Umweltzerstörung, Ressourcengrenzen, …...Climate system temperature precipitation extreme weather...

Post on 09-Jun-2020

5 views 0 download

Transcript of Umweltzerstörung, Ressourcengrenzen, …...Climate system temperature precipitation extreme weather...

Umweltzerstörung, Ressourcengrenzen, Biodiversität und Klimawandel

Jürgen Scheffran

Universität Hamburg

Biologische Grundlagen der Friedensforschung17. Juni 2015

ErnteKonsum

ProduktionRessourceEmission

Technologie

Politik

Mensch-Umwelt Interaktion

Mensch undSoziale Systeme

NatürlicheSysteme

adaptive capacity

Climate system

temperatureprecipitation

extreme weatherice cover

ocean currentssea level

Natural resources

waterland

ecosystemsbiodiversity

marine resourcesnon-renewables

Human security

waterfood

energyhealthincome

livelihood

Societal stability

political eventsmigrationviolenceconflict

cooperationinstitutions

mitigation

risk

sust

aina

bilit

y

stre

ss

impact

response

framing

adaptation

resilience

development

Komplexe Kopplungen

Source: Scheffran et al, Climate Change and Violent Conflict, Science, 18 May 2012

Probleme der Mensch-Umwelt Interaktion

Environmental degradation and depletion of natural resources

Resource scarcity, food insecurity and energy poverty

Global warming and climate change

Tragedy of the Commons

Individual vs. collective rationality

Resource conflicts

Implications for society?

Was sind natürliche Ressourcen?

Natural processes, materials and systems that can be used to serve human needs, values and goals.

Anthropogenic interpretation of natural resources?

Inherent value of nature?

Examples of natural resources:

Energy

Water

Food

Organisms

Biodiversity

Minerals

Other raw materials

Environmental tolerance and viability

Viab

ility

/ Pr

oduc

tivity

V

Tolerance T

V

Environmentalchange

Optimum

V = 0

X- X+ EnvironmentalFactor X

Vulnerablearea

Tragödie der Allmende

Tragedy of the commons: depletion of a shared resource by multiple individuals, acting independently and rationally according to their self-interest, leading to collective undesirable outcomes because depleting the common resource is contrary to the group's long-term interests.

Thomas Malthus (1789) An Essay on the Principle of Population:expected population break down due to famine and disease (Malthusian catastrophe).

William Forster Lloyd (1833): hypothetical situation of herders sharing common land to let cows graze. Each cow gives additional benefits until overgrazing damages the common land for all. Individually rational economic decision results in collective destruction of the environmental commons.

Garrett Hardin (1968) "The Tragedy of the Commons", (Science)social dilemma of human population growth, the use of the Earth's natural resources, and the welfare state

Elinor Ostrom (1999): tragedy of the commons not prevalent or difficult to solve, since locals often have found cooperative solutions to the commons problem.

Grenzen des Wachstums

Studie für den Club of Rome

Einsatz von Systemdynamik und Computermodellierung

12 Szenarien zeigen verschiedene Muster und Umweltergebnisse von 1900 bis 2100.

Bevölkerungswachstum und Ressourcennutzung führen zu Grenzen des Wachstums.

Es gibt noch Wachstumspotentiale.

Das komplexe Computermodell

Source: Meadows et al. 1972, The Limits to Growth

Standardsimulation des Weltmodells

Source: Meadows et al. 1972, The Limits to Growth

Stabilisiertes Weltmodell

Source: Meadows et al. 1972, The Limits to Growth

adaptive capacity

Climate system

temperatureprecipitation

extreme weatherice cover

ocean currentssea level

Natural resources

waterland

ecosystemsbiodiversity

marine resourcesnon-renewables

Human security

waterfood

energyhealthincome

livelihood

Societal stability

political eventsmigrationviolenceconflict

cooperationinstitutions

mitigation

risk

sust

aina

bilit

y

stre

ss

impact

response

framing

adaptation

resilience

development

Komplexe Kopplungen

Source: Scheffran et al, Climate Change and Violent Conflict, Science, 18 May 2012

Globales Wachstum der Anthroposphäre

Steffen W, Crutzen PJ and McNeill JR (2007) Ambio 36(8), p. 617.

Globales Wachstum der Anthroposphäre

Steffen W, Crutzen PJ and McNeill JR (2007) Ambio 36(8), p. 617.

Alterations of the earth system as a result of the dramatic increase of human activities

Steffen et al. (2004)

Steffen et al. (2004)

Änderungen des Erdystems durch menschliche Aktivitäten

Years ago

Bevölkerungswachstum

Foto: McIntyre

UNEP

1804: 1 billion12.10.1999: „Day of six billion people“

04.12.2012, 9:08 a.m.: 7.090.808.233 people

Weltbevölkerung

Source: Vital Signs 2012

Source: Vital Signs 2012

GEO-5 (2012)

UN-Szenarien der Weltbevölkerung bis 2150

Struck (2000)

Bohle (2002)

Änderungen im globalen Wassersektor

Source: UNEP/GRID-Arendal 2002, based on Shiklomanovand UNESCO 1999Source: GEO-4

Ackerland

Source: GEO-4

Living Planet Index, 1970–2007 Red List Indices of species survival 1980–2010

Living Planet Indexmeasures trends in the abundance of species for which data is available around the world.

Ausbeutung mariner Fischbestände

Source: GEO-4

Industrielle Fischerei an Küsten

Alternative ökonomische und ökologische Indikatoren

Genuine Progress Indicator (GPI): measure that provides a better analysis of economic progress by subtracting out pollution and resource degradation, crime, and other economic ills while adding in unmeasured benefits like volunteer work and parenting.

Ecological footprint: measure of human demand on the Earth's ecosystems. It compares human demand with planet Earth's ecological capacity to regenerate. It represents the amount of biologically productive land and sea area needed to regenerate consumed resources and to absorb the waste.

Source: Vital Signs 2009

(SEF 2003)

Human Development Index (HDI): globaler Vergleich

Where the rich people live

Le Monde diplomatique (2006)

Human Development Index (HDI): combines normalized measures of life expectancy, educational attainment, and standard of living (logarithm

of GDP per capita) for countries worldwide.

Globale Extraktion von Rohstoffen1900–2005

GEO-5 (2012)

Erde bei Nacht: Zunehmende Urbanisierung

www.gsfc.nasa.gov

Wachstum der Bevölkerung, BSP, Handel und CO2-Emissionen, 1990–2008

GEO-5 (2012)

The net emission transfers represent the CO2 emissions in each country to produce exported goods and services minus the emissions in other countries to produce imported goods and services, and are sometimes called the “balance of emissions embodied in trade”

Interaktionen zwischen Mensch und Umwelt im

historischen Kontext

Source: Costanza et al. 2007

Das Erd-Atmosphären-System

(Source: http://co2now.org/Know-the-Changing-Climate)

Energiezyklus der Erde

From: Rose (1986) Learning about Energy,Plenum Press, New York.

Trockenzonen der Erde

Note: Drylands are defined by the long-term mean of the ratio of annual precipitation to potential evapotranspiration. Drylands include hyperarid areas, while the definition of

desertification relates to arid, semi-arid and dry sub-humid areas only (excluding hyperarid), sometimes also referred to as “susceptible drylands.”Source: UNEP 1992

Vegetation: Indikator für anthropogene

Umweltänderung

Degradierungs der Steppe durch Übergrasung in der Mongolei

Ausbeutung von Bergwäldern in Nordpakistan

Quelle: Schickhoff

Regionen extensiver Konversion in kultivierte Gebiete

Millennium Ecosystem Assessment (2005)

Entwaldung tropischer Wälder

Source: Schickhoff

Hot spots der Entwaldung

Millennium Ecosystem Assessment (2005)

FAO(2011)

Waldfläche nach Region

Source: GEO-4

Vital Signs 2012

Kohlenstoff in lebender Biomasse und Waldfläche

Source: FAO 2006a

Source: GEO-4

Status terrestrischer Ökoregionen

Note: An ecoregion is a large unit of land containing a geographically distinct assemblage of species, natural communities, and environmental conditions. (Source: GEO-4)

Millennium Ecosystem Assessment (2005)

Natürliche vs. anthropogene Aussterberaten

Treiber von Biodiversitätsänderungen

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Land use Climate N deposition Biotic Exchange Atmos CO2

Rela

tive

effe

cts

of d

river

s

(Source: Schickhoff, after Sala et al. 2000)

Globale Pflanzendiversität

Barthlott et al. (1999)

34.000 plant species globally threatened

= c. 13 % of the entire flora

Sala et al. (2000)

Relative Änderung der Biodiversität

Ökosystem-Dienstleistungen

Source: GEO-4

Ursachen und Folgen des Klimawandels

CO2 Emissionen

CO2-Konzentration in der Atmosphäre

Globale Mitteltemperatur

Natürliche Ressourcen

Soziale Instabilität und Konflikte

Energie in Produktion und Konsum

Risiken für menschliche Sicherheit

Wechselwirkungen des Klimawandels

CO2 Emissionen

CO2-Konzentration in der Atmosphäre

Globale Mitteltemperatur

Natürliche Ressourcen

Soziale Instabilität und Konflikte

Energie in Produktion und Konsum

Risiken für menschliche Sicherheit

Der fossile Peak

Source: Hubbert 1969

Lücke zwischen Ölförderung und -Entdeckung

Source: Campbell, 2003

Fossile Energieproduktion

Vital Signs 2010

Globale CO2 Emissionen

CO2 emissions by fuel

Source: Gregor MacDonald, 2010.

Steigende CO2-Emissionen

Strahlungshaushalt und Treibhauseffekt

Strahlungsantrieb & Klimasensitivität

Wärmebilanz und Strahlungsantrieb Anstieg des Strahlungsantries der Erde durch menschliche Aktivitäten um

etwa 1,6 W/m2

Anstieg der CO2-Konzentration: +1,7 W/m2

Anstieg anderer Treibhausgase: weitere +1,3 W/m2

Abkühlung v.a. durch Luftverschmutzung mit Schwefelpartikeln –1,4 W/m2 .

Kühlende Stoffe kurzlebig, Treibhausgase langlebig.

Klimasensitivität 0,8 °C/W/m2 : Erwärmung um 3 °C bei Verdoppelung der atmosphärischen

CO2-Konzentration.

Der jetzige Strahlungsantrieb führt auf Dauer zu Erwärmung um 1,3 °C.

Thermische Trägheit der Ozeane. Bislang Erwärmung um 0,8 °C beobachtet.

Rise in atmospheric carbon dioxide levels over the past few centuries

Ice-age cycle of the past

400,000 years

Global Cooling over 60 million years

Geschichte der globalen Mitteltemperatur

AGCI 2005

Temperatur in Grönland

Source: Anderson/Strahler, Visualizing Weather and Climate

Eiszeit vor 18,000 Jahren

Source: www.geologieinfo.de

Tarasov and Peltier, Nature, 2005

Eisbedeckung in Nordamerika (Younger-Dryas)

Letzte Eiszeit in Europa

Source: http://www2.klett.de

Changes of averaged air temperatures in the northern hemisphere in the last 10.000 years (GEBHARDT et al. 2007: 250)

T [°C] OH = Holocene Optimum

OJ = Medieval Optimum

PJ = Little Ice Age

OK = Modern Optimum

= Stein des Anstoßes

10.000 Years

1.000 Years

Time b.p. [yr]

Temperatur im Holozän

T [°C] OH = Holozänes Optimum

OJ = Mittelalterliches Optimum

PJ = Kleine Eiszeit

OK = Modernes Optimum

= Stein des Anstoßes

?

Anomalies of air temperature in the northern hemisphere in the last 1000 years –deviations from the mean value of the climate period 1961-1990 (IPCC 2007)

Temperatur-Variationen im letzten Jahrtausend

Anomalies and trends of global air temperature (1856–2004) – deviations from the reference period 1961-1990 (JONES et al. 2005)

Tem

pera

ture

-Ano

mal

ies

[°C

]

Trend-Analyses:1856-2000: +0,6°C (0,004°C/yr)1901-2000: +0,7°C (0,007°C/yr)1981-2000: +0,3°C (0,017°C/yr)

Temperatur-Trends

Anomalies and trends of global air temperature (1856–2004) – deviations from the reference period 1961-1990 (JONES et al. 2005)

Tem

pera

ture

-Ano

mal

ies

[°C

]

Trend-Analyses:1856-2000: +0,6°C (0,004°C/yr)1901-2000: +0,7°C (0,007°C/yr)1981-2000: +0,3°C (0,017°C/yr)

Observed linear trends of ground level air temperature in the period 1891 to 1990 –global map in 5° Lat./Long. resolution (JONES et al. 2005)

Regionale Temperatur-Trends des letzten Jahrhunderts

Precipitation trends in the period from 1900 to 1999 – right hand scale shows latitudinal averages of land surface areas (IPCC 2001)

Regionale Niederschlags-Trends des letzten Jahrhunderts

Absorptivity of selected gases of the atmosphere (www.ees.rochester.edu/fehnlab)

solar window

atmosph. window

Der natürliche Treibhauseffekt

Absorptivity of selected gases of the atmosphere (www.ees.rochester.edu/fehnlab)

solar window

atmosph. window

On the Influence of Carbon Acid in the Air upon the Temperature on the Ground

Svante ArrheniusPhilosophical Magazine and Journal of Science

Series 5 – Volume 41 (4/1896): 237-276 Arrhenius’s paper is the first to quantify the contribution of carbon dioxide to the green-house effect and to speculate about whether variations in the atmospheric concentration of carbon dioxide have contributed to long-term variations in climate. Arrhenius refers

to carbon dioxide as “carbonic acid” in accordance with the convention at the time

he was writing.Arrhenius does not explicitly suggest in this

paper that the burning of fossil fuels will cause global warming, though it is clear that he is aware that fossil fuels are a potentially signifi-cant source of carbon dioxide, and he does explicitly suggest this outcome in

later work.

Der natürliche Treibhauseffekt

Pre-industrial period: Extensive utilization of firewood for energy supply (Energy from Space)

Industrial period: Intensive utilization of fossil fuels for

energy supply (Energy for Space)

Der menschliche Einfluss auf das Klima

The atmospheric CO2 concentration of the last 1000 years (GEBHARDT et al. 2007)

CO2 Concentration according toice core analyses (Antarctic)CO2 Concentration observed

at Mauna Loa (Hawaii)

Der menschliche Einfluss auf das Klima

adaptive capacity

Climate system

temperatureprecipitation

extreme weatherice cover

ocean currentssea level

Natural resources

waterland

ecosystemsbiodiversity

marine resourcesnon-renewables

Human security

waterfood

energyhealthincome

livelihood

Societal stability

political eventsmigrationviolenceconflict

cooperationinstitutions

mitigation

risk

sust

aina

bilit

y

stre

ss

impact

response

framing

adaptation

resilience

development

Komplexe Kopplungen

Source: Scheffran et al, Climate Change and Violent Conflict, Science, 18 May 2012

Der globale Kohlenstoff-Zyklus

Global Carbon Cycle: All storages in 1015 g carbon and all fluxes in 1015 g carbon per year [1015 = 1 peta-gramm = 1.000.000.000 tonns = 1 bil. tonns] � average value according to the

Global Carbon Project 2010 (GEBHARDT et al. 2011)

consumptionof fossil fuels

volcanism 5. atmosphere

flux

2. oceans

1. sediments

4. soils and peat3. fossil fuels

6. vegetation

1,1

4,1

7,7

Der globale Kohlenstoff-Zyklus