the Schrodinger equation, Contemp. Math. 255

(2000), 181–187.

[1625] Rodrigues, A.A.M., The first and second fundamental theorems of Lie for Liepseudogroups, Amer. J. Math. 84 (1962), 265–282.

[1626] Rohrl, H., Algebras and differential equations, Nagoya Math. J. 68 (1977), 59–122.

[1627] Rogers, C., and Ames, W.F., Nonlinear Boundary Value Problems in Science andEngineering, Math. Sci. Eng., vol. 183, Academic Press, New York, 1989.

[1628] Rogers, C., and Schief, W.K., Backlund and Darboux Transformations, CambridgeUniversity Press, Cambridge, 2002.

[1629] ter Haar Romeny, B. (editor), Geometry–Driven Diffusion in Computer Vision,Kluwer Acad. Publ., Dordrecht, Netherlands, 1994.

86

[1630] Ronveaux, R.(ed.), Heun’s Differential Equations, Oxford University Press, Oxford,1995.

[1631] Rosenau, P., Evolution and breaking of ion-acoustic waves, Phys. Fluids 31 (1988),1317–1319.

[1632] Rosenau, P., Nonlinear dispersion and compact structures, Phys. Rev. Lett. 73

(1994), 1737–1740.

[1633] Rosenau, P., On solitons, compactons and Lagrange maps, Phys. Lett. A 211

(1996), 265–275.

[1634] Rosenau, P., On nonanalytic waves formed by a nonlinear dispersion, Phys. Lett. A230 (1997), 305–318.

[1635] Rosenau, P., On a class of nonlinear dispersive–dissipative interactions, Physica D123 (1998), 525–546.

[1636] Rosenau, P., and Hyman, J.M., Compactons: solitons with finite wavelength, Phys.Rev. Lett. 70 (1993), 564–567.

[1637] Rosenau, P., and Schwarzmeier, J.L., On similarity solutions of Boussinesq-typeequations, Phys. Lett. A 115 (1986), 75–77.

[1638] Rosinger, E.E., and Rudolph, M., Group invariance of global generalized solutionsof nonlinear PDEs and Hilbert’s fifth problem, preprint, University of Pretoria,1994.

[1639] Rosinger, E.E., and Rudolph, M., Group invariance of global generalized solutionsof nonlinear PDEs: A Dedekind order completion method, Lie Groups and theirAppl. 1 (1994), 203–215.

[1640] Rosinger, E.E., and Walus, Y.E., Group invariance of generalized solutions obtainedthrough the algebraic method, Nonlinearity 7 (1994), 837–859.

[1641] Rossler, O.E., An equation for continuous chaos, Phys. Lett. A 57 (1976), 397–398.

[1642] Rota, G.–C., and Stein, J.A., Symbolic method in invariant theory, Proc. Nat. Acad.Sci. 83 (1986), 844–847.

[1643] Rothwell, C.A., Object Recognition Through Invariant Indexing, Oxford UniversityPress, Oxford, 1995.

[1644] Rothwell, C.A., Zisserman, A., Forsyth, D.A., and Mundy, J.L. , Planar objectrecognition using projective shape representation, Int. J. Comput. Vision 16

(1995), 57–99.

[1645] Royden, H.L., Real Analysis, Macmillan Co., New York, 1988.

[1646] Rozdestvenskiı, B.L., and Janenko, N.N., Systems of quasilinear equations and theirapplications to gas dynamics, Transl. Math. Monographs, vol. 55, Amer. Math.Soc., Providence, R.I., 1983.

[1647] Rubel, L.A., The motions of a partial differential equation, J. Diff. Eq. 48 (1983),177–188.

[1648] Rubel, L.A., and Taylor, B.A., An example of a rigid partial differential equation, J.Diff. Eq. 38 (1980), 126–133.

[1649] Rudin, W., Principles of Mathematical Analysis, McGraw–Hill, New York, 1976.

[1650] Rudin, W., Real and Complex Analysis, 3rd ed., McGraw–Hill, New York, 1987.

87

[1651] Ruh, E.A., Almost Lie groups, in: Proc. Int. Congress Math. Berkeley, A.M.Gleason, ed., vol. 1., Amer. Math. Soc., Providence, R.I., 1987, pp. 561–564.

[1652] Ruhl, W., and Turbiner, A.V., Exact solvability of the Calogero and Sutherlandmodels, Modern Phys. Lett. A 10 (1995), 2213–2221.

[1653] Rund, H., The Hamilton-Jacobi Theory in the Calculus of Variations, D. VanNostrand Co. Ltd., Princeton, N.J., 1966.

[1654] Ruppert, W.A.F., The Structure of Semitopological Semigroups: An IntrinsicTheory, Lecture Notes in Math., vol. 1079, Springer–Verlag, New York, 1984.

[1655] Rust, C.J., and Reid, G.J., Rankings of partial derivatives, in: Proceedings ofthe 1997 International Symposium on Symbolic and Algebraic Computation,Association for Computing Machinery (ACM), New York, 1997, pp. 9–16.

[1656] Rustamov, R.M., Laplace–Beltrami eigenfunctions for deformation invariant shaperepresentation, in: SGP ’07: Proceedings of the Fifth Eurographics Symposiumon Geometry Processing, Eurographics Association, Aire-la-Ville, Switzerland,2007, pp. 225–233.

[1657] Sachs, R.L., Completeness of derivatives of squared Schrodinger eigenfunctions andexplicit solutions of the linearized KdV equation, SIAM J. Math. Anal. 14

(1983), 674–683.

[1658] Sachs, R.L., On the integrable variant of the Boussinesq system: Painleve property,rational solutions, a related many body system, and equivalence with theAKNS hierarchy, Physica D 30 (1988), 1–27.

[1659] Sachs, R.L., On the blow-up of certain solutions of the “good” Boussinesq equation,Appl. Anal. 36 (1990), 145–152.

[1660] Sachs, R., On the existence of small amplitude solitary waves with strong surfacetension, J. Diff. Eq. 90 (1991), 31–51.

[1661] Saff, E.B., and Snider, A.D., Fundamentals of Complex Analysis, Third Ed.,Prentice–Hall, Inc., Upper Saddle River, N.J., 2003.

[1662] Saletan, E.J., Contraction of Lie groups, J. Math. Phys. 2 (1961), 1–21.

[1663] Salkowski, E., Affine Differentialgeometrie, W. de Gruyter, Berlin, 1934.

[1664] Salmon, G., A Treatise on the Higher Plane Curves, 3rd ed., Hodges, Foster, andFiggis, Dublin, 1879.

[1665] Salmon, R., Lectures on Geophysical Fluid Dynamics, Oxford University Press,Oxford, 1998.

[1666] Salomon, D., Computer Graphics and Geometric Modeling, Springer–Verlag, NewYork, 1999.

[1667] Salsa, S., Partial Differential Equations in Action: From Modelling to Theory,Springer–Verlag, New York, 2008.

[1668] Sander, J., and Hutter, K., On the development of the theory of the solitary wave.A historical essay, Acta Mech. 86 (1991), 111–152.

[1669] Sanders, J.A., Versal normal form computations and representation theory, in:Computer Algebra and Differential Equations, E. Tournier, ed., vol. 193,London Mathematical Society Lecture Note Series, Cambridge University Press,1994, pp. 185–210.

88

[1670] Sanders, J.A.; Multilinear Hirota operators, modular forms and the Heisenbergalgebra; Technical Report, Vrije Universiteit Amsterdam, 1999.

[1671] Sanders, J.A., Roelofs, M.; An algorithmic approach to conservation laws using the3–dimensional Heisenberg algebra.; Technical Report 2, RIACA, Amsterdam,1994.

[1672] Sanders, J.A., and Wang, J.P., Hodge decomposition and conservation laws, Math.Comput. Simulation 44 (1997), 483–493.

[1673] Sanders, J.A., and Wang, J.P., On the integrability of homogeneous scalar evolutionequations, J. Diff. Eq. 147 (1998), 410–434.

[1674] Sanders, J.A., and Wang, J.P., On recursion operators, Physica D 149 (2001), 1–10.

[1675] Sanders, J.A., and Wang, J.P., Integrable systems in n-dimensional Riemanniangeometry, Moscow Math. J. 3 (2003), 1369–1393.

[1676] Santalo, L.A., Introduction to Integral Geometry, Hermann, Paris, 1953.

[1677] Santalo, L.A., Integral Geometry and Geometric Probability, Addison-Wesley,Reading, MA, 1976.

[1678] Santarelli, A.R., Numerical analysis of the regularized long-wave equation: anelasticcollision of solitary waves, Il Nuovo Cim. 46B (1978), 179–188.

[1679] Santini, P., and Fokas, A.S., Recursion operators and biHamiltonian structures inmulti-dimensions. I, Commun. Math. Phys. 115 (1988), 375–419.

[1680] Sapiro, G., Color snakes, Computer Vision Image Understanding 68 (1997),247–253.

[1681] Sapiro, G., Vector-valued active contours, in: 1996 IEEE Computer SocietyConference on Computer Vision and Pattern Recognition, IEEE Comp. Soc.Press, Los Alamitos, CA, 1996, pp. 680–685.

[1682] Sapiro, G., Geometric Partial Differential Equations and Image Analysis, CambridgeUniversity Press, Cambridge, 2001.

[1683] Sapiro, G., and Tannenbaum, A., Affine shortening of non-convex plane curves,preprint, Department of Electrical Engineering, Technion, Haifa, Israel, 1992.

[1684] Sapiro, G., and Tannenbaum, A., Image smoothing based on an affine invariantflow, in: Proceedings of the Conference on Information Sciences and Systems,Johns Hopkins University, 1993, pp. 196–201.

[1685] Sapiro, G., and Tannenbaum, A., On affine plane curve evolution, J. Func. Anal.119 (1994), 79–120.

[1686] Sapiro, G., and Tannenbaum, A., Affine invariant scale-space, Int. J. ComputerVision 11 (1993), 25–44.

[1687] Sapiro, G., and Tannenbaum, A., On invariant curve evolution and image analysis,Indiana J. Math. 42 (1993), 985–1009.

[1688] Sapovalov, V.N., Stackel spaces, Siberian Math. J. 20 (1980), 790–800.

[1689] Sartori, G., Geometric invariant theory: a model-independent approach tospontaneous symmetry and/or supersymmetry breaking, Rivista NuovoCimento 14, #11 (1991), 1–120.

[1690] Sasaki, R., Soliton equations and pseudospherical surfaces, Nucl. Phys. B 154

(1979), 343–357.

89

[1691] Sato, J., and Cipolla, R., Invariant signatures and outlier detection, preprint, Dept.of Engineering, Cambridge University, 1995.

[1692] Sato, J., and Cipolla, R., Affine integral invariants for extracting symmetry axes,Image Vision Comp. 15 (1997), 627–635.

[1693] Sattinger, D.H., Group Theoretic Methods in Bifurcation Theory, Lecture Notes inMath., vol. 762, Springer–Verlag, New York, 1979.

[1694] Sattinger, D.H., and Szmigielski, J.S., Energy dependent scattering theory, Diff.Integral Eq. 9 (1995), 945-959.

[1695] Sattinger, D.H., and Szmigielski, J.S., A Riemann–Hilbert Problem for an energydependent Schrodinger operator, Inverse Problems, to appear.

[1696] Sattinger, D.H., and Weaver, O.L., Lie Groups and Algebras with Applicationsto Physics, Geometry, and Mechanics, Applied Math. Sci., vol. 61,Springer–Verlag, New York, 1986.

[1697] Sauer, T., and Xu, Y., On multivariate Lagrange interpolation, Math. Comp. 64

(1995), 1147–1170.

[1698] Saut, J.C., and Temam, R., Remarks on the Korteweg–de Vries equation, Israel J.Math. 24 (1976), 78–87.

[1699] Saykol, E., Gudukbaya, U., and Ulusoya, O., A histogram-based approach forobject-based query-by-shape-and-color in image and video databases, ImageVision Comput. 23 (2005), 1170–1180.

[1700] Sawada, K., and Kotera, T., A method for finding N -soliton solutions of the K.d.V.equation and K.d.V.-like equation, Prog. Theor. Physics 51 (1974), 1355–1367.

[1701] Scheffer, V., An inviscid flow with compact support in space-time, J. Geom. Anal. 3

(1993), 343–401 .

[1702] Scheurle, J., Bifurcation of quasi-periodic solutions from equilibrium points ofreversible dynamical systems, Arch. Rat. Mech. Anal. 97 (1987), 103–139.

[1703] Schiff, J., Zero curvature formulations of dual hierarchies, J. Math. Phys. 37 (1996),1928–1938.

[1704] Schiff, J., The Camassa–Holm equation: a loop group approach, Physica D 121

(1998), 24–43.

[1705] Schiff, J., and Shnider, S., Lie groups and error analysis, J. Lie Theory 11 (2001),231–254.

[1706] Schimming, R., and Strampp, W., Differential polynomial expressions related to theKadomtsev–Petviashvili and Korteweg–deVries hierarchies, J. Math. Phys. 40

(1999), 2429–2444.

[1707] Schirokow, A.P., and Schirokow, P.A., Affine Differentialgeometrie, B.G. Teubner,Leipzig, 1962. (German translation of Russian original)

[1708] Scholkopf, B., Burges, C., and Vapnik, V., Incorporating invariances in supportvector learning machines, in: Proceedings ICANN’96 — InternationalConference on Artificial Neural Networks, Springer–Verlag, Berlin, 1996.

[1709] Schrodinger, E., Collected Papers on Wave Mechanics, Chelsea Publ. Co., NewYork, 1982.

90

[1710] Schumaker, L.L., Spline Functions: Basic Theory, John Wiley & Sons, New York,1981.

[1711] Schur, F., Ueber den analytischen Charakter der eine endliche continuirlicheTransformationsgruppe darstellenden Functionen, Math. Ann. 41 (1893),509–538.

[1712] Schur, I., Vorlesungen uber Invariantentheorie, Bearb. und hrsg. von HelmutGrunsky, Springer–Verlag, New York, .

[1713] Schwarz, F., Canonical form transformation of second order differential equationswith Lie symmetries, J. Lie Theory 10 (2000), 411–433.

[1714] Schwarz, F., Automatically determining symmetries of partial differential equations,Computing 34 (1985), 91–106.

[1715] Schwarz, F., Algorithmic Lie Theory for Solving Ordinary Differential Equations,Chapman & Hall/CRC, Boca Raton, Fl, 2008.

[1716] Schwarz, G., Smooth functions invariant under the action of a compact Lie group,Topology 14 (1975), 63–68.

[1717] Schwartz, L., Theorie des distributions, Hermann, Paris, 1957.

[1718] Schwartz, L., A Mathematician Grappling with his Century, Birkhauser, Boston,2001.

[1719] Schwartz, R., The total projective curvature of a convex curve, preprint, PrincetonUniversity, 1991.

[1720] Scott, A.C., Soliton oscillations in DNA, Phys. Rev. A 31 (1985), 3518–3519.

[1721] Scott Russell, J., Report of the committee on waves, in: Report of the 7th Meeting,British Assoc. Adv. Sci., 1838, pp. 417–496.

[1722] Scott Russell, J., On waves, in: Report of the 14th Meeting, British Assoc. Adv. Sci.,1845, pp. 311–390.

[1723] Scott, A.C., Chu, F.Y.F., and McLaughlin, D.W., The soliton: a new concept inapplied science, Proc. IEEE 61 (1973), 1443–1482.

[1724] Se-ashi, Y., A geometric construction of Laguerre–Forsyth’s canonical forms oflinear ordinary differential equations, Adv. Studies Pure Math. 22 (1993),265–297.

[1725] Sedov, L.I., Similarity and Dimensional Analysis, Academic Press, New York, 1959.

[1726] Seiler, W., Analysis and Application of the Formal Theory of Partial DifferentialEquations, Ph.D. Thesis, Lancaster University, 1994.

[1727] Seiler, W., On the arbitrariness of the solution to a general partial differentialequation, J. Math. Phys. 35 (1994), 486–498.

[1728] Seiler, W.M., Involution: The Formal Theory of Differential Equations andits Applications in Computer Algebra, Algorithms and Computation inMathematics, vol. 24, Springer–Verlag, New York, 2010.

[1729] Segur, H., and Kruskal, M., Nonexistence of small amplitude breather solutions inφ4 theory, Phys. Rev. Lett. 58 (1987), 747–750.

[1730] Semenov–Tian–Shanskii, M.A., What is a classical R-matrix?, Func. Anal. Appl. 17

(1983), 259–272.

91

[1731] Serra, J., Image Analysis and Mathematical Morphology, Academic Press, London1982.

[1732] Seshadri, R., and Na, T.Y., Group Invariance in Engineering Boundary ValueProblems, Springer–Verlag, New York, 1985.

[1733] Sethares, W.A., Tuning, Timbre, Spectrum, Scale, Springer–Verlag, New York, 1999.

[1734] Sethian, J.A., Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics,Computer Vision, and Materials Science, Cambridge University PressCambridge, 1996.

[1735] Shabat, A.B., The dressing infinite-dimensional dynamical system, preprint, 1991.

[1736] Shabat, A.B., and Yamilov, R.I., Symmetries of nonlinear chains, Leningrad Math.J. 2 (1991), 377–400.

[1737] Shadwick, W.F., The Hamiltonian formulation of regular rth order Lagrangian fieldtheories, Lett. Math. Phys. 6 (1982), 409–416.

[1738] Shakiban, C., A resolution of the Euler operator II, Math. Proc. Camb. Phil. Soc.89 (1981), 501–510.

[1739] Shakiban, C., An invariant theoretic characterization of conservation laws, Amer. J.Math. 104 (1982), 1127–1152.

[1740] Shakiban, C., and Lloyd, P., Signature curves statistics of DNA supercoils, in:Geometry, Integrability and Quantization, vol. 5, I.M. Mladenov and A.C.Hirschfeld, eds., Softex, Sofia, Bulgaria, 2004, pp. 203–210.

[1741] Shakiban, C., and Lloyd, R., Classification of signature curves using latent semanticanalysis, in: Computer Algebra and Geometric Algebra with Applications, H. Li,P.J. Olver, and G. Sommer, eds., Lecture Notes in Computer Science, vol. 3519,Springer–Verlag, New York, 2005, pp. 152–162.

[1742] Shapovalov, A.V., and Shirokov, I.V., Symmetry algebras of linear differentialequations, Theor. Math. Phys. 92 (1992), 697–705.

[1743] Sheftel’, M.B., Integration of Hamiltonian systems of hydrodynamic type with twodependent variables with the aid of the Lie-Backlund group, Func. Anal. Appl.20 (1986), 227–235.

[1744] Sheftel’, M.B., On the infinite-dimensional noncommutative Lie-Backlund algebraassociated with the equations of one-dimensional gas dynamics, Theor. Math.Phys. 56 (1983), 878–891.

[1745] Shemyakova, E., and Mansfield, E.L., Moving frames for Laplace invariants, in:Proceedings ISSAC2008, D. Jeffrey, ed., ACM, New York, 2008, pp. 295–302.

[1746] Sherring, J., and Prince, G., Geometric aspects of reduction of order, preprint,University of New South Wales, 1991.

[1747] Shifman, M.A., New findings in quantum mechanics (partial algebraization of thespectral problem), Int. J. Mod. Phys. A 4 (1989), 2897–2952.

[1748] Shifman, M.A., Supersymmetric quantum mechanics and partial algebraization ofthe spectral problem, Int. J. Mod. Phys. A 4 (1989), 3305–3310.

[1749] Shifman, M.A., Expanding the class of spectral problems with partialalgebraization, Int. J. Mod. Phys. A 4 (1989), 3311–3318.

92

[1750] Shifman, M.A., Quasi-exactly solvable spectral problems and conformal field theory,Contemp. Math. 160 (1994), 237–262.

[1751] Shifman, M.A., and Turbiner, A.V., Quantal problems with partial algebraization ofthe spectrum, Commun. Math. Phys. 126 (1989), 347–365.

[1752] Shioda, T., On the graded ring of invariants of binary octavics, Amer. J. Math. 89

(1967), 1022–1046.

[1753] Shnider, S., and Winternitz, P., Nonlinear equations with superposition principlesand the theory of transitive primitive Lie algebras, Lett. Math. Phys. 8 (1984),69–78.

[1754] Shnider, S., and Winternitz, P., Classification of systems of nonlinear ordinarydifferential equations with superposition principles, J. Math. Phys. 25 (1984),3155–3165.

[1755] Shokin, Y.I., The Method of Differential Approximation, Springer–Verlag, New York,1983.

[1756] Sibirsky, K.S., Introduction to the Algebraic Theory of Invariants of DifferentialEquations, Manchester University Press, New York, 1988.

[1757] Sidorov, A.F., Shapeev, V.P., and Yanenko, N.N., Method of Differential Constraintsand Its Applications to Gas Dynamics, Akad. NAUK USSR, Novosibirsk, 1984(in Russian).

[1758] Siegel, C.L., Uber einige Anwendungen diophantischer Approximationen, in:Gesammelte Abhandlungen, vol. 1, Springer–Verlag, New York, 1966, pp.209–266.

[1759] Sikorski, R., Boolean Algebras, 3rd ed., Springer–Verlag, New York, 1969.

[1760] Silverman, J.H., The Arithmetic of Elliptic Curves, Springer–Verlag, New York,1986.

[1761] Silverman, J.H., Advanced Topics in the Arithmetic of Elliptic Curves,Springer–Verlag, New York, 1994.

[1762] Simo, J.C., and Vu-Quoc, L., On the dynamics in space of rods undergoing largemotions—a geometrically exact approach, Comput. Methods Appl. Mech. Engrg.66 (1988), 125–161 .

[1763] Simo, J.C., and Fox, D.D., On a stress resultant geometrically exact shell model.I. Formulation and optimal parametrization, Comput. Methods Appl. Mech.Engrg. 72 (1989), 267–304 .

[1764] Simon, U., The Pick invariant in equiaffine differential geometry, Abh. Math. Sem.Univ. Hamburg 53 (1983), 225–228.

[1765] Singer, I.M., and Sternberg, S., The infinite groups of Lie and Cartan. Part I (thetransitive groups), J. Analyse Math. 15 (1965), 1–114.

[1766] Sivaloganathan, J., The generalised Hamilton–Jacobi inequality and the stability ofequilibria in nonlinear elasticity, Arch. Rat. Mech. Anal. 88 (1988), 347–367.

[1767] Sluis, W.M., and Kersten, P.H.M., Non-local higher-order symmetries for theFederbush model, J. Phys. A 23 (1990), 2195–2204.

[1768] Smirnov, Y.F., and Turbiner, A.V., Lie algebraic discretization of differentialequations, Modern Phys. Lett. A 10 (1995), 1795–1802.

93

[1769] Smirnov, R., and Yue, J., Covariants, joint invariants and the problemof equivalence in the invariant theory of Killing tensors defined inpseudo-Riemannian spaces of constant curvature, J. Math. Phys. 45 (2004),4141–4163.

[1770] Smirnov, R., and Yue, J., A moving frames technique and the invariant theoryof Killing tensors, in: Differential geometry and its applications, J. Bures,O. Kowalski, D. Krupka, and J. Slovak, eds. Matfyzpress, Prague, 2005, pp.549–558.

[1771] Smith, L., Polynomial invariants of finite groups. A survey of recent results, Bull.Amer. Math. Soc. 34 (1997), 211–250.

[1772] Smith, P.A., Topological foundations in the theory of continuous transformationgroups, Duke Math. J. 2 (1936), 246–279.

[1773] Sokolov, V.V., On the symmetries of evolution equations, Russian Math. Surveys43:5 (1988), 165–204.

[1774] Sokolov, V.V., Pseudosymmetries and differential substitutions, Func. Anal. Appl.22 (1988), 121–129.

[1775] Sokolov, V.V., and Shabat, A.B., Classification of integrable evolution equations,Math. Phys. Reviews 4 (1984), 221–280.

[1776] Sokolov, V.V., and Svinolupov, S.I., Vector–matrix generalizations of classicalintegrable equations, Theor. Math. Phys. 100 (1994), 959–962.

[1777] Sokolov, V.V., and Svinolupov, S.I., Deformations of nonassociative algebras andintegrable differential equations, Acta Appl. Math. 41 (1995), 323–339.

[1778] Sokolov, V.V., and Svinolupov, S.I., Deformations of Jordan triple systems andintegrable equations, Theor. Math. Phys. 108 (1996), 388–392.

[1779] Sokolov, V.V., and Zhiber, A.V., On the Darboux integrable hyperbolic equations,Phys. Lett. A 208 (1995), 303–308.

[1780] Soloviev, V.O., Boundary values as Hamiltonian variables. III. Ideal fluid with a freesurface, J. Math. Phys. 43 (2002), 3655–3675.

[1781] Sommese, A.J., and Wampler, C.W., Numerical Solution of Polynomial SystemsArising in Engineering and Science, World Scientific Press, Singapore, 2005.

[1782] Sonka, M., Havlac, V., and Boyle, R., Image Processing: Analysis and MachineVision, Brooks/Cole, Pacific Grove, CA, 1999.

[1783] Soto-Crespo, J.M., Akhmediev, N., and Ankiewicz, A., Stationary solitonlike pulsesin birefringent optical fibers, Phys. Rev. 51 (1995), 3547–3555.

[1784] Souganidis, P.E., and Strauss, W., Instability of a class of dispersive solitary waves,Proc. Roy. Soc. Edinburgh A 114 (1990), 195–212.

[1785] Spanier, E.H., Algebraic Topology, McGraw–Hill Book Co., New York, 1966.

[1786] Spencer, A.J.M., Theory of invariants, in: Continuum Physics, A.C. Eringen, ed.,vol. 1, Academic Press, New York, 1971.

[1787] Spencer, D.C., Deformations of structures on manifolds defined by transitivepseudo-groups I, II, Ann. Math. 76 (1962), 306–445.

[1788] Spencer, D.C., Overdetermined systems of partial differential equations, Bull. Amer.Math. Soc. 75 (1969), 179–239.

94

[1789] Spivak, M., Calculus on Manifolds, W.A. Benjamin, Menlo Park, Calif., 1965.

[1790] Spivak, M., A Comprehensive Introduction to Differential Geometry, vol. 1, SecondEd., Publish or Perish, Wilmington, Delaware, 1979.

[1791] Spivak, M., A Comprehensive Introduction to Differential Geometry, vol. 2, SecondEd., Publish or Perish, Wilmington, Delaware, 1979.

[1792] Spivak, M., A Comprehensive Introduction to Differential Geometry, vol. 3, ThirdEd., Publish or Perish, Inc., Houston, TX, 1999.

[1793] Spivak, M., A Comprehensive Introduction to Differential Geometry, vol. 5, SecondEd., Publish or Perish, Wilmington, Delaware, 1979.

[1794] Springer, T.A., Invariant theory, Lecture Notes in Math., vol. 585, Springer–Verlag,New York, 1977.

[1795] Stanley, R.P., Invariants of finite groups and their applications to combinatorics,Bull. Amer. Math. Soc. 1 (1979), 475–511.

[1796] Starostin, E.l., and Van der Heijden, G.H.M., The shape of a Mobius strip, NatureMaterials Lett. 6 (2007), 563–567.

[1797] Steeb, W.-H., Continuous Symmetries, Lie Algebras, Differential Equations, andComputer Algebra, Second Edition, World Scientific, Singapore, 2007.

[1798] Steenrod, N., The Topology of Fibre Bundles, Princeton University Press, Princeton,N.J., 1951.

[1799] Stephani, H., Differential Equations: Their Solution Using Symmetries, CambridgeUniversity Press, New York, 1989.

[1800] Sternberg, S., Lectures on Differential Geometry, Prentice–Hall, Inc., EnglewoodCliffs, N.J., 1964.

[1801] Stewart, J., Calculus: Early Transcendentals, 5th ed., Thomson Brooks Cole,Belmont, CA, 2003.

[1802] Stokes, G.G., On a difficulty in the theory of sound, Phil. Mag. 33(3) (1848),349–356.

[1803] Stokes, G.G., Mathematical and Physical Papers, Cambridge University Press,Cambridge, 1880–1905.

[1804] Stokes, G.G., Mathematical and Physical Papers, 2nd ed., Johnson Reprint Corp.,New York, 1966.

[1805] Stormark, O., Formal and local solvability of partial differential equations, preprint,Royal Institute of Technology, Stockholm, Sweden, 1989.

[1806] Stormark, O., Lie’s Structural Approach to PDE Systems, Cambridge UniversityPress, Cambridge, 2000.

[1807] Story, W.E., On the covariants of systems of quantics, Math. Ann. 41 (1893),469–490.

[1808] Strang, G., Linear Algebra and its Applications, Second Ed., Academic Press, NewYork, 1980.

[1809] Strang, G., Introduction to Applied Mathematics, Wellesley Cambridge Press,Wellesley, Mass., 1986.

[1810] Strang, G., Linear Algebra and its Applications, Third Ed., Harcourt, Brace,Jovanovich, San Diego, 1988.

95

[1811] Strang, G., Calculus, Wellesley Cambridge Press, Wellesley, Mass., 1991.

[1812] Strang, G., Wavelet transforms versus Fourier transforms, Bull. Amer. Math. Soc.28 (1993), 288–305.

[1813] Strang, G., and Borre, K., Linear Algebra, Geodesy, and GPS, Wellesley CambridgePress, Wellesley, Mass., 1997.

[1814] Strang, G., and Fix, G.J., An Analysis of the Finite Element Method, Prentice–Hall,Inc., Englewood Cliffs, N.J., 1973.

[1815] Strang, G., and Nguyen, T., Wavelets and Filter Banks, Wellesley Cambridge Press,Wellesley, Mass., 1996.

[1816] Strassen, V., Gaussian elimination is not optimal, Numer. Math. 13 (1969),354–356.

[1817] Strauss, W.A., Nonlinear invariant wave equations, in: Invariant Wave Equations,G. Velo and A.S. Wightman, eds., Lecture Notes in Physics No. 73,Springer-Verlag, New York, 1978, pp. 197-249.

[1818] Strauss, W.A., Nonlinear Wave Equations, CBMS Regional Conference Series, vol.73, Amer. Math. Soc., Providence, R.I., 1989.

[1819] Strauss, W.A., Partial Differential Equations: an Introduction, John Wiley & Sons,New York, 1992.

[1820] Stroh, A.N., Dislocations and cracks in anisotropic elasticity, Philos. Mag. 7 (1958),625–646.

[1821] Stroh, A.N., Steady state problems in anisotropic elasticity, J. Math. Phys. 41

(1962), 77–103.

[1822] Stroh, E., Ueber eine fundamentale Eigenschaft des Ueberschiebungsprocesses undderen Verwerthung in der Theorie der binaren Formen, Math. Ann. 33 (1889),61–107.

[1823] Stroh, E., Ueber die symbolische Darstellung der Grundsyzyganten einer binarenForm sechster Ordnung und eine Erweiterung der Symbolik von Clebsch, Math.Ann. 36 (1890), 262–303.

[1824] Struik, D.J., Lectures on Classical Differential Geometry, Addison–Wesley Publ.Co., Reading, Mass., 1950.

[1825] Stubhaug, A., Niels Henrik Abel and His Times, Springer–Verlag, New York, 2000.

[1826] Stubhaug, A., The Mathematician Sophus Lie, Springer–Verlag, New York, 2002.

[1827] Sturmfels, B., Algorithms in Invariant Theory, Springer–Verlag, New York, 1993.

[1828] Sturmfels, B., and White, N., Computing combinatorial decompositions of rings,Combinatorica 11 (1991), 275–293.

[1829] Sussmann, H.J., Orbits of families of vector fields and integrability of distributions,Trans. Amer. Math. Soc. 180 (1973), 171–188.

[1830] Svinolupov, S.I., On the analogues of the Burgers equation, Phys. Lett. A 135

(1989), 32–36.

[1831] Svinolupov, S.I., Jordan algebras and generalized KdV equations, Theor. Math.Phys. 87 (1991), 611–620.

[1832] Svinolupov, S.I., Generalized Schrodinger equations and Jordan pairs, Commun.Math. Phys. 143 (1992), 559–575.

96

[1833] Svinolupov, S.I., Jordan algebras and integrable systems, Func. Anal. Appl. 27

(1993), 257–265.

[1834] Svinolupov, S.I., and Sokolov, V.V., Weak nonlocalities in evolution equations,Math. Notes 48 (1991), 1234–1239.

[1835] Svinolupov, S.I., and Sokolov, V.V., Representations of contragredient Lie algebrasin contact vector fields, Func. Anal. Appl. 25 (1991), 146–147.

[1836] Svinolupov, S.I., and Sokolov, V.V., Factorization of evolution equations, RussianMath. Surveys 47:3 (1992), 127–162.

[1837] Svirshchevskii, S.R., Lie–Backlund symmetries of linear ODEs and generalizedseparation of variables in nonlinear equations, Phys. Lett. A 199 (1995),344–348.

[1838] Svirshchevskii, S.R., Nonlinear differential operators of the first and second order,possessing invariant linear spaces of maximal dimension, J. Theor. Math. Phys.105 (1995), 198–207.

[1839] Svirshchevskii, S.R., Invariant linear spaces and exact solutions of nonlinearevolution equations, J. Nonlin. Math. Phys. 3 (1996), 164–169.

[1840] Sylvester, J., On the differentiability of O(n) invariant functions of symmetricmatrices, Duke Math. J. 52 (1985), 475–483.

[1841] Sylvester, J.J., On an application of the new atomic theory to the graphicalrepresentation of the invariants and covariants of binary quantics, with threeappendices, Amer. J. Math. 1 (1878), 64–125; also The Collected MathematicalPapers, vol. 3, Cambridge University Press, Cambridge, England, 1909, pp.148–206.

[1842] Sylvester, J.J., Sur les actions mutuelles des formes invariantives derivees, J. ReineAngew. Math. 85 (1878), 89–114; also The Collected Mathematical Papers, vol.3, Cambridge University Press, Cambridge, England, 1909, pp. 218–240.

[1843] Sylvester, J.J., Tables of the generating functions and groundforms for the binaryquantics of the first ten orders, Amer. J. Math. 2 (1879), 223–251; also TheCollected Mathematical Papers, vol. 3, Cambridge University Press, Cambridge,England, 1909, pp. 283–311.

[1844] Sylvester, J.J., Tables of the generating functions and groundforms for the binaryduadecimic, with some general remarks, and tables of the irreducible syzygiesof certain quantics, Amer. J. Math. 4 (1881), 41–61; also The CollectedMathematical Papers, vol. 3, Cambridge University Press, Cambridge, England,1909, pp. 489–508.

[1845] Sylvester, J.J., On subinvariants, that is, semi-invariants to binary quantics ofan unlimited order, Amer. J. Math. 5 (1882), 79–136; also The CollectedMathematical Papers, vol. 3, Cambridge University Press, Cambridge, England,1909, pp. 568–622.

[1846] Takens, F., Singularities of vector fields, Publ. Math. I.H.E.S.; 43 (1973) 47–100.

[1847] Takens, F., Symmetries, conservation laws and variational principles, Geometry andTopology; J. Palis and M. do Carmo, eds., Lecture Notes in Math., vol. 845,Springer–Verlag, New York, 1977, pp. 581–604.

97

[1848] Takhtajan, L.A., A simple example of modular-forms as tau-functions for integrableequations, Theor. Math. Phys. 93 (1993), 1308–1317.

[1849] Talbot, H.F., Facts related to optical science. No. IV, Philos. Mag. 9 (1836),401–407.

[1850] Talman, J.D., Special Functions. A Group Theoretic Approach, W.A. Benjamin, NewYork, 1968.

[1851] Tamanoi, H., Higher Schwarzian operators and combinatorics of the Schwarzianderivative, Math. Ann. 305 (1996), 127–151.

[1852] Tang, W.P., and Golub, G.H., The block decomposition of a Vandermonde matrixand its applications, BIT 21 (1981), 505–517.

[1853] Tannenbaum, A., Invariance and System Theory: Algebraic and Geometric Aspects,Lecture Notes in Math., vol. 845, Springer–Verlag, New York, 1981.

[1854] Tannenbaum, P., Excursions in Modern Mathematics, 5th ed., Prentice–Hall, Inc.,Upper Saddle River, N.J, 2004.

[1855] Tannenbaum, P., and Arnold, R., Excursions in Modern Mathematics, 5th ed.,Prentice–Hall, Inc., Englewood Cliffs, N.J., 2004.

[1856] Tanner, H.W.L., On the equation d2zdx dy

+ P dzdx

+Q dzdy

+ Z = 0, Proc. London Math.

Soc. 8 (1876), 159–174.

[1857] Taylor, M., Pseudodifferential Operators, Princeton University Press, Princeton,N.J., 1981.

[1858] Taylor, M., The Schrodinger equation on spheres, Pacific J. Math. 209 (2003),145–155.

[1859] Temam, R., Sur un probleme non lineaire, J. Math. Pures Appl. 48 (1969), 159–172.

[1860] Tenenblat, K., Transformations of Manifolds and Applications to DifferentialEquations, Pitman Monographs and Surveys Pure Appl. Math., vol. 93,Addison Wesley, Longman, England, 1998.

[1861] Terng, C.L., Natural vector bundles and natural differential operators, Amer. J.Math. 100 (1978), 775–828.

[1862] Terras, A., Harmonic Analysis on Symmetric Spaces and Applications, vol. 1,Springer–Verlag, New York, 1985.

[1863] Terras, A., Harmonic Analysis on Symmetric Spaces and Applications, vol. 2,Springer–Verlag, New York, 1988.

[1864] Terpstra, F.J., Die Darstellung biquadratische Formen als Summen von Quadratenmit Anwendung auf die Variationsrechnung, Math. Ann. 116 (1939), 166–180.

[1865] Thaller, B., Visual Quantum Mechanics, Springer–Verlag, New York, 2000.

[1866] Thirring, W., Quantum Mechanics of Atoms and Molecules, A Course inMathematical Physics, vol. 3, Springer–Verlag, New York, 1981.

[1867] Thompson, R., and Valiquette, F., On the cohomology of the invariantEulerLagrange complex, Acta Appl. Math. 116 (2011), 199–226.

98

[1868] Thureson, J., and Carlsson, S., Appearance based qualitative image description forobject class recognition, in: Computer Vision in Human–Computer Interaction:ECCV 2004, Sebe, N., Lew, M.S., and Huang, T.S., eds., Lecture Notes Comp.Sci., Vol. 3022, 2004, pp. 518–529.

[1869] Thomas, T.Y., The Differential Invariants of Generalized Spaces, Chelsea Publ. Co.,New York, 1991.

[1870] Ting, T.C.T., Some identities and the structure of Ni in the Stroh formlaism ofanisotropic elasticity, Q. Appl. Math. 46 (1988), 109–120.

[1871] Ting, T.C.T., Anisotropic Elasticity, Oxford Engineering Science Series Vol. 45,Oxford University Press, Oxford, 1996.

[1872] Ting, T.C.T., Existence of an extraordinary degenerate matrix N for anisotropicelastic materials, Quart. J. Mech. Appl. Math. 49 (1996), 405–417.

[1873] Titchmarsh, E. C., Theory of Functions, Oxford University Press, London, 1968.

[1874] Toda, M., Theory of Nonlinear Lattices, Springer–Verlag, New York, 1981.

[1875] Toland, J.F., On the existence of a wave of greatest height and Stokes’ conjecture,Proc. Roy. Soc. London A 363 (1978), 469–485.

[1876] Tondeur, P., Geometry of Foliations, Birkhauser Verlag, Boston, 1997.

[1877] Topunov, V.L., Reducing systems of linear differential equations to a passive form,Acta Appl. Math. 16 (1989), 181–206.

[1878] Totaro, B., A sketch of Lie’s work on differential invariant theory, in: The SophusLie Memorial Conference. Oslo 1992. Proceedings, O.A. Laudal and B. Jahren,eds., Scandinavian University Press, Oslo, 1994, pp. 99–111.

[1879] Towber, J., Two new functors from modules to algebras, J. Algebra 47 (1977),80–104.

[1880] Tremblay, F., Turbiner, A.V., and Winternitz, P., An infinite family of solvable andintegrable quantum systems on a plane, J. Phys. A 42 (2009), 242001.

[1881] Tresse, A., Sur les invariants differentiels des groupes continus de transformations,Acta Math. 18 (1894), 1–88.

[1882] Tresse, M.A., Determination des Invariants Ponctuels de l’Equation DifferentielleOrdinaire du Second Ordre y′′ = ω(x, y, y′), S. Hirzel, Leipzig, 1896.

[1883] Troy, W.C., Nonexistence of monotonic solutions in a model of dendritic growth,Quart. Appl. Math. 48 (1990), 209–215.

[1884] Trung, N.V., On the symbolic powers of determinantal ideals, J. Algebra 58 (1979),361–379.

[1885] Tsamasphyros, G.T., Path-independent integrals in anisotropic media, Int. J. Frac.40 (1988), 203–219.

[1886] Tsamasphyros, G.T., and Theocaris, P.S., A new concept of path independentintegrals for plane elasticity, J. Elasticity 12 (1982), 265–280.

[1887] Tsarev, S.P., Generalized Laplace transformations and integration of hyperbolicsystems of linear partial differential equations, in: Proceedings of the 2005International Symposium on Symbolic and Algebraic Computation, ACM, NewYork, 2005, pp. 325–331.

99

[1888] Tsarev, S.P., Factorization of linear differential operators and systems, in: AlgebraicTheory of Differential Equations, London Math. Soc. Lecture Note Ser. 357,Cambridge Univ. Press, Cambridge, 2009, pp. 111–131.

[1889] Tsuchida, T., and Wadati, M., Complete integrability of derivative nonlinearSchrodinger-type equations, Inverse Problems 15 (1999), 1363–1373.

[1890] Tsujishita, T., On variational bicomplexes associated to differential equations,Osaka J. Math. 19 (1982), 311–363.

[1891] Tsujishita, T., Formal geometry of systems of differential equations, Sugaku Exp. 3

(1990), 25–73.

[1892] Tsujishita, T., Homological method of computing invariants of systems ofdifferential equations, Diff. Geom. Appl. 1 (1991), 3–34.

[1893] Tulczyjew, W.M., The Lagrange complex, Bull. Soc. Math. France 105 (1977),419–431.

[1894] Turbiner, A.V., Quasi-exactly solvable problems and sl(2) algebra, Commun. Math.Phys. 118 (1988), 467–474.

[1895] Turbiner, A.V., Lie algebras and polynomials in one variable, J. Phys. A 25 (1992),L1087–L1093.

[1896] Turbiner, A.V., Lie algebraic approach to the theory of polynomial solutions. I.Ordinary differential equations and finite-difference equations in one variable,preprint, CERN, CPT-92/P.2679, 1992.

[1897] Turbiner, A.V., Lie algebraic approach to the theory of polynomial solutions. II.Differential equations in one real and one Grassmann variables and 2× 2 matrixdifferential equations, preprint, CERN, CPT-92/P.2708, 1992.

[1898] Turbiner, A.V., Lie algebraic approach to the theory of polynomial solutions. III.Differential equations in two real variables and general outlook, preprint,ETH-TH/92-34, 1992.

[1899] Turbiner, A., Lie algebras and polynomial solutions of differential equations, NATOAdv. Sci. Inst. Ser. B Phys. 315 (1993), 297–305.

[1900] Turbiner, A.V., Lie algebras and linear operators with invariant subspaces,Contemp. Math. 160 (1994), 263–310.

[1901] Turbiner, A.V., Hidden algebra of the N -body Calogero problem, Phys. Lett. B 320

(1994), 281–286.

[1902] Turbiner, A.V., Quasi-exactly-solvable differential equations, in: CRC Handbook ofLie Group Analysis of Differential Equations, vol. 3, N.H. Ibragimov, ed., CRCPress, Boca Raton, Fl., 1996, pp. 329–364.

[1903] Turiel, F.–J., Classification locale d’un couple de formes symplectiquesPoisson-compatibles, Comptes Rendus Acad. Sci. Paris, Serie I, 308 (1989),575–578.

[1904] Turnbull, H.W., Gordan’s theorem for double binary forms, Proc. Edinburgh Math.Soc. 41 (1922/23), 116–127.

[1905] Turnbull, H.W., Double binary forms III, Proc. Roy. Soc. Edinburgh 43 (1922/23),43–50.

100

[1906] Turnbull, H.W., Double binary forms IV, Proc. Edinburgh Math. Soc. 42 (1923/24),69–80.

[1907] Turnbull, H.W., A geometrical interpretation of the complete system of the doublebinary (2,2) form V, Proc. Roy. Soc. Edinburgh 44 (1923/24), 23–50.

[1908] Turnbull, H.W., The invariant theory of a general bilinear form, Proc. London Math.Soc. 33 (1932), 1–21.

[1909] Turnbull, H.W., and Aitken, A.C., An Introduction to the Theory of CanonicalMatrices, Blackie and Sons, London, 1932.

[1910] Turney, J.L., Mudge, T.N., and Volz, R.A., Recognizing partially occluded parts,IEEE Trans. Pattern Anal. Machine Intel. 7 (1985), 410–421.

[1911] Tychonov, A.N., and Samarski, A.A., Partial Differential Equations of MathematicalPhysics, Holden–Day, San Francisco, 1964.

[1912] Ueda, N., and Satoshi, S., Learning visual models from shape contours usingmultiscale convex/concave structure matching, IEEE Trans. Pattern Anal.Machine Intel. 15 (1993), 337–352.

[1913] Ugural, A.C., and Fenster, S.K., Advanced Strength and Applied Elasticity, 3rd ed.,Prentice–Hall, Inc., Englewood Cliffs, N.J., 1995.

[1914] Ulyanov, V.V., and Zaslavskii, O.B., New methods in the theory of quantum spinsystems, Phys. Rep. 216 (1992), 179–251.

[1915] Ushveridze, A.G., Quasi-exactly solvable models in quantum mechanics, Sov. J.part. Nucl. 20 (1989), 504–528.

[1916] Ushveridze, A.G., Quasi-exactly solvable multi-dimensional Schrodinger equations,Mod. Phys. Lett. A 6 (1991), 977–979.

[1917] Ushveridze, A.G., Quasi-Exactly Solvable Models in Quantum Mechanics, Inst. ofPhysics Publ., Bristol, England, 1994.

[1918] Vaccarino, F., The ring of multisymmetric functions, Ann. Inst. Fourier 55 (2005),717–731.

[1919] Valiquette, F., Applications of Moving Frames to Lie pseudo-groups, Ph.D. Thesis,University of Minnesota, 2009.

[1920] Valiquette, F., Structure equations of Lie pseudo-groups, J. Lie Theory 18 (2008),869–895.

[1921] Valiquette, F., Solving local equivalence problems with the equivariant movingframe method, preprint, McGill University, 2010.

[1922] van Beckum, F.P.H., and van Groesen, E., Discretizations conserving energy andother constants of the motion, in: Proc. ICIAM 87, Paris, 1987, pp. 17–35 .

[1923] van der Kamp, P.H., Sanders, J.A.; Almost integrable evolution equations; TechnicalReport WS–534, Vrije Universiteit Amsterdam, 1999.

[1924] van der Schaft, A.J., Symmetries in optimal control, SIAM J. Control andOptimization 25 (1987), 245–259.

[1925] van der Vorst, R.C.A.M., Variational identities and applications to differentialsystems, Arch. Rat. Mech. Anal. 116 (1991), 375–398.

[1926] van der Waerden, B.L., Uber die fundamentalen Identitaten der Invariantentheorie,Math. Ann. 95 (1926), 706–735.

101

[1927] van der Waerden, B.L., Algebra, vol. 1, Frederick Ungar, New York, 1970.

[1928] van der Waerden, B.L., Group Theory and Quantum Mechanics, Springer–Verlag,New York, 1980.

[1929] Van Est, W.T., Group cohomology and Lie algebra cohomology in Lie groups. I, II,Indagationes Math. 15 (1953), 484–504.

[1930] Van Est, W.T., Local and global groups I, Proc. Kon. Neder. Akad. v. Wetensch. 65

(1962), 391–425.

[1931] Van Gool, L., Brill, M.H., Barrett, E.B., Moons, T., and Pauwels, E.,Semi-differential invariants for nonplanar curves, in: Geometric Invariance inComputer Vision, J.L. Mundy and A. Zisserman, eds., MIT Press, Cambridge,Mass., 1992, pp. 293–309.

[1932] Van Gool, L., Moons, T., Pauwels, E., and Oosterlinck, A., Semi-differentialinvariants, in: Geometric Invariance in Computer Vision, J.L. Mundy and A.Zisserman, eds., MIT Press, Cambridge, Mass., 1992, pp. 157–192.

[1933] Van Gool, L., Moons, T., Pauwels, E., and Oosterlinck, A., Vision and Lie’sapproach to invariance, Image Vision Comp. 13 (1995), 259–277.

[1934] Van Gool, L., Moons, T., and Proesmans, M., Mirror and point symmetry underperspective skewing, in: Proceedings IEEE Computer Society Conference onComputer Vision and Pattern Recognition, IEEE Press, Los Alamitos, CA,1996, pp. 285–292.

[1935] Van Gool, L., Moons, T., Ungureanu, D., and Oosterlinck, A., The characterizationand detection of skewed symmetry, Computer Vision Image Understanding 61

(1985), 138–150.

[1936] Vapnik, V., The Nature of Statistical Learning Theory, Springer Verlag, New York,1995.

[1937] Varadarajan, V.S., Lie Groups, Lie Algebras, and Their Representations,Springer–Verlag, New York, 1984.

[1938] Varga, R.S., Matrix Iterative Analysis, 2nd ed., Springer–Verlag, New York, 2000.

[1939] Varga, R.S., Gersgorin and His Circles, Springer–Verlag, New York, 2004.

[1940] Vassiliou, P., Coupled systems of nonlinear wave equations and finite-dimensionalLie algebras I, II, Acta Appl. Math. 8 (1987), 107–163.

[1941] Vassiliou, P., On some geometry associated with a generalised Toda lattice, Bull.Australian Math. Soc. 49 (1994), 439–462.

[1942] Vazquez, J.L., The Porous Medium Equation: Mathematical Theory, OxfordUniversity Press, Oxford, 2007.

[1943] Veblen, O., and Young, J.W., Projective Geometry, Blaisdell Publ. Co., New York,1946.

[1944] Veblen, O., and Young, J.W., Projective Geometry, vol. 2, Blaisdell Publ. Co., NewYork, 1946.

[1945] Velan, M.S., and Lakshmanan, M., Lie symmetries and invariant solutions of theshallow-water equation, Int. J. Non-Linear Mech. 31 (1996), 339–344.

102

[1946] Verbovetskii, A.M., Vinogradov, A.M., and Gessler, D.M., Scalar differentialinvariants and characteristic classes of homogeneous geometric structures,Math. Notes 51 (1992), 543–549.

[1947] Verdier, J.–L., Groupes quantiques, Asterisque 152–153 (1987), 305–319.

[1948] Verrier, P.E., and Evans, N.W., A new superintegrable Hamiltonian, J. Math. Phys.49 (2008), 022902.

[1949] Veselov, A.P., and Novikov, S.P., Exactly soluble periodic two-dimensionalSchrodinger operators, Russian Math. Surveys 50 (1995), 1316–1317.

[1950] Veselov, A.P., and Shabat, A.B., Dressing chains and spectral theory of theSchrodinger operator, Func. Anal. Appl. 27 (1993), 81–96.

[1951] Vessiot, E., Sur la theorie des groupes continues, Ann. Ecole Norm. Sup. 20 (1903),411–451.

[1952] Vessiot, E., Sur l’integration des systemes differentiels qui admettent des groupescontinues de transformations, Acta. Math. 28 (1904), 307–349.

[1953] Vessiot, E., Contribution a la geometrie conforme. Theorie des surfaces, Bull. Soc.Math. France 54 (1926), 139–179; 55 (1927) 39–79.

[1954] Vey, J., Deformation du crochet de Poisson sur une variete symplectique, Comment.Math. Helv. 50 (1975), 421–454.

[1955] Vick, J.W., Homology Theory: an Introduction to Algebraic Topology, 2nd ed.,Springer–Verlag, New York, 1994.

[1956] Vilenkin, N.J., Special Functions and the Theory of Group Representations, Amer.Math. Soc., Providence, R.I., 1968.

[1957] Vilenkin, N.J., and Klimyk, A.U., Representation of Lie Groups and SpecialFunctions, Kluwer Acad. Publ., Dordrecht, Netherlands, 1991.

[1958] Vinberg, E.B., Effective invariant theory, Amer. Math. Soc. Transl. 137 (1987),15-19.

[1959] Vinogradov, A.M., The C–spectral sequence, Lagrangian formalism and conservationlaws. I. The linear theory, J. Math. Anal. Appl. 100 (1984), 1–40.

[1960] Vinogradov, A.M., The C–spectral sequence, Lagrangian formalism and conservationlaws. II. The nonlinear theory, J. Math. Anal. Appl. 100 (1984), 41–129.

[1961] Vinogradov, A.M., Local symmetries and conservation laws, Acta Appl. Math. 2

(1984), 21–78.

[1962] Vinogradov, A.M., and Krasil’shchik, I.S., A method of computing highersymmetries of nonlinear evolution equations, and nonlocal symmetries, SovietMath. Dokl. 22 (1980), 235–239.

[1963] Vinogradov, A.M., and Krasil’shchik, I.S., On the theory of nonlocal symmetries ofnonlinear partial differential equations, Soviet Math. Dokl. 29 (1984), 337–341.

[1964] Vinogradov, A.M., and Krasil’shchik, I.S., eds., Symmetries and Conservation Lawsfor Differential Equations of Mathematical Physics, American MathematicalSociety, Providence, RI, 1998.

[1965] Vinogradov, I.M., The Method of Trigonometrical Sums in the Theory of Numbers,Dover Publ., Mineola, NY, 2004.

103

[1966] Vitali, G., Sui gruppi di punti e sulle funzioni di variabili reali, Atti Reale Accad.Sci. Torino Classe Sci. Fis. Mat. Nat. 43 (1907), 229–246.

[1967] Vitolo, R., Finite order variational bicomplexes, Math. Proc. Camb. Phil. Soc. 125

(1999), 321–333.

[1968] Vladimorov, V.S., and Volovich, I.V., Conservation laws for non-linear equations,Uspekhi Mat. Nauk 40:4 (1985), 17–26.

[1969] Vladimorov, V.S., and Volovich, I.V., Local and nonlocal currents for nonlinearequations, Theor. Math. Phys. 62 (1985), 1–20.

[1970] Vogt, W., Uber monotongekrummte Kurven, J. Reine Angew. Math. 144 (1914),239–248.

[1971] Volkmer, H., Generalized ellipsoidal and sphero-conal harmonics, SIGMA 2 (2006),071.

[1972] Vorob’ev, E.M., Reduction and quotient equations for differential equations withsymmetries, Acta Appl. Math. 23 (1991), 1–24.

[1973] Vorob’ev, E.M., Symmetries of compatibility conditions for systems of differentialequations, Acta Appl. Math. 26 (1992), 61–86.

[1974] Wadati, M., Ichikawa, Y.H., and Shimizu, T., Cusp soliton of a new integrablenonlinear evolution equation, Prog. Theor. Phys. 64 (1980), 1959–1967.

[1975] Wafo Soh, C., and Mahomed, F.M., Integration of stochastic ordinary differentialequations from a symmetry standpoint, J. Phys. A 34 (2001), 177–192.

[1976] Wahlquist, H.D., and Estabrook, F.B., Prolongation structures of nonlinearevolution equations, J. Math. Phys. 16 (1975), 1–7.

[1977] Walcher, S., Algebras and Differential Equations, Hadronic Press, Palm Harbor,Fla., 1991.

[1978] Walcher, S., Local integrating factors, J. Lie Theory; 13 (2003) 279–289.

[1979] Walter, G.G., and Shen, X., Wavelets and Other Orthogonal Systems, 2nd ed.,Chapman & Hall/CRC, Boca Raton, Fl, 2001.

[1980] Walter, W., Differential and Integral Inequalities, Springer–Verlag, New York, 1970.

[1981] Wang, Y., Smoothing Splines: Methods and Applications, Monographs Stat. Appl.Probability, vol. 121, CRC Press, Boca Raton, FL, 2011.

[1982] Ward, R.S., Integrable and solvable systems, and relations amongst them, Phil.Trans. R. Soc. Lond. A 315 (1985), 451–457.

[1983] Warner, F.W., Foundations of Differentiable Manifolds and Lie Groups,Springer–Verlag, New York, 1983.

[1984] Warner, G., Harmonic Analysis on Semi-simple Lie Groups, Springer–Verlag, NewYork, 1972.

[1985] Wasserman, A., Equivariant differentiable topology, Topology 8 (1969), 127–150.

[1986] Watkins, D.S., Understanding the QR algorithm, SIAM Review 24 (1982), 427–440.

[1987] Watkins, D.S., Fundamentals of Matrix Computations, Second Edition,Wiley–Interscience, New York, 2002.

[1988] Watson, G.N., A Treatise on the Theory of Bessel Functions, Cambridge UniversityPress, Cambridge, 1952.

104

[1989] Weil, A., Oeuvres Scientifiques, vol. 1, Springer–Verlag, New York, 1979.

[1990] Weinberger, H.F., A First Course in Partial Differential Equations, Ginn and Co.,Waltham, Mass., 1965.

[2016] Widder, D.V., The Heat Equation, Academic Press, New York, 1975.

[1992] Wiener, N., I am a Mathematician, Doubleday, Garden City, N.Y., 1956.

[1993] Weinstein, M., Existence and dynamic stability of solitary wave solutions ofequations arising in long wave propagation, Commun. Partial Diff. Eq. 12

(1987), 1133–1173.

[1994] Weinstein, A., Groupoids: unifying internal and external symmetry. A tour throughsome examples, Notices Amer. Math. Soc. 43 (1996), 744–752.

[1995] Weinstein, A., Groupoids: unifying internal and external symmetry. A tour throughsome examples, Contemp. Math. 282 (2001), 1–19.

[1996] Weispfenning, V., Comprehensive Grobner bases, J. Symb. Comp. 14 (1992), 1–29.

[1997] Weiss, I., Noise resistant invariants of curves, in: Geometric Invariance in ComputerVision, J.L. Mundy and A. Zisserman, eds., MIT Press, Cambridge, Mass.,1992, pp. 135–156.

[1998] Weiss, I., Geometric invariants and object recognition, Int. J. Comp. Vision 10

(1993), 207–231.

[1999] Weiss, I., Noise-resistant invariants of curves, IEE Trans. Pattern Anal. MachineIntelligence 15 (1993), 943–948.

[2000] Weiss, J., The Painleve property for partial differential equations. II. Backlundtransformation, Lax pairs, and the Schwarzian derivative, J. Math. Phys. 24

(1983), 1405–1413.

[2001] Weiss, J., Modified equations, rational solutions, and the Painleve property for theKadomtsev–Petviashvili and Hirota–Satsuma equations, J. Math. Phys. 26

(1985), 2174–2180.

[2002] Weiss, J., Tabor, M., and Carnevale, G., The Painleve property for partialdifferential equations, J. Math. Phys. 24 (1983), 522–526.

[2003] Weitzenbock, R., Invariantentheorie, P. Noordhoff, Groningen, 1923.

[2004] Wells, R.O., Jr., Differential Analysis on Complex Manifolds, Graduate Texts inMathematics, vol. 65, Springer–Verlag, New York, 1980.

[2005] Weyl, H., Geodesic fields in the calculus of variations for multiple integrals, Ann.Math. 36 (1935), 607–629.

[2006] Weyl, H., Cartan on groups and differential geometry, Bull. Amer. Math. Soc. 44

(1938), 598–601.

[2007] Weyl, H., Invariants, Duke Math. J. 5 (1939), 489–502.

[2008] Weyl, H., Classical Groups, Princeton University Press, Princeton, N.J., 1946.

[2009] Weyl, H., The Theory of Groups and Quantum Mechanics, Dover Publ., New York,1950.

[2010] Weyl, H., Space–Time–Matter, Dover Publ., New York, 1952.

[2011] Whitham, G.B., Variational methods and applications to water waves, Proc. Roy.Soc. London 299A (1967), 6–25.

105

[2012] Whitham, G.B., Linear and Nonlinear Waves, John Wiley & Sons, New York, 1974.

[2013] Whittaker, E.T., A Treatise on the Analytical Dynamics of Particles and RigidBodies, Cambridge University Press, Cambridge, 1937.

[2014] Whittaker, E., and Robinson, G., The Calculus of Observations, 4th ed., Blackie &Sons, Inc., London, 1944.

[2015] Whittaker, E.T., and Watson, G.N., A Course of Modern Analysis, CambridgeUniversity Press, Cambridge, 1990.

[2016] Widder, D.V., The Heat Equation, Academic Press, New York, 1975.

[2017] Wigner, E.P., and Inonu, E.., On the contraction of groups and theirrepresentations, Proc. Nat. Acad. Sci.. 39 (1953), 510–524.

[2018] Wilczynski, E.J., An application of group theory to hydrodynamics, Trans. Amer.Math. Soc. 1 (1900), 339–352.

[2019] Wilczynski, E.J., Projective Differential Geometry of Curves and Ruled Surfaces,B.G. Teubner, Leipzig, 1906.

[2020] Wiles, A., Modular elliptic curves and Fermat’s Last Theorem, Ann. Math. 141

(1995), 443–551.

[2021] Wilf, H.S., Generatingfunctionology, 2nd ed., Academic Press, Boston, 1994.

[2022] Wilkens, G.R., Centro-affine geometry in the plane and feedback invariants oftwo-state scalar control systems, in: Differential Geometry and Control, G.Ferreyra, R. Gardner, H. Hermes, and H. Sussmann, eds., Proc. Sympos. PureMath., vol. 64, Amer. Math. Soc., Providence, R.I., 1999, pp. 319–333.

[2023] Wilkinson, J.H., The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

[2024] Willmore, T.J., Riemannian Geometry, Oxford University Press, Oxford, 1993.

[2025] Wilmott, P., Howison, S., and Dewynne, J., The Mathematics of FinancialDerivatives, Cambridge University Press, Cambridge, 1995.

[2026] Wilson, G., Commuting flows and conservation laws for Lax equations, Math. Proc.Camb. Phil. Soc. 86 (1979), 131–143.

[2027] Wilson, G., Bispectral commutative ordinary differential operators, J. Reine Angew.Math. 442 (1993), 177–204.

[2028] Wilson, J., Some hypergeometric orthogonal polynomials, SIAM J. Math. Anal.11(1987), 690-701.

[2029] Witkin, A.P., Scale-space filtering, in: Proceedings of the International JointConference on Artificial Intelligence, 1983, pp. 1019-1021.

[2030] Witten, E., Constraints on supersymmetry breaking, Nuclear Phys. B 202 (1982),253–316.

[2031] Wojcik, D., and Cieslinski, J., Nonlinearity & Geometry, Polish Sci. Publ., Warsaw,1998.

[2032] Wolfram, S., The Mathematica Book, Third Edition, Cambridge University Press,Cambridge, 1996.

[2033] Wolfson, H.J., On curve matching, IEEE Trans. Pattern Anal. Machine Intel. 12

(1990), 483–489.

[2034] Wong, R., Asymptotic Approximation of Integrals, Academic Press, New York, 1989.

106

[2035] Woodhouse, N.M.J., Geometric Quantization, Second edition; Oxford UniversityPress, New York, 1992.

[2036] Wu, K., and Levine, M.D., 3D part segmentation using simulated electrical chargedistributions, IEEE Trans. Pattern Anal. Machine Intel. 19 (1997), 1223–1235.

[2037] Wulfman, C., Dynamical Symmetry, World Scientific, Singapore, 2011.

[2038] Wussing, H., The Genesis of the Abstract Group Concept, MIT Press, Cambridge,Mass., 1984.

[2039] Wybourne, B.G., Symmetry Principles and Atomic Spectroscopy,Wiley–Interscience, New York, 1970.

[2040] Wybourne, B.G., Classical Groups for Physicists, John Wiley & Sons, New York,1974.

[2041] Xiao, H., On isotropic invariants of the elasticity tensor, J. Elast. 46 (1997),115–149.

[2042] Xie, Z., and Li, H., Exterior difference system on hypercubic lattice, Acta Appl.Math. 99 (2007), 97-116.

[2043] Xu, X., Differential invariants of classical groups, Duke Math. J. 94 (1998), 543–572.

[2044] Xu, Y., Polynomial interpolation in several variables, cubature formulae, and ideals,Adv. Comput. Math. 12 (2000), 363–376.

[2045] Yaglom, I.M., Felix Klein and Sophus Lie, Birkhauser, Boston, 1988.

[2046] Yale, P.B., Geometry and Symmetry, Holden–Day, San Francisco, 1968.

[2047] Yamaguchi, K., Contact geometry of higher order, Japan J. Math. 8 (1982),109–176.

[2048] Yamamoto, Y., and Takizawa, E.I., Solutions of nonlinear differential equation∂u/∂t+(45/2)δ2u2∂u/∂x−∂5u/∂x5, J. Phys. Soc. Japan 50 (1981), 1055–1056.

[2049] Yamamoto, Y., and Takizawa, E.I., On a solution of nonlinear time-evolutionequation of fifth order, J. Phys. Soc. Japan 50 (1981), 1421–1422.

[2050] Yanenko, N.N., Theory of consistency and methods of integrating systems ofnonlinear partial differential equations, in: Proceedings of the Fourth All-UnionMathematics Congress, Leningrad, 1964, pp. 247–259 (in Russian).

[2051] Yang, D., Involutive Hyperbolic Differential Systems, Memoirs Amer. Math. Soc., no.370, American Math. Soc., Providence, R.I., 1987.

[2052] Yang, K., Exterior Differential Systems and Equivalence Problems, Kluwer AcademicPubl., Boston, 1992.

[2053] Yang, Y., and Holtti, H., The factorization of block matrices with generalizedgeometric progression rows, Linear Algebra Appl. 387 (2004), 51–67.

[2054] Yeh, C.-S., Shu, Y.-C., and Wu, K.-C., Conservation laws in anisotropic elasticity I.Basic framework, Proc. Roy. Soc. Lond. A 443 (1993), 139–151.

[2055] Yezzi, A., Curvature Driven Flows for 2D and 3D Image Segmentation, Smoothing,and Enhancement, Ph.D. Thesis, University of Minnesota, 1997.

[2056] Yoshimura, K., and Watanabe, S., Chaotic behaviour of nonlinear evolutionequation with fifth order dispersion, J. Phys. Soc. Japan 51 (1982), 3028–3035.

[2057] Young, D.M., Iterative Solution of Laarge Linear Systems, Academic Press, NewYork, 1971.

107

[2058] Yuen, H.C., and Lake, B.M., Instabilities of waves on deep water, Ann. Rev. FluidMech. 12 (1980), 303–334.

[2059] Zabusky, N.J., and Kruskal, M.D., Interaction of “solitons” in a collisionless plasmaand the recurrence of initial states, Phys. Rev. Lett. 15 (1965), 240–243.

[2060] Zagier, D., Modular forms and differential operators, Proc. Indian Acad. Sci. (Math.Sci.) 104 (1994), 57–75.

[2061] Zaitsev, V.F., and Polyanin, A.D., Handbook of Nonlinear Differential Equations,Fizmatlit Publ., Moscow, 1993 (in Russian).

[2062] Zaitsev, V.F., and Polyanin, A.D., Discrete Group Methods for Integrating Equationsof Nonlinear Mechanics, CRC Press, Boca Raton, Fl., 1994.

[2063] Zaitsev, V.F., and Polyanin, A.D., Handbook of Exact Solutions for OrdinaryDifferential Equations, CRC Press, Boca Raton, Fl., 1995.

[2064] Zakharov, V.E., Stability of periodic waves of finite amplitude on the surface of adeep fluid, J. Appl. Mech. Tech. Phys. 2 (1968), 190–194.

[2065] Zakharov, V.E., What is Integrability?, Springer Verlag, New York, 1991.

[2066] Zakharov, V.E., and Kuznetsov, E.A., Hamiltonian formalism for systems ofhydrodynamic type, Math. Phys. Reviews 4 (1984), 167–220.

[2067] Zakharov, V.E., and Shabat, A.B., A scheme for integrating the nonlinear equationsof mathematical physics by the method of the inverse scattering problem. I,Func. Anal. Appl. 8 (1974), 226–235.

[2068] Zakharov, V.E., and Shabat, A.B., Integration of the nonlinear equations ofmathematical physics by the method of the inverse scattering problem. II,Func. Anal. Appl. 13 (1979), 166–174.

[2069] Zariski, O., and Samuel, P., Commutative Algebra, vol. 1, Graduate Texts inMathematics, vol. 28, Springer–Verlag, New York, 1975.

[2070] Zariski, O., and Samuel, P., Commutative Algebra, vol. 2, Graduate Texts inMathematics, vol. 29, Springer–Verlag, New York, 1976.

[2071] Zaslavskii, O.B., Effective potential for spin-boson systems and quasi-exactlysolvable problems, Phys. Lett. A 149 (1990), 365–368.

[2072] Zaslavskii, O.B., Quasi-exactly solvable models from finite-dimensional matrices, J.Phys. A 26 (1993), 6563–6574.

[2073] Zaslavskii, O.B., Two-dimensional quasi-exactly solvable models and classicalorthogonal polynomials, J. Phys. A 27 (1994), L323–L328.

[2074] Zaslavskii, O.B., Quasi-exactly solvable models with an inhomogeneous magneticfield, J. Phys. A 27 (1994), L447–L452.

[2075] Zaslavskii, O.B., Two-dimensional quasi-exactly solvable models with a magneticfield, Phys. Lett. A 190 (1994), 373–376.

[2076] Zaslavskii, O.B., and Ulyanov, V.V., Periodic effective potentials for spin systemsand new exact solutions of one-dimensional Schrodinger equation for the energybands, Theor. Math. Phys. 71 (1987), 520–528.

[2077] Zawistowski, Z.J., Symmetries of integro-differential equations, Rep. Math. Phys. 48

(2001), 269–276.

108

[2078] Zawistowski, Z.J., Symmetries of equations with functional arguments, Rep. Math.Phys. 50 (2002), 125 .

[2079] Zawistowski, Z.J., Symmetries of integro-differential equations, Proc. Inst. Math.NAS Ukraine 43 (2003), ???.

[2080] Zawistowski, Z.J., General criterion of invariance for integro-differential equations,Rep. Math. Phys. 54 (2004), 251–260.

[2081] Zawistowski, Z.J., Invariance of integro-differential equations with moving region ofintegration, J. Tech. Phys. 47 (2006), 103–112.

[2082] Zhang, Y., Algorithms for Noncommutative Differential Operators, Ph.D. Thesis,University of Western Ontario, 2004.

[2083] Zharinov, V.V., Geometrical Aspects of Partial Differential Equations, WorldScientific, Singapore, 1992.

[2084] Zhdanov, R.Z., Conditional symmetry and spectrum of the one-dimensionalSchrodinger equation, J. Math. Phys. 37 (1996), 3198–3217.

[2085] Zhedanov, A.S., “Hidden symmetry” of Askey–Wilson polynomials, Theoret. andMath. Phys. 89 (1991), 1146–1157.

[2086] Zhiber, A.V., and Shabat, A.B., Klein–Gordon equations with a nontrivial group,Sov. Phys. Dokl. 24 (1979), 607–609.

[2087] Zhitomirskii, M.Y., Degeneracies of differential 1–forms and Pfaffian structures,Russian Math. Surveys 46:5 (1991), 53–90.

[2088] Zhitomirskii, M.Y., Typical Singularities of Differential 1–forms and PfaffianEquations, Transl. Math. Monographs, vol. 113, Amer. Math. Soc., Providence,R.I., 1992.

[2089] Zidowitz, S., Conditional symmetries and the direct reduction of partial differentialequations, in: Modern Group Analysis: Advanced Analytical and ComputationalMethods in Mathematical Physics, N.H. Ibragimov, M. Torrisi, and A. Valenti,eds., Kluwer, Dordrecht, Netherlands, 1993, pp. 387–393.

[2090] Zienkiewicz, O.C., and Taylor, R.L., The Finite Element Method, 4th ed.,McGraw–Hill, New York, 1989.

[2091] Zippel, R., Interpolating polynomials from their values, J. Symb. Comp. 9 (1990),375–403.

[2092] Zisserman, A., Forsyth, D.A., Mundy, J.L., and Rothwell, C.A., Recognizing generalcurved objects efficiently, in: Geometric Invariance in Computer Vision, J.L.Mundy and A. Zisserman, eds., MIT Press, Cambridge, Mass., 1992, pp.228–251.

[2093] Zuazua, E., Propagation, observation, and control of waves approximated by finitedifference methods, SIAM Review 47 (2005), 197–243.

[2094] Zufiria, J.A., Symmetry breaking in periodic and solitary gravity–capillary waves onwater of finite depth, J. Fluid Mech. 184 (1987), 183–206.

[2095] Zwillinger, D., Handbook of Differential Equations, Academic Press, Boston, 1992.

[2096] Zygmund, A., Trigonometric Series, Cambridge University Press, Cambridge, 1968.

109