Teilchenteleskope in der Physik - DESYNicht nur Sterne - Gas und Staub. Photons 1 m - 1 km 1 cm 1...

71
Gernot Maier Teilchenteleskope in der Physik Astronomie bei sehr hohen Energien - Gammastrahlungsastronomie

Transcript of Teilchenteleskope in der Physik - DESYNicht nur Sterne - Gas und Staub. Photons 1 m - 1 km 1 cm 1...

  • Gernot Maier

    Teilchenteleskope in der Physik

    Astronomie bei sehr hohen Energien - Gammastrahlungsastronomie

  • Gernot Maier | Teilchenteleskope in der Physik | October 2010 |

    Inhalt

    > Astronomie Einführung

    Höchste Energien - Gammastrahlung

    > Kosmische Teilchenbeschleuniger Explodierende Sterne (Supernovae)

    Doppelsternsysteme

    Supermassive schwarze Löcher

    > Teleskope zur Messung hochenergetischer Gammastrahlung HESS, MAGIC, VERITAS

    Fermi - LAT

    CTA, AGIS

    > Ausblick

  • Gernot Maier | Teilchenteleskope in der Physik | October 2010 |

    Die Milchstrasse

    500 Millionen Sterne

    100 000 Lichtjahre = 900 000 000 000 000 000 km = 9x1017 km

  • Gernot Maier | Teilchenteleskope in der Physik | October 2010 |

    Die Sonne

  • Gernot Maier | Teilchenteleskope in der Physik | October 2010 |

    Die Sonne

  • Gernot Maier | Teilchenteleskope in der Physik | October 2010 |

    Galaxien

  • Gernot Maier | Teilchenteleskope in der Physik | October 2010 |

    Galaxien - Kollisionen

  • Gernot Maier | Teilchenteleskope in der Physik | October 2010 |

    Nicht nur Sterne - Gas und Staub

  • Photons

    1 m - 1 km 1 cm 1 μm - 1 mm 400-700 nm 10 - 400 nm 0.01 - 10 nm < 0.01 nm

    Radio

    MicrowavesInfrared

    VisibleUltraviolet

    X-raysGamma-rays

    10,000 K 108 K 1010 K

    eV keV MeV GeV TeV

    1 K 100 K

  • Photons

    1 m - 1 km 1 cm 1 μm - 1 mm 400-700 nm 10 - 400 nm 0.01 - 10 nm < 0.01 nm

    Radio

    MicrowavesInfrared

    VisibleUltraviolet

    X-raysGamma-rays

    10,000 K 108 K 1010 K

    eV keV MeV GeV TeV

    1 K 100 K

  • Photons

    1 m - 1 km 1 cm 1 μm - 1 mm 400-700 nm 10 - 400 nm 0.01 - 10 nm < 0.01 nm

    Radio

    MicrowavesInfrared

    VisibleUltraviolet

    X-raysGamma-rays

    10,000 K 108 K 1010 K

    eV keV MeV GeV TeV

    1 K 100 K

    Charged particles

    e±,p

    B→

    synchrotron radiation

    γ γγ’

    e±inverse Compton scattering

    e±’π0-decay from

    hadronic interactions

    π0 → γγ

  • Photons

    1 m - 1 km 1 cm 1 μm - 1 mm 400-700 nm 10 - 400 nm 0.01 - 10 nm < 0.01 nm

    Radio

    MicrowavesInfrared

    VisibleUltraviolet

    X-raysGamma-rays

    10,000 K 108 K 1010 K

    eV keV MeV GeV TeV

    1 K 100 K

    Cosmic Rays (protons, ..., iron nuclei), electrons103 eV 1015 eV 1020 eV

    Charged particles

    e±,p

    B→

    synchrotron radiation

    γ γγ’

    e±inverse Compton scattering

    e±’π0-decay from

    hadronic interactions

    π0 → γγ

  • Neutrinos

    Gravitational waves

    Photons

    1 m - 1 km 1 cm 1 μm - 1 mm 400-700 nm 10 - 400 nm 0.01 - 10 nm < 0.01 nm

    Radio

    MicrowavesInfrared

    VisibleUltraviolet

    X-raysGamma-rays

    10,000 K 108 K 1010 K

    eV keV MeV GeV TeV

    1 K 100 K

    Cosmic Rays (protons, ..., iron nuclei), electrons103 eV 1015 eV 1020 eV

    Charged particles

    e±,p

    B→

    synchrotron radiation

    γ γγ’

    e±inverse Compton scattering

    e±’π0-decay from

    hadronic interactions

    π0 → γγ

  • Gernot Maier | Teilchenteleskope in der Physik | October 2010 |

    optical

    Multi-wavelength Astronomy

  • Gernot Maier | Teilchenteleskope in der Physik | October 2010 |

    optical

    x-ray

    Multi-wavelength Astronomy

  • Gernot Maier | Teilchenteleskope in der Physik | October 2010 |

    infrared

    optical

    x-ray

    Multi-wavelength Astronomy

  • Gernot Maier | Teilchenteleskope in der Physik | October 2010 |

    Die Milchstrasse

  • Gernot Maier | Teilchenteleskope in der Physik | October 2010 |

    Die Milchstrasse

  • The Milky Way

    Optical 0.4-0.6 μm

    NASA, mwmw.gsfc.nasa.gov

    star light

  • The Milky Way

    Optical 0.4-0.6 μm

    NASA, mwmw.gsfc.nasa.gov

    star light

    thermal emission from interstellar dust

    Infrared 12, 60, 100 μm

  • The Milky Way

    Optical 0.4-0.6 μm

    NASA, mwmw.gsfc.nasa.gov

    very hot, shocked gas

    X-ray 0.25, 0.75,1.5 keV

    star light

    thermal emission from interstellar dust

    Infrared 12, 60, 100 μm

  • The Milky Way

    Optical 0.4-0.6 μm

    NASA, mwmw.gsfc.nasa.gov

    very hot, shocked gas

    X-ray 0.25, 0.75,1.5 keV

    star light

    Hydrogen 21 cm line, cold interstellar medium (gas)

    Radio 21 cm

    thermal emission from interstellar dust

    Infrared 12, 60, 100 μm

  • The Milky Way

    Optical 0.4-0.6 μm

    NASA, mwmw.gsfc.nasa.gov

    very hot, shocked gas

    X-ray 0.25, 0.75,1.5 keV

    star light

    synchrotron emission from HE electrons moving through interstellar magnetic fields

    Radio 480 MHz Hydrogen 21 cm line, cold interstellar medium (gas)

    Radio 21 cm

    thermal emission from interstellar dust

    Infrared 12, 60, 100 μm

  • The Milky Way

    Optical 0.4-0.6 μm

    NASA, mwmw.gsfc.nasa.gov

    π0 decay from interaction of Cosmic Rays with interstellar medium

    γ-ray >300 MeV

    very hot, shocked gas

    X-ray 0.25, 0.75,1.5 keV

    star light

    synchrotron emission from HE electrons moving through interstellar magnetic fields

    Radio 480 MHz Hydrogen 21 cm line, cold interstellar medium (gas)

    Radio 21 cm

    thermal emission from interstellar dust

    Infrared 12, 60, 100 μm

  • The Milky Way

    Optical 0.4-0.6 μm

    NASA, mwmw.gsfc.nasa.gov

    π0 decay from interaction of Cosmic Rays with interstellar medium

    γ-ray >300 MeV

    very hot, shocked gas

    X-ray 0.25, 0.75,1.5 keV

    emission from high-energy charged particles>300 GeVγ-ray

    star light

    synchrotron emission from HE electrons moving through interstellar magnetic fields

    Radio 480 MHz Hydrogen 21 cm line, cold interstellar medium (gas)

    Radio 21 cm

    thermal emission from interstellar dust

    Infrared 12, 60, 100 μm

  • The Milky Way

    Optical 0.4-0.6 μm

    NASA, mwmw.gsfc.nasa.gov

    π0 decay from interaction of Cosmic Rays with interstellar medium

    γ-ray >300 MeV

    very hot, shocked gas

    X-ray 0.25, 0.75,1.5 keV

    emission from high-energy charged particles>300 GeVγ-ray

    star light

    synchrotron emission from HE electrons moving through interstellar magnetic fields

    Radio 480 MHz Hydrogen 21 cm line, cold interstellar medium (gas)

    Radio 21 cm

    thermal emission from interstellar dust

    Infrared 12, 60, 100 μm

  • InstrumentsArecibo (Radio) Spitzer (IR)Fermi (Gamma-rays)

    VERITAS (Gamma-rays)VLT (Optical)

    Suzaku (X-rays)

    Auger (Cosmic Rays) LIGO (Gravitational waves)

    IceCube(Neutrinos)

  • 1 m - 1 km 1 cm 1 μm - 1 mm 400-700 nm 10 - 400 nm 0.01 - 10 nm < 0.01 nm

    Radio Microwaves Infrared Visible Ultraviolet X-rays Gamma-rays

    10,000 K 108 K 1010 K

    eV keV MeV GeV

    1 K 100 K

    TeV

    Gernot Maier | Physics with CTA | October, 2010 |

    The non-thermal Universe

    TeV

    Fermi LAT all sky view > 100 MeV

  • Gernot Maier | Physics with CTA | October, 2010 |

    The non-thermal Universe

    TeV

    sources > 100 GeV

  • Gernot Maier | Physics with CTA | October, 2010 |

    The non-thermal Universe

    TeV

    sources > 100 GeV

    Supe

    rnova

    Remn

    ants

    Pulsa

    r Wind

    Nebu

    la

    Binary

    Syste

    ms

    Starbu

    rst Ga

    laxies

    Activ

    e Gala

    ctic N

    uclei

    Gamm

    a Ray

    Burst

    s

    Dark

    Matte

    r

  • Gernot Maier | Physics with CTA | October, 2010 |

    The non-thermal Universe

    TeV

    sources > 100 GeV

    Supe

    rnova

    Remn

    ants

    Pulsa

    r Wind

    Nebu

    la

    Binary

    Syste

    ms

    Starbu

    rst Ga

    laxies

    Activ

    e Gala

    ctic N

    uclei

    Gamm

    a Ray

    Burst

    s

    Dark

    Matte

    r

    500 Million stars known in the Milky Way 100 very high-energy gamma-ray sources known

  • Gernot Maier | Teilchenteleskope in der Physik | October 2010 |

    Quellen von Gammastrahlung - Explodierende Sterne

    Massive Sterne explodieren am Ende ihres ‘Lebens’

    Wahrscheinlich die Quellen der kosmischen Strahlung

    Tycho’s Supernova (1572)

    Teilchenbeschleunigung

    heißer Überrest (Millionen Grad Celsius)

  • • distant bright galaxies

    • central core produces more radiation than rest of galaxy: Active Galactic Nucleus (AGN)

    • supermassive black hole: 109 solar masses

    • extremely powerful radio source: quasar

    • ~10% of all AGNs produce beams of energetic particles and magnetic fields: jets

    • powered by accretion of matter onto a supermassive black hole and/or black hole rotation

    M87: HST opticalActive Galactic Nuclei

  • core and accretion disk

    jet: relativistic, hot, magnetized plasma

    thou

    sand

    s of l

    ight

    year

    s

    hot spots: shocked jet

    plasma

    blue light: synchrotron radiation from HE

    electrons

    • distant bright galaxies

    • central core produces more radiation than rest of galaxy: Active Galactic Nucleus (AGN)

    • supermassive black hole: 109 solar masses

    • extremely powerful radio source: quasar

    • ~10% of all AGNs produce beams of energetic particles and magnetic fields: jets

    • powered by accretion of matter onto a supermassive black hole and/or black hole rotation

    M87: HST opticalActive Galactic Nuclei

  • core and accretion disk

    jet: relativistic, hot, magnetized plasma

    thou

    sand

    s of l

    ight

    year

    s

    hot spots: shocked jet

    plasma

    blue light: synchrotron radiation from HE

    electrons

    M87: HST opticalActive Galactic Nuclei

  • Gernot Maier | Teilchenteleskope in der Physik | October 2010 |

    Schwarze Löcher und Jets

    HH30: 1995 - 2000

    SS 433(2-10 keV)

    Young Stars(Herbig-Haro Objects)

    Microquasars(X-ray binaries)

    Gamma Ray Bursts(hypernovae)

    long GRBscollapse of massive, rapidly rotating stars

  • Gernot Maier | Teilchenteleskope in der Physik | October 2010 |

    Quellen von Gammastrahlung - Doppelsternsysteme

    Mikroquasar

  • Gernot Maier | Teilchenteleskope in der Physik | October 2010 |

    Quellen von Gammastrahlung - Doppelsternsysteme

    Mikroquasar

    accretion disk

    jet

    core: black hole or neutron star

    donor star

  • Charged Particle Acceleration - Shocks in the Universe

    kitchen sink Kepler’s Supernova

  • Extragalactic background light:How many stars are in the sky?

    γTeV+γstar → e+e-

  • Gernot Maier | Teilchenteleskope in der Physik | October 2010 |

    Dark Matter

    Atoms4%

    Dark Matter26%

    Dark Energy70%

    Wir kennen nur 4% unseres Universums...

  • Gernot Maier | Teilchenteleskope in der Physik | October 2010 |

    Dark Matter

    Galactic center

    Dwarf Galaxies

    Milky Way Halo

  • Gernot Maier | Physics with CTA | October, 2010 |

    The non-thermal Universe - the big questions

    TeV

    Supe

    rnova

    Remn

    ants

    Pulsa

    r Wind

    Nebu

    la

    Binary

    Syste

    ms

    Starbu

    rst Ga

    laxies

    Activ

    e Gala

    ctic N

    uclei

    Gamm

    a Ray

    Burst

    s

    Dark

    Matte

    r

  • Gernot Maier | Physics with CTA | October, 2010 |

    The non-thermal Universe - the big questions

    TeV

    Supe

    rnova

    Remn

    ants

    Pulsa

    r Wind

    Nebu

    la

    Binary

    Syste

    ms

    Starbu

    rst Ga

    laxies

    Activ

    e Gala

    ctic N

    uclei

    Gamm

    a Ray

    Burst

    s

    Dark

    Matte

    r

    Understanding the origin of cosmic rays and how they interact with their environment.

  • Gernot Maier | Physics with CTA | October, 2010 |

    The non-thermal Universe - the big questions

    TeV

    Supe

    rnova

    Remn

    ants

    Pulsa

    r Wind

    Nebu

    la

    Binary

    Syste

    ms

    Starbu

    rst Ga

    laxies

    Activ

    e Gala

    ctic N

    uclei

    Gamm

    a Ray

    Burst

    s

    Dark

    Matte

    r

    Understanding the nature and variety of black hole particle accelerators.

    Understanding the origin of cosmic rays and how they interact with their environment.

  • Gernot Maier | Physics with CTA | October, 2010 |

    The non-thermal Universe - the big questions

    TeV

    Supe

    rnova

    Remn

    ants

    Pulsa

    r Wind

    Nebu

    la

    Binary

    Syste

    ms

    Starbu

    rst Ga

    laxies

    Activ

    e Gala

    ctic N

    uclei

    Gamm

    a Ray

    Burst

    s

    Dark

    Matte

    r

    What is the nature of dark-matter particles?

    Understanding the nature and variety of black hole particle accelerators.

    Understanding the origin of cosmic rays and how they interact with their environment.

  • VHE Cherenkov telescopes

    VERITAS

    MAGIC

    H.E.S.S.

    Cangoroo

    Fermi LAT

    Whipple

  • MAGIC

  • VERITAS

  • H.E.S.S.

  • Gernot Maier | Teilchenteleskope in der Physik | October 2010 |

    October 1968

    First detection:1989

  • Gernot Maier | Physics with CTA | October, 2010 |

    A CTA telescope

  • Gernot Maier | Teilchenteleskope in der Physik | October 2010 |

    Atmospheric Opacity

  • e+

    e–

    e–

    e–

    e+ e+

    e

    p

    e–

    v~

    ca. 100-200m

    Extensive Air Showers

    prim

    ary

    part

    icle

    primaryparticle

    show

    er a

    xis

    lead

    ing

    hadr

    on

    e/ detector arrayhadroncalorimeter

    fluorescence,cherenkov light

    ! detectors

    ~1 m thick

    composition of part.at ground level(after 25 X0, 11 int)

    ! 80 % photons! 18 % electrons! 1.7 % muons! 0.3 % hadrons! 106 secondary part. from 1015 eV proton

    ~ 20km height

    c

  • Gernot Maier | Teilchenteleskope in der Physik | October 2010 |

    Cherenkov light

    Pavel Alekseyevich Cherenkov(Nobel 1958)

    emitted when velocity of charged particle exceeds local speed of light

  • Gernot Maier | Physics with CTA | October, 2010 |

    Detection of high-energy γ-rays

    γ-ray

    particle shower

    ~10 km

    ‘flat’ light pool with radius of ~120 m:

    detection areas of 105 to 106 m2

    Cherenkov photon densities on ground level:

    1-105 γ/m2

    duration of Cherenkov flash: ~ns

  • Gernot Maier | Teilchenteleskope in der Physik | October 2010 |

    Fluxes

    > flux of strongest γ-ray source (Crab Nebula): ~10-7 γ’s/m2/s

    >satellite with detection area of 1-5 m2: ~15 γ’s / year

    > imaging atmospheric Cherenkov telescopes: detection area >105 m2: 50 γ’s/h

    Power law E-2.4

  • Background

    γ-ray proton

    Cosmic Ray flux typically 103-104 larger than γ-ray flux

  • Background

    γ-ray protonCherenkov photons on ground

    γ-ray

    proton

    Cosmic Ray flux typically 103-104 larger than γ-ray flux

  • shower

    maximum at8-10 km altitude

    alti

    tude

    Cherenkov flash is a few nanoseconds long

  • shower

    maximum at8-10 km altitude

    alti

    tude

    mirror

    Cherenkov flash is a few nanoseconds long

  • shower

    maximum at8-10 km altitude

    alti

    tude

    focal plane

    mirror

    Cherenkov flash is a few nanoseconds long

  • shower

    maximum at8-10 km altitude

    alti

    tude

    focal plane

    mirror

    Cherenkov flash is a few nanoseconds long

  • shower

    maximum at8-10 km altitude

    alti

    tude

    focal plane

    mirror

    Cherenkov flash is a few nanoseconds long

  • shower

    maximum at8-10 km altitude

    alti

    tude

    focal plane

    mirror

    Cherenkov flash is a few nanoseconds long

  • shower

    maximum at8-10 km altitude

    alti

    tude

    Image in the focalplane

    focal plane

    mirror

    Cherenkov flash is a few nanoseconds long

  • (observation of the Crab Nebula)gamma-rays measured by VERITAS

    (each frame 2 ns long)

  • Monte Carlo Simulation

    gamma-rays ‘measured’ by VERITAS

    (each frame 2 ns long)

  • Gernot Maier | Teilchenteleskope in der Physik | October 2010 |

    VERITAS - Technical Details

    Telescope (x 4)12 m diameter Davies-Cottonf 1.0, 110 m2 mirror area

    Mirror Facets (x 350)Reflectivity ~88%(recoated every 2 y) Light concentrators

    3.5°

    Camera (x 4)499 PMTs3.5o Field of View

    PMT (x 499)

    FADC SAMPLES

    Electronics500 MSPS FADCCFD trigger,3 adjacent pixel and 2/4 telescope coincidence~10% dead time; ~300 Hz

    Pointing Monitor

  • Gernot Maier | Physics with CTA | October, 2010 |

    The Cherenkov Telescope Array

    CTA Consortium: >22 countries (big: D, F, US) >600 scientists€180 M (invest)first science data 2014

    north and south array - full sky coverage

  • Gernot Maier | Physics with CTA | October, 2010 |

    The Cherenkov Telescope ArrayCrab

    10% Crab

    1% Crab

    FERMI LAT

    MAGIC

    H.E.S.S./VERITAS

    CTA

    CTA Consortium: >22 countries (big: D, F, US) >600 scientists€180 M (invest)first science data 2014

    north and south array - full sky coverage