B.CARITEAU, I. TKATSCHENKO CEA Saclay, DEN, DM2S, SMFE, LEEF

Post on 19-Mar-2016

32 views 3 download

description

Experimental study of the effects of vent geometry on the dispersion of a buoyant gas in a small enclosure. B.CARITEAU, I. TKATSCHENKO CEA Saclay, DEN, DM2S, SMFE, LEEF. Dispersion in an enclosure : Natural ventilation through one vent. V. X(z)?. U 0 , Dr 0. - PowerPoint PPT Presentation

Transcript of B.CARITEAU, I. TKATSCHENKO CEA Saclay, DEN, DM2S, SMFE, LEEF

ICHS 4, San Francisco, California, USA, September 2011

Experimental study of the effects Experimental study of the effects of vent geometry on the of vent geometry on the

dispersion of a buoyant gas in a dispersion of a buoyant gas in a small enclosuresmall enclosure

B.CARITEAU, I. TKATSCHENKOCEA Saclay, DEN, DM2S, SMFE, LEEF

ICHS 4, San Francisco, California, USA, September 2011

Dispersion in an enclosure : Natural ventilation through one vent

U0,

V

X(z)?

ICHS 4, San Francisco, California, USA, September 2011

A wide range of injection velocity

U0,

V

X(z)?

Dispersion in an enclosure : Natural ventilation through one vent

ICHS 4, San Francisco, California, USA, September 2011

Vent effects

U0,

V

X(z)?

Dispersion in an enclosure : Natural ventilation through one vent

ICHS 4, San Francisco, California, USA, September 2011

Volume Richardson number: 2

00

031

UVgRi a

v

Cleaver et. al. (1994, J. Hazardous Mater. Vol. 36)

Previous results on dispersion regimes without ventilation

ICHS 4, San Francisco, California, USA, September 2011

Volume Richardson number:

RivBuoyancy dominated dispersion

Momentum dominated dispersion

200

031

UVgRi a

v

Cleaver et. al. (1994, J. Hazardous Mater. Vol. 36)

1

Stratified

RiVcd

H

Homogeneous layer

Fully homogeneous

Previous results on dispersion regimes without ventilation

2

025

RHRivc

ICHS 4, San Francisco, California, USA, September 2011

A simple analytical model for dispersion with 1 ventLinden, Lane-Serff & Smeed (1990, J. Fluid Mech. Vol. 212)

ICHS 4, San Francisco, California, USA, September 2011

A simple analytical model for dispersion with 1 ventLinden, Lane-Serff & Smeed (1990, J. Fluid Mech. Vol. 212)

Hypotheses for the analytical model: P and T ConstantHomogeneous distributionPure gravity driven flow through the ventBoussinesq approximation

ICHS 4, San Francisco, California, USA, September 2011

A simple analytical model for dispersion with 1 ventLinden, Lane-Serff & Smeed (1990, J. Fluid Mech. Vol. 212)

Hypotheses for the analytical model: P and T ConstantHomogeneous distributionPure gravity driven flow through the ventBoussinesq approximation

2/10 )( hgXSCQ De Volume flow rate

through the ventS h

a

agg

00

CD=0.25 discharge coefficient

ICHS 4, San Francisco, California, USA, September 2011

A simple analytical model for dispersion with 1 ventLinden, Lane-Serff & Smeed (1990, J. Fluid Mech. Vol. 212)

Hypotheses for the analytical model: P and T ConstantHomogeneous distributionPure gravity driven flow through the ventBoussinesq approximation

2/10 )( hgXSCQ De Volume flow rate

through the ventS h

a

agg

00

CD=0.25 discharge coefficient

3/2

2/10

0

)(

hgSC

QXD

Steady state volume fraction in the enclosure

11ICHS 4, San Francisco, California, USA, September 2011

Goals of the present experiments:

Influence of Riv and vent geometry on the vertical distribution

Compare results to the analytical model

Check the validity of the criterion for homogeneous filling

12ICHS 4, San Francisco, California, USA, September 2011

Experimental set-upExperimental set-up

Steady state vertical distributionSteady state vertical distribution

Volume fraction variations with the flow Volume fraction variations with the flow raterate

13ICHS 4, San Francisco, California, USA, September 2011

Experimental set-upExperimental set-upExperimental set-upExperimental set-up

Steady state vertical distributionSteady state vertical distribution

Volume fraction variations with the flow Volume fraction variations with the flow raterate

ICHS 4, San Francisco, California, USA, September 2011

Vents: (a) 180x900 mm2

(b) 180x180 mm2

(c) 35x900 mm2

Experimental setup and injection Experimental setup and injection conditionsconditions

Injection tube

930m

m

930mm

1260mm

Vent

180m

m20m

m

(b)

180m

m

(a)

35m

m (c)

900mm 180mm

V=1.1m3

ICHS 4, San Francisco, California, USA, September 2011

Sources :D0=5mm or 20mmX0=100% heliumQ0=1 to 300Nl/min

Experimental setup and injection Experimental setup and injection conditionsconditions

Injection tube

930m

m

930mm

1260mm

Vent

180m

m20m

m

D0=5mmD0=20mm

Riv=8 10-4 to 75 Riv=0.2 to 740

Working gases : Helium/Air

V=1.1m3

16ICHS 4, San Francisco, California, USA, September 2011

Helium volume fraction measurement : min-katharometers

100mm

220mm

340mm

460mm

580mm

700mm

820mm

940mm

1060mm

1160mm

Injection tube

katharometers

255mm

625mm

135m

m

240mm

930m

m

930mm

1260mm

Vent

M2 M4

M2

M4

195mm

230mmM1

M1

7mm

17ICHS 4, San Francisco, California, USA, September 2011

Experimental set-upExperimental set-upExperimental set-upExperimental set-up

Steady state vertical distributionSteady state vertical distribution

Volume fraction variations with the flow Volume fraction variations with the flow raterate

ICHS 4, San Francisco, California, USA, September 2011

Steady state: vertical profilesSteady state: vertical profiles

180x900 mm2 vent (a)

0,0

0,2

0,4

0,6

0,8

1,0

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5

X/<X>

z /H

5Nl/min10Nl/min20Nl/min40Nl/min60Nl/min100Nl/min180Nl/min300Nl/min

Riv

10.2

20mm source : toward buoyancy dominated flow

ICHS 4, San Francisco, California, USA, September 2011

Steady state: vertical profilesSteady state: vertical profiles

180x900 mm2 vent (a)

0,0

0,2

0,4

0,6

0,8

1,0

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5

X/<X>

z /H

5Nl/min10Nl/min20Nl/min40Nl/min60Nl/min100Nl/min180Nl/min300Nl/min

Riv

10.2

Strong vertical variations

20mm source : toward buoyancy dominated flow

ICHS 4, San Francisco, California, USA, September 2011

Steady state: vertical profilesSteady state: vertical profiles

180x900 mm2 vent (a)

0,0

0,2

0,4

0,6

0,8

1,0

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5

X/<X>

z /H

5Nl/min10Nl/min20Nl/min40Nl/min60Nl/min100Nl/min180Nl/min300Nl/min

Riv

10.2

Auto-similar

20mm source : toward buoyancy dominated flow

ICHS 4, San Francisco, California, USA, September 2011

0,0

0,2

0,4

0,6

0,8

1,0

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5X/<X>

z /H

5Nl/min10Nl/min20Nl/min40Nl/min60Nl/min100Nl/min140Nl/min180Nl/min

Riv1

0.05

0.0023

Steady state: vertical profilesSteady state: vertical profiles

180x900 mm2 vent (a)

5mm source : toward momentum dominated flow

ICHS 4, San Francisco, California, USA, September 2011

0,0

0,2

0,4

0,6

0,8

1,0

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5X/<X>

z /H

5Nl/min10Nl/min20Nl/min40Nl/min60Nl/min100Nl/min140Nl/min180Nl/min

Riv1

0.05

0.0023

Steady state: vertical profilesSteady state: vertical profiles

180x900 mm2 vent (a)

5mm source : toward momentum dominated flow

Top homogeneous layer

ICHS 4, San Francisco, California, USA, September 2011

0,0

0,2

0,4

0,6

0,8

1,0

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5X/<X>

z /H

5Nl/min10Nl/min20Nl/min40Nl/min60Nl/min100Nl/min140Nl/min180Nl/min

Riv1

0.05

0.0023

Steady state: vertical profilesSteady state: vertical profiles

180x900 mm2 vent (a)

5mm source : toward momentum dominated flow

Homogeneous for Riv<0.0023

ICHS 4, San Francisco, California, USA, September 2011

0,0

0,2

0,4

0,6

0,8

1,0

0,8 0,9 1,0 1,1 1,2 1,3 1,4

z /H

X/<X>

5Nl/min10Nl/min20Nl/min40Nl/min60Nl/min100Nl/min180Nl/min300Nl/min

Riv

10.2

Steady state: vertical profilesSteady state: vertical profiles

180x180 mm2 vent (b)

20mm source : toward buoyancy dominated flow

ICHS 4, San Francisco, California, USA, September 2011

0,0

0,2

0,4

0,6

0,8

1,0

0,8 0,9 1,0 1,1 1,2 1,3 1,4

z /H

X/<X>

5Nl/min10Nl/min20Nl/min40Nl/min60Nl/min100Nl/min140Nl/min180Nl/min

Riv1

0.05

0.0023

Steady state: vertical profilesSteady state: vertical profiles

180x180 mm2 vent (b)

5mm source : toward momentum dominated flow

ICHS 4, San Francisco, California, USA, September 2011

0,0

0,2

0,4

0,6

0,8

1,0

0,8 0,9 1,0 1,1 1,2 1,3 1,4

z /H

X/<X>

5Nl/min10Nl/min20Nl/min40Nl/min60Nl/min100Nl/min140Nl/min180Nl/min

Riv1

0.05

0.0023

Steady state: vertical profilesSteady state: vertical profiles

180x180 mm2 vent (b)

5mm source : toward momentum dominated flow

Homogeneous for Riv<0.0023

ICHS 4, San Francisco, California, USA, September 2011

0,0

0,2

0,4

0,6

0,8

1,0

0,4 0,6 0,8 1,0 1,2 1,4

X/<X>

z /H 5Nl/min

10Nl/min20Nl/min40Nl/min60Nl/min100Nl/min180Nl/min300Nl/min

Riv

10.2

Steady state: vertical profilesSteady state: vertical profiles

35x900 mm2 vent (c)

20mm source : toward buoyancy dominated flow

ICHS 4, San Francisco, California, USA, September 2011

0,0

0,2

0,4

0,6

0,8

1,0

0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4X/<X>

z /H 5Nl/min

10Nl/min20Nl/min40Nl/min60Nl/min100Nl/min140Nl/min180Nl/min

Riv1

0.05

0.0023

Steady state: vertical profilesSteady state: vertical profiles

35x900 mm2 vent (c)

5mm source : toward momentum dominated flow

ICHS 4, San Francisco, California, USA, September 2011

0,0

0,2

0,4

0,6

0,8

1,0

0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4X/<X>

z /H 5Nl/min

10Nl/min20Nl/min40Nl/min60Nl/min100Nl/min140Nl/min180Nl/min

Riv1

0.05

0.0023

Steady state: vertical profilesSteady state: vertical profiles

35x900 mm2 vent (c)

5mm source : toward momentum dominated flow

Homogeneous for Riv<0.0023

30ICHS 4, San Francisco, California, USA, September 2011

Experimental set-upExperimental set-upExperimental set-upExperimental set-up

Steady state vertical distributionSteady state vertical distribution

Volume fraction variations with the flow Volume fraction variations with the flow raterate

ICHS 4, San Francisco, California, USA, September 2011

0,1

1,0

10,0

100,0

1,E-05 1,E-04 1,E-03 1,E-02

<X>

(%)

Q (m3/s)

Average volume fraction

Volume fraction variations with the flow Volume fraction variations with the flow raterate

Filed symbols: 20mm source

Vent 35x900 mm2 (c)

Vent 180x900 mm2 (a)Vent 180x180 mm2 (b)

Model with CD=0.25

ICHS 4, San Francisco, California, USA, September 2011

0,1

1,0

10,0

100,0

1,E-05 1,E-04 1,E-03 1,E-02

<X>

(%)

Q (m3/s)

Average volume fraction

Volume fraction variations with the flow Volume fraction variations with the flow raterate

Filed symbols: 20mm source

Vent 35x900 mm2 (c)

Vent 180x900 mm2 (a)Vent 180x180 mm2 (b)

Model with CD=0.25

ICHS 4, San Francisco, California, USA, September 2011

0,1

1,0

10,0

100,0

1,E-05 1,E-04 1,E-03 1,E-02

<X>

(%)

Q (m3/s)

Average volume fraction

Volume fraction variations with the flow Volume fraction variations with the flow raterate

Filed symbols: 20mm source

Vent 35x900 mm2 (c)

Vent 180x900 mm2 (a)Vent 180x180 mm2 (b)

Model with CD=0.25

The model over estimate the experimental resultsIn particular for vent (a)

ICHS 4, San Francisco, California, USA, September 2011

0,1

1,0

10,0

100,0

1,E-05 1,E-04 1,E-03 1,E-02

<X>

(%)

Q (m3/s)

Average volume fraction

Volume fraction variations with the flow Volume fraction variations with the flow raterate

Filed symbols: 20mm source

Vent 35x900 mm2 (c)

Vent 180x900 mm2 (a)Vent 180x180 mm2 (b)

Model with CD=0.25

The power law is no longer valid for SOME data

ICHS 4, San Francisco, California, USA, September 2011

0,1

1,0

10,0

100,0

1,E-05 1,E-04 1,E-03 1,E-02

<X>

(%)

Q (m3/s)

Average volume fraction

Volume fraction variations with the flow Volume fraction variations with the flow raterate

Filed symbols: 20mm source

Vent 35x900 mm2 (c)

Vent 180x900 mm2 (a)Vent 180x180 mm2 (b)

Model with CD=0.25

ICHS 4, San Francisco, California, USA, September 2011

0,1

1,0

10,0

100,0

1,E-05 1,E-04 1,E-03 1,E-02

Xm

ax(%

)

Q (m3/s)

Maximum volume fraction

Volume fraction variations with the flow Volume fraction variations with the flow raterate

Filed symbols: 20mm source

Vent 35x900 mm2 (c)

Vent 180x900 mm2 (a)Vent 180x180 mm2 (b)

Model with CD=0.25

ICHS 4, San Francisco, California, USA, September 2011

Maximum volume fraction vs normalized flow rate

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,0 0,5 1,0 1,5 2,0

Xm

ax

Q/Qe

2/10max )( hgXSCQ De

Source flow rate normalized by the expected outflow rate :

i.e. only gravity driven outflow

ModelX=Q/Qe<1

Filed symbols: 20mm source

Event 35x900 mm2

(c)

Event 180x900 mm2

(a)Event 180x180 mm2

(b)

Volume fraction variations with the flow Volume fraction variations with the flow raterate

ICHS 4, San Francisco, California, USA, September 2011

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,0 0,5 1,0 1,5 2,0

Xm

ax

Q/Qe

Filed symbols: 20mm source

Event 35x900 mm2

(c)

Event 180x900 mm2

(a)Event 180x180 mm2

(b)

Maximum volume fraction vs normalized flow rate

Volume fraction variations with the flow Volume fraction variations with the flow raterate

0,1

1,0

10,0

100,0

1,E-05 1,E-04 1,E-03 1,E-02

Xm

ax(%

)

Q (m3/s)

0.3

ICHS 4, San Francisco, California, USA, September 2011

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,0 0,5 1,0 1,5 2,0

Xm

ax

Q/Qe

Filed symbols: 20mm source

Event 35x900 mm2

(c)

Event 180x900 mm2

(a)Event 180x180 mm2

(b)

Maximum volume fraction vs normalized flow rate

Volume fraction variations with the flow Volume fraction variations with the flow raterate

0,1

1,0

10,0

100,0

1,E-05 1,E-04 1,E-03 1,E-02

Xm

ax(%

)

Q (m3/s)

0.3

ICHS 4, San Francisco, California, USA, September 2011

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,0 0,5 1,0 1,5 2,0

Xm

ax

Q/Qe

Filed symbols: 20mm source

Event 35x900 mm2

(c)

Event 180x900 mm2

(a)Event 180x180 mm2

(b)

Maximum volume fraction vs normalized flow rate

Volume fraction variations with the flow Volume fraction variations with the flow raterate

0,1

1,0

10,0

100,0

1,E-05 1,E-04 1,E-03 1,E-02

Xm

ax(%

)

Q (m3/s)

0.3

Purely gravity driven flow through the vent

ICHS 4, San Francisco, California, USA, September 2011

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,0 0,5 1,0 1,5 2,0

Xm

ax

Q/Qe

Filed symbols: 20mm source

Event 35x900 mm2

(c)

Event 180x900 mm2

(a)Event 180x180 mm2

(b)

Maximum volume fraction vs normalized flow rate

Volume fraction variations with the flow Volume fraction variations with the flow raterate

0,1

1,0

10,0

100,0

1,E-05 1,E-04 1,E-03 1,E-02

Xm

ax(%

)

Q (m3/s)

0.3

Additional pressure effects

ICHS 4, San Francisco, California, USA, September 2011

ConclusionsConclusions

Strong vertical stratificationStrong vertical stratification

Highly dependent on the vent geometryHighly dependent on the vent geometry

Source momentum effects : homogeneous layerSource momentum effects : homogeneous layer

Criterion for complete homogeneity still Criterion for complete homogeneity still validvalidHomogeneous model gives fairly good resultsHomogeneous model gives fairly good results

Pressure effects are significant when Q/QPressure effects are significant when Q/Qee>0.3>0.3