Seminar des Fachausschusses Ultraschallprüfung - Vortrag 9Ditii ttiti l (hit/miss, maxdistribution...

12
O i fh Si l i Overview of the SimulationSupported POD Approach in the CIVA Software Frédéric Jenson, Philippe Benoist CEA, LIST, 91191 GifsurYvette, France Background Inspection reliability: one of the key issues in ensuring safety of Evaluation of POD Curves Based on Simulation Results Inspection reliability: one of the key issues in ensuring safety of critical structural components • Increasing use of probabilistic approaches based on statistical criteria such as POD curves and PFAs • Are currently obtained thru expensive and time consuming experimental campaigns Obj ti • To propose tools to replace some of the experimental data with simulation results such as those obtained with the software CIVA Objective Seminar des Fachausschusses Ultraschallprüfung - Vortrag 9 Lizenz: http://creativecommons.org/licenses/by-nd/3.0/de 1

Transcript of Seminar des Fachausschusses Ultraschallprüfung - Vortrag 9Ditii ttiti l (hit/miss, maxdistribution...

Page 1: Seminar des Fachausschusses Ultraschallprüfung - Vortrag 9Ditii ttiti l (hit/miss, maxdistribution amplitude…) Simulated Model responses computation Random sampling Descr p tionus

O i f h Si l iOverview of the Simulation‐Supported POD Approach in the 

CIVA Software

Frédéric Jenson, Philippe BenoistCEA, LIST, 91191 Gif‐sur‐Yvette, France

Background

• Inspection reliability: one of the key issues in ensuring safety of

Evaluation of POD Curves Based on Simulation Results 

Inspection reliability: one of the key issues in ensuring safety of critical structural components

• Increasing use of probabilistic approaches based on statistical criteria such as POD curves and PFAs

• Are currently obtained thru expensive and time consumingexperimental campaigns

Obj ti

• To propose tools to replace some of the experimental data with simulation results such as those obtained with the software CIVA 

Objective

Seminar des Fachausschusses Ultraschallprüfung - Vortrag 9

Lizenz: http://creativecommons.org/licenses/by-nd/3.0/de

1

Page 2: Seminar des Fachausschusses Ultraschallprüfung - Vortrag 9Ditii ttiti l (hit/miss, maxdistribution amplitude…) Simulated Model responses computation Random sampling Descr p tionus

Outline

POD curves evaluation based on a sampling approach

Definition of the uncertainty sourcesUncertainty propagation thru the physical modelUncertainty propagation thru the physical modelExtraction of the output (the variable of interest)Computation of the POD curve and the lower confidence bound

Validation case

Validity of the simulated POD curve : error sources

HFET of fatigue cracks in Titanium

Validity of the simulated POD curve : error sources

Future work and objectives for CIVA

Aim of the approach: first, simulate a set of “realistic values” for the NDI system response

• « realistic values»: values that take into account uncertainty and noise sources and thus reflect fluctuations around the theoretical responses

Signal response

Signal response

p

Fluctuations

Theoretical response

Flaw dimension Flaw dimension

Deterministic approach Statistical approach

2

Page 3: Seminar des Fachausschusses Ultraschallprüfung - Vortrag 9Ditii ttiti l (hit/miss, maxdistribution amplitude…) Simulated Model responses computation Random sampling Descr p tionus

Deterministic case

… then, perform an estimation of the POD curve using a functional form

Statistical case

Flaw dimension

Signal response

Threshold

POD

Flaw dimension

Signal response

Threshold

POD

Estimation of μ, σ and confidence bound

Flaw dimension

0

1

Flaw dimension

0

1Lower confidence 

bound

Functional form (depends on the estimates of μ, σ )

POD’s in CIVA Software: a sampling approach based on existing physical models

RandomRandom input

parameters CIVA Modeling

(UT, ET)

Random Response

+ Noise

Probabilistic characterization of 

inspection capability: POD, PFA, ROC, …

),( dXhY

1. Definition of the inspection setup 2. Description of uncertainties on a set of input parameters3. Propagation of uncertainty thru existing models (Monte Carlo)4. Extraction of the output (the variable of interest)5. Evaluation of probabilistic criteria such as the POD, PFA

3

Page 4: Seminar des Fachausschusses Ultraschallprüfung - Vortrag 9Ditii ttiti l (hit/miss, maxdistribution amplitude…) Simulated Model responses computation Random sampling Descr p tionus

Evaluation of POD Curves Based on Simulation Results 

Factors affecting the probe signal response due to a flaw

Factors that can be adressed using physical models

response due to a flaw

• NDI system: transducer, scan plan, electronic device, probe orientation

• Part: geometry, material properties, structural properties, surface roughness

NDI systemPart

Flaw

• Flaw: size, shape, orientation, position, material properties 

Factors that are difficult/impossible to address using physical models

Some “human factors” : psychological factors, physiological factors 

These factors are either deterministic or random during the inspection

Evaluation of POD Curves Based on Simulation Results 

Factors that are thought to be deterministicg

Factors that are thought to be random or uncertain

A signal‐determining factor is taken to be deterministic if either the factor can be controlled in the inspection operation or if it is desired to estimate POD as a function of the level factor (flaw size for instance).

The factor is thought to be random during the production/field inspection if there is insufficient knowledge related to it, if it is not well controlled or if it implies physical phenomena with inherent randomness.

4

Page 5: Seminar des Fachausschusses Ultraschallprüfung - Vortrag 9Ditii ttiti l (hit/miss, maxdistribution amplitude…) Simulated Model responses computation Random sampling Descr p tionus

Examples of random (uncertain) factors:

Evaluation of POD Curves Based on Simulation Results 

• Detail of metallurgical macro and microstructure: structural noise, beam distortions, beam deviations

• Flaw morphology: for a fixed size, various parameters such as shape, orientation, position, elastic properties, and conductivity can vary in a random manner

• Probe positioning: Lift‐off variations and/or probe orientation during a manual p g / p ginspection using an eddy current pencil probe

• …

Modeling uncertainty sources using statistical distributions

ProbeProbe

θ S

θnominal Snominal

Simulated responses

SkewNotchNotch

0.16

0.18

θi Proposed parametric distributions:

UniformNormal

θ1 S1

θ2 S2

θn Sn

-15 -10 -5 0 5 10 150

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Angle [°]

PD

F

Statistical distribution for the skew angle

Dedicated GUI

NormalLog‐normalRayleighExponential…

Defined using engineering judgment 

5

Page 6: Seminar des Fachausschusses Ultraschallprüfung - Vortrag 9Ditii ttiti l (hit/miss, maxdistribution amplitude…) Simulated Model responses computation Random sampling Descr p tionus

ânom

Performing uncertainty propagation using a sampling approach (Monte Carlo)

θ1

θ2

θn

θnominal

Extraction

â1

â2

ânSkew

D i ti i t ti ti l Extraction(hit/miss, max amplitude…)

Simulated responsesModel 

computation

Random sampling

Description using a statistical distribution

Skew

Probability

Mean value

Kirchhoff

Simulations are based on existing physical models

Physical models :

• UT beam modeling using ray tracing (pencil method)

• UT beam-defect modeling using Kirchhoff approximation, Geometrical Diffraction Theory, Born approximation

• ECT field modeling using Finite Integration Technique, Analytical expressions

ECT d f t d li i V l I t l M th d• ECT defect response modeling using Volume Integral Method

6

Page 7: Seminar des Fachausschusses Ultraschallprüfung - Vortrag 9Ditii ttiti l (hit/miss, maxdistribution amplitude…) Simulated Model responses computation Random sampling Descr p tionus

Estimation of the POD curve using a functional form

• POD curves relate the detectability of a flaw to its size (or to another geometrical characteristic)

• Usual approach (MIL HDBK 1823) consist in: pp ( ) assuming a functional form for the POD curve  estimating the parameters of the function from the inspection results estimating the associated confidence bound

• Hit/miss data format:

1ln

3exp1)(

aaPOD

Log‐odds functionBerens

• Signal response data format: /ln)( aaPOD

Cumulative log‐normal distribution function

• Estimated from a finite size data sample sampling uncertainty

confidence bound

Berens

Cheng

Part NDT

Material: Titanium (TA6V) Configuration: High Frequency Eddy Currents Testing (HFET)

Validation case: HFET of fatigue cracks in Titanium

Geometry: Flat areas

Currents Testing (HFET)

Probe: Pencil probe (2MHz)

Defects: Fatigue cracks 

Conditions: In‐service (manual)

7

Page 8: Seminar des Fachausschusses Ultraschallprüfung - Vortrag 9Ditii ttiti l (hit/miss, maxdistribution amplitude…) Simulated Model responses computation Random sampling Descr p tionus

• Characteristic variable: crack length (mm)

• Uncertain parameters:

Design of Numerical Experiments HFET on Titanium

Start scan position Crack height (mm) Angle of the probe (°)Start scan position Crack height (mm) Angle of the probe ( )Corresponds to the position of the probe for picking the  maximum amplitude signal

Fatigue cracking is subject to manyuncertainties

Translated into an additional lift‐off using geometrical rule

0.2

0.4

0.6

0.8

1

Pro

ba

bili

ty d

en

sity

1

1.5

2

2.5

3

3.5

4

Pro

ba

bili

ty d

en

sity

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Pro

ba

bili

ty d

en

sity

Uniform in [‐0.5;05](scan increment=1mm)

Gaussian with dependency to the crack length (fatigue crack)

0.5*length +N(0,1)*0.12*lengthGaussian(0°;1°)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 10

Y start position (mm)0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

0.5

Crack height (ratio of length)-4 -3 -2 -1 0 1 2 3 4

0

0.05

Probe angle (°)

Sampling strategy: Monte Carlo

– Experimental database

• 69 cracks from 0.33 mm to 6.66 mm

• 5 operators

Simulated vs. Experimental data

20

40

60

80

100

Sig

na

l re

spo

nse

(%

FS

H)

Experimental data

– Simulations

• 100 crack lengths from 0.25 mm to 5.0 mm

• 6 samples per crack length

0 1 2 3 4 5 6 70

Crack length (mm)

8

Page 9: Seminar des Fachausschusses Ultraschallprüfung - Vortrag 9Ditii ttiti l (hit/miss, maxdistribution amplitude…) Simulated Model responses computation Random sampling Descr p tionus

100

Signal response data analysis

Exp=3.4mmSimul=3.6mm

First saturated data

80

90

100

110

FS

H)

Linear‐linear plot

0 1 2 3 4 5 6 70

20

40

60

80

Crack length (mm)

Sig

na

l re

spo

nse

(%

FS

H)

Measured data

Simulated datawith uncertaintiesDeterministic

4

4.5

5

â (

log

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.510

20

30

40

50

60

70

80

Crack length, a (mm)

Sig

na

l re

spo

nse

, (%

Data

MLE regression

MLE+delta

MLE-delta

All cracks are detected

Log‐log plot

Exp=1.4mm

Simul=1.5mm 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

2.5

3

3.5

4

Crack length, a (log), mmS

ign

al r

esp

on

se,

Data

MLE regression

MLE+delta

MLE-delta

Good agreement on data until 3 mm cracks.

High variability  for larger cracks not well represented

Signal response data analysis

High variability for larger cracks may be due to the complex crack shapes withpossible electrical contacts between the two faces of the crack aperture. Thesecontacts are responsible for signal amplitude dropscontacts are responsible for signal amplitude drops.

Dataset is augmented with an additional uncertain input parameter: the rateof electrical contacts along the crack length.

30

35

40

45

50

con

tact

s (%

)

0 1 2 3 4 50

5

10

15

20

25

30

Crack length (mm)

Ra

tio o

f ele

ctric

al c

9

Page 10: Seminar des Fachausschusses Ultraschallprüfung - Vortrag 9Ditii ttiti l (hit/miss, maxdistribution amplitude…) Simulated Model responses computation Random sampling Descr p tionus

Signal response data analysis

100

Exp=3.4 mmSimul=2.9 mm

First saturated data

80

90

100

110

FS

H)

Linear‐linear plot

0 1 2 3 4 5 6 70

20

40

60

80

Crack length (mm)

Sig

na

l re

spo

nse

(%

FS

H)

Measured data

Simulated data

Simulated datawith electrical bridges

Exp 1 4mm

All cracks are detected

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.510

20

30

40

50

60

70

Crack length, a (mm)

Sig

na

l re

spo

nse

, (%

Data

MLE regression

MLE+delta

MLE-delta

4

4.5

5

â (

log

)

Log‐log plot

Exp=1.4mm

Simul=1.55 mm 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

2.5

3

3.5

Crack length, a (log), mm

Sig

na

l re

spo

nse

,

Data

MLE regression

MLE+delta

MLE-delta

Adding electrical contacts as an uncertain inputparameter allows for reproducing the highvariability in the whole crack length range.

Hit/Miss POD analysis: 4 input uncertain parameters

• 600 simulated data• 4 uncertain parameters (start position, crack height, probe angle, elec. contacts) 

10

20

30

40

50

60

70

80

90

100

Pro

ba

bili

ty O

f De

tect

ion

(%

)

Observed ratio (experimental)Estimated POD (experimental)

POD 95 % conf. (experimental)

Observed ratio (simulation)Estimated POD (simulation)POD 95 % conf. (simulation)

10

20

30

40

50

60

70

80

90

100

Pro

ba

bili

ty O

f De

tect

ion

(%

)

Observed ratio (experimental)

Estimated POD (experimental)

POD 95 % conf. (experimental)Estimated POD (simulation)

POD 95 % conf. (simulation)

POD curves very similar•Slope corrected but still the effect of the number of data

•Confidence band smallerfor simulation dataset becausemore data than in the experimental dataset

mma

mma

8.1

5.1exp

95/90

exp90

mma

mmaECsimu

ECsimu

7.1

5.1,

95/90

,90

0.5 1 1.5 2 2.5 3 3.50

10

Crack length (mm)0.5 1 1.5 2 2.5 3 3.50

10

Crack length (mm)

O 95 % co (s u at o )

Empirical POD (simulation)

Values of interest verysimilar

10

Page 11: Seminar des Fachausschusses Ultraschallprüfung - Vortrag 9Ditii ttiti l (hit/miss, maxdistribution amplitude…) Simulated Model responses computation Random sampling Descr p tionus

Validity of the simulated POD curve : error sources

When determining a POD curve from simulation results, various error sources may impact the results:

Sampling uncertainty ‐> lower confidence boundp g y

Errors on the estimation of the lower confidence bound ‐> if sample size is to small. Need more simulations.

Hypothesis of the POD model: linear relationship, constant standard deviation…

Modeling errors ‐> systematic error (bias on the estimates of the parameters of the curve). Need validation of the models/ definition of the validity domain. 

Errors on the definition of the inputs ‐>choice of the uncertain parameters of the inspection, of the statistical distributions describing them and of the parameters of the distributions. Need more engineering judgment.

Perspectives

•Additional tools are needed for the modeling of uncertainty sources: take into account correlations between input parameters

Parameter 1

Param

eter 2

Param

eter 2

Parameter 1

Example: Correlations between the length and the height of a crack

• Perform experimental validation for EC and UT application cases

• New approaches for the modeling of the POD curve

PICASSO Project : European project (FP7), started in 2009

11

Page 12: Seminar des Fachausschusses Ultraschallprüfung - Vortrag 9Ditii ttiti l (hit/miss, maxdistribution amplitude…) Simulated Model responses computation Random sampling Descr p tionus

Thank you for your attention

Questions?

12