Spe 06071

download Spe 06071

of 8

Transcript of Spe 06071

  • 8/10/2019 Spe 06071

    1/8

    Society o f Petroleum Engineers of AIME

    6200 N. Cent ral Expwy.

    C( WERSPE 6071

    Dal las, fex. 75206

    Predi cti on of the Permeabi I i ty of a

    Fragmented Oi I Shal e ed duri ng

    I n Si tu Retorti ng w th Hot Gas

    By

    R. B. NeedhemtMemberSP&AIMEtPhillipsPetroleumO.

    THKPAPERISSUBJECT TOCORRECTK)N

    @Copyright 97

    Amer ican Inst itute of Mining, Metal lu rgical , and FWroleum Engineers, Inc.

    Th is paper was prepared for the 5 Ist Annual Fal l Techn ical Conference and Exhibi tion of the Society o f RXroleum

    Engineers ofAIME, held in New Or leans, Oct. 3-6, 1976. Permiss ion to copy is restr ic ted toan abstract ofnotmore

    than 300 words . //l us trat ions may not be copied. The abs tract should contain conspicuous acknowledgment of

    where and by whom the paper is presented, ~blicatian elsewhere after publication in the JOURNAL OF

    PETROLEUM TECHNOLOGYorthe SOCIETY OF PETROLEUM ENGiNEERSJOURNALis usual iygrantedupon

    reques t to the Edi tor of the appropr iate journal, prov ided agreenmnt to gi ve proper credi t i s made, Discussion of

    this paper i s inv ited,

    ABSTRACT

    The operabilityf in-situoil-shale

    retortingasbeenestablishedy retortingeds

    of crushedshaleunderlithostaticoads

    simulatinghecolumnloadsto be encounteredn

    practical.perations.

    Theresultingompaction

    andreductionn permeabilityerecorrelated

    to predictthefinalpermeabilityehaviorof en

    actualfragmentdin-situbedwithparticles

    averaging in,in diameter.

    Twocompactione21sp1.25end5 in.in

    diametertereusedfortheretortingexperi-

    mentsin whichthepermeabilityf thecompacted

    bedwas determinedoraverageshaleparticle

    sizefromO,of+6 to 1.0in.f shalerichnessfrom

    18to 58 gal~tontI.ithostaticoadfrom70to

    W psiad heat% ratefrom

    5 to 1~ F per

    hour. A correlationasdevelopedhatpredict~

    thepermeabilitysingthelithostaticressurej

    shalerichn~ssandparticlesizefora shale

    heatingrateof 10F perhour. Themodified

    Kozenyequationasusedas thetheoretical

    basisforthe correlationndthemeasured

    permeabil.itiesouldbe predictedithan

    average

    errorof 21percent.

    Referencesndillustrationst endof paper.

    INTRODUCTION

    The initialpermeabilityf en in-situb

    of brokenshalewillbe morethanadequatefo

    theinjectionf heatingfluidstbutretorti

    &asticallyreducesthepermeabilitys a res

    of compactionausedby heatingtheoil shal

    underan overbwdenload. To estimatethe

    permeabilityf thefragmentedhalebeddur

    retortingtheinfluencef shaleparticlesi

    I.ithostaticressuretemperatureistorytan

    shalerichnesswasdeterminedy laboratory

    experiments.

    Theseexperimental,atawere

    correlatedndthenextrapolatedo a larger

    averageparticlesizeto predictthepermeab

    of fragmentedhalebedsanticipatedor

    commercialn-situretorting.

    GreenRiveroi

    shalefromthePiceanceCreekBasininColor

    was utilizedthroughouthesestudies.

    EXPHIIMENTALPPARATUSND PRCXXXJRE

    Lsr~e-Scaleompactionell

    A simplifiedectionaliewof thelsrg

    scalecompactionellis shownin Fig.1. Th

    cellis cylindricalndholdsabout5,COC to

    7~OOCmof crushedshaletdepending,uponhe

    shalerichness.Theprocedureasto fillth

    cellwithcrushedshaletplacetheplungerin

    thetopof thecent andthenputthecell.n

  • 8/10/2019 Spe 06071

    2/8

    PREDICTIONF THEPERMEABIIZTYF A FRACMINTEI)IL-

    2

    QUAT X Rti ll nTll?ThW2 T1l-fXTTH lWi lWRfPTNfl WTTU UfYP cAQ

    QD 7

    .

    a hydraulicress.

    Thepresswas equippedwith

    withan oilaccumulatororthehy&aulicdrive

    thatwaspressuredo thedesiredpressurewith

    nitrogen.In thismanner,therequiredload

    couldbe appliedto thecrushedshaleto simu-

    lateanydesiredI.ithostaticressureto to

    1,000psi. Afterthedesiredlithostaticres-

    surewasapplied,a continuousaspurgeof 0.5

    scf/hourf carbondioxidewas established.

    The

    shalewasnextpreheatedo 200F at a heating

    rateof

    75

    F perhour,thenheatedat a rateof

    10oF perhourto thefinaltesttemperature,

    whichwasusually8CQF. The shaletemperature

    wasmaintainedt 8CX)F forat least2 hoursto

    ensurecompleteretortingf the shale.

    By reg-

    ulationof thevoltageon eachheater,thetem-

    peratureat thefourthermocoupleellscouldbe

    maintainedithin2 to

    5

    F afterthepreheat

    phwe wascompleted.

    Thecompactionf theshalebedandthe

    permeabilityf a sectionof thebedwere

    measuredthroughoutachtest.

    Thepermeability

    wasmeasuredby regulatingheflowrateof the

    carbondioxideto thedesiredvalueand

    measuringhepressuredropacrossone setof

    thepressuretapsshownin Fig.1.

    Theoilgeneratedromheatingthe shale

    flowedout throughthebottomfritandwas

    collectedt atmosphericressurein a graduated

    cylinderpositionedt theexitof a coldwater

    trap. The gasesthenpassedthrougha dryice

    trapthatwas precautionary,inceit collected

    onlynegligibleuantitiesf oil.

    The primaryvariableshatwereinvesti-

    gatedwiththelarge-ecaleompactionellwere

    shaleparticlesize~shalerichness,and litho-

    staticpressure.In addition, fewexploratory

    testswereconductedn whichthetemperature

    historyof theshalewasvaried.

    Small-Scaleompactionell

    averageparticlediametersf 0.046and0.23

    wereusedin allof thelargecompactionel

    runsi3xceptne.

    However,log-normalistri

    tionscouldnotbe usedin thesmallcompac

    sellbecausethecellwouldnotholdthe lar

    particlesecessmyto completethedistrib

    RESULTS

    Theprimaryexperimentalesultswereth

    permeabilityf thecompactedshaleandits

    dependenceponlithostaticressure,shale

    richness,averageshaleparticlesize,and

    temperatureistory.In addition,twas

    observedthatthepresenceof-liquidilin t

    largecellduringretortingaffectedtheper

    abilityto gas;thatis,a relativepermeab

    effectwasobserved.

    Lithostaticressure

    The lithostaticressureis thepressu

    exertedon the shaleparticlesas a resulto

    ~heweightof theoverburdenf fragmented

    [email protected] expresseshe3il,hostaticp

    sureas a functionof the ave.~~eorosityo

    the fragmentedhalebed,thepositionof th

    calculationointin thebed,andtheavera

    richnessof theoverZ@ngfragmentedhale.

    example,the lithostaticressureis calcul

    as 1+60psiaat a depthof 600ft belowthes

    faceof a fragmentedhalebedhavingaporo

    of 20 percentandan averageshalerichnesso

    25 gal/tonoThedensityof theshalewas

    obtainedfroma correlationy Stanfieldt a

    Theinfluencef theI.ithostaticress

    appliedduringtheheating,uponthe final

    compactedil-shaleermeabilitys majoran

    is showngraphicallynFi

    2. For exampl

    thepermeabilityf a con

    :edbedof 27ga

    ton shaledecreasedrom

    200darciesat

    I

    lithostaticressureof 1~..sito lessth&C

    darciesat 60C psi.

    It cenbe concludedha

    Thedesignof the small-scaleompaction

    bedheightas r;flectedn the lithostatic

    cellwassimilarto thelargecellexceptonly sureis a majordeterminingactorin estab

    oneheaterwasused,the shalechargewas30 to

    lishingthepermeabilityetainedby fragme

    40 gm of crushedehale,andtheshalebedwas

    shaleafterbeingheatedto 800F to recov

    cooledto roomtemperatureeforetheperme-

    the shaleoil.

    abilitywasmeasured.A gaspurgerateof 0.1

    scf/hourf heliumwasmaintainedhroughout

    Oil-Shaleichness

    eachtest.

    The shalericlnessrangestudiedwas 18

    ShaleSamle Premration

    58 gal/ton.

    Fig.2 showstheinfluencef s

    richnessuponthepermeabilityf

    the

    compa

    The shalewasobtainedfromtheAnvil

    shalec

    As predictablerompreviouswork sho

    PointsmineatRifle,Colo.,as crushed

    shale

    ing

    thattherichershaleshavelowercompr

    andwas sortedby colorin orderto minimizethe

    strengths~heretainedbedpermeability

    variationn richness.Thesortedsampleswere

    decreasesas therichnessincreases.

    Thes

    crushedto lessthanaboutl~in. in diameter

    datashowthattheinfluencef shalerichn

    enda portiontakenforFischerassayanalysis.

    ia equallyas importantas the lithostatic

    The crushedshalewas separatedbyscreeningnd

    we ~det=mi~ngtheret~edpermeabi~ty

    recombinedoproducethedesiredparticlesize

    theshale.

    distribution.og-normalistributionsor

  • 8/10/2019 Spe 06071

    3/8

    SPE6071

    R. B. 1

    ShaleParticleSize

    The averageparticlesizetha+,illexist

    in an undergroundedof rubbl.izedil shaleis

    unknown;however,fromrooffallsin oil-shale

    mines3andfromexperiencen oil-shaleining,

    it is estimatedhattheaverageshaleparticle

    dismeterin an in-situbedwillbe between005

    and2 ft~ A-shalebedwithan averageparticle

    sizeof thismagnitudeouldbe impracticalor

    studyin laboratoryxperiments;herefore,eds

    havingaverageparticlesizesfrom0.0A6to 1.0

    in,werestudied.Theinfluencef average

    particlesizewasestablishedorthe0.0A6to

    l.O-tn.sizersnge thenextrapolatedo an

    averageparticlesizeof 6 in.to predict

    behaviorn actualundergroundeds.

    TableI is a summaryof theexperimental

    dataon theinfluencef averageparticlesize

    uponcompactedshalepermeability.

    hesetests

    showthatfora givenshalerichnessthe

    retainedpermeabilityncreasesithincreasing

    averageparticlesizeat low lithostaticres-

    sures.

    As thelithostaticressureincreased,

    theincreasein permeabilityithincreasing

    particlesizediminished.Thatis?fora given

    shalerichnessthe scale-upof retainedperme-

    abilitywithparticlesizeendedas the litho-

    staticpressureincreased,venthoughthe com-

    pactedshalestillhas substantialermeability.

    Forexample,thej? to 40 gal/tonshalehas

    almostno scale-upin permeabilityithparticl(

    eizeat a lithostaticressureof 300 psieven

    thoughtheretainedpermeabilitys 4 d=cies~

    The scale-upof retainedermeabilityith

    r

    articlesizefor27galton shaledidnot

    exhibita limitinglithostaticressureless

    than600psi,whichwasthemaximumpressure

    tested.

    Temperatureistor~

    In therecoveryof shaleoilfromfrag-

    mentedoil shalein an undergroundedby the

    injectionf hotgases,thetimerequiredto

    heattheoilshaleto about800Fwill range

    frommonthsto years. Therateat whichthe

    shalewouldbe heateddependsuponthegasmass

    fluxrate,theaverageparticlesizeof the

    snalevndtheverticaldistanceof the shale

    fromthetopof thebed. Thisheatingrateis

    estimatedromheattransfercalculationso be

    in therangeof 0.2to 6 F perhour.4The

    influencef heatingrateuponthepermeability

    of thecompactedhalebedafterbeingheated

    to tWOF wasinvestigatedn thesmall-scale

    cell,andthe datasresurmnarizedn TableII.

    Reducingtheheatingratetwenty-foldrom100

    oF perhourto 5 Fperhourincreasedhe

    retainedpermeabilityf the shalebedtwofold.

    Thatis,the slowerheatingratesresultedin

    greaterretainedpermeability.he effectof

    theheatingrateis secondaryhencompsredwitl

    EDHAM

    bheinfluencef lithostaticressure,shale

    richness~ndaverageparticlesize.

    There

    Lo savetime,thebasicinvestigationf par

    size,1.5.thostaticressure,and

    shale

    richn

    inthelargecompactionellwas-conducted

    heatingrateof 10F perhour, It is real

    thattheseretainedpermeabil.itiesbtained

    a heatingrateof 10oF perhour will be sli

    lowerthanthoseforheatingratesof 0.2 to

    oFperhour,whichareanticipatedoran in

    bed,butthe errorwillbe on theconserva

    side.

    RELATIVXPERMEABIIJ.TYFFFCTS

    Wing theretortingfthe shalein th

    l=ge compactionell,the shale-bedompac

    andpermeabilityeremeasured.

    A directco

    lationbetweenthebed compactionndperme

    abilitywaspossibleuntila temperaturef

    about700F wasreached~

    At thistempera

    oil generationas sorapidthatgravitydra

    ageat thelowerpermeabilitiesouldnotma

    taina sufficientlyowGilsaturationo av

    significantnfluencef t oilsaturatio

    thepermeabilityo gas. Tnereforetheef

    tivepermeabilityo gasdecreasedempora

    untiltherateof oilgenerationy pyroly

    was slowerthanthe gravitydrainage.

    The

    magnitudef thisdecreasefora heatingra

    10F perhourdependsupontheshale-bed

    permeabilityndtheshalerichness?Fig.9

    showsthe shale-bedermeabilitys thetem

    tureof theshalewasraisedto 800oF. Th

    relativepermeabilityffectis shownby th

    dashedcurve. The solidcurvewasobtaine

    correlationf the shale-bedeformationi

    the permeabilityndtemperature.-heela

    permeabilityffectwas experienceds a te

    rarydecreasein permeabilityot associat

    witha correspondingmountof bedcompact

    Sincethepermeabilityf thefragmentedh

    in an in-situbedwillbe muchlargerthsnt

    obtainedin theseexperimentsecausethe a

    ageparticlesizeswillbe from0.5to 2 ft

    comparedwith0.29in.,end the heatingrat

    willbe slower,therelativepermeability

    is uniqueto thelaboratoryests.

    DEVELOPMENTF CORRELATION

    Theobjectivef thedevelopmatof a

    correlationasthecalculationf thecomp

    shale-bedermeabilitynderconditionsxp

    in an in-situbed duringretorting,tiliz

    a knowledgef shalerichness,.ithostat

    sure?averageshaleparticlesize,and shal

    heatingrateas theyvarywithdepthin the

    ModifiedKozeny

    Euuation

    ThemodifiedKozenyequationasused

    startingasisfordeveloping correlati

    thedependentariableof compactedermea

  • 8/10/2019 Spe 06071

    4/8

    PREDICTIONF THEPERNEABILXTYF A FMOMENTEDOIL-

    4

    SHALEREDMIRTNGTN-SITURETORTINGTH HOTGAS

    SPE6

    t

    ..

    tiththeindependentaviablesf shalerich-

    equationto replacetheporositywouldgive

    ~ess~lithostaticressure,averagebedparticle

    Bize,end shaleheatingrate.

    Oneformof the

    1(= ~ Jl - P/sJ3

    Kozenyequationis

    beo *e** o

    (3

    (iys

    .a,nk

    S*****

    * (1)

    Since theexactformof theporosityrelatio

    k

    (1 .. )2

    shipin theKozenyequationis opento consi

    ablequestion,hisfunctionalelationship

    TLhisquationasoriginallyntendedto pr~ct

    relaxedto providea moregeneralEq. 5, In

    thepermeabilityf an unconsolidatedart cle addition,incetheminimumstrengthhasnot

    bedsystem.Theapplicationf t~s equationto

    beenmeasuredas a functionof shalerichnes

    compactedil-shalesystemsis shownin Fig.40

    Inthesedatathelithcstaticressureranged

    andtemperatureistory theminim strengt

    (S)willbereplacedby a minimumstrength

    from130to 720psiandtheheatingratefrom2

    to 100oF per

    hour while the average

    particle

    factor(F), whichwill.arbitrarilye given

    sizeandrichnessof the shalewereconstant.

    a valueof unityfor27 galltonoilshalehea

    ThecurveinFig.4 is theKozenyequation,

    from2W %? to 800oF at a rateof 10Fper

    hour. Withthesemodifications,heKozeny

    wheretheterma dn wasdeterminedo yieldthe

    bestfit. Thedatamatchshowsthatthecorn=

    equationowbecomes

    pattedshalepxosity is

    the

    determiningactor

    in establishinghepermeabilityora particu-

    k

    ()(}

    s nG; ,,6 .,..,0

    larshalerichnessandinitialp=ticle size.

    (4

    Thevariablesf I.ithostaticressureandheat-

    r

    ingratearethusreflectedn thefinal

    whereG(P/F)is a specificfunctionto be det

    porosity.Althougha goodmatchof thedatahas minedfroma seriesof compactionestsusin

    beenobtainedthroughthe

    use

    of theinter-

    particleporosity,hepredictionf perme-

    referencearticlesizeandkeepingthetemp

    turehistoryconstant.

    abilitynowrequiresthepredictionf the

    ~rosity. Sincetheporositywouldbe justan

    Severs:importantfeatureswereincorpo

    intermediatearameter,t wasdecidedto elimi-

    intothe~~iysise First,the

    compacted shal

    nateporosityfromthe correlation.

    Thefinal

    interparticlerosity probablyis determined

    permeabilitys uniquelydependentponthec

    by thelithostaticressureandtheminimum

    pattedbedporosityandthe averageparticl

    diameter.Second,theporosityofthebed

    compressivetrengthof the shaleduringthe

    heatingprocess.

    Fig.5 showsatypicalshale

    dependsuponthe lithostaticoadandthe

    minimumcompressivetrength.Stateddiffer

    compressivetrengthbehaviorresultingfrom

    ently,thelithostaticoadthatcanbe

    a particularemperatureistory.

    supportedy a shalebedcanbe determinedy

    To obtainthecompressivetrengths

    productof theminimumcompressivetrengtha

    the averagesectionalarticlecontactarea.

    reportedin Fig.5 coresof oilshalethat Third,theminimumcompressivetrengthis a

    were1 in.in diameterwereplacedin a hydrau-

    functionof the shalerichnessandtemperat

    licpressto determineheloadatwhichruptur

    ~storym

    Utilizingtheseideas,thegeneral

    occurred.Electricheaterswereusedto attain

    thetesttemperaturenda purgewithan inert

    Eqc4 hasbeendeveloped.In orderto utili

    thisequation,hefunctionalformofG(P/F

    gasusedto preventoxidationf thecores.A

    thevaluesof F andn mustbeknown,

    significantffectof shalerichnesson compres

    sivestrengthas evident.

    Thetransi.tionpoin

    CO~~~ON

    of the shalestrengthfactor,whichis discusse

    later,liesbetweenrichnesses9.0and27.6,

    Thedatausedto developthecorrelati

    qualitativelyxplainingherelativestrength

    areshowninFig.6.

    Thetemperatureistor

    differencesetweenthethreegradesof shale.

    forallof thecorrelatedatawasthesame;

    i.e.,theshalewaspreheatedo 200F at a

    The minimumstrengthdependsupontempera-

    turehistoryandshalerichness.Forthe

    rateof 75 Fperhourandthenheatedto 80

    developmentf thecorrelationt wassurmised

    at a rateof 10F per hour. Thedataobtai

    thatthefinalporositydependedupontherela-

    on shalebedswithan averageparticlediame

    of O*23in,werepresentednFig,2.

    These

    tivemagnitudesf thelithostaticressureand

    datacanbe fittedto a singlecurvebythe

    theminimumcompressivetrength.As a first

    introductionf the shalestrengthfactor(F

    approximationherelationshipouldbe of the

    The solidline

    and circles

    inFig.6 showth

    form

    result,andFig.7 showsthevariationf F w

    S(I.- )=P. . . . . . . . . .

    shalerichnessrequiredto producethisresu

    (2)

    fortheonetemperatureistoryutilized.Fi

    7 includesdataforparticlesizesothertha

    Utilizinghisrelationshipn theKozeny

    thatofFig.2.

    As wasstatedin theprevio

  • 8/10/2019 Spe 06071

    5/8

    SPE6071

    R. B. NEQ)HAM

    section,the shalestragthfactor(F)was

    arbitrarilyssigneda valueof onefor27 gall

    tonshaleheatedat a rateof 10F perlmr.

    Sincethe0.23-in.averageparticlediame-

    terparticlesizewas chosenforthereference

    particlesizeanda heatingrateof 10oF per

    houras thereferenceeatingrate,thenthe

    curvein Fig.6 is the.function(P~), The

    nexttaskis thepredictionf n, theparticle

    sizescale-upfactor.

    SinceG(P/F)is now

    known,thevaluesof n canbe determinedrom

    MC 4for all.thedatawithaveragepwticles

    sizesotherthan0.23in.,whichwas therefer-

    enceperticlesize.

    Thesevaluesof n are

    correlatediththe shalestrengthfactorin

    Fig.8.

    At valuesof the shalestrengthfactor

    greaterthen1.0,theparticlesizescale-up

    factoris dependentnlyuponF; however,at

    valuesof F below1.O theinfluencef the

    lithostaticressureis shown.Forthegener-

    atedvaluesof n endF, theagreementf all.the

    reduceddatawiththeuniversalunctionG(Pfi)

    iS showninFig.60

    Thecompletedorrelations representedy

    informationresentednFigs.6, 7, and8,

    whichis usedwithEq.4 to computepermeability

    Theinformationeededto utilizethecorrela-

    tionis averageshalepsrticalsize,shale

    richness9ndlithostaticressure.

    In addi-

    tion,thetemperatureistoryshouldbe a heat-

    ingrateintherangeof 10oF perhourup to

    600oF, Forapplicationo an in-situbedwhere

    theheatingratewillbe lessthan10F per

    hour,thepermeabilityeterminedromthe

    correlationillbe lowerthantheactual

    permeabilityn thebed. Therefore,heperme-

    abilitycalculatedromthe correlationould

    be a lowerlimit.In addition,incethevari-

    ablesof particlesize?richnesst

    andlitho-

    staticpressurearedominant,heheatingrate

    canbe chengedconsiderablyitho y a rela-

    tivelysmallchangein permeability.

    Theproceduresedto predicttheperme-

    abilityof a fragmentededof shaleretorted

    undera lithostaticressurewouldbe the

    followingteps.

    First,fortheknownshale

    richness,hevalueof F (theshalestrength

    factor)fora heatingrateof 10oF perhow

    is obtainedfromFig.7. Second,usingthe

    lithostaticressureandthe valueof F just

    determined~hevalueofG(P/F)is obtained

    fromFig.6. Third,againusingthelithostatit

    pressuresndF, a valueof n, theparticle

    sizescale-upactortis determinedromFig.8,

    Fourth,thepermeabilityf the shalebed is

    calculatedromEq.4, knowingtheaverage

    particlediameter(d)of thebed. Referenceto

    %. 4 shows thatthepermeabilityisowcalcu-

    latablesinceG(P/F),d, sndn arenowknown.

    Thevalueof ~wouldbe 0.23in.,sincethis

    is thepwticle sizeusedto determinehe

    functionG(P/F).Thismethodofpredicting

    permeabilitiesn rubbli~edshalebedswasused

    to calculatehe permeabilityehaviorfor

    particlesveraging in.in diameter,ntici-

    patedin actualrubblizedskin beds. The

    resultsare shownin Fig.9.

    To expeditethe,calculation,rocedure,

    third-orderolynomialsavebeendeterminedo

    describetheplotsin Figs.6, 7, and8. These

    equationsrelimitedto valuesfortheshale

    strengthfactorF~ of oneendgreater.

    With

    strengthfactorvaluesof lessthanonetthe

    particlesizescale-upfactor,n, is a function

    of bedheightin additionto the strengthacto

    Insufficientataforthismorecomplexrelati

    Ship wherestrengthfactorsarelessthanone~

    precludecurvefittingin thisregion,Shale

    richnessis,therefore,imitedto 2.7gal/ton

    andless. Withthisin mind,thestrengthfact

    iS givenby

    P= -(O.39O2)R+1O.O33for~

  • 8/10/2019 Spe 06071

    6/8

    RZEDICTIONF THEPEVEABIIJTYOF A FRAGMENT~OIL-

    SHALEBEDDURINGIN-SITURIZl?ORTINGITHHOTGAS

    SPE 60

    Thisprocedurenvoltingseveralintervalsay

    pated in commercialn-situretorting,

    be

    applied when working

    witheitherthegiven

    operabilityroblemscreatedby thelossor

    plotsor wtththederivedthird-orderquations.

    permeabilityrepredictedhererichoil shal

    Forquickendapproximatestimatesf rubble-

    (356al/tin,dependentponthedepth)are

    bedpermeabilitiesithonlyonecalculation;

    locatednearthebottomof thebed. By contra

    valueof one-halftheactualbedheightis used leanshalesret~n adequatepermeabilityo

    to determinen averagepressure.

    maintaintheretort ngrocess.

    Limitationsf theCorrelation ACKNOWLEWMRW

    The correlationitsthedataobtainedfrom

    The authorwishesto expressappreciati

    thecompactionestswithacceptableccuracy, to PhillipsPetroleumo.forpermissiono

    Thecorrelationredictedhemeasuredperme- publishthispaper.

    abilitywithan averageerrorof 21 percent~a

    mud.mumerrorof 115percent?andwith95 per-

    NOMINCLATJRE

    centof thedatawithin50pemcentof thecalcu-

    latedvalue.

    a = parameterependentpontheshapeand

    specificsurfaceareaof theparticles

    The primarylimitationsf thecorrelation

    d . weightedaverag(perticledismeter,n.

    arein thesmallnumberof experimentalata

    ~ .weightedaverageparticlesizeusedin th

    pointsobtainedat certaincombinationsf the

    shalebedfortheseriesof teststo

    variables,speciallyorshalesricherthani+O

    determine(P/F),in.

    gal/ton.

    In particular,o datawereobtained

    F = minimumshalestrengthfactor

    fortheparticlesizescale-upfactorfor shales

    G = a functionof P/Fdeterminedroma.seri

    overLO gal/tonor forshalesin the30-to 40- of compactionestsusingthereferenc

    gal/tonrangeat lithostaticressureselow150

    An additionalsignificsntimitations

    particlesizeandkeepingthetemperat

    psi.

    historyconetent

    theextrapolationf thecorrelationo the

    h = heightof therubbl.izedhalebed,ft

    largeparticlesanticipateduringactualin- k = permeabilityf theentireparticlebed,

    situoperation.

    Theinfluencef particlesize

    darcy

    inthe0.046- to I.O-in.rangeon permeability

    ~ = permeabilityf thei-thintervalin the

    mustbe extendedto severalinchesin orderto

    crushedshalebedt dsrcy

    calculatehepermeabilityf en actualbed.

    ~ = heightof thei-thintervalin therubbli

    Mostof th;selimitationsssential,couldbe shalebed,ft

    removedby additionalestsusingtheanalysis

    n E constantdependentn thepsrticlesyste

    andexperimentalethodsa~eady developedn

    P = I.ithostaticressure,sia

    thiswork.

    R = shalerichness,al/ton

    S = minimumcompressivetrengthof shale

    CONCLUSIONS

    t

    = interperticleorosityof thebed system

    1

    = initialbedporosity

    Fromthesetestson theeffectsof litho-

    staticpressure,shaleric~ess,averageparti-

    REFIIUiNCliS

    cle size,andtemperatureistoryuponcompacted

    shalepermeabilityndthe extensionf the

    1. Stsnfield,. E.tSmith,J. k.,Smith,H.

    resultsby correlationndcalcul.ationsthe

    NO, endRobb,W. A.: rOilieldsof Sec-

    followingereconcluded.

    tionsof GreenRiverOilShalein Colorad

    1954-57,RI5614,USBM,Washington1960

    1. Theprimaryvariablesetermininghe s.

    compactedshale-bedermeabilityreI.ithostatic

    * Tisot,P.R. endSohns,H. W.: Structur

    pressure,shalerichness,andparticlesize, Deformationf GreenRiverOilShaleasIt

    withthetemperatureistorya secondaryari-

    Relatesto InAituRetorting,ltI 7576,

    able,

    USBM,Washington(1971).

    3. Iomberd~D. B.: TtecoveringilfromShal

    2. A modificationf theKozenyequation

    withNuclearIkplosives,tl. Pet.Tech.

    canbeusedas a basisfordeveloping corre-

    (Aug.1965)877-882.

    lationforthepredictionofthepermeability

    l+.Needham,R. B,,JudzisJr.,Arvidsend

    of compactedhale.

    Thedevelopedorrelation Cornelius,. J.:

    lrOilieldandQuality

    predictsthemeasuredpermeabilityithan

    fromSimulatednAitu Retortingof Green

    averageerrorof 21 percent,a maximumerrorof

    RiverOilShale,~to be published.

    115percent,andwith95percentof thedata 5. Scheidegger,. E.; ThePhysicsofFlow

    within50percentof theprediction. Throwh PorousMedia,RevisedEd.,The

    Macmillano.,NewYork(1960)128-131.

    3. For largefragmentedhalebedsantici-

  • 8/10/2019 Spe 06071

    7/8

    r

    : : N: : : :

    . . . . . . .

    ::>::s

    ::::s:

    STEEL

    ::1:::

    PLUNGER _

    ~ THERMOCOUPLE

    ii

    WELL

    ........

    : j: j: ;j . ~ INSUL ATION

    lNSULAi10N

    a

    ::.::.

    ll[:j::i:j - PREikiRE

    I

    \

    TRAMSITE>

    ~ FRIT

    1

    F,g. 1 - Large SC?il@ compaction Cell

    too -

    to -

    1.0 -

    0 .23 INCH A VERA OE

    PARTICLE DIAMETER

    HEATING RATE fO*F/HR

    I

    1

    1 1

    %x) 404 500 600 7W

    SHAL E TEMPERATURE - f

    Fig, 3 - Permeability of shale bed

    \

    27

    {

    k3.30~

    P- L 17Ho sTA TK p REs su RE-p sI

    F g. 2 -

    Effect of Iithostatic pressure and

    shale richness on retorted shale bed permeabil ity.

    ~

    SMA LL SCA LE COMPA CTION OF SHA LE

    LITHOSTATIC

    PRESSURE , PSI

    v 720

    L 670

    a 560

    0

    4S0

    O 320

    9 220

    130

    1

    RANIX OF HEATING RA TES FROM

    2WF TO 600 F IS 2.0 -100 F/HR

    1

    60

    FINA L INTERPARTICLE POROSITY - %

    woo

    RICHMESS ,

    OA LL ON PER TON

    woo ..

    A

    A

    - f9.o

    o

    27.6

    40W -

    0- 34.6

    TEST TEMPERA TURE - 7W F

    30W

    HEATINO RATE T07WF-160F PER HOUR

    A LL ROCK FA IL URES WERE B RITTL E

    20W -

    fwo -

    oo~m

    TIME - HOURs (TIME HELD AT 7wFj

    Fig. 5

    - Compressive strength of Green

    River oil shale.

    du~lnq retort lnq.

    Fig. 4

    - Permeability - poroeity

    relationship for compacted oi I shale.

  • 8/10/2019 Spe 06071

    8/8

    nooo

    AVERAGE

    SHA LE PARTICL E

    3000

    2Ym&Ql? Y&r X&. Y+& .

    \

    i6.3 0.23

    1.

    &

    :

    17,6 OC04C

    L

    Nwwoo - 0.054 s

    -.

    26.s 0.2s

    a

    L

    0.046

    L

    0.054

    s

    a 27.6 f.W

    ~

    L

    0.23 L

    *W -

    0.046

    L

    z

    0.23

    L

    30 -

    g

    SHA LE HEA TING RA TE FROM 200F

    ~

    m

    TO SW*F

    10F/HR

    s 10

    s

    2

    g

    - 3.0 -

    I

    \

    I

    0.3 &

    I

    I l\

    I

    1

    J

    2W 400 SOD w Ooo

    200

    P/F -

    LITHOSTATIC ?RESSU

    RE (PSI)

    STRENGTH FACTOR

    Fig. 6 -

    General ized permcabi I ity function.

    f - SHA LE STRENGTH FAC1OR

    F,g. 8 -

    Part cle aizc scale-up factor - shale

    strength factor rel at ionship for compacted oi I sha,l e.

    3,4-

    HEA TING RA TE TO

    600 F - tO f/HR

    3,0 -

    2.6 -

    2.2 -

    t8 -

    td -

    to -

    0.6-

    o.2~ ;0 ~

    1

    1

    J

    40 30 60

    SHAL E RICHNESS - OA LL ONS PER TON

    Fig. 7 -

    Shale strength factor - shale

    richness relationship for compacted 01 I

    shale.

    CRUSHED SHA LE 8ED HCIOHT, FT.

    Fig. 9

    - Calculated permeabi I I ty for crushed

    shale having average partiole diameter of SIX

    i nchea.