Skript zur Vorlesung Organische Chemie (Prof. M. Albrecht...

24
Skript zur Vorlesung Organische Chemie (Prof. M. Albrecht) an der RWTH Aachen Erstellt von: Michael Müller Erstellungsdatum: 23.01.2004 e-mail: [email protected]

Transcript of Skript zur Vorlesung Organische Chemie (Prof. M. Albrecht...

Page 1: Skript zur Vorlesung Organische Chemie (Prof. M. Albrecht ...chempage.de/start/workshop/skript.mechanismen.pdf · 2 E1 E2 Alkohole Alkene Dehydratisierung Deprotonierung Alkoxide

Skript zur Vorlesung Organische Chemie (Prof. M. Albrecht) an der RWTH Aachen Erstellt von: Michael Müller Erstellungsdatum: 23.01.2004 e-mail: [email protected]

Page 2: Skript zur Vorlesung Organische Chemie (Prof. M. Albrecht ...chempage.de/start/workshop/skript.mechanismen.pdf · 2 E1 E2 Alkohole Alkene Dehydratisierung Deprotonierung Alkoxide

Reaktionsmechanismen und Namensreaktionen der organischen Chemie Seite 2 von 24

Reaktionsmechanismen und Namensreaktionen In diesem Skript sollen die Grundlagen der Reaktionen der organischen Chemie geklärt werden. Dabei verfolgt das Skript die im Schema gezeigte Chronologie.

Alkane

Radikale Substitution

Halogenalkane

SN1SN2 E1 E2

AlkeneAlkoholeDehydratisierung

Deprotonierung

Alkoxide AldehydeKetone

Halogenalkane Carbonsäuren

Additions-EliminierungsreaktionEther

Ester

SN1SN2 Oxidation

Williamson-Ethersynthese

Addition

AlkoholeHalogenalkane...

Die meisten organischen Reaktionen verlaufen nicht direkt in einem Schritt von den Edukten zu den Produkten. Ein Grossteil der organischen Reaktionen verläuft über Reaktionsmechanismen, Überganszuständen und Zwischenstufen. Unter dem Begriff Übergangszustand versteht man einen Zustand der von einem System eingenommen wird und auf einem Maximum liegt. Die Zwischenstufe hingegen bezeichnet einen Zustand des Systems der eingenommen wird und in einem lokalen Minimum liegt. Dieser Zustand kann trotzdem sehr energiereich sein.

Page 3: Skript zur Vorlesung Organische Chemie (Prof. M. Albrecht ...chempage.de/start/workshop/skript.mechanismen.pdf · 2 E1 E2 Alkohole Alkene Dehydratisierung Deprotonierung Alkoxide

Reaktionsmechanismen und Namensreaktionen der organischen Chemie Seite 3 von 24

1.0 Reaktionen der Alkane Die einfachsten organischen Verbindungen sind die Alkane. Sie bestehen lediglich aus Kohlenstoff- und Wasserstoffatomen und besitzen keinerlei funktionelle Gruppen. 1.1 Oxidation Die einfachste Reaktion die Alkane eingehen können ist die Oxidation oder Verbrennung. Dabei entstehen aus den Kohlenwasserstoffverbindungen bei vollständiger Verbrennung Kohlenstoffdioxid sowie Wasser. 2CnH2n+2 + (3n+1)O2 ? 2nCO2 + (2n+2)H2O + Energie - Erdöl - Diesel, Heizöl - Erdgas - Benzin Methan: CH4 + 2 O2 ? CO2 + 2 H2O + Wärme ?H°=212,8 kJ/mol Butan: C4H10 + 13/2 O2 ? 4CO2 + 5H2O + Wärme ?H°= 688 kJ/mol Verbrennung = Oxidation = Elektronenabgabe

C H C O

Neben der vollständigen Oxidation der Alkane können Alkane jedoch ebenso partiell oxidiert werden. Man erreicht dies indem man bei der Reaktion von Alkanen mit Sauerstoff eine unzureichende Menge Sauerstoff zuführt. Das Reaktionsprodukt dabei ist Wasser, Kohlenstoffmonoxid sowie Kohlenstoffdioxid.

2 CH4 + 3O2 ? 2CO + 4H2O CH4 + O2 ? C (Ruß) + 2H2O

Beim Erhitzen von Alkanen auf hohe Temperaturen werden die Bindungen zwischen den Kohlenstoffatomen und den Wasserstoffatomen gespalten. Man spricht in diesem Zusammenhang auch von Pyrolyse von Alkanen. Die Folge ist bei homolytischer Spaltung die Bildung von Radikalen.

d- d+ d- d+

Page 4: Skript zur Vorlesung Organische Chemie (Prof. M. Albrecht ...chempage.de/start/workshop/skript.mechanismen.pdf · 2 E1 E2 Alkohole Alkene Dehydratisierung Deprotonierung Alkoxide

Reaktionsmechanismen und Namensreaktionen der organischen Chemie Seite 4 von 24

CH3 CH2 CH2 CH2 CH2 CH3

C C C H

H

H

H

H

H

H

C H

H

HC C C C C

H

H

H

H

H

H

H

H

H

H

H

C C H

H

H

H

HC C C C H

H

H

H H H

H H H

2

+

+

Pyrolyse von Hexan

Die entstandenen Radikale können nun auf unterschieliche Weise weiter reagieren. Sie können sich einerseits rekombinieren und zu neuen Alkanen werden oder durch Wasserstoffabspaltung zu Alkenen reagieren. Rekombination: H3C· + ·CH2-CH3 ? H3C-CH2-CH3 Wasserstoffabspaltung:

H3C-CH2· + H2CH-CH2· ? H3C-CH3 + H2C=CH2

1.2 Radikale Kettenreaktion Eine weitaus wichtigere Reaktion von Alkanen ist die radikalische Halogenierung der Kohlenwasserstoffverbindungen. Sie dient zur Synthese wichtiger Industriechemikalien. Im Folgenden wird der radikalischen Kettenreaktion anhand der Chlorierung von Methan betrachtet. Die Reaktionsprodukte der radikalischen Halogenierung sind Chlormethan und Chlorwasserstoff sowie Nebenprodukte in sehr geringen Mengen.

Cl ClH3 C H H3 C Cl H ClLichtWärme+ +

440 kJ/mol 243 kJ/mol356 kJ/mol 431 kJ/mol

?H°= ((440 + 243) – (356 + 431)) kJ/mol = -104 kJ/mol (exotherm) Die radikale Kettenreaktion wird gestartet durch die Spaltung eines Chlormoleküls durch Wärmezufuhr oder Lichteinfall.

Page 5: Skript zur Vorlesung Organische Chemie (Prof. M. Albrecht ...chempage.de/start/workshop/skript.mechanismen.pdf · 2 E1 E2 Alkohole Alkene Dehydratisierung Deprotonierung Alkoxide

Reaktionsmechanismen und Namensreaktionen der organischen Chemie Seite 5 von 24

1) Kettenstart:

Cl Cl Cl hν

2 ?H°= 243 kJ/mol Im zweiten Schritt greift das Chlorradikal das Methanmolekül an. Dabei wird eine der Wasserstoff-Kohlenstoffbindungen des Methans homolytisch gespalten und man erhält Chlorwasserstoff sowie ein Methylradikal. 2) Wasserstoffabspaltung (1. Kettenfortpflanzung)

Cl C

H

H

H

H C H

H

H+ HCl +

440 kJ/mol 431 kJ/mol ?H°= + 9 kJ/mol

Im anschließenden Reaktionsschritt greift nun das Methylradikal ein Chlormolekül an und unter homolytischer Spaltung der Chlor-Chlorbindung entsteht Chlormethan sowie ein Chlorradikal, welches wiederum im vorhergehenden Schritt mit einem Methanmolekül reagieren kann. 3) Chlorierung des Methans (2. Kettenfortpflanzung)

C H

H

H

Cl Cl C

H

H

H

Cl Cl + +

243 kJ/mol 356 kJ/mol

in 2

?H°= -113 kJ/mol

C

HH

H

H ClC 1

HH

H

H Cl

Lappen wächst

C

H H

H

+ H Cl

Page 6: Skript zur Vorlesung Organische Chemie (Prof. M. Albrecht ...chempage.de/start/workshop/skript.mechanismen.pdf · 2 E1 E2 Alkohole Alkene Dehydratisierung Deprotonierung Alkoxide

Reaktionsmechanismen und Namensreaktionen der organischen Chemie Seite 6 von 24

Zu Ende der Kettenreaktion findet eine Rekombination der verschiedenen Radikale statt und man erhält ein Chlormolekül, ein Ethanmolekül oder ein Chlormethanmolekül als Produkt. 4) Kettenabruchreaktion Cl· + Cl· ? Cl-Cl ·CH3 + · CH3 ? H3C-CH3 ·CH3 + Cl· ? H3C-Cl Die radikale Kettenreaktion verläuft über eine Zwischenstufe sowie zwei Übergangszustände, welche in dem folgenden Energiediagramm zu erkennen sind.

Abb. Energiediagramm Die radikalische Chlorierung von Methan kann durch weitere Substitutionen von Wasserstoffatomen durch Chloratome weiter bis zum Tetrachlormethan geführt werden.

CH4 CH3 Cl CH2 Cl2 HCl3 CCl4Cl2-HCl

Cl2-HCl

Cl2-HCl

Cl2-HCl

Chlormethan(Methylchlorid)

Dichlormethan(Methylenchlorid)

Trichlormethan(Chloroform) Tetrachlormethan

Analog zur radikalen Chlorierung von Methan kann man Methan auch Bromieren. Ebenso ist es möglich Propan zu Chlorieren, wobei man verschiedene Reaktionsprodukt erhält. Das Verhältnis der Reaktionsprodukte richtet sich dabei nach der Stabilität der Radikale sowie der statistischen Möglichkeit der Substitution. Dabei gilt das primäre Radikale instabiler sind als sekundäre oder tertiäre Radikale.

CH4 + Cl? + Cl2

?CH3 + Cl2 + HCl

Zwischenstufe

[H3C? ? ?H ? ? ?Cl]?

[H3C? ? ?Cl ? ? ?Cl]?

Übergangszustand

E

Reaktionskinetik

Page 7: Skript zur Vorlesung Organische Chemie (Prof. M. Albrecht ...chempage.de/start/workshop/skript.mechanismen.pdf · 2 E1 E2 Alkohole Alkene Dehydratisierung Deprotonierung Alkoxide

Reaktionsmechanismen und Namensreaktionen der organischen Chemie Seite 7 von 24

Stabilität der Radikale

primäres Radikal < sekundäres Radikal < tertiäres Radikal Für die Halogene gilt, dass Fluor am heftigsten mit Alkanen reagiert. Die Reaktivität der Halogene nimmt innerhalb der Gruppe von oben nach unten hin ab:

Fluor > Chlor > Brom > Iod 2.0 Reaktionen der Halogenalkanen Eine typische Reaktion der Halogenalkane ist die Nucleophile Substitution. Diese Reaktion ist eine Folge der Polarisierung der Kohlenstoff-Halogenbindung. Dabei ist das Halogenatom partiell negativ geladen und das Kohlenstoffatom partiell positiv geladen. Im folgenden soll der Mechanismus der nucleophilen Substitution anhand der Reaktion von Chlormethan mit Natriumhydroxid erläutert werden. Dabei spricht man bei dieser Reaktion von einer Reaktion zweiter Ordnung. 2.1 Die Bimolekulare nucleophile Substitution SN2 Zunächst greift ein Nucleophil (in diesem Fall das Hydroxidion) am partiell positiv geladenen Kohlenstoffatom rückseitig an. Dabei entsteht ein fünfbindiger (pentavalenter) Übergangszustand. Die Abspaltung des Chloridions sowie die Anlagerung des Hydroxidsions erfo lgt gleichzeitig und man erhält als Reaktionsprodukt Methanol und ein Chloridion.

C ClH

H H

HO

C Cl

H

H H

OH

COHH

H HCl

- =

-+

-

Das Energiediagramm für eine solche Reaktion sieht wie folgt aus.

Edukte

Produkte

Übergangszustand ?

Page 8: Skript zur Vorlesung Organische Chemie (Prof. M. Albrecht ...chempage.de/start/workshop/skript.mechanismen.pdf · 2 E1 E2 Alkohole Alkene Dehydratisierung Deprotonierung Alkoxide

Reaktionsmechanismen und Namensreaktionen der organischen Chemie Seite 8 von 24

Neben der rückseitigen Anlagerung des Nucleophils könnte das Nucleophil auch vorderseitig angelagert werden. Jedoch zeigen entsprechende Experimente das diese Anlagerung nicht stattfindet.

CCH3

HBr

CH2CH3

CCH3

H

BrCH2CH3

I

IC

CH3

HI

CH2CH3

Br

H

BrICH2CH3CH3

CCH3

HI

CH2CH3

Br

- =

Vorderseitenangriff

--

+

Retention

(S)-2-Brombutan

(S)-2-Iodbutan

- =

Rückseitenangriff

Inversion

-+

(R)-2-Iodbutan

Im folgenden soll eine kurze Übersicht über mögliche Nucleophile sowie die dabei entstehenden Produkte gegeben werden. Nucleophil (Nu) R-Nu

O H-Hydroxid

R OH Alkohol

OR-Alkoxid

R OR' Ether

HOH R OH

HR O H

+ -H+

Alkohol R' OH

R O H

R'R O R'-H+

Ether

R' CO

O Carboxylat

R O C R'

O Ester NH3 Ammoniak R NH3 R NH2

+ -H+

Amin R' NH2 primäres Amin R NH2R' R NHR'

+ -H+

sekundäres Amin

R2' NHsekundäres Amin R NHR2 ' R NR2 '

+ -H+

tertiäres Amin

R3'N tertiäres Amin R NR3'+

HS- Hydrogensulfidion R-SH Thiol R-S- Mereaptidion R-SR Thioether R2S

SRR'

R'

+

Sulfoniumion I- Iodid R-I Iodalkan CN- Cyanid R-CN Nitriole C C R'

Acetylid R C C R' Acetylen

Page 9: Skript zur Vorlesung Organische Chemie (Prof. M. Albrecht ...chempage.de/start/workshop/skript.mechanismen.pdf · 2 E1 E2 Alkohole Alkene Dehydratisierung Deprotonierung Alkoxide

Reaktionsmechanismen und Namensreaktionen der organischen Chemie Seite 9 von 24

Es gibt verschiene Faktoren die den Ablauf der SN2-Reaktion bestimmen. Zum einen beeinflusst die Güte der Abgangsgruppe den Verlauf der Reaktion. Dabei begünstigen stabile Abgangsgruppen den Verlauf der Reaktion.

I-> Br- > Cl- > F-

R S O

O

OR S O

O

OR S O

O

O

CO

OC

O

OC

O

O-

--

--

-

Außerdem beeinflusst die Art des Nucleophils den Verlauf der SN2-Reaktion. Dabei wird die Reaktion durch negativ geladene Nucleophile ohne sterische Hinderung begünstigt. 2.2 Die Monokulare Substitution SN1 Neben der bimolekularen Substitution kann bei Halogenalkanen noch eine weitere Form der nucleophilen Substitution auftreten – die monomolekulare Substitution. Diese Form der Substitution tritt allerdings bevorzugt bei sekundär oder tertiär gebundenen Halogenen auf. Bei der Monomolekularen Substitution wird zunächst das Halogenidion abgespalten und es bildet sich ein Carbeniumion. Anschließend „klappen“ die drei noch am Kohlenstoffatom verbliebenen Substituenten in eine Ebene und das zentrale Kohlenstoffatom nimmt eine sp2-Hybridisierung ein. Danach kann die Anlagerung des Nucleophils erfolgen.

CH3

C Br

CH2CH2CH3CH2CH2

Br CCH3

CH2CH2CH3

CH2CH3

OH2

OH2

C

CH3

OH CH2CH3

CH2CH2CH3

C

OH

CH3

CH2CH2CH3

CH2CH3

-

(R)

+

(S)-Methyl-3-hexanal

InversionRetention

-HBr -HBr

(R)-3-Methyl-3-hexanal

+

Page 10: Skript zur Vorlesung Organische Chemie (Prof. M. Albrecht ...chempage.de/start/workshop/skript.mechanismen.pdf · 2 E1 E2 Alkohole Alkene Dehydratisierung Deprotonierung Alkoxide

Reaktionsmechanismen und Namensreaktionen der organischen Chemie Seite 10 von 24

Da das Carbeniumion eine sp2-Hybridisierung aufweist kann bei der SN1-Reaktion eine vorder- und eine rückseitige Anlagerung des Nucleophils erfolgen. Das Energiediagramm einer solchen Reaktion sieht wie folgt aus.

C Br

CH3

CH3

CH3

Br (CH3)3C OH(CH3)3 C BrH2O+-

+ ++ -

Die SN1-Reaktion läuft im Allgemeinen schneller als die SN2-Reaktion ab. Dazu ist es aber nötig, dass sich ein stabiles Carbeniumion ausbilden kann. Die Stabilität des Carbeniumions hängt von den Substituenten ab. Dabei gelten tertiäre Carbeniumionen als besonders stabil.

C

CH3

CH3

CH3 C

H

CH3

CH3 C

H

H

CH3C

H

H

H+ + + +

tertiär sekundär primär CH3

+> > >

Der Grund für die Stabilität der tertiären Carbeniumionen ist der hyperkonjugative Effekt der Alkylgruppen. Dabei „verschieben“ die Alkylsubstituenten ihre Elektronendichte zum Kation.

CH

H

H

CCH2

CH2

CH2

H

H

H

+ +

Alkylsubstituenten "schieben" Elektronendichte zum Kation

E

Page 11: Skript zur Vorlesung Organische Chemie (Prof. M. Albrecht ...chempage.de/start/workshop/skript.mechanismen.pdf · 2 E1 E2 Alkohole Alkene Dehydratisierung Deprotonierung Alkoxide

Reaktionsmechanismen und Namensreaktionen der organischen Chemie Seite 11 von 24

Die folgende Tabelle soll einen kurzen Vergleich zwischen S N1- und SN2-Reaktion ziehen.

Vergleich von SN2 und SN1 Reaktionsparameter SN2 SN1 Struktur des Halogenids primär häufig selten

(Benzyl, Alkyl) sekundär manchmal manchmal tertiär selten häufig Stereochemie Inversion Racemisierung Lösungsmittel wird durch polare

Lösungsmittel verzögert wird durch polare protische Lösungsmittel beschleunigt

Nucleophil Anionische Nu begünstigt andere Abgangsgruppe als Halogenides

schlechte Abgangsgruppe bevorzugt SN2

gute Abgangsgruppe bevorzugt SN1

2.3 Die Unimolekulare Eliminierung Die Monomolekulare Substitution steht mit einer weiteren Reaktionsmöglichkeit in Konkurrenz. Dabei erfolgt wiederum zunächst die Bildung eines Carbeniumions und anschließend wird ein Proton abgespalten. Dabei entsteht ein Alken sowie ein Halogenwasserstoff.

(CH3)C Br CH2

H

C

CH3

CH3

CH2 C

CH3

CH3

CH3OHC O CH3

CH3

CH3

CH3

+

HBr+20%

Eliminierung von HBr

SN1

E1

+ HBr

80%

Welche Reaktion abläuft hängt von verschiedenen Faktoren ab. So werden schlechte Nucleophile, welche als starke Basen wirken die Eliminierung fördern. Nucleophile, welche schlechte Basen sind aber einen ausgeprägten nucleophilen Charakter besitzen führen zur Substitution.

Page 12: Skript zur Vorlesung Organische Chemie (Prof. M. Albrecht ...chempage.de/start/workshop/skript.mechanismen.pdf · 2 E1 E2 Alkohole Alkene Dehydratisierung Deprotonierung Alkoxide

Reaktionsmechanismen und Namensreaktionen der organischen Chemie Seite 12 von 24

2.4 Die bimolekulare Eliminierung E2 Neben den schon erwähnten Reaktionen der Halogenalkanen kann noch eine weitere Reaktion auftreten – die bimolekulare Eliminierung. Dabei wirkt das Nucleophil wiederum als Base und es erfolgt eine Deprotonierung des Alkans. Man erhält wiederum ein Alken als Produkt. Diese Art von Mechanismus tritt vor allem dann auf, wenn das basische Nucleophil im großen Überschuss vorliegt. Dabei wird das Halogenalkan direkt vom Nucleophil angegriffen und die Anlagerung des Nucleophils sowie die Lösung der Halogen-Kohlenstoffbindung und die Umwandlung der Hybridisierung von sp3 zu sp2 erfolgt gleichzeitig.

CH3CH2 CH

H

BrH3COH

CH3 O Na

CH3

CC

H

H

H

CH3CH2CH2 O CH3

- +

+

8% 92%

Die Abspaltung des Protons sowie die Abspaltung des Chloridions erfolgt dabei in anti-Stellung. 3.0 Reaktionen der Alkohole Bei der nucleophilen Substitution erhält man unter anderem Alkohole als Produkt. Die Alkoholsynthese kann jedoch ebenso durch die Reduktion von Carbonylverbindungen dargestellt werden. Die Alkohole können eine Reihe von Reaktionen eingehen die in diesem Kapitel erläutert werden sollen. Ihre Reaktivität für durch die Polarität der OH-Gruppe bestimmt.

C C C C C OH

HHH

H

H H

H H H H H

unpolar polar

hydrophoblipophil

hydrophillipophob

Eine mögliche Reaktion der Alkohole ist ihre Reaktion als Säure oder Base.

R OH

R OH

H

R O +-+ +H

-NH3

NaNH2

OxoniumionAlkoxidAlkoholat

Na+

Page 13: Skript zur Vorlesung Organische Chemie (Prof. M. Albrecht ...chempage.de/start/workshop/skript.mechanismen.pdf · 2 E1 E2 Alkohole Alkene Dehydratisierung Deprotonierung Alkoxide

Reaktionsmechanismen und Namensreaktionen der organischen Chemie Seite 13 von 24

Im folgenden Schaubild ist dargestellt welche Reaktionen die Alkohole eingehen können.

C

CH

H

OH

C

C

H

O

C

CH

H

O

C

CH

H

X

C

C

H

-

Oxidation

Alken

EliminierungCarbonylverbindung

DeprotonierungSubstitution

Reagieren Alkohole mit Alkalimetalle, so erhält man Alkoxide als Reaktionsprodukt.

CH3OH Li CH3 O Li

CH3CH2OH CH3CH2 O Na

KK

Na

C

CH3

CH3

CH3

OH C

CH3

CH3

CH3

O

-

-

H2

H2

H2

+

+

+

+2 2 2 2

2

2

+

+

+ +

+ +

+

222

+2 2-

Reagieren diese nun mit Halogenalkane so erhält man in einer SN2-Reaktion einen Ether. Die Reaktion von Alkoxiden mit Halogenalkanen wird als Williamson-Ethersynthese bezeichnet.

CH3 CH2 O Na Br CH2CH3 CH3 CH2 O CH2 CH3

- + +SN2

intermolekularNaBr+

Page 14: Skript zur Vorlesung Organische Chemie (Prof. M. Albrecht ...chempage.de/start/workshop/skript.mechanismen.pdf · 2 E1 E2 Alkohole Alkene Dehydratisierung Deprotonierung Alkoxide

Reaktionsmechanismen und Namensreaktionen der organischen Chemie Seite 14 von 24

4.0 Reaktionen der Alkene 4.1 Darstellung Wie schon im vorhergehenden Kapitel beschrieben kann die Darstellung von Alkenen durch Eliminierung aus Halogenalkanen erfolgen. E2-Reaktion von Halogenalkanen

CH3CH2 C

CH3

Br

CH3

CH3CH2OCH3CH2OH

Na

C CCH3

H

CH3

H

C CH

H

CH3CH2

CH3

- +

70°-HBr

70%

30%

Regel von Sayzer Das höher Substituierte Alken wird bevorzugt gebildet. thermodynamische Kontrolle

CH3CH2 C

CH3

Br

CH3

(CH3)3CO(CH3)3OH

K

C CCH3

CH3

CH3

H

C CH

H

CH3CH2

CH3

- +

RT-HBr

27%

73%

Regel nach Hofmann Sterisch anspruchsvolle Basen führen zum niedriger substituierten Alken kinetische Kontrolle thermodynamische Kontrolle: Das energetisch günstigste Produk t wird gebildet. ? hohe Temperatur (um über den „Energieberg“ zu kommen) ? sterisch „anspruchslose“ Reagenzien kinetische Kontrolle: Der niedrigste Übergangszustand wird durchlaufen. ? tiefe Temperaturen ? sterisch anspruchsvolle Reagenzien

Page 15: Skript zur Vorlesung Organische Chemie (Prof. M. Albrecht ...chempage.de/start/workshop/skript.mechanismen.pdf · 2 E1 E2 Alkohole Alkene Dehydratisierung Deprotonierung Alkoxide

Reaktionsmechanismen und Namensreaktionen der organischen Chemie Seite 15 von 24

trans-Alkene werden bevorzugt gebildet

CH3CH2CH2 C

H

CH3

Br

CH3CH2OCH3CH2OH

Na

C CCH3

H

CH3CH2

H

C CH

CH3

CH3CH2

H

CH3CH2CH2 C CH2

H

- +

70°-HBr

18%

51%

31%

Sayzer-Produkt

Hofmann-Produkt

Grund: antiperiplanare Anordnung von H und Br bei der Eliminierung. 4.2 Hydrierung von Alkenen Alkene gehen vor allem Additionsreaktionen ein. Die einfachste Form der Addition von Alkenen ist die Hydrierung.

C C

CH3

HH

CH3

C C

H

HH

CH3CH2

C C

H

CH3H

CH3

CH3CH2CH2CH3

(1)

(2)

(3)

H2

Pt

-119,8 kJ/mol

-126,9 kJ/mol

-115,6 kJ/mol

E

1

2

3 ?H°

Page 16: Skript zur Vorlesung Organische Chemie (Prof. M. Albrecht ...chempage.de/start/workshop/skript.mechanismen.pdf · 2 E1 E2 Alkohole Alkene Dehydratisierung Deprotonierung Alkoxide

Reaktionsmechanismen und Namensreaktionen der organischen Chemie Seite 16 von 24

4.3 Die elektrophile Addition Außerdem kann die Addition elektrophil erfolgen. Dabei wird zunächst eines der an der Doppelbindung beteiligten Kohlenstoffatome protoniert (elektrophile Angriff). Das andere Kohlenstoffatom erhält dabei eine positive Ladung. Anschließend wird das Carbeniumion nucleophil angegriffen.

H HX

H X-++

X = Cl, Br, I

Ein Beispiel für eine solche Reaktion ist die Addition von Bromwasserstoff an Penten.

CH3 CH2 CH2 CH CH2 CH3 CH2 CH2 CH CH2

HBr

HBr

Bei derartigen Reaktionen erfolgt die Anlagerung der Substituenten nach der Markownikow-Regel. Markovnikov

- Das Elektrophil greift an dem niedriger substituierten Ende der Doppelbindung an

- Das stabilste Carbeniumion wird gebildet Somit erfolgt die Anlagerung des Wasserstoffions am primären Kohlenstoffatom des Butens energetisch günstiger, da somit ein sekundäres Carbeniumion entsteht, welches stabiler als das entsprechende primäre Carbeniumion.

H

H

H

CH3

H

H

H

H

H

CH3

H H

CH3

H

H

H H

CH3

H

H

H

H

H

H

CH3

=+δ+

δ+

+

+

sekundäres Carbeniumion

Neben Halogenwasserstoffmolekülen können auch Wassermoleküle an ein Alken angelagert werden. Dazu wird zunächst das Alken protoniert und anschließend erfolgt ein nucleophiler Angriff durch das Wassermolekül. Man erhält einen entsprechenden Alkohol sowie ein Proton als Reaktionsprodukt.

H

H

H

HH

O H

H

OH

H+

-H++ H2O

-H2O

+H+

-H+

Page 17: Skript zur Vorlesung Organische Chemie (Prof. M. Albrecht ...chempage.de/start/workshop/skript.mechanismen.pdf · 2 E1 E2 Alkohole Alkene Dehydratisierung Deprotonierung Alkoxide

Reaktionsmechanismen und Namensreaktionen der organischen Chemie Seite 17 von 24

Des weiteren können auch Halogenmoleküle an ein Alken angelagert werden. Dabei lagert sich zunächst ein Ende des Halogenmoleküls an das Alken an und es erfolgt eine hetereolytische Spaltung des Halogenmoleküls. Das Halogenidion wird anschließend nucleophil angelagert. Brom eignet sich besonders für Additionsreaktionen an Alkenen.

C C

Br

Br

C CBr

C C

Br

Brδ+

δ−

-Br-

+Bromiumion

Die Bromierung des Butens erfolgt stereospezifisch.

H

CH3

H

CH3

C C CH3

H

H

CH3

Br

Br

C C H

Br

Br

CH3

H

CH3

Br2

CCl4 +S SR R

Z-2-Buten

CH3

H

H

CH3

C C CH3

H

H

CH3

Br

Br

Br2CCl4

E-2-Buten meso 4.4 Oxymercurierung-Demercurierung Eine spezielle Form der elektrophilen Addition ist die Oxymercurierung-Demercurierung. Dabei lagert sich eine Quecksilbersalz an ein Alken an. Diesen Schritt bezeichnet man als Mercurierung. Man erhält eine Alkylquecksilberverbindung als Reaktionsprodukt aus welcher das Quecksilber in einer Folgereaktion abgeschieden werden kann. Besonders bedeutend ist eine Reaktionsfolge, welche als Oxymercurierung-Demercurierung bezeichnet wird. Dazu setzt man ein Alken mit Quecksilberacetat in Gegenwart von Wasser um und es bildet sich das entsprechende Additionsprodukt. Im nachfolgenden Schritt wird der quecksilberhaltige Substituent mit Hilfe von Natriumborhydrid in alkalischer Lösung abgespalten werden. Man erhält somit eine Hydratisierte Doppelbindung. Oxymercurierung

CH3 CH3 C O Hg O C CH3

O O

CH3 CO

OHOH

CH3

Hg O C CH3

O

+THF

+ H2O

+

Page 18: Skript zur Vorlesung Organische Chemie (Prof. M. Albrecht ...chempage.de/start/workshop/skript.mechanismen.pdf · 2 E1 E2 Alkohole Alkene Dehydratisierung Deprotonierung Alkoxide

Reaktionsmechanismen und Namensreaktionen der organischen Chemie Seite 18 von 24

Demercurysierung

OH

CH3

Hg O C CH3

OOH

CH3

HH

CH3COONaBH4NaOHH2O

+-

Die Oxymercurierung erfolgt üblicherweise stereospezifischer als anti-Addition. Der Mechanismus der Reaktion kann wie folgt beschrieben werden. Das Quecksilberreagenz dissoziert zunächst in ein quecksilberhaltiges Kation und in ein Anion. Anschließend greift das Kation die Doppelbindung elektrophil an und bildet ein cyclisches Mercuriniumion. Danach greift nun ein Wassermolekül am höher substituierten Kohlenstoffatom unter Bildung von Alkylquecksilberacetat an, welches im nachfolgenden Schritt mit Natriumborhydrid reduziert wird.

CH3 C O Hg O C CH3

O OCH3COO Hg O C CH3

O

Hg O C CH3

OHg

O C CH3

O

Hg

O C CH3

O

OH2

-HC C

OH

Hg OAc

C C

OH

Hg OAc

C C

H OH

Hg CH3COO

+

-

+

-

1)-

+

2)+

+

Mercuriniumion

3) +

H

NaBH4

NaOHH2O

+ +4)

Page 19: Skript zur Vorlesung Organische Chemie (Prof. M. Albrecht ...chempage.de/start/workshop/skript.mechanismen.pdf · 2 E1 E2 Alkohole Alkene Dehydratisierung Deprotonierung Alkoxide

Reaktionsmechanismen und Namensreaktionen der organischen Chemie Seite 19 von 24

4.5 Die Ozonolyse Eine weitere wichtige Reaktion von Alkenen ist die Ozonolyse. Der Mechanismus der Ozonolyse verläuft über eine elektrophile Addition an die Doppelbindung, wobei ein Primärozonid gebildet wird. Da das Primärozonid instabil ist fragmentiert es in eine Carbonylverbindung und ein Carbonyloxid. Anschließend reagieren die beiden Fragmente zum Ozonid, welches durch Reduktion in Carbonylverbindungen überführt werden kann.

C C

OO

O

C C

O OO

C

OO

C

O

C

OO

C

O

C OO C

O

C O CO

C O CO

C O CO S

O

CH3CH3

+

--

+ +

Primärozonid Carbonyloxid

-

+ +

+

+sekundär Ozonid

+ +

Dimethylsulfoxid

H2

Pt

(CH3)2S

ZnCH3COOH

Beispiel:

CH3

CH3 C

O

CH2 CH2 CH2 CH2 CH

O1) O3

CaCl 2

2) H2/ Pt

4.6 Radikale Addition Neben den schon beschriebenen Additionsmechanismen gibt es noch eine weitere Form der Addition. Dabei erfolgt der Angriff des Alkens durch ein Radikal. Die radikale Addition an Alkenen erfolgt in verschiedenen Teilschritten.

CH3 CH2 CH CH2 CH3 CH2 C CH2

HBr

X CH3 CH2 CH2 CH2 Br

HBr

HBr Im ersten Reaktionsschritt erfolgt die Bildung des Radikals durch zuführen von thermischer Energie. Initiation:

R-O-O-R →∆ R-O· + ·O-R HBr + R-O· ? R-OH + Br·

Page 20: Skript zur Vorlesung Organische Chemie (Prof. M. Albrecht ...chempage.de/start/workshop/skript.mechanismen.pdf · 2 E1 E2 Alkohole Alkene Dehydratisierung Deprotonierung Alkoxide

Reaktionsmechanismen und Namensreaktionen der organischen Chemie Seite 20 von 24

Die entstandenen Radikale greifen nun an der Doppelbindung des Alkens an und es bildet sich das stabilste (mögliche) Alkylradikal. Dieses Radikal reagiert nun weiter unter Bildung weiterer Radikale (in diesem Fall bilden sich ein Bromradikal sowie 1-Brombutan. Kettenwachstum:

Br CH

CH2CH3

CH2 CH3CH2CH CH2Br

CH3CH2CH CH2Br CH3CH2CH2CH2Br Br

+

+ HBr + Zu Ende der Reaktion findet eine Rekombination der Radikale statt. Dabei kann ein Brommolekül, 1-Brombutan und 3,4-Dibrommethylhexan sowie weitere Nebenprodukte entstehen. Abbruch:

Br Br2

CH3CH2CH CH2Br

CHCH2CH3CH2Br

2

4.7 Diels-Alder-Reaktion Konjugierte Doppelbindungen können auch andere Reaktionen eingehen als die für Alkene typischen wie die elektrophile Addition. Bei der Diels-Alder-Cycloaddition werden konjugierte Diene und Alkene zu substituierten Cyclohexenen verknüpft. Bei dieser Umsetzung werden die Enden der Diene an die Alken-Doppelbindung addiert, wodurch ein Ring gebildet wird. Die neuen Bindungen werden gleichzeitig stereospezifisch gebildet

CH2C

CH3

CCH3

CH2

CC

H

CH H

H

O

CH2

CCH3

CCH3

CH2

CH

CH2

C H

O1

2

34

Dien

1,4-Addition

DienophilDiels-Alder-Reaktion

+

=

aromatischerÜbergangszustand

Page 21: Skript zur Vorlesung Organische Chemie (Prof. M. Albrecht ...chempage.de/start/workshop/skript.mechanismen.pdf · 2 E1 E2 Alkohole Alkene Dehydratisierung Deprotonierung Alkoxide

Reaktionsmechanismen und Namensreaktionen der organischen Chemie Seite 21 von 24

4.8 Elektrophile aromatische Substitution Der Mechanismus der elektrophilen aromatischen Substitution besteht aus zwei Schritten. Im ersten Schritt greift ein Elektrophil E+ den Benzolkern an. Im darauf folgenden Schritt gibt das kationische Zwischenprodukt ein Proton ab und es entsteht ein substituierter Aromat.

HEl

HEl H

El+

+

++

Br2 + FeBr3 ? „ Br⊕ “ + FeBr4? AlBr3 ? „ Br⊕ “ + AlBr4? HNO3 + H⊕ ? H2O + NO2

⊕ Der Einfluss von Substituenten

CH3 CF3+ I-Effekt

beschleunigt

erhöhte e--Dichte(Donor)

Induktiver Effekt (I)

- I-Effekt

gebremst

e--Dichte wird erniedrigt(Akzeptor)

Der mesomere (M-) Effekt

NH2NH NH NH2

-

+

-

+

-

+

+ M

Elektronendichte wird erhöht _ schnelle Reaktion

O OHO OHO OH

O OH

-

+

-

+- M

-

+ niedrige Elektronendichte _ langsame Reaktion

Page 22: Skript zur Vorlesung Organische Chemie (Prof. M. Albrecht ...chempage.de/start/workshop/skript.mechanismen.pdf · 2 E1 E2 Alkohole Alkene Dehydratisierung Deprotonierung Alkoxide

Reaktionsmechanismen und Namensreaktionen der organischen Chemie Seite 22 von 24

stark aktivierende Substituenten (Donoren)

stark desaktivierende Substituenten (Akzeptoren)

NH2 ; NHR ; NR2

NO2 ; CF3 ;

NR3

+

;

CO

OH

O H ; O R ; O-

CO

OR ;

CO

R ; SO3H ;

C N schwach aktivierend schwach desaktivierend Allyl, Phenyl -F; -Cl, -Br, -I

S SE

H

SE

H

SE

H

S

E

H

S

E

H

S

E

H

S

H E

S

H E

S

H E

E+ +

+ +ortho:

+ +

+

meta:

+

+

+

S = Substituent mit +M, +I-EffektDonor Stabilisierung ortho, para

para:

aktivierende Substituenten und –F, -Cl, -Br, -I

Page 23: Skript zur Vorlesung Organische Chemie (Prof. M. Albrecht ...chempage.de/start/workshop/skript.mechanismen.pdf · 2 E1 E2 Alkohole Alkene Dehydratisierung Deprotonierung Alkoxide

Reaktionsmechanismen und Namensreaktionen der organischen Chemie Seite 23 von 24

4.9 Die Friedel-Crafts-Alkylierung Eine weitere Form der elektrophilen Substitution ist die Friedel-Crafts-Reaktion. Dabei wird formal ein Wasserstoffatom gegen einen Alkylrest ausgetauscht. Man setzt dazu Benzol mit einem Halogenalkan um, wobei die Reaktivität in der Reihenfolge RF > RCl > RBr > RI abnimmt.

HR

+ RXAlX3

+ HX

Der Mechanismus kann formal in drei Schritte unterteilt werden. Im ersten Schritt findet die Aktivierung des Halogenalkans statt. Dazu greift das Halogenalkan nucleophil an Aluminiumtrihalogenid an.

RCH2 X AlX3RCH2 X AlX3

-+δ+

+

Schritt 1: Aktivierung des Halogenalkans

Im nächsten Reaktionsschritt erfolgt der nucleophile Angriff des Benzols am partiell porsitiv geladenen Kohlenstoffatom. Dabei bildet sich ein positiv geladenes Benzylkation.

CH2

R

X AlX3CH2R

H

-+

δ+

+

+

+ AlX4

-

Schritt 2: Elektrophiler Angriff

Das Benzylkation spaltet schließlich ein Proton ab und man erhält das substituierte Benzolderivat sowie ein Aluminiumtrihalogenid und ein Halogenwasserstoffmolekül.

CH2R

H

X AlX3

CH2R+

-+ + HX + AlX3

Schritt 3: Abspaltung des Protons

Aus sekundären und tertiären Halogenalkanen bildet sich zunächst ein Carbeniumion, welches sich nucleophil in ähnlicher Weise wie das NO2

+ an das Benzolmolekül anlagert.

Page 24: Skript zur Vorlesung Organische Chemie (Prof. M. Albrecht ...chempage.de/start/workshop/skript.mechanismen.pdf · 2 E1 E2 Alkohole Alkene Dehydratisierung Deprotonierung Alkoxide

Reaktionsmechanismen und Namensreaktionen der organischen Chemie Seite 24 von 24

4.10 Additions- und Eliminierungsreaktion Neben den in den zuvor beschriebenen Kapiteln können verschiedene Reaktionsmechanismen zusammen wirken. Ein bedeutendes Beispiel dafür ist die Veresterung von Carbonsäuren mit Alkoholen. Dabei wird zunächst ein Nucleophil an das Kohlenstoffatom der Carboxylgruppe addiert. Anschließend erfolgt die Abspaltung des Carboxylsauerstoffatoms. Da Alkohole schlechte Nucleophile sind müssen derartige Reaktionen durch Säure (meist Schwefelsäure) katalysiert werden. Im ersten Schritt lagert sich das Proton an das nicht saure Sauerstoffatom an. Dies führt zu einer positiven Ladung am Kohlenstoffatom der Carboxylgruppe. Hierdurch wird nun der nucleophile Angriff des Alkohols begünstigt. Durch die Anlagerung eines weiteren Proton wird nun die schon einmal protonierte Hydroxygruppen ein weiteres mal protoniert und somit in eine gute Abgangsgruppe umgewandelt. Nach der Abspaltung des Wassers wird die andere Hydroxygruppe deprotoniert und man erhält einen Ester als Reaktionsprodukt.

R C

O

OHR C

O

OH

H

R C

OH

OH

Nu

R C

OH

O

NuH

HR C

O

Nu

H

R C

O

Nu

- +

+

+ Nu + H -+ Nu

δ+

++ H

+H2O +

+

+- H-H2O

Mechanismus der Veresterung (Säure katalysiert)