Scs Mit Feb18

Post on 08-Jul-2018

221 views 0 download

Transcript of Scs Mit Feb18

  • 8/19/2019 Scs Mit Feb18

    1/38

    Marco F. Duarte

    Spectral Compressive Sensing

    Portions are joint work with:

    Richard G. Baraniuk

    (Rice University)

    Hamid Dadkhahi

    (UMass Amherst)

    Karsten Fyhn

    (Aalborg University)

  • 8/19/2019 Scs Mit Feb18

    2/38

    Spectral Compressive Sensing

    • Compressive sensing applied to frequency-sparse signals

    linearmeasurements

    frequency-sparsesignal

    Fourier components

    [E. Candès, J. Romberg, T. Tao; D. Donoho]

    Φ

  • 8/19/2019 Scs Mit Feb18

    3/38

    Ψ

    Spectral Compressive Sensing

    • Compressive sensing applied to frequency-sparse signals

    linearmeasurements

    frequency-sparsesignal

    nonzero

    DFT coefficients

    Φ

    DFT Basis forfrequency-sparse signals

  • 8/19/2019 Scs Mit Feb18

    4/38

    e(f ) =  1√ 

    hej2πf/N  ej2π2f/N  . . . ej2π(N −1)f/N 

    i

    Frequency-Sparse Signalsand the DFT Basis

  • 8/19/2019 Scs Mit Feb18

    5/38

    0 10 20 30 40 500

    0.2

    0.4

    0.6

    0.8

    1

    Approximation sparsity K

       N  o  r  m  a   l   i  z  e   d  a  p  p

      r  o  x .  e  r  r  o  r

     

    Integral frequencies

    Arbitrary frequencies

    Signal is sum of 10 sinusoids

    Frequency-Sparse Signalsand the DFT Basis

  • 8/19/2019 Scs Mit Feb18

    6/38

    Compressive Sensing forFrequency-Sparse Signals

    100 200 300 400 500

    0

    10

    20

    30

    40

    50

    60

    Number of measurements M

       A  v  e  r  a  g  e   S   N   R ,

       d   B

     

    Root MUSIC on M signal samples

    Standard IHT via DFT (Best)

  • 8/19/2019 Scs Mit Feb18

    7/38

    Compressive Sensing forFrequency-Sparse Signals

    100 200 300 400 500

    0

    10

    20

    30

    40

    50

    60

    Number of measurements M

       A  v  e  r  a  g  e   S   N   R ,

       d   B

     

    Root MUSIC on M signal samples

    Standard IHT via DFT (Average)

    Standard IHT via DFT (Best/Worst)

  • 8/19/2019 Scs Mit Feb18

    8/38

    The Redundant DFT Frame

  • 8/19/2019 Scs Mit Feb18

    9/38

    The Redundant DFT Frame

    , c = 10

  • 8/19/2019 Scs Mit Feb18

    10/38

    The Redundant DFT Frame

    , c = 10

  • 8/19/2019 Scs Mit Feb18

    11/38

    The Redundant DFT Frame

    , c = 10

    Recovery

    algorithmsoperate similarlyto “matchedfiltering”:

    Dirichlet Kernel

  • 8/19/2019 Scs Mit Feb18

    12/38

    The Redundant DFT Frame

    [Candès, Needell, Eldar, Randall 2011]Sparse approximation

    algorithms fail

    , c = 10

  • 8/19/2019 Scs Mit Feb18

    13/38

    Sparse Approximation ofFrequency-Sparse Signals

    Signal is sum of 10 sinusoids at arbitrary frequencies

    0 10 20 30 40 500

    1

    2

    3

    Approximation sparsity K

       N  o  r

      m  a   l   i  z  e   d  a  p  p  r  o  x .  e  r  r  o  r

     

    Standard sparse approx. via DFT Basis

    Standard sparse approx. via DFT Frame

  • 8/19/2019 Scs Mit Feb18

    14/38

    Structured Sparse Signals

    • A K -sparse signal lives onthe collection of K -dimsubspaces aligned with

    coordinate axes

    RN 

    ΣK 

    • A K -structured sparsesignal lives on a particular

    (reduced) collection of

    K -dimensional canonicalsubspaces

    ΩK  ⊆ ΣK 

    RN 

    [Baraniuk, Cevher, Duarte, Hegde 2010]

  • 8/19/2019 Scs Mit Feb18

    15/38

    • Preserve the structure only between sparse signals thatfollow the structure model

    RM 

    Φ

    Φx1

    Φx2mK    K -dim planes

    Structured RestrictedIsometry Property (SRIP)

    RN 

    • Random (iid Gaussian, Rademacher) matrix has the SRIP

    with high probability if

    [Blumensath, Davies; Lu, Do]

  • 8/19/2019 Scs Mit Feb18

    16/38

    Many state-of-the-art sparse recovery algorithms(greedy and optimization solvers) rely on

    thresholding

    RN 

    ΣK 

    Leveraging Structure in Recovery

    x

    [Daubechies, Defrise, and DeMol;Nowak, Figueiredo, and Wright;Tropp and Needell; Blumensath and Davies...]

    Thresholding provides the

    best approximation of

    x within ΣK 

  • 8/19/2019 Scs Mit Feb18

    17/38

    • Modify existing approaches (optimization or greedy-based)to obtain structure-aware recovery algorithms:

    replace the thresholding step in IHT, CoSaMP, SP, ... with a

    best structured sparse approximation step

    that finds the closest point within union of subspaces

    RN 

    x

    Greedy structure-aware recoveryalgorithms inherit guarantees of generic counterparts(even though feasible set may benonconvex)

    Structured Recovery Algorithms

  • 8/19/2019 Scs Mit Feb18

    18/38

    • If x is K -structured frequency-sparse, then there exists a

    K -sparse vector such that and the nonzeros

    in are spaced apart from each other (band exclusion).

    Structured Frequency-Sparse Signals

    • A K -structured frequency-sparse signal x consists of K  sinusoids that are mutually

    incoherent:

    R

    if 

  • 8/19/2019 Scs Mit Feb18

    19/38

    • If x is K -structured frequency-sparse, then there exists a

    K -sparse vector such that and the nonzerosin are spaced apart from each other.

    Structured Frequency-Sparse Signals

     

    • Preserve the structure only between sparse signals that

    follow the structured sparsity model

    • Random (iid Gaussian, Bernoulli) matrix has the

    structured RIP with high probability if

  • 8/19/2019 Scs Mit Feb18

    20/38

    Structured Sparse Approximation

    ΩK  ⊆ ΣK 

    R

     

    Inputs:• Signal vector x• Target sparsity K 

    • Redundancy factor c• Maximum coherence

    Output:• Approximation vector

    • Compute coefficients: • Solve support:

    • Mask coefficients:

    • Return[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

     Algorithm 1:

    Integer Program

  • 8/19/2019 Scs Mit Feb18

    21/38

    Theorem:Assume we obtain noisy CS measurements of asignal . If has the structured RIPwith , then the output of the structured

    IHT algorithm obeys

    CS recovery

    error

    signal K -term

    structured sparse approximation error

    noise

    Recovery with Structured Sparsity

    In words, instance optimality  based onstructured sparse approximation

    [Baraniuk, Cevher, Duarte, Hegde 2010]

  • 8/19/2019 Scs Mit Feb18

    22/38

    • Compute coefficients:

    • Initialize:

    • While is nonzero and• Find max abs entry of

    • Copy entry

    • Inhibit “coherent” entries

    • Return

    Inputs:• Signal vector x• Target sparsity K 

    • Redundancy factor c• Maximum coherence

    ΩK  ⊆ ΣK 

    R

     

     Algorithm 2:

    Inhibition Heuristic

    Output:• Approximation vector

    Structured Sparse Approximation

  • 8/19/2019 Scs Mit Feb18

    23/38

    DFT Frame + Thresholdingequivalent toMaximum Likelihood Estimate

    of amplitudes and frequenciesfor frequency-sparse signalvia Periodogram

    Widely-studied problem:Line spectral estimation

    amplitudesfrequencies

    Structured Sparse Approximation

  • 8/19/2019 Scs Mit Feb18

    24/38

    Inputs:• Signal vector x • Target sparsity K 

     Algorithm 3:Line Spectral Estimation

    Output:

    • Parameter estimates

    • Signal estimate

    MUSICRoot MUSIC

    ESPRITPHD...

    x

    Structured Sparse Approximation

  • 8/19/2019 Scs Mit Feb18

    25/38

    Sparse Approximation ofFrequency-Sparse Signals

    Signal is sum of 10 sinusoids at arbitrary frequencies

    0 10 20 30 40 500

    1

    2

    3

    Approximation sparsity K

       N  o  r  m  a   l   i  z  e   d  a  p  p  r  o  x .  e  r  r  o  r

     

    Standard sparse approx. via DFT Basis

    Standard sparse approx. via DFT Frame

  • 8/19/2019 Scs Mit Feb18

    26/38

    Sparse Approximation ofFrequency-Sparse Signals

    Signal is sum of 10 sinusoids at arbitrary frequencies

    0 10 20 30 40 500

    1

    2

    3

    Approximation sparsity K

       N  o  r  m  a   l   i  z  e   d  a  p  p  r  o  x .  e  r  r  o  r

     

    Standard sparse approx. via DFT BasisStandard sparse approx. via DFT FrameStructured sparse approx. via Alg. 1Structured sparse approx. via Alg. 2Structured sparse approx. via Alg. 3

  • 8/19/2019 Scs Mit Feb18

    27/38

    100 200 300 400 500

    0

    10

    20

    30

    40

    50

    60

    Number of measurements M

       A  v  e  r  a  g  e   S   N   R ,

       d   B

     

    Root MUSIC on M signal samples

    Standard IHT via DFT (Average)

    Standard IHT via DFT (Best/Worst)

    Structured CS: Performance

  • 8/19/2019 Scs Mit Feb18

    28/38

    Structured CS: Performance

    100 200 300 400 500

    0

    10

    20

    30

    40

    50

    60

    Number of measurements M

       A  v  e  r  a  g  e   S   N   R ,

       d   B

     

    SIHT via Alg. 1

    SIHT via Alg. 2

    SIHT via Root MUSIC

    Root MUSIC on M signal samples

    Standard IHT via DFT (Average)

    Standard IHT via DFT (Best/Worst)

  • 8/19/2019 Scs Mit Feb18

    29/38

    From Recovery of Sparse SignalsTo Line Spectral Estimation

    • Can “read” indices of nonzero DFTF coefficients to obtain

    frequencies of frequency-sparse signal components

    • Equivalence: accurate recovery = accurate estimation?

    •  Algorithms: Alg. 3 essentially combines legacy line

    spectral estimation with CS recovery algorithms

    100 200 300 400 5000

    100

    200

    300

    400

    500

    Number of measurements M

       M  e  a  n   F  r  e  q .   E  s   t .   E  r  r  o  r ,   H  z

     

    Structured sparsity

    Multitaper

    Root MUSIC

    Standard Sparsity • How to change

     signal model  

    to furtherimprove

    performance?

  • 8/19/2019 Scs Mit Feb18

    30/38

    Interpolating the Projections(Dirichlet Kernel)

    •Main lobe of Dirichletkernel can be well

    approximated by a

    quadratic polynomial 

    (parabola)

    •Three samples around peak are

    required for

    interpolation

  • 8/19/2019 Scs Mit Feb18

    31/38

    From Discrete to Continuous Models• Both the DFT basis and the DFT frame can be conceived

    as samplings from an infinite set of signals e(f ) for a discrete set of values for the frequency

    • Since the signal vector e(f ) varies smoothly in each entry

    as a function of f , we can represent the signal set as aone-dimensional nonlinear manifold: 

    e(0)

    e(1)e(2)

    e(3) ...

    f 0   N 

    Parameter space

    e(f ) =  1√ 

    hej2πf/N  ej2π2f/N  . . . ej2π(N −1)f/N 

    i

  • 8/19/2019 Scs Mit Feb18

    32/38

    From Discrete to Continuous Models• For computational reasons, we wish to design methods

    that allow us to interpolate the manifold from thesamples obtained in the DFT basis/frame to increase the

    resolution of the frequency estimates.

    • An interpolation-based  compressive line spectral

    estimation algorithm obtains projection values for sets of

    manifold samples and interpolates around peak on therest of the manifold to get frequency estimate

    e(0)

    e(1)e(2)

    e(3) ...

    f 0   N 

    Parameter space

  • 8/19/2019 Scs Mit Feb18

    33/38

    •All points in manifold haveequal norm; distance b/w

    samples is uniform

    •Manifold must be containedwithin unit Euclidean ball

    (hypersphere)•Project  signal estimates

    into hypersphere

    •Find closest point inmanifold by interpolating 

    from closest samples withpolar coordinates

    • Integrate band exclusion toget Band-Excluding

     Interpolating SP  (BISP)

    e(0)e(1)e(2)

    e(3) ...

    Interpolating the Manifold:Polar Interpolation

  • 8/19/2019 Scs Mit Feb18

    34/38

    • In BISP, find closest pointin manifold by interpolating

    from closest samples with

     polar coordinates:

    •Map back from manifold tofrequency estimates

    ( parameter space)

    Interpolating the Manifold:Polar Interpolation

    e(f 0-1/c)

    e(f 0+1/c)

    e(f 0)

    0   N Akin to Continuous Basis Pursuit (CBP)

    [Ekanadham, Tranchina, and Simoncelli 2011]

  • 8/19/2019 Scs Mit Feb18

    35/38

    Compressive Line Spectral Estimation:Performance Evaluation

    20 40 60 80 10010−7

    10−4

    10−1

    102

    Number of measurements (M)     A   v    e    r    a

        g    e    c    o   s    t     i    n     f    r    e    q

       u    e    n    c   y    e   s    t     i    m    a    t

         i    o    n

    SIHT

    SDP

    BOMP

    CBP

    BISP

    `1-analysis

    N  = 100, K  = 4,c = 5, = 0.2 Hz

    BOMP [Fannjiang and Liao 2012]

    SDP: Atomic Norm Minimization

    [Tang, Rhaskar, Shah, Recht 2012]

    Number of measurements (M)

  • 8/19/2019 Scs Mit Feb18

    36/38

    Compressive Line Spectral Estimation:Performance Evaluation (Noise)

    0 5 10 15 2010−2

    10−1

    100

    101

    102

    103

    SNR [dB]     A   v    e    r    a    g

        e    c    o   s    t     i    n     f    r    e    q   u

        e    n    c   y    e   s    t     i    m    a    t     i    o    n

    `1-analysis

    `1-synthesis

    SIHT

    SDP

    BOMP

    CBP

    BISP

    `1-analysis

    N  = 100, K  = 4, M  = 50, c = 5, = 0.2 Hz

  • 8/19/2019 Scs Mit Feb18

    37/38

    Compressive Line Spectral Estimation:Computational Expense

    SIHT 0.2628 0.1499SDP 8.2355 9.9796

    BOMP 0.0141 0.0101

    CBP 46.9645 40.3477

    BISP 5.4265 1.4060

    Noiseless Noisy

    `1-analysis 9.5245 8.8222

    Time (seconds)

  • 8/19/2019 Scs Mit Feb18

    38/38

    Conclusions• Spectral CS provides significant improvements on

    frequency-sparse signal recovery– address coherent dictionaries via structured sparsity

    – simple-to-implement  modifications to recovery algs

    – can leverage decades of work on spectral estimation

    – robust to model mismatch, presence of noise• Compressive line spectral estimation:

    – recovery via parametric dictionaries providescompressive parameter estimation

    – dictionary elements as samples from manifold  models

    – from dictionaries to manifolds via interpolation techniques

    – from recovery to parameter estimation from compressivemeasurements

    – localization, bearing estimation, radar imaging, ...

    http://www.ecs.umass.edu/~mduarte mduarte@ecs.umass.edu