$ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

166
$7/5WULJJHUHGFRPSOH[ LQIODPPDWLRQLQSDQFUHDWLFLVOHWV FDXVHVȕFHOOIDLOXUHLQGLDEHWHV 'LVVHUWDWLRQ ]XU(UODQJXQJGHV*UDGHVHLQHV'RNWRUVGHU1DWXUZLVVHQVFKDIWHQLP )DFKEHUHLFK%LRORJLH&KHPLHGHU8QLYHUVLWlW%UHPHQ YRUJHOHJWYRQ:HL+H06F %UHPHQ

Transcript of $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Page 1: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 2: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 3: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Ort, Datum: Bremen, 10.08.2017__________

Versicherung an Eides Statt

Ich, _Wei He, Leher Heerstr. 118, 28359, Bremen. Matr.-Nr. 2778354_(Vorname, Name, Anschrift, Matr.-Nr.)

versichere an Eides Statt durch meine Unterschrift, dass ich die vorstehende Arbeit selbständig und ohne fremde Hilfe angefertigt und alle Stellen, die ich wörtlich dem Sinne nach aus Veröffentlichungen entnommen habe, als solche kenntlich gemacht habe, mich auch keiner anderen als der angegebenen Literatur oder sonstiger Hilfsmittel bedient habe.Ich versichere an Eides Statt, dass ich die vorgenannten Angaben nach bestem Wissen und Gewissen gemacht habe und dass die Angaben der Wahrheit entsprechen und ich nichts verschwiegen habe.Die Strafbarkeit einer falschen eidesstattlichen Versicherung ist mir bekannt, namentlich die Strafandrohung gemäß § 156 StGB bis zu drei Jahren Freiheitsstrafe oder Geldstrafe bei vorsätzlicher Begehung der Tat bzw. gemäß § 161 Abs. 1 StGB bis zu einem Jahr Freiheitsstrafe oder Geldstrafe bei fahrlässiger Begehung.

_________________________Ort, Datum Unterschrift

Page 4: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 5: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 6: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

I. Summary

Type 2 Diabetes (T2D) is strongly associated with obesity and characterized by chronic insulin resistance, progressive failure of pancreatic -cells, and ultimatelyhyperglycaemia. The association of T2D with chronic sterile inflammation has been extensively demonstrated, and the elevation of inflammatory mediators can predict type 2 diabetes progression. Pro-inflammatory cytokines and chemokines can cause insulin resistance in peripheral insulin-sensing tissues like fat, liver and muscle, and also lead toprogressive -cell failure. This eventually shifts metabolism from relative insulin insufficiency - due to the greater insulin demand in obesity - to definite insulin deficiency, while on the -cell level - from compensation to decompensation.

Toll-like receptor (TLR)-4 signaling is one of the major pro-inflammatory pathways activated by exogenous pathogen-related or endogenous danger-related molecules. Its ligands, including the classical ligand LPS as well as saturated fatty acids and CXCL10,among others, are increased systemically in patients with T2D as well as in at-risk individuals. TLR4-deficiency or its pharmacological inhibition have been shown to ameliorate obesity- or lipid-induced tissue inflammation and insulin resistance in humans and in mouse models. Increasing evidence also connects TLR4 to islet inflammation and

-cell dysfunction in the context of the pathogenesis of T2D, but many underlying mechanisms remain unknown.

In the first part of this thesis, I aimed to uncover the role of TLR4 activation by lipopolysaccharide (LPS), the classical TLR4 ligand, in islet inflammation -cell function in human islets. My special focus was to identify the inflammatory mechanism in the intercellular level – the possible interplay among different cells in human islets. I found that LPS-triggered TLR4 activation in cultured human islets induced -cell dysfunction, apoptosis and a pro-inflammatory profile with markedly increased IL- , IL-6, and IL-8 production. Macrophage-depletion demonstrates that islet resident macrophages are responsible for the production of IL- -/chemokines are predominantly produced from islet endocrine cells. IL-6 is partially responsible for the LPS- -cell dysfunction, while IL-8 produced from -cells is responsible for monocyte migration to islets during TLR4-activation-induced islet inflammation. This complex inflammatory response in islets is further potentiated in obese individuals, with more IL- , IL-6 and IL-8 expression and a tendency to more islet macrophage accumulation, suggesting a possibly self-augmented inflammatory cycle involving -cells, -cells and islet macrophages, which may explain the higher susceptibility of obese individuals to the -cell damage und eventually T2D.

Ageing is known to be associated to elevated T2D risk, though the underlying mechanism remains largely undiscovered. In the second part of this thesis, I aimed to

1

Page 7: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

find out if ageing could aggravate obesity-induced T2D, and further focus on the effects o -cell function and the role of inflammation in such processes. In a mouse model of high fat diet induced obesity, I found an adverse potentiation of impaired glucose homeostasis, -cell dysfunction and chronic tissue inflammation by the combination of obesity and aging. In contrast, TLR4-deficiency exhibited a protection against thosedeleterious effects through inhibiting pro-inflammatory cytokine expression and switchingtissue macrophage activation to a more anti-inflammatory phenotype.

In both parts of this thesis, I provide further evidence that TLR4 and inflammation play acausative role in the development of T2D, and thereby support the concept of TLR4- or inflammation-targeted therapeutic strategies.

2

Page 8: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

II. Zusammenfassung

Typ 2 Diabetes (T2D) ist stark assoziiert mit Übergewicht und durch chronische Insulinresistenz und progressives Versagen der insulin-produzierenden -Zellen im Pankreas gekennzeichnet, das letztlich zur Hyperglykämie führt. Anzeichen chronischer steriler Entzündungen im T2D wurden weitgehend nachgewiesen, aufgrund entzündlicher Botenstoffe lässt sich ein beginnender Typ-2-Diabetes bereits im Vorstadium vorhersagen.

Pro-inflammatorische Zytokine und Chemokine können Insulinresistenz im peripheren insulinsensitiven Geweben wie Fett, Leber und Muskel verursachen und auch zu einem progressiven -Zellversagen führen. Dies verschiebt schließlich den Stoffwechsel von einer relativen Insulin-Insuffizienz - aufgrund des größeren Insulinbedarfs bei Übergewicht - auf einen absoluten Insulinmangel und in der -Zelle von Kompensation zu Dekompensation.

Der Toll-like Rezeptor (TLR)-4 Signalweg ist einer der wichtigsten entzündungsvermittelnden Wege, der durch exogene oder endogene Pathogene aktiviert wird. Die Liganden, sowohl der klassische Ligand Lipopolysacharid (LPS) als auch gesättigte Fettsäuren und CXCL10, sind bei Patienten mit T2D sowie bei Risiko-Patienten systemisch erhöht. Ein TLR4-Mangel sowie dessen pharmakologische Hemmung konnte eine Übergewicht- oder Lipid-induzierte Gewebeentzündung sowie eine Insulinresistenz in Patienten und auch in Mausmodellen lindern. Vorangegangene Studien konnten einen Zusammenhang zwischen TLR4 und -Zell-Entzündung und -Dysfunktion sowie der Entwicklung von T2D erhärten. Allerdings sind vielezugrundeliegende Mechanismen weiterhin unbekannt.

Der erste Teil dieser Arbeit identifiziert den Effekt der LPS-induzierten TLR4-Aktivierung auf Entzündungsmechanismen und Funktionsstörungen in humanen pankreatischen Inselzellen. Mein Ziel war es hier, den entzündlichen Mechanismus auf interzellulärerEbene aufzudecken, nämlich das Zusammenspiel verschiedener Zelltypen innerhalb dermenschlichen Inseln. Ich habe festgestellt, dass die LPS-ausgelöste TLR4-Aktivierung in menschlichen Inseln ein pro-inflammatorisches Profil mit deutlich erhöhter IL-1 -, IL-6-,TNF - und IL-8-Produktion induziert und somit zur -Zell-Dysfunktion und Apoptose führt. Dabei sind die in den Inselzellen residierenden Makrophagen für die Produktion von IL-1 verantwortlich, während alle anderen Cyto- und Chemokine überwiegend vonendokrinen Inselzellen selbst produziert werden. IL-6 ist teilweise verantwortlich für die LPS-induzierte -Zell-Dysfunktion, während IL-8, das in den -Zellen produziert wird, für die Monozytenmigration in die Insel während TLR4-Aktivierung verantwortlich ist. Diese komplexen Entzündungsreaktionen in den Inseln ist bei adipösen Individuen weiter

3

Page 9: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

verstärkt, hier wird in den Inseln vermehrt IL-1 -, IL-6- und IL-8 produziert. Weiterhin gibt es eine Tendenz zur Makrophagen-Akkumulation in den Inseln, was auf einen selbstverstärkten Entzündungszyklus von - und -Zellen sowie Makrophagen hindeutet. Damit könnte auch eine höhere Anfälligkeit von übergewichtigen Personen auf die Entwicklung von -Zell-Schäden und schließlich T2D erklären werden.

Ein weiterer Risikofaktor für T2D ist das Altern. Es ist bekannt, dass mit zunehmenden Alter das Risiko, an T2D zu erkranken steigt; auch hier ist der zugrundeliegendeMechanismus noch nicht völlig erkannt. Im zweiten Teil dieser Arbeit gehe ich der Frage nach, ob mit zunehmendem Alter die Übergewicht-induzierte Entwicklung des Diabetes verstärkt wird, und ob dies weitere Auswirkungen auf -Zellfunktion und Entzündung hat. Im Mausmodell, in dem eine fett- und zuckerreicher Diät Übergewicht induziert, fand ich eine nachteilige Potenzierung beider Faktoren; eine damit verbundene stark beeinträchtigte Glukose-Homöostase, -Zell-Dysfunktion und chronische Gewebsentzündung. Dabei konnte jedoch ein TLR4-Mangel einen Schutz gegen jene schädlichen Wirkungen mittels Hemmung der pro-inflammatorischen Zytokin-Expression sowie einer Verschiebung von entzündlichen Gewebs-Makrophagen zu einem entzündungshemmenden Phänotyp bewirken.

In beiden Teilen meiner Arbeit gebe ich weitere Beweise dafür, dass TLR4 und die damit verbundenen chronischen Entzündungen eine ursächliche Rolle bei der Entwicklung von T2D spielen. Damit unterstützt meine Arbeit das Konzept der anti-TLR4- und anti-entzündlichen Therapie für den Diabetes.

4

Page 10: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Abbreviations: AP-1, activator protein-1

ATM, adipose tissue macrophage

Arg1, Arginase 1

BAT, brown adipose tissue

CCL2, chemokine (C-C motif) ligand 2

CCR2, chemokine (C-C motif) receptor 2

CD, cluster of differentiation

CRP, C-reactive protein

CTL, cytotoxic T lymphocyte

CXCL1/10, C-X-C motif ligand 1/10

DAMPS, damage/danger-associated molecular pattern molecules

DC, dentritic cell

Emr1, EGF-like module-containing mucin-like hormone receptor-like 1

FFA, free fatty acids

GSIS, Glucose-stimulated insulin secretion

HFD, high-fat diet

IAPP, islet amyloid polypeptide

IFN, interferon

IL-1 /4/6/10/12/18, Interleukin 1 /4/6/10/12/18

iNOS, Inducible nitric oxide synthase

JNK, c-Jun N-terminal kinase

KO, knockout

LPS, Lipopolysaccharides

Ly6c1, lymphocyte antigen 6 complex, locus C1

MAPKs, mitogen-activated protein kinases

MCP1, monocyte chemoattractant protein 1

Mrc1 (CD206), Mannose receptor, C Type 1 (cluster of differentiation 206)

MyD88, myeloid differentiation primary response protein 88

5

Page 11: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

ND, normal chow diet

NF- B, nuclear factor kappa-light-chain-enhancer of activated B cells

NO, nitric oxide

PAMPs, pathogen-associated molecular pattern molecules

PDX1, Pancreas/duodenum homeobox protein 1

ROS, reactive oxygen species

RNS, reactive nitrogen species

SFA, saturated fatty acid

TGF , Transforming growth factor

TLR, Toll-like receptor

TNF , Tumor necrosis factor

T1D, type 1 diabetes

T2D, type 2 diabetes

WAT, white adipose tissue

6

Page 12: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 13: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 14: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 15: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 16: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 17: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 18: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 19: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

src

Page 20: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 21: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 22: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

in vivo

Page 23: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 24: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

In vivo

Page 25: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 26: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

In vivo

in vitro

Page 27: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 28: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 29: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 30: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 31: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 32: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 33: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 34: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 35: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 36: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Ikbkb

ob/ob

Jnk2

Page 37: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

in vitro

Page 38: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

In vivo

Ccl2

Ccl2

in

vitro

Page 39: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 40: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

in vitro in vivo

de novo

In

Page 41: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

vitro

in

vivo

Page 42: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

db/db

CCL2 CCL13

Page 43: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

db/db

Il1 Tnf

Il10

db/db

Page 44: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

db db

Il1b Tnfadb db

db db

db db

Page 45: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 46: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

db/db

Pdx1

in vitro

Tlr4–/– Myd88–/–

Tnf Nos2 Nlrp3 Cnr1 Tgfb1 Il10

Page 47: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Arg1

Page 48: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 49: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 50: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Rhodobacter Oscillatoria

in vitro in vivo

Page 51: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Exogenous natural ligands(PAMPs)

Flavobacterium meningosepticumS. cerevisiae C. albicans

Dengue virus Rhodobacter

Oscillatoria

Endogenous ligands (DAMPs) (i) Extracellular matrix ligands

(ii) Intracellular ligands released/secreted from cells

Page 52: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

(iii) Other ligands

in vitro in vivo

Page 53: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 54: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 55: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Tlr Tlr1–Tlr9)

P.

gingivalis

Page 56: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

in vitro

Page 57: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 58: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

1. Dolensek, J., M.S. Rupnik, and A. Stozer,

Islets, 2015. 7(1): p. e1024405.

2. Slack, J.M., Development, 1995. 121(6): p. 1569 80.

3. Henderson, J.R., Lancet, 1969. 2(7618): p. 469 70.

4. Kulkarni, R.N., Int J Biochem Cell Biol, 2004. 36(3): p. 365 71.

5. Youos, J.G., Diabetes Res

Clin Pract, 2011. 93 Suppl 1: p. S25 6.

6. Cabrera, O., et al.,

Proc Natl Acad Sci U S A, 2006. 103(7): p. 2334 9.

7. Abdulreda, M.H., et al., Adv Exp Med Biol, 2016. 938:

p. 11 24.

8. Abel, J.J., Proc Natl Acad Sci U S A, 1926. 12(2): p. 132 6.

9. De Meyts, P. and J. Whittaker,

Nat Rev Drug Discov, 2002. 1(10): p. 769 83.

10. Hiriart, M. and L. Aguilar Bryan,

Am J Physiol Endocrinol Metab, 2008. 295(6): p. E1298 306.

11. Fu, Z., E.R. Gilbert, and D. Liu,

Curr Diabetes Rev, 2013. 9(1): p. 25 53.

12. Dixon, G., et al.,

J Endocrinol, 2003.

179(3): p. 447 54.

13. Nolan, C.J., et al.,

Diabetologia, 2006. 49(9): p. 2120 30.

14. Prentki, M., et al.,

Diabetes, 2002. 51 Suppl 3: p.

S405 13.

15. Fauci, A.S., . 17th

ed. 2008, New York: McGraw Hill Medical. v. <1 2 >.

16. Rask Madsen, C. and C.R. Kahn,

Arterioscler Thromb Vasc Biol, 2012. 32(9): p. 2052 9.

17. Bluher, M., et al.,

Dev Cell, 2002. 3(1): p. 25 38.

18. DeFronzo, R.A. and D. Tripathy,

Diabetes Care, 2009. 32 Suppl 2: p. S157 63.

19. Gromada, J., et al.,

J Gen Physiol,

1997. 110(3): p. 217 28.

20. Wendt, A., et al.,

Diabetes, 2004. 53(4): p. 1038 45.

21. Franklin, I., et al.,

Diabetes, 2005. 54(6): p. 1808 15.

22. Olsen, H.L., et al.,

Page 59: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Endocrinology, 2005. 146(11): p.

4861 70.

23. Asplin, C., et al.,

Metabolism, 1983. 32(3): p. 292 5.

24. MacDonald, P.E., et al.,

PLoS Biol, 2007. 5(6): p.

e143.

25. Ravier, M.A. and G.A. Rutter,

Diabetes, 2005. 54(6): p. 1789 97.

26. Shiota, C., et al.,

Am J Physiol Endocrinol Metab, 2005. 289(4): p. E570 7.

27. Vieira, E., A. Salehi, and E. Gylfe,

Diabetologia, 2007. 50(2): p. 370 9.

28. Gromada, J., et al.,

Diabetes, 2004. 53

Suppl 3: p. S181 9.

29. Marchetti, P., et al.,

Diabetologia, 2012. 55(12): p. 3262 72.

30. Ellingsgaard, H., et al.,

Nat Med, 2011. 17(11): p. 1481 9.

31. Habener, J.F. and V. Stanojevic, Trends Endocrinol Metab, 2013. 24(3):

p. 153 63.

32. Habener, J.F. and V. Stanojevic, Islets,

2012. 4(3): p. 188 98.

33. Nie, Y., et al.,

J Clin Invest, 2000. 105(7): p. 955 65.

34. Buteau, J.,

Diabetes Metab, 2008. 34 Suppl 2: p. S73 7.

35. Lamont, B.J. and S. Andrikopoulos,

J

Endocrinol, 2014. 221(1): p. T43 61.

36. Yang, Y., et al.,

Cell Signal,

2014. 26(2): p. 268 78.

37. Lotfy, M., et al.,

J Endocrinol, 2014. 220(3): p. 291 304.

38. Chen, L.N., et al.,

Int J Mol Med, 2013. 32(4): p. 892 900.

39. Nathan, D.M., N Engl J Med, 1993. 328(23): p.

1676 85.

40. Roglic, G., et al., , G. Roglic, Editor. 2016, World Health Organization:

Geneva.

41. Mathis, D., L. Vence, and C. Benoist, Nature,

2001. 414(6865): p. 792 8.

Page 60: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

42. Daneman, D., Lancet, 2006. 367(9513): p. 847 58.

43. Knip, M. and H. Siljander, Autoimmun Rev, 2008.

7(7): p. 550 7.

44. Atkinson, M.A. and G.S. Eisenbarth,

Lancet, 2001. 358(9277): p. 221 9.

45. Roep, B.O. and T.I. Tree,

Nat Rev Endocrinol, 2014. 10(4): p. 229 42.

46. Itoh, N., et al.,

J Clin Invest, 1993. 92(5): p.

2313 22.

47. Coppieters, K.T., et al.,

J Exp Med, 2012. 209(1): p. 51 60.

48. Sakaguchi, S., et al., Nat Rev Immunol,

2010. 10(7): p. 490 500.

49. Buckner, J.H.,

Nat Rev Immunol, 2010. 10(12): p. 849 59.

50. Butler, A.E., et al.,

Diabetes, 2003. 52(1): p. 102 10.

51. Weir, G.C. and S. Bonner Weir,

Diabetes, 2004. 53 Suppl 3: p. S16 21.

52. Prentki, M. and C.J. Nolan, J Clin Invest, 2006. 116(7): p.

1802 12.

53. Ferrannini, E.D., R.A., , in

. 2015. p. 211 233.

54. DeFronzo, R.A., , in

. 2015. p. 371 400.

55. Saltiel, A.R. and C.R. Kahn,

Nature, 2001. 414(6865): p. 799 806.

56. White, M.F., et al.,

J Biol Chem, 1988. 263(6): p. 2969 80.

57. Brunetti, A., et al.,

FASEB J, 2001. 15(2): p. 492 500.

58. Krook, A., et al.,

Diabetes, 2000. 49(2): p. 284 92.

59. Lazar, D.F., et al.,

J Biol Chem, 1995. 270(35): p. 20801 7.

60. Draznin, B.,

Diabetes,

2006. 55(8): p. 2392 7.

61. Arora, S., , in

, S. Arora, Editor. 2012. p. 3 26.

62. Moeschel, K., et al.,

Page 61: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

J Biol Chem, 2004. 279(24): p. 25157 63.

63. Li, J., K. DeFea, and R.A. Roth,

J Biol Chem, 1999. 274(14):

p. 9351 6.

64. Egawa, K., et al.,

Endocrinology, 2000. 141(6): p. 1930 5.

65. Lackey, D.E. and J.M. Olefsky, Nat Rev

Endocrinol, 2016. 12(1): p. 15 28.

66. Guo, S.,

J Endocrinol, 2014. 220(2): p. T1 T23.

67. Poletto, A.C., et al.,

Mol Cell Endocrinol, 2015. 401: p. 65 72.

68. Ruan, H., et al.,

Diabetes, 2002. 51(5): p. 1319 36.

69. Stephens, J.M. and P.H. Pekala,

J Biol Chem, 1991. 266(32): p. 21839 45.

70. Arner, P. and A. Kulyte,

Nat Rev Endocrinol, 2015. 11(5): p. 276 88.

71. Chen, Q., et al.,

PLoS One, 2012. 7(8): p. e42971.

72. Liu, S., Y. Yang, and J. Wu,

Biochem Biophys Res Commun, 2011.

414(3): p. 618 24.

73. Zhang, L., et al.,

Methods Mol Biol, 2017. 1617: p. 241 260.

74. Guilherme, A., et al.,

Nat Rev Mol Cell Biol, 2008. 9(5): p. 367 77.

75. Holland, W.L., et al.,

J Clin Invest, 2011.

121(5): p. 1858 70.

76. Osborn, O. and J.M. Olefsky,

Nat Med, 2012. 18(3): p. 363 74.

77. Herder, C., et al.,

Trends Endocrinol Metab, 2015. 26(10): p. 551 63.

78. Wen, H., et al.,

Nat Immunol, 2011. 12(5): p. 408 15.

79. Stienstra, R., et al.,

Cell Metab, 2010. 12(6): p. 593 605.

80. Pradhan, A.D., et al.,

JAMA, 2001. 286(3): p. 327 34.

81. Sabio, G., et al.,

Science, 2008. 322(5907): p. 1539 43.

Page 62: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

82. Matthews, V.B., et al.,

Diabetologia, 2010. 53(11): p. 2431 41.

83. Mauer, J., et al.,

Nat Immunol, 2014. 15(5): p.

423 30.

84. Kristiansen, O.P. and T. Mandrup Poulsen,

Diabetes, 2005. 54 Suppl 2: p. S114 24.

85. Juge Aubry, C.E., et al.,

Diabetes, 2003. 52(5): p. 1104 10.

86. Ouchi, N., et al.,

Science, 2010. 329(5990): p. 454 7.

87. Arend, W.P., Adv Immunol, 1993. 54: p. 167 227.

88. Kim, H.J., et al.,

Diabetes, 2004. 53(4): p. 1060 7.

89. Hong, E.G., et al.,

Diabetes, 2009. 58(11): p. 2525 35.

90. Lumeng, C.N., J.L. Bodzin, and A.R. Saltiel,

J Clin Invest, 2007. 117(1): p. 175 84.

91. Rahier, J., et al., Diabetes

Obes Metab, 2008. 10 Suppl 4: p. 32 42.

92. de Koning, E.J., S. Bonner Weir, and T.J. Rabelink,

Trends Pharmacol Sci, 2008. 29(4): p. 218 27.

93. Cinti, F., et al., J Clin

Endocrinol Metab, 2016. 101(3): p. 1044 54.

94. Jeffery, N. and L.W. Harries, Diabetes Obes

Metab, 2016.

95. Tiwari, S., et al., Sci Rep,

2016. 6: p. 28461.

96. Marchetti, P.F., E., , in

, R.A.F. DeFronzo, E.; Zimmet, P.; George, K.; Alberti, M.,

Editor. 2015, John Wiley & Sons, Ltd. p. 354 370.

97. Chen, Y.C., V.F.; Newsholme, P.,

, in D. Mauricio, Editor. 2016,

Academic Press. p. 29 40.

98. Robertson, R.P., et al.,

Diabetes, 2003. 52(3): p. 581 7.

99. Rossetti, L., A. Giaccari, and R.A. DeFronzo, Diabetes Care, 1990. 13(6): p.

610 30.

100. Rossetti, L., et al.,

J Clin Invest, 1987. 80(4): p. 1037 44.

101. Patane, G., et al.,

Diabetes, 2002. 51(9): p. 2749 56.

102. Andreozzi, F., et al.,

Page 63: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Endocrinology, 2004. 145(6): p. 2845 57.

103. Leahy, J.L., H.E. Cooper, and G.C. Weir,

Diabetes, 1987. 36(4):

p. 459 64.

104. Lenzen, S., Biochem Soc Trans, 2008. 36(Pt 3): p.

343 7.

105. Keane, K.N., et al.,

Oxid Med Cell Longev, 2015. 2015: p. 181643.

106. Robertson, R.P.,

J Biol Chem, 2004. 279(41): p. 42351 4.

107. Jezek, P., et al.,

Physiol Res, 2014. 63 Suppl 1: p. S73 91.

108. Blake, R. and I.A. Trounce,

Biochim Biophys Acta, 2014. 1840(4): p. 1404 12.

109. Fridlyand, L.E. and L.H. Philipson,

Diabetes, 2004. 53(8): p. 1942 8.

110. Newsholme, P., et al.,

J Endocrinol, 2012. 214(1): p. 11 20.

111. Syed, I., et al.,

Diabetes, 2011. 60(11): p. 2843 52.

112. Laybutt, D.R., et al.,

Diabetologia, 2007. 50(4): p. 752 63.

113. Eizirik, D.L., A.K. Cardozo, and M. Cnop,

Endocr Rev, 2008. 29(1): p. 42 61.

114. Lipson, K.L., R. Ghosh, and F. Urano,

PLoS One, 2008. 3(2): p. e1648.

115. Hou, Z.Q., et al.,

Mol Cell Endocrinol, 2008. 291(1 2): p. 71 8.

116. Gurzov, E.N. and D.L. Eizirik,

Trends Cell Biol, 2011. 21(7): p. 424 31.

117. Berchtold, L.A., et al., Adv Clin Chem, 2016. 75: p.

99 158.

118. Higa, M., et al.,

Proc Natl Acad Sci U S A, 1999. 96(20): p. 11513 8.

119. Matsui, J., et al.,

Diabetes, 2004. 53(11): p. 2844 54.

120. Igoillo Esteve, M., et al.,

Diabetologia, 2010. 53(7): p.

1395 405.

121. Lupi, R., et al.,

Page 64: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Diabetes, 2002. 51(5): p. 1437 42.

122. Lim, E.L., et al.,

Diabetologia, 2011. 54(10): p. 2506 14.

123. Gehrmann, W., M. Elsner, and S. Lenzen,

Diabetes Obes Metab, 2010. 12 Suppl 2: p.

149 58.

124. Feng, X.T., et al., Int J Mol

Med, 2012. 30(6): p. 1261 6.

125. Rial, E., et al., Biochim

Biophys Acta, 2010. 1797(6 7): p. 800 6.

126. Biden, T.J., et al.,

Trends Endocrinol Metab, 2014. 25(8): p. 389 98.

127. Wali, J.A., S.L. Masters, and H.E. Thomas,

Cells, 2013. 2(2): p. 266 83.

128. Cunha, D.A., et al., J Cell

Sci, 2008. 121(Pt 14): p. 2308 18.

129. Eizirik, D.L. and T. Mandrup Poulsen,

Diabetologia, 2001. 44(12): p. 2115 33.

130. Mandrup Poulsen, T., Diabetologia, 1996.

39(9): p. 1005 29.

131. Iwahashi, H., et al.,

Diabetologia, 1996. 39(5): p. 530 6.

132. Rabinovitch, A., et al.,

Diabetologia, 1994. 37(8): p. 733 8.

133. Eizirik, D.L., M.L. Colli, and F. Ortis,

Nat Rev Endocrinol, 2009. 5(4): p. 219 26.

134. Thomas, H.E., J.A. Trapani, and T.W. Kay, Cell

Death Differ, 2010. 17(4): p. 577 85.

135. Wallberg, M. and A. Cooke, Trends Immunol, 2013.

34(12): p. 583 91.

136. Rabinovitch, A.,

Diabetes Metab Rev, 1998. 14(2): p. 129 51.

137. Donath, M.Y., et al.,

Diabetes Care, 2008. 31 Suppl 2: p. S161 4.

138. Kolb, H. and T. Mandrup Poulsen,

Diabetologia, 2010. 53(1): p. 10 20.

139. Maedler, K., et al.,

J Clin Invest, 2002. 110(6): p. 851 60.

140. Masters, S.L., et al.,

Nat Immunol, 2010. 11(10): p.

897 904.

141. Westwell Roper, C.Y., J.A. Ehses, and C.B. Verchere,

Diabetes,

Page 65: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

2014. 63(5): p. 1698 711.

142. Ehses, J.A., et al.,

Diabetes, 2007. 56(9): p. 2356 70.

143. Karin, M., Oncogene,

1999. 18(49): p. 6867 74.

144. Heimberg, H., et al.,

Diabetes, 2001. 50(10): p. 2219 24.

145. Storling, J., et al.,

Diabetologia, 2005. 48(10): p. 2039 50.

146. Gurzov, E.N., et al.,

J Biol Chem, 2010. 285(26): p. 19910 20.

147. Sarkar, S.A., et al.,

Diabetologia, 2009. 52(6): p. 1092 101.

148. Darville, M.I., Y.S. Ho, and D.L. Eizirik,

Endocrinology, 2000. 141(1): p.

153 62.

149. Allagnat, F., et al.,

Cell Death Differ, 2011. 18(2): p. 328 37.

150. Inoshita, S., et al.,

J Biol Chem, 2002. 277(46): p. 43730 4.

151. Gurzov, E.N., et al.,

Cell Death Differ, 2009.

16(11): p. 1539 50.

152. Palmer, J.P., et al.,

Diabetes, 1989. 38(10): p. 1211 6.

153. Spinas, G.A., et al.,

Acta Endocrinol (Copenh), 1986.

113(4): p. 551 8.

154. Spinas, G.A., et al.,

Diabetologia, 1987. 30(7): p. 474 80.

155. Maedler, K., et al.,

Diabetes, 2006. 55(10): p.

2713 22.

156. Mandrup Poulsen, T., et al.,

Diabetologia, 1986. 29(1): p. 63 7.

157. Rabinovitch, A., C. Pukel, and H. Baquerizo,

Endocrinology, 1988. 122(6): p. 2393 8.

158. Cetkovic Cvrlje, M. and D.L. Eizirik,

Cytokine,

1994. 6(4): p. 399 406.

159. Cardozo, A.K., et al.,

Page 66: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Diabetes, 2001. 50(5): p. 909 20.

160. Cardozo, A.K., et al.,

J Biol Chem, 2001. 276(52): p.

48879 86.

161. Kutlu, B., et al.,

Diabetes, 2003. 52(11): p. 2701 19.

162. Burke, S.J., et al.,

Mol Immunol, 2014. 62(1): p. 54 62.

163. Spranger, J., et al.,

Diabetes, 2003. 52(3): p. 812 7.

164. Campbell, I.L., et al., J

Immunol, 1989. 143(4): p. 1188 91.

165. Ellingsgaard, H., et al., Proc Natl

Acad Sci U S A, 2008. 105(35): p. 13163 8.

166. Wadt, K.A., et al.,

Diabetes, 1998. 47(10): p. 1602 8.

167. Choi, S.E., et al.,

Transpl Immunol,

2004. 13(1): p. 43 53.

168. Paula, F.M., et al.,

FASEB J, 2015. 29(5): p. 1805 16.

169. DiCosmo, B.F., D. Picarella, and R.A. Flavell,

Int

Immunol, 1994. 6(12): p. 1829 37.

170. Hasnain, S.Z., et al.,

Nat Med, 2014. 20(12): p. 1417 26.

171. Abdelli, S., et al.,

Diabetes, 2004. 53(11): p. 2815 23.

172. Welsh, N., et al.,

Mol Med, 1995. 1(7): p. 806 20.

173. Scarim, A.L., M.R. Heitmeier, and J.A. Corbett,

Endocrinology, 1998. 139(12): p. 5050 7.

174. Broniowska, K.A., B.J. Oleson, and J.A. Corbett, Vitam Horm,

2014. 95: p. 299 322.

175. Murray, P.J. and T.A. Wynn, Nat

Rev Immunol, 2011. 11(11): p. 723 37.

176. Ginhoux, F. and M. Guilliams,

Immunity, 2016. 44(3): p. 439 49.

177. Geissmann, F., S. Jung, and D.R. Littman,

Immunity, 2003. 19(1): p. 71 82.

178. Poltorak, M.P. and B.U. Schraml, Front Immunol, 2015. 6: p.

Page 67: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

199.

179. Van den Bossche, J., et al.,

Cell Rep, 2016. 17(3): p. 684 696.

180. Thomas, D. and C. Apovian,

Metabolism, 2017. 72: p. 120 143.

181. Lauterbach, M.A. and F.T. Wunderlich,

Pflugers Arch, 2017. 469(3 4): p. 385 396.

182. Hill, A.A., W. Reid Bolus, and A.H. Hasty,

Immunol Rev, 2014. 262(1): p. 134 52.

183. Nishimura, S., et al.,

Diabetes, 2007. 56(6): p. 1517 26.

184. Lee, Y.H., A.P. Petkova, and J.G. Granneman,

Cell Metab, 2013. 18(3): p. 355 67.

185. Pang, C., et al.,

Am J Physiol Endocrinol Metab, 2008. 295(2): p. E313 22.

186. Sorisky, A., A.S. Molgat, and A. Gagnon,

Adv Nutr, 2013. 4(1): p.

67 75.

187. Qiu, Y., et al.,

Cell, 2014. 157(6): p. 1292 308.

188. Nguyen, K.D., et al.,

Nature, 2011. 480(7375): p. 104 8.

189. Rao, R.R., et al.,

Cell, 2014. 157(6): p. 1279 91.

190. Li, Z.Y., et al.,

Diabetes, 2015. 64(12): p. 4011 22.

191. Zheng, S.L., et al., Acta Pharmacol Sin,

2016. 37(5): p. 571 9.

192. Ohashi, K., et al.,

J Biol Chem, 2010. 285(9): p. 6153 60.

193. Hui, X., et al.,

Cell Metab, 2015. 22(2): p. 279 90.

194. van den Berg, S.M., et al., Endocr

Rev, 2017. 38(1): p. 46 68.

195. Recalcati, S., et al.,

Eur J Immunol, 2010. 40(3): p. 824 35.

196. Corna, G., et al.,

Haematologica, 2010. 95(11): p. 1814 22.

197. Finn, A.V., et al.,

J Am Coll Cardiol, 2012. 59(2): p. 166 77.

198. Boyle, J.J., et al.,

Circ Res, 2012. 110(1): p. 20 33.

199. Orr, J.S., et al.,

Diabetes, 2014. 63(2): p. 421 32.

Page 68: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

200. Bouhlel, M.A., et al.,

Cell Metab, 2007. 6(2): p. 137 43.

201. Odegaard, J.I., et al.,

Nature, 2007. 447(7148): p. 1116 20.

202. Odegaard, J.I., et al.,

Cell Metab, 2008. 7(6): p. 496 507.

203. Kemmerer, M., et al.,

PLoS One, 2015. 10(6): p. e0130893.

204. Ruderman, N.B., et al., J Clin Invest,

2013. 123(7): p. 2764 72.

205. Weikel, K.A., N.B. Ruderman, and J.M. Cacicedo,

Metabolism, 2016. 65(5):

p. 634 45.

206. Sag, D., et al.,

J Immunol, 2008. 181(12): p.

8633 41.

207. Yang, Z., et al.,

J Biol Chem, 2010. 285(25): p. 19051 9.

208. Takatsu, K. and H. Nakajima, Curr Opin Immunol, 2008. 20(3): p. 288 94.

209. Nussbaum, J.C., et al., Nature,

2013. 502(7470): p. 245 8.

210. Lynch, L., et al.,

Immunity, 2012. 37(3): p. 574 87.

211. Lynch, L., et al.,

Nat Immunol, 2015.

16(1): p. 85 95.

212. Weisberg, S.P., et al., J

Clin Invest, 2003. 112(12): p. 1796 808.

213. Xu, H., et al.,

J Clin Invest, 2003. 112(12): p. 1821 30.

214. Lumeng, C.N., S.M. Deyoung, and A.R. Saltiel,

Am J Physiol Endocrinol

Metab, 2007. 292(1): p. E166 74.

215. Li, P., et al.,

Nat Med, 2015. 21(3): p. 239 47.

216. Uysal, K.T., et al.,

Nature, 1997. 389(6651): p. 610 4.

217. Spite, M., et al.,

J Immunol, 2011. 187(4): p. 1942 9.

218. Arkan, M.C., et al., Nat Med,

2005. 11(2): p. 191 8.

219. Han, M.S., et al.,

Science, 2013. 339(6116): p. 218 22.

Page 69: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

220. Kraakman, M.J., et al.,

Cell Metab, 2015.

21(3): p. 403 16.

221. Kim, J.K., et al., J

Clin Invest, 2004. 114(6): p. 823 7.

222. Lundman, P., et al.,

Nutr Metab Cardiovasc Dis, 2007. 17(3): p. 195 202.

223. Aljada, A., et al.,

Am J

Clin Nutr, 2004. 79(4): p. 682 90.

224. van Oostrom, A.J., et al.,

Atherosclerosis, 2004. 177(1): p. 175 82.

225. Lee, Y.S., et al.,

Diabetes, 2011. 60(10): p. 2474 83.

226. Boutens, L. and R. Stienstra,

Diabetologia, 2016. 59(5): p. 879 94.

227. Patsouris, D., et al.,

Cell Metab, 2008. 8(4): p. 301 9.

228. Lumeng, C.N., et al.,

Diabetes, 2008. 57(12): p.

3239 46.

229. Li, P., et al.,

Cell, 2016. 167(4): p. 973 984 e12.

230. Kosteli, A., et al.,

J Clin Invest, 2010. 120(10): p. 3466 79.

231. Cancello, R., et al.,

Diabetes, 2005. 54(8): p. 2277 86.

232. Patsouris, D., et al.,

J Biol Chem, 2009. 284(45): p. 31223 35.

233. Lumeng, C.N., et al.,

Diabetes, 2007. 56(1): p. 16 23.

234. Oh, D.Y., et al., Diabetes,

2012. 61(2): p. 346 54.

235. Inouye, K.E., et al.,

Diabetes, 2007. 56(9): p. 2242 50.

236. Kirk, E.A., et al.,

Diabetes, 2008. 57(5): p. 1254 61.

237. Jialal, I., H. Kaur, and S. Devaraj,

J Clin Endocrinol Metab, 2014. 99(1): p. 39 48.

238. Grant, R.W. and V.D. Dixit, Obesity (Silver Spring),

2015. 23(3): p. 512 8.

239. Cani, P.D., et al.,

Diabetes, 2008. 57(6): p.

Page 70: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

1470 81.

240. Cani, P.D., et al.,

Pathol Biol (Paris), 2008. 56(5): p. 305 9.

241. Jang, J.E., et al.,

Diabetes,

2016. 65(9): p. 2516 28.

242. Deng, Z.B., et al.,

Diabetes, 2009. 58(11): p. 2498 505.

243. O'Rourke, R.W., et al.,

Int J Obes (Lond), 2009. 33(9):

p. 978 90.

244. Wensveen, F.M., et al.,

Nat Immunol, 2015. 16(4): p. 376 85.

245. DeFuria, J., et al.,

Proc Natl Acad Sci U S A,

2013. 110(13): p. 5133 8.

246. Nishimura, S., et al.,

Nat Med, 2009. 15(8): p. 914 20.

247. Poggi, M., et al.,

Arterioscler Thromb Vasc Biol, 2011. 31(10): p. 2251 60.

248. Dey, A., J. Allen, and P.A. Hankey Giblin,

Front Immunol, 2014. 5: p. 683.

249. Obstfeld, A.E., et al.,

Diabetes, 2010. 59(4): p. 916 25.

250. Morinaga, H., et al.,

Diabetes, 2015. 64(4): p. 1120 30.

251. Ramachandran, P., et al.,

Proc Natl Acad Sci U S A,

2012. 109(46): p. E3186 95.

252. Zigmond, E., et al.,

J Immunol, 2014. 193(1): p.

344 53.

253. Huang, W., et al.,

Diabetes, 2010. 59(2): p. 347 57.

254. Lanthier, N., et al., Am J

Physiol Gastrointest Liver Physiol, 2010. 298(1): p. G107 16.

255. Bikman, B.T. and S.A. Summers,

J Clin Invest, 2011. 121(11): p. 4222 30.

256. Schubert, K.M., M.P. Scheid, and V. Duronio,

J Biol Chem, 2000. 275(18): p. 13330 5.

257. Fink, L.N., et al.,

Obesity (Silver Spring), 2014. 22(3):

p. 747 57.

258. Fink, L.N., et al.,

Page 71: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Diabetologia, 2013.

56(7): p. 1623 8.

259. Varma, V., et al.,

Am J Physiol Endocrinol

Metab, 2009. 296(6): p. E1300 10.

260. Patsouris, D., et al.,

PLoS One, 2014. 9(10): p. e110653.

261. Boon, M.R., et al.,

Clin Sci (Lond), 2015.

128(2): p. 143 51.

262. Pillon, N.J., et al.,

Cell Commun Signal, 2012. 10(1): p. 30.

263. Hume, D.A., et al.,

J

Exp Med, 1983. 158(5): p. 1522 36.

264. Geutskens, S.B., et al.,

J Leukoc Biol, 2005. 78(4): p. 845 52.

265. Banaei Bouchareb, L., et al.,

J Leukoc Biol, 2004. 76(2): p. 359 67.

266. Banaei Bouchareb, L., et al.,

J Endocrinol, 2006. 188(3): p. 467 80.

267. Jones, C.V. and S.D. Ricardo,

Organogenesis, 2013. 9(4): p. 249 60.

268. Schulz, C., et al.,

Science, 2012. 336(6077): p. 86 90.

269. Gomez Perdiguero, E., et al.,

Nature, 2015. 518(7540): p. 547 51.

270. Calderon, B., et al.,

J Exp Med, 2015. 212(10): p. 1497 512.

271. Eguchi, K., et al.,

Cell Metab, 2012. 15(4): p. 518 33.

272. Van Gassen, N., et al.,

Eur J Immunol, 2015. 45(5): p. 1482 93.

273. Dor, Y., et al.,

Nature, 2004. 429(6987): p. 41 6.

274. Teta, M., et al.,

Dev Cell, 2007. 12(5): p. 817 26.

275. Kushner, J.A., J Clin Invest, 2013. 123(3): p. 990 5.

276. Santini, M.P. and N. Rosenthal,

J Cardiovasc Transl Res, 2012. 5(5): p. 700 12.

277. Miron, V.E.,

Regen Med, 2013. 8(6): p. 673 6.

278. Brown, B.N., B.M. Sicari, and S.F. Badylak,

Page 72: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Front Immunol, 2014. 5: p. 510.

279. Xiao, X., et al.,

Proc Natl Acad Sci U S A, 2014. 111(13): p. E1211 20.

280. Tessem, J.S., et al.,

Diabetes, 2008. 57(6): p. 1605 17.

281. Cao, X., et al.,

Int J Biochem Cell Biol, 2014. 53: p.

372 9.

282. Xiao, X., et al.,

Diabetes, 2013. 62(4): p. 1217 26.

283. Criscimanna, A., et al.,

Gastroenterology, 2014. 147(5): p.

1106 18 e11.

284. He, H., et al.,

Blood, 2012. 120(15): p. 3152 62.

285. Eguchi, K. and R. Nagai, J Clin Invest, 2017.

127(1): p. 14 23.

286. Homo Delarche, F., et al.,

Diabetes, 2006. 55(6): p. 1625 33.

287. Richardson, S.J., et al., Diabetologia, 2009.

52(8): p. 1686 8.

288. de Koning, E.J., et al.,

Diabetes, 1994. 43(5): p. 640 4.

289. Kamata, K., et al.,

Amyloid, 2014. 21(3): p. 191 201.

290. Cucak, H., L.G. Grunnet, and A. Rosendahl,

J Leukoc Biol, 2014.

95(1): p. 149 60.

291. Morris, D.L.,

Mol Endocrinol, 2015. 29(7): p. 946 62.

292. Jourdan, T., et al.,

Nat Med, 2013. 19(9): p. 1132 40.

293. Butcher, M.J., et al.,

Diabetologia, 2014. 57(3): p. 491 501.

294. Ehses, J.A., et al.,

Proc Natl Acad Sci U S A, 2009. 106(33): p. 13998 4003.

295. Nackiewicz, D., et al.,

Diabetologia, 2014. 57(8): p.

1645 54.

296. Rohrbach, K., et al.,

Diabetes Obes Metab, 2012. 14(6): p. 555 64.

297. Tam, J., et al.,

Cell Metab, 2012. 16(2): p. 167 79.

298. Medzhitov, R., P. Preston Hurlburt, and C.A. Janeway, Jr.,

Page 73: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Nature, 1997. 388(6640): p.

394 7.

299. Gomez, R., et al., Nat

Rev Rheumatol, 2015. 11(3): p. 159 70.

300. Molteni, M., S. Gemma, and C. Rossetti,

Mediators Inflamm, 2016. 2016: p. 6978936.

301. Barton, G.M. and R. Medzhitov, Science, 2003. 300(5625):

p. 1524 5.

302. Gangloff, M., Trends

Biochem Sci, 2012. 37(3): p. 92 8.

303. Chaturvedi, A. and S.K. Pierce, Traffic, 2009.

10(6): p. 621 8.

304. Zanoni, I., et al., Cell, 2011.

147(4): p. 868 80.

305. Rajaiah, R., et al.,

Proc Natl Acad Sci U S A, 2015. 112(27): p.

8391 6.

306. O'Neill, L.A., F.J. Sheedy, and C.E. McCoy,

Nat Rev Immunol, 2011. 11(3): p. 163 75.

307. Poltorak, A., et al.,

Science, 1998. 282(5396): p. 2085 8.

308. Qureshi, S.T., et al., J Exp

Med, 1999. 189(4): p. 615 25.

309. Kurt Jones, E.A., et al.,

Nat Immunol, 2000. 1(5): p. 398 401.

310. Flo, T.H., et al.,

J Biol Chem, 2002. 277(38): p. 35489 95.

311. Yang, S., et al.,

Infect Immun, 2001. 69(4): p.

2025 30.

312. Gomi, K., et al.,

J

Immunol, 2002. 168(6): p. 2939 43.

313. Romani, L., Nat Rev Immunol, 2011. 11(4): p. 275 88.

314. Modhiran, N., et al.,

Sci Transl Med, 2015. 7(304): p. 304ra142.

315. Kutuzova, G.D., et al.,

J Immunol, 2001. 167(1): p. 482 9.

316. Macagno, A., et al.,

J Exp Med, 2006. 203(6): p.

1481 92.

317. Tsan, M.F. and B. Gao,

J Endotoxin Res, 2007. 13(1): p. 6 14.

318. Luong, M., et al.,

Page 74: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

J Inflamm (Lond), 2012. 9: p. 11.

319. Marincek, B.C., et al.,

Mol Immunol, 2008. 46(1): p. 181 91.

320. Termeer, C., et al.,

J Exp Med, 2002. 195(1): p. 99 111.

321. Schaefer, L., et al.,

J Clin Invest, 2005. 115(8): p. 2223 33.

322. Gondokaryono, S.P., et al.,

J Leukoc Biol, 2007. 82(3): p. 657 65.

323. Johnson, G.B., et al.,

J Immunol, 2002. 168(10): p. 5233 9.

324. Midwood, K., et al.,

Nat Med, 2009. 15(7): p.

774 80.

325. Lotze, M.T. and K.J. Tracey,

Nat Rev Immunol, 2005. 5(4): p. 331 42.

326. Roelofs, M.F., et al.,

J Immunol, 2006.

176(11): p. 7021 7.

327. Ohashi, K., et al.,

J Immunol, 2000. 164(2): p. 558 61.

328. Asea, A., et al.,

J Biol Chem, 2002. 277(17): p. 15028 34.

329. Chase, M.A., et al.,

J Immunol, 2007. 179(9): p.

6318 24.

330. Fang, H., et al.,

J Biol Chem, 2011. 286(35): p. 30393 400.

331. Vabulas, R.M., et al.,

J Biol Chem, 2002. 277(23): p. 20847 53.

332. Wu, W., et al.,

Immunol Cell Biol, 2016. 94(3): p. 285 92.

333. Biragyn, A., et al.,

Science, 2002. 298(5595): p. 1025 9.

334. Vogl, T., et al.,

Nat Med, 2007. 13(9): p. 1042 9.

335. Guillot, L., et al.,

J Immunol, 2002. 168(12): p. 5989 92.

336. Tarkowski, A., et al.,

J Cell Mol Med, 2010. 14(6B): p. 1419 31.

337. Smiley, S.T., J.A. King, and W.W. Hancock,

J Immunol, 2001. 167(5): p. 2887 94.

338. Stewart, C.R., et al.,

Nat Immunol, 2010. 11(2): p. 155 61.

Page 75: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

339. Schulthess, F.T., et al.,

Cell Metab, 2009. 9(2): p. 125 39.

340. Pal, D., et al.,

Nat Med, 2012. 18(8): p. 1279 85.

341. Hwang, D.H., J.A. Kim, and J.Y. Lee,

Eur J Pharmacol, 2016. 785: p.

24 35.

342. Jiang, D., et al., Nat

Med, 2005. 11(11): p. 1173 9.

343. Yang, H., et al.,

Proc Natl Acad Sci U S A, 2010. 107(26): p.

11942 7.

344. Scott, P., et al.,

J Immunol, 2006. 177(9): p. 6370 8.

345. Tsukamoto, H., et al.,

Int Immunol, 2010. 22(4): p. 271 80.

346. Haziot, A., et al.,

Immunity, 1996. 4(4): p. 407 14.

347. Westwell Roper, C., et al.,

Immunol Cell Biol, 2014. 92(4): p. 314 23.

348. Dasu, M.R., et al.,

Diabetes Care, 2010. 33(4): p. 861 8.

349. Hwang, D.,

FASEB J, 2001. 15(14): p. 2556 64.

350. Lee, J.Y., et al.,

J Biol Chem, 2001. 276(20): p.

16683 9.

351. Nguyen, M.T., et al.,

J Biol Chem, 2007. 282(48): p. 35279 92.

352. Shi, H., et al., J Clin Invest,

2006. 116(11): p. 3015 25.

353. Stefan, N. and H.U. Haring, Nat Rev Endocrinol, 2013.

9(3): p. 144 52.

354. Herder, C., et al.,

Diabetologia, 2006. 49(5): p. 921 9.

355. Pinti, M., et al., Eur J

Immunol, 2016. 46(10): p. 2286 2301.

356. Shaw, A.C., D.R. Goldstein, and R.R. Montgomery,

Nat Rev Immunol, 2013. 13(12): p. 875 87.

357. Finch, C.E., et al., Aging Cell, 2010.

9(4): p. 519 26.

358. Franceschi, C., et al., Trends Endocrinol Metab, 2017. 28(3): p.

Page 76: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

199 212.

359. Singh, T. and A.B. Newman, Ageing Res

Rev, 2011. 10(3): p. 319 29.

360. Franceschi, C., et al., Ann

N Y Acad Sci, 2000. 908: p. 244 54.

361. Xia, S., et al., J

Immunol Res, 2016. 2016: p. 8426874.

362. Puzianowska Kuznicka, M., et al.,

Immun Ageing, 2016. 13: p. 21.

363. Metcalf, T.U., et al.,

Aging Cell, 2015. 14(3): p.

421 32.

364. Hearps, A.C., et al.,

Aging Cell, 2012. 11(5): p. 867 75.

365. McLachlan, J.A., et al., J Immunol, 1995.

154(2): p. 832 43.

366. van Duin, D., et al., J Immunol, 2007. 178(2):

p. 970 5.

367. Qian, F., et al.,

Aging Cell, 2012. 11(1): p. 104 10.

368. Weinberger, B., et al.,

Biogerontology, 2016. 17(1): p. 177 87.

369. Renshaw, M., et al., J

Immunol, 2002. 169(9): p. 4697 701.

370. Boehmer, E.D., et al.,

J

Leukoc Biol, 2004. 75(2): p. 342 9.

371. Boehmer, E.D., et al.,

Mech Ageing Dev,

2005. 126(12): p. 1305 13.

372. Boyd, A.R., et al.,

Exp Gerontol, 2012. 47(7): p.

507 18.

373. Shaik Dasthagirisaheb, Y.B., A. Kantarci, and F.C. Gibson, 3rd,

Immun Ageing, 2010. 7: p. 15.

374. Liang, S., et al.,

Mech Ageing Dev, 2009. 130(8): p.

538 46.

375. Kissin, E., et al., J Infect

Dis, 1997. 175(4): p. 1004 7.

376. Wu, D., et al.,

J Biol Chem, 2003. 278(13): p.

10983 92.

Page 77: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

377. Tasat, D.R., et al.,

Aging Cell, 2003. 2(3): p. 159 64.

378. Birjandi, S.Z., et al.,

J Immunol, 2011. 186(6): p. 3441 51.

379. Agrawal, A., et al.,

J Immunol, 2007. 178(11): p. 6912 22.

380. Aprahamian, T., et al., Clin

Exp Immunol, 2008. 152(3): p. 448 55.

381. Nathan, C. and A. Ding, Cell, 2010. 140(6): p. 871 82.

382. Linton, P.J. and K. Dorshkind,

Nat Immunol, 2004. 5(2): p. 133 9.

383. Cho, R.H., H.B. Sieburg, and C.E. Muller Sieburg,

Blood, 2008. 111(12): p. 5553 61.

384. Linehan, E. and D.C. Fitzgerald, Eur J

Microbiol Immunol (Bp), 2015. 5(1): p. 14 24.

385. Vallejo, A.N.,

Immunol Rev, 2005. 205: p. 158 69.

386. Frasca, D., et al., Ageing Res Rev, 2011.

10(3): p. 330 5.

387. Frasca, D., et al.,

J Immunol, 2008. 180(8): p. 5283 90.

388. Scholz, J.L., et al., Curr

Opin Immunol, 2013. 25(4): p. 504 10.

389. Johnson, S.A., S.J. Rozzo, and J.C. Cambier,

J Immunol, 2002. 168(10): p. 5014 23.

390. Creely, S.J., et al.,

Am J Physiol Endocrinol Metab, 2007. 292(3): p.

E740 7.

Page 78: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 79: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

ARTICLE

TLR2/6 and TLR4-activated macrophages contributeto islet inflammation and impair beta cell insulingene expression via IL-1 and IL-6

Dominika Nackiewicz & Meixia Dan & Wei He & Rosa Kim & Anisa Salmi &Sabine Rütti & Clara Westwell-Roper & Amanda Cunningham & Madeleine Speck &

Carole Schuster-Klein & Beatrice Guardiola & Kathrin Maedler & Jan A. Ehses

Received: 28 October 2013 /Accepted: 8 April 2014 /Published online: 12 May 2014# Springer-Verlag Berlin Heidelberg 2014

AbstractAims/hypothesis Inflammation contributes to pancreatic betacell dysfunction in type 2 diabetes. Toll-like receptor (TLR)-2and -4 ligands are increased systemically in recently diag-nosed type 2 diabetes patients, and TLR2- and TLR4-deficient mice are protected from the metabolic consequencesof a high-fat diet. Here we investigated the role of

macrophages in TLR2/6- and TLR4-mediated effects on isletinflammation and beta cell function.Methods Genetic and pharmacological approaches were usedto determine the effects of TLR2/6 and TLR4 ligands onmouse islets, human islets and purified rat beta cells. Isletmacrophages were depleted and sorted by flow cytometryand the effects of TLR2/6- and TLR4-activated bone-marrow-derivedmacrophages (BMDMs) on beta cell functionwere assessed.Results Macrophages contributed to TLR2/6- and TLR4-induced islet Il1a/IL1A and Il1b/IL1B mRNA expressionin mouse and human islets and IL-1β secretion fromhuman islets. TLR2/6 and TLR4 ligands also reducedinsulin gene expression; however, this occurred in anon-beta cell autonomous manner. TLR2/6- and TLR4-activated BMDMs reduced beta cell insulin secretionpartly via reducing Ins1, Ins2, and Pdx1 mRNA expres-sion. Antagonism of the IL-1 receptor and neutralisationof IL-6 completely reversed the effects of activatedmacrophages on beta cell gene expression.Conclusions/interpretation We conclude that islet macro-phages are major contributors to islet IL-1β secretion inresponse to TLR2/6 and TLR4 ligands. BMDMs stimulatedwith TLR2/6 and TLR4 ligands reduce insulin secretion frompancreatic beta cells, partly via IL-1β- and IL-6-mediateddecreased insulin gene expression.

Keywords Beta cell . Diabetes . Inflammation . Pancreaticislet . Toll-like receptor 2 . Toll-like receptor 4

AbbreviationsBMDM Bone-marrow-derived macrophageCCL2 Chemokine (C-C motif) ligand 2DAMPs Danger-associated molecular patterns

Dominika Nackiewicz and Meixia Dan contributed equally to this study.

Electronic supplementary material The online version of this article(doi:10.1007/s00125-014-3249-1) contains peer-reviewed but uneditedsupplementary material, which is available to authorised users.

D. Nackiewicz :M. Dan : R. Kim :A. Salmi :A. Cunningham :M. Speck : J. A. Ehses (*)Department of Surgery, Faculty of Medicine, The University ofBritish Columbia, Child and Family Research Institute,950 W 28th Ave, Vancouver, BC, Canada V5Z 4H4e-mail: [email protected]

W. He :K. MaedlerCenter for Biomolecular Interactions, The University of Bremen,Bremen, Germany

S. RüttiDepartment of Genetic Medicine and Development, UniversityMedical Center, University of Geneva, Geneva, Switzerland

C. Westwell-RoperDepartment of Pathology and Laboratory Medicine, Faculty ofMedicine, The University of British Columbia, Child and FamilyResearch Institute, Vancouver, BC, Canada

C. Schuster-Klein : B. GuardiolaADIR – Groupe de Recherche Servier, Suresnes, France

J. A. EhsesDepartment of Cellular and Physiological Sciences, Faculty ofMedicine, The University of British Columbia, Child and FamilyResearch Institute, Vancouver, BC, Canada

Diabetologia (2014) 57:1645–1654DOI 10.1007/s00125-014-3249-1

Page 80: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

GSIS Glucose-stimulated insulin secretionLPS LipopolysaccharidePAMPs Pathogen-associated molecular patternsqPCR Quantitative PCRTLR Toll-like receptorWT Wild-type

Introduction

Type 2 diabetes occurs when there is insufficient compensa-tion for insulin resistance by failing pancreatic beta cells,resulting in hyperglycaemia. It has long been appreciated thatchronic activation of the innate immune system is associatedwith type 2 diabetes [1, 2]; however, only recently haveclinical trials with IL-1-targeting agents confirmed that in-flammation contributes to beta cell failure in humans with thisdisease [3].

Macrophages infiltrate islets in humans with type 2diabetes [4, 5] and in numerous animal models of thisdisease [4, 6–9], leading to beta cell dysfunction [7, 8].We recently proposed that Toll-like receptor (TLR) 2signalling may drive macrophage-derived IL-1β expres-sion in an animal model of type 2 diabetes [10]. More-over, we now know that both TLR2 and TLR4 pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) are increased inthe circulation of recently diagnosed type 2 diabetespatients (HSP60, HSP70, HMBG1, endotoxin andhyaluronan) [11, 12]. Increased systemic endotoxin levelsin individuals with type 2 diabetes have been reported bya number of groups [13, 14] and are found in rodentmodels of this disease characterised by islet inflamma-tion [4, 15–17]. Indeed, both TLR2- and TLR4-deficientmice are protected from the metabolic consequences of ahigh-fat diet [10, 18–23]. Thus, TLR2 and/or TLR4activation may act as a trigger of islet inflammation intype 2 diabetes, promoting production of IL-1β andother proinflammatory stimuli and the recruitment ofmacrophages.

TLR2 and TLR4 mRNAs have been detected in rodent andhuman islets [24, 25] and TLR2/6 and TLR4 ligands increasecytokine gene expression in human islets [26]. TLR4 activa-tion also reduces insulin gene expression in rodent islets [27].However, there is a paucity of information about the effects ofTLR2 signalling on islet inflammation and beta cell function.Further, the role of macrophages in TLR2- and TLR4-inducedislet inflammation has not been explored. Here we investigat-ed the effects of TLR2/6 and TLR4 activation on islet inflam-mation and beta cell function, using both rodent and humanislets, with a focus on the role of islet macrophages in medi-ating these effects.

Methods

Animals and materials Wild-type (WT), Tlr2−/−, and Tlr4−/−

mice on a C57BL/6J background were acquired from B.Vallance [28] (Division of Gastroenterology, Department ofPediatrics, BC's Children's Hospital and Child and FamilyResearch Institute, Vancouver, BC, Canada), bred in-houseand maintained under specific pathogen-free conditions at theChild and Family Research Institute. Male mice aged8–12 weeks were used for all experiments. All animals weremaintained in compliance with Canadian Council on AnimalCare guidelines and the studies were approved by the Univer-sity of British Columbia Committee on Animal Care.

TLR ligands (ultrapure lipopolysaccharide [LPS] was fromEscherichia coli 0111:B4 strain) and antibody (mouse anti-TLR2 IgG1, clone T2.51, used at 15 μg/ml) were fromInvivogen (San Diego, CA, USA). Isotype mouse IgG1 anti-body was from eBiosience (San Diego, CA, USA). TAK-242was synthesised by Servier (Suresnes, France) according tothe published chemical structure [29–31] and used at a con-centration of 1.5 μmol/l. L929 conditioned media was fromAbLab, University of British Columbia. Mouse cytokineswere measured using Luminex technology (EMD Millipore,Billerica, MA, USA). Human IL-1β was assessed usingan ultra-sensitive ELISA (IBL International, Hamburg,Germany) and human IL-6, IL-8 and TNF-α were mea-sured using Meso Scale Discovery technology (Rockville,MD, USA). IL-1 receptor antagonist was from Biovitrum(Stockholm, Sweden) and goat anti-mouse IL-6 neutralisingantibody and goat IgG isotype control were from R&D Sys-tems (Minneapolis, MN, USA).

Pancreatic islet and rat purified beta cell isolation and resi-dent islet macrophage depletion Mouse islets and rat betacells were isolated as described [32, 33]. Human islets wereisolated from the pancreases of seven organ donors at theUniversity of Alberta, University of British Columbia andProdo Laboratories (Irvine, CA, USA). All human islet prep-arations had >80% purity of islets, were hand-picked andplated to ensure purity and were cultured as described [4].Human islet studies were approved by the University ofBritish Columbia and University of Bremen committees onHuman Ethics.

To deplete islet macrophages, 1 mg/ml clodronate-loadedliposomes (supplied by N. van Rooijen, Vrije UniversiteitAmsterdam, the Netherlands) were added to islets in suspen-sion (mouse) or plated on extracellular matrix (human),followed by the addition of Pam2CSK4 or LPS for 24 h.PBS-containing liposomes served as a control. Based ondose–response experiments, mouse islets or rodent beta cellswere treated with maximal effective doses of Pam2CSK4(100 ng/ml) or LPS (1 μg/ml) for 24 h unless otherwise stated(see electronic supplementary material [ESM] Fig. 1a, b).

1646 Diabetologia (2014) 57:1645–1654

Page 81: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Similarly, human islets were treated with 100 ng/mlPam2CSK4 or 20 μg/ml LPS for 24 h unless otherwise stated.

Histology Mouse islets in suspension were fixed, sectionedand stained using anti-F4/80 and anti-insulin antibodies asdescribed [34]. TUNEL+ beta cells (positive in a terminaldeoxynucleotidyl transferase-mediated dUTP nick-end label-ling assay) were stained as described [35] and imaged using aBX61 microscope.

Analysis and isolation of resident islet macrophages by flowcytometry Dispersed islet cells were stained with CD11b-PE(eBioscience, clone M1/70), CD11c-PE-Cy7 (eBioscience,clone N418) and F4/80-FITC (eBioscience, clone BM8) anti-bodies to identify resident macrophages [36]. Others havedescribed this cell population as immature dendritic cells[36, 37]. F4/80+Cd11b+Cd11c+ cells were confirmed to be99.4 ± 0.6% (n = 4) CD45+ using CD45-eFluor450(eBioscience, clone 30-F11). The proportion of islet CD45+

cells that was F4/80+Cd11b+Cd11c+ cells was 87.2±1.6%(n=4). Dead cells were excluded using the viability dyeeFluor506 (eBioscience) or 7-AAD. Unstained, single stainsand FMO (fluorescence minus one) controls were used to setgates and compensation. Data were analysed using FlowJovX.0.7, (Tree Star, Ashland, OR, USA) and FACSDiva v6.0(BD Biosciences, Mississauga, ON, USA) software. Islet F4/

80+CD11b+CD11c+ and F4/80−CD11b−CD11c− cells weresorted and plated in 96-well tissue-culture-treated dishes torecover for 6 h and then stimulated with 10 ng/ml Pam2CSK4or 100 ng/ml LPS for 6 h.

RNA extraction and real-time PCR cDNA from mousepancreases and islets was generated using theMNNucleoSpinRNA II kit (Macherey-Nagel, Düren, Germany) followed bySuperscript II (Invitrogen, Carlsbad, CA, USA). cDNA fromsorted islet cells was generated using the RNeasy micro kit(Qiagen, Valencia, CA, USA) followed by Superscript III(Invitrogen). cDNA from human islets was generated by usingpeqGOLD Isolation Systems TriFast (PEQLAB, Erlangen,Germany) followed by RevertAid Reverse Transcriptase(Thermo Scientific, Waltham, MA, USA). Quantitative PCR(qPCR) was performed using PrimeTime primers/probes (In-tegrated DNATechnologies, Coralville, IA, USA) or TaqManGene Expression Assay (for human islets; AppliedBiosystems, Foster City, CA, USA) in a ViiA7 or StepOnereal-time PCR system (Applied Biosystems), and differential

expression was determined by the 2−ΔΔCt method [38] withRplp0 used as a reference gene.

Bone-marrow-derived macrophage-conditioned media Bone-marrow-derived macrophages (BMDMs) were prepared asdescribed [10]. To generate conditioned media, cells were

d e f g h i

CD

11b

F4/80(Gated on viable islet cells)

4.42%PBS-lip CLOD-lip

1.50%

CD

11b

CD11c(Gated on F4/80+)

PBS-lip CLOD-lip PBS-lipa b c

CLOD-lip 0.8

1.5 10 40 8 4 121086420

3

2

1

0

6

4

2

0

30

20

10

0

86420

1.0

0.5

5 8 10864

20

1086420

10 40

30

20

10

0

86420

6

4

2

0

43210

**

** **

**

**

* *

††

**

*

*

0Ctrl

Itgam

mR

NA

(fol

d of

con

trol

)Itg

am m

RN

A(f

old

of c

ontr

ol)

II1a

mR

NA

(fol

d of

con

trol

)

II1b

mR

NA

(fol

d of

con

trol

)

II6 m

RN

A(f

old

of c

ontr

ol)

Tnf

mR

NA

(fol

d of

con

trol

)

Ccl

2 m

RN

A(f

old

of c

ontr

ol)

II1a

mR

NA

(fol

d of

con

trol

)

II1b

mR

NA

(fol

d of

con

trol

)

II6 m

RN

A(f

old

of c

ontr

ol)

Tnf

mR

NA

(fol

d of

con

trol

)

Ccl

2 m

RN

A(f

old

of c

ontr

ol)

Pam2

Ctrl LPS Ctrl LPS Ctrl LPS Ctrl LPS Ctrl LPS Ctrl LPS

Ctrl Pam2 Ctrl Pam2 Ctrl Pam2 Ctrl Pam2 Ctrl Pam2

0.6

0.4

Per

cen

t TU

NE

L+

beta

cel

ls

0.2

0

PBS-lip

CLOD-lip

j

103 104 1051020 103 104 1051020 103 104 1051020 103 104 1051020

102

103

104

105

0102

103

104

105

0102

103

104

105

0102

103

104

105

0

k l m n o

Fig. 1 Resident mouse islet macrophage depletion decreases TLR2/6-and TLR4-mediated cytokine expression. (a, b) Following treatment withclodronate-loaded liposomes (CLOD-lip) or PBS liposomes (PBS-lip),islet macrophage depletion was confirmed by histology (a) (green, F4/80;red, insulin; scale bar, 50 μm) and flow cytometry (b). The proportion ofF4/80+Cd11b+Cd11c+ cells per total islet cells was 0.52±0.03% (n=4).(c) TUNEL+ beta cells were quantified following PBS-lip or CLOD-liptreatment. An average of 2,887±393 beta cells were counted per

experimental condition per experiment. (d–o) Islets depleted of macro-phages were treated with Pam2CSK4 (Pam2) or LPS (black bars, PBS-lip; white bars, CLOD-lip) followed by total RNA extraction and qPCRanalysis. *p<0.05, **p<0.01 vs PBS-lip; †p<0.05 vs Pam2CSK4/LPSPBS-lip, as tested by ANOVA and Newman–Keuls post hoc test; (a, b)n=2 mice performed in two independent experiments, (c) n=5 miceperformed in two independent experiments and (d–o) n=4–7 mice per-formed in at least three independent experiments

Diabetologia (2014) 57:1645–1654 1647

Page 82: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

stimulated with maximal effective doses of Pam2CSK4(10 ng/ml) or LPS (100 ng/ml) overnight for 18 h in isletmedia, followed by removal and filtering of media. Isletmedia spiked with Pam2CSK4 (10 ng/ml) and LPS(100 ng/ml) and left overnight in 75 cm2 flasks wereused as controls.

Glucose-stimulated insulin secretion and content Insulin se-cretion and content were determined as published [4], withmouse islets plated on 804G-ECM [33] coated six-well platesat 20 islets/well. Insulin was assayed by ELISA (Alpco,Salem, NH, USA).

Statistics Data are expressed as means ± SEM unless other-wise stated, with the number of individual experiments pre-sented in the figure legends. Data were analysed using thenon-linear regression analysis program PRISM v6 (GraphPad,La Jolla, CA, USA) and significance was tested using Stu-dent’s t test and analysis of variance (ANOVA) with Dunnett’s

0

103

*****

** *

*

*

*

*

*

*

*

* **

Itgam

mR

NA

(fol

d of

pan

crea

s)II1

a m

RN

A(f

old

of c

ontr

ol)

IL-6

sec

retio

n(p

g/1,

000

cells

)

TN

F-α

sec

retio

n(p

g/1,

000

cells

)

II1b

mR

NA

(fol

d of

con

trol

)

II6 m

RN

A(f

old

of c

ontr

ol)

Tnf

mR

NA

(fol

d of

con

trol

)

II12b

mR

NA

(fol

d of

con

trol

)

Ccl

2 m

RN

A(f

old

of c

ontr

ol)

Itgax

mR

NA

(fol

d of

pan

crea

s)

Ins1

mR

NA

(fol

d of

pan

crea

s)

Ins2

mR

NA

(fol

d of

pan

crea

s)

Gcg

mR

NA

(fol

d of

pan

crea

s)

Pec

am1

mR

NA

(fol

d of

pan

crea

s)

Em

r1 m

RN

A(f

old

of p

ancr

eas)

102

nd

4 1.5

1.0

0.5

0

3

2

1

0Ctrl Pam2 LPS Ctrl Pam2 LPS

Ctrl

Pam2

LPS

Ctrl

Pam2

LPS

Ctrl

Pam2

LPS

Ctrl

Pam2

LPS

Ctrl

Pam2

LPS

Ctrl

Pam2

LPS

nd nd nd nd nd nd nd nd

101

100

102

101

100

10-1

102

101

100

10-1

10-2

10-3

10-4

102

101

100

10-1

10-2

10-3

102

101

100

10-210-1

102

103

101

100

10-1

101

102

100

10-1

10-210-3

10-4

103

102

101

100

102

101

100

101

100

10-1

103

102

101

100

103

102

101

100

104

103

102

101

100

103 104 105

102

103

104

105

103 104 105102

102

103

104

105

102

103

104

105

103 104 105 0

0 0

1.00%

94.0%

99.3%

96.5%

F4/

80

CD11c (Gated on viable, single cells)

CD

11b

CD11c (Gated on F4/80+ cells)

CD

11b

CD11c (Gated on F4/80- cells)

a

i j k l m n

b c d e f g h

o p

Fig. 2 TLR2/6 and TLR4 activation increases cytokine expression inmouse islet resident macrophages. (a) Gating strategy for flow cytometrysorting. Viable, single islet cells (see ESM Fig. 3) were sorted into F4/80+Cd11b+Cd11c+ (blue) and F4/80−Cd11b−Cd11c− (green) cells. (b–h)Total RNA was extracted from mouse pancreas (dark grey bars), islets(light grey bars) and sorted islet F4/80+Cd11b+Cd11c+ cells (black bars)(b–d) or F4/80−Cd11b−Cd11c− cells (white bars) (e–h) followed by

qPCR. ( i–p ) F4/80+Cd11b+Cd11c+ (black bars) and F4/80−Cd11b−Cd11c− cells (white bars) were stimulated with Pam2CSK4(Pam2) or LPS, followed by qPCR (i–n) or cytokine secretion analysis (o,p). Ctrl, control. *p<0.05, **p<0.01, ***p<0.001 vs pancreas (b–h) orCtrl (i–p) as tested by ANOVA and Dunnett’s post hoc test; n=4 or 5independent sorting experiments; nd, not detected

Fig. 3 TLR2/6 activation, not TLR4 activation, increases Tnf and Ccl2mRNA expression in rodent beta cells. MIN-6 beta cells (a, b) or ratpurified beta cells (c, d) were treated with Pam2CSK4 (black bars) or LPS(grey bars) for the indicated time; white bars, control. *p<0.05, **p<0.01,***p<0.001 vs untreated control, as tested by ANOVA andDunnett’s posthoc test; n=3 independent experiments

1648 Diabetologia (2014) 57:1645–1654

Page 83: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

or Newman–Keuls post hoc test for multiple comparisonanalysis. Significance was set at p<0.05.

Results

TLR2/6- and TLR4-induced islet IL-1β secretion is macro-phage dependent Ligands were confirmed to be specific fortheir cognate receptors; Pam2CSK4-induced cytokine mRNAexpression was absent in Tlr2−/− islets (ESM Fig. 2a) andLPS-induced cytokine mRNA expression was absent inTlr4−/− islets (ESM Fig. 2b). Pam2CSK4-induced cytokinemRNA expression was unchanged in Tlr4−/− islets (ESMFig. 2c) and LPS-induced cytokine mRNA expression wasunchanged in Tlr2− /− islets (ESM Fig. 2d). TLR2neutralisation and TAK-242 mediated inhibition of TLR4signalling completely reversed islet cytokine mRNA expres-sion induced by Pam2CSK4 and LPS, respectively (ESMFig. 2e, f).

Treatment of mouse islets with clodronate-loaded lipo-somes for 48 h resulted in 63.8±3.3% (mean ± SD, n=2)depletion of islet macrophages (Fig. 1a, b). Clodronate-loadedliposomes (CLOD-lip) did not adversely affect beta cell sur-vival (Fig. 1c). Macrophage depletion significantly decreased

Pam2CSK4-induced islet Il1a, Il1b, Tnf and Ccl2 mRNAcompared with PBS-liposome (PBS-lip) control and Il6mRNA also tended to decrease (Fig. 1e–i). Similarly, isletmacrophage depletion significantly decreased LPS-inducedislet Il1a, Il1b, and Tnf mRNA compared with PBS-lip con-trol, with Il6 and Ccl2 mRNA also tending to decrease(Fig. 1k–o). Protein secretion of IL-1α, IL-1β, TNF-α, andchemokine (C-C motif) ligand 2 (CCL2) were below the limitof detection of the assay, as published previously for rat islets[6]. However, IL-6 secretion did not differ in treated isletswithout and with macrophage depletion (PBS-lip control7.35±2.29 pg/ml, Pam2CSK4 29.80±3.28 pg/ml, Clo-lipcontrol 4.96±0.54 pg/ml, Pam2CSK4 32.44±8.85 pg/ml,n=3; PBS-lip control 2.11±0.48 pg/ml, LPS 26.55±6.35 pg/ml, Clo-lip control 0.75±0.27 pg/ml, LPS33.29±19.19 pg/ml, n=4).

We purified islet macrophages (F4/80+Cd11b+Cd11c+

cells) and compared their response with that of a mixedpopulation of all other islet cell types (F4/80−Cd11b−Cd11c−

cells; ESM Fig. 3 and Fig. 2). Cell enrichment for F4/80+Cd11b+Cd11c+ cells was confirmed, while islet F4/80–Cd11b–Cd11c– cells were a mix of islet endocrine cells(beta cells, alpha cells) and endothelial cells based onmRNA expression (Fig. 2b–h). Islet macrophages had in-creased Il1a, Il1b, Il6, Il12b, Tnf and Il12b mRNA levels in

Fig. 4 Resident human islet macrophage depletion decreases TLR2/6-and TLR4-mediated IL-1β secretion. (a, b) Pam2CSK4 (a) and LPS (b)were added to human islets at 1 ng/ml (white bars), 10 ng/ml, (light greybars), 100 ng/ml LPS only (dark grey bars), 100 ng/ml Pam2CSK4 or20 μg/ml LPS (black bars). (c–l) Islets were depleted of macrophageswith clodronate-loaded liposomes (white bars; CLOD-lip) or PBS lipo-somes (black bars; PBS-lip) as control in the absence or presence of

Pam2CSK4 or LPS and qPCR (c–i) or cytokine secretion (j, l) wasassessed. (a, b) *p<0.05, ***p<0.001 vs untreated control, as tested byANOVA using Dunnett’s post hoc test. (c) **p<0.01 vs PBS-lip, usingStudent’s t test. (d–i) *p<0.05 vs PBS-lip and †p<0.05 vs LPS PBS-lip,as tested by ANOVA and Newman–Keuls post hoc test. (a–i) n=3–6human islet preparations performed in independent experiments; (j–l)mean ± SD of duplicate samples from one human islet preparation

Diabetologia (2014) 57:1645–1654 1649

Page 84: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

response to Pam2CSK4 or LPS (Fig. 2i–n); however, Ccl2mRNAwas not detectable. Islet F4/80–Cd11b–Cd11c– cellshad increased Il6, Tnf and Ccl2 mRNA levels in responseto Pam2CSK4, with LPS showing a similar trend for Il6and Ccl2 mRNA (Fig. 2i–n). The expression of Il1b andIl12b mRNA was not detectable in F4/80–Cd11b–Cd11c–

cells. Pam2CSK4- and LPS-stimulated IL-6 and TNF-αsecretion was higher in islet macrophages than in F4/80−Cd11b−Cd11c− cells on a per cell basis (Fig. 2o, p).IL-1α, IL-1β and CCL2 secretion were below the limit ofdetection of the assay.

Next, rodent beta cells were stimulated with Pam2CSK4and LPS. Pam2CSK4 robustly stimulated Tnf and Ccl2mRNA expression in MIN6 beta cells and purified rat betacells (Fig. 3). We could not detect Il1a, Il1b or Il6 mRNA inMIN6 beta cells in response to Pam2CSK4 or LPS. Similarly,no significant effects on Il1a, Il1b or Il6 expression wereobserved following Pam2CSK4 or LPS stimulation in purifiedrat beta cells (ESM Fig. 4). LPS did not significantly increasecytokine mRNA expression in either rodent beta cell type(Fig. 3 and ESM Fig. 4). We detected Tlr4 but not Cd14

mRNA in MIN6 beta cells, and could not detect Tlr4 mRNAin purified rat beta cells.

Finally, we investigated whether TLR-stimulated cytokineexpression was dependent on resident macrophages in humanislets. Both Pam2CSK4 and LPS increased islet IL1A, IL1Band IL8 mRNA expression in a dose-dependent manner(Fig. 4a, b). We also analysed CCL13 mRNA because thischemokine was found to be increased in laser-captured betacells from individuals with type 2 diabetes [39]. However, wecould not detect CCL13 mRNA. Macrophage depletion con-sistently decreased Pam2CSK4- and LPS-induced islet IL1Aand IL1B mRNA compared with control, with little effect onother cytokines (Fig. 4d–i). Secretion of IL-1β protein wasalso decreased following macrophage depletion, with the de-pletion having no effect on IL-6 or IL-8 secretion (Fig. 4j–l).TNF-α secretion was below the detection limit of the assay.Thus, resident islet macrophages contribute to TLR2/6- andTLR4-induced Il1a/IL1A and Il1b/IL1B mRNA expression inmouse and human islets, and in human islets also contribute toIL-1β secretion.

TLR2/6 and TLR4 activation decrease insulin gene expressionin a non-beta cell autonomous manner Pam2CSK4 de-creased islet Ins1, Ins2 and Pdx1 mRNA levels in aTLR2-dependent manner (Fig. 5a), while LPS decreasedislet Ins1 and Ins2 mRNA levels in a TLR4-dependentmanner (Fig. 5b). TLR2 neutralisation blocked the effectsof Pam2CSK4 on Ins1 and Pdx1 mRNA expression, whileTAK-242 reversed the effects of LPS on Ins2 mRNAexpression (Fig. 5c, d). No significant effects on Ins1,Ins2 or Pdx1 mRNA expression were observed whenMIN6 beta cells or rat purified beta cells were treatedwith Pam2CSK4 or LPS (Fig. 5e, f).

Finally, we observed a twofold and 2.4-fold increase inTUNEL+ beta cells following Pam2CSK4 and LPS treatmentof islets, respectively (ESM Fig. 5). Thus, in addition toreducing insulin gene transcription, TLR2/6 and TLR4 acti-vation can also induce beta cell apoptosis.

TLR2/6- and TLR4-activated macrophages decrease beta cellinsulin gene expression via IL-1 and IL-6 BMDMs increasedcytokine mRNA expression and secretion of IL-1β, IL-6,IL-12 and TNF-α in response to Pam2CSK4 or LPS(Fig. 6a–d). When macrophage-conditioned media wereadded to mouse islets, both Pam2CSK4- and LPS-stimulatedmacrophages impaired glucose-stimulated insulin secretion(GSIS; Fig. 6e, g). These effects were partly due to reductionsin insulin content (Fig. 6f, h), because when insulin secretionwas normalised to content, reduced GSIS was no longerobserved (not shown). Therefore, we determined the effectsof TLR2/6- and TLR4-activated macrophages on Ins1, Ins2,and Pdx1 mRNA levels in mouse islets. TLR2/6- and TLR4-activated macrophages significantly reduced Ins1, Ins2 and

Fig. 5 TLR2/6 and TLR4 activation decrease insulin gene expression inwhole islets from mice, but not in rodent beta cells. (a, b) Islets fromWT(black bars), Tlr2−/− (a) (white bars) and Tlr4−/− mice (b) (white bars)were stimulated with Pam2CSK4 (a) or LPS (b). (c, d) Islets werestimulated with Pam2CSK4 (c) (black bars) or LPS (d) (black bars) inthe presence of a TLR2 neutralising antibody (c) or TAK-242 (d). (e, f)MIN-6 beta cells (e) or rat purified beta cells (f) were treated withPam2CSK4 (black bars) or LPS (grey bars). White bars, control. (a, b)*p<0.05 vs untreated control and †p<0.05 vs WT Pam2CSK4/LPStreatment, as tested by ANOVA using Newman–Keuls post hoc test. (c,d) *p<0.05 vs ligand-treated control using Student’s t test; n=3–18 miceperformed in at least three independent experiments

1650 Diabetologia (2014) 57:1645–1654

Page 85: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Pdx1mRNA levels (Fig. 6i–k). TAK-242 inhibited the effectsof TLR4-activated macrophages on islet Ins1, Ins2 and Pdx1mRNA expression levels (Fig. 6l).

Finally, to determine which cytokines were responsible forthe effects of activated macrophages on insulin gene transcrip-tion, we antagonised IL-1 signalling and neutralised IL-6activity. IL-1 was antagonised because beta cells are extreme-ly sensitive to low concentrations (pg/ml) of IL-1β [40]. IL-6was neutralised because it was the most highly secreted cyto-kine in response to TLR2/6 or TLR4 activation (Fig. 6b, d).IL-1Ra almost completely reversed the effects of TLR-activated macrophages on insulin gene transcription. Indeed,IL-1Ra together with IL-6 neutralisation completely reversed

the effects of TLR-activated macrophages on Ins1, Ins2 andPdx1 mRNA expression levels (Fig. 6m–o).

Discussion

TLR2 and TLR4 ligands represent potential triggers of isletinflammation in type 2 diabetes [12]. Here we build upon ourrecent findings that TLR2/6 and TLR4 ligands increase cyto-kine gene expression in human islets [26] and that Tlr2−/−

mice were protected from elevated islet Il1b mRNA expres-sion when fed a high-fat diet [10]. We also show that residentmacrophages in both mouse and human islets contribute to

Fig. 6 TLR2/6- and TLR4-activated macrophages reduce Ins1, Ins2 andPdx1mRNA expression inmouse islets via IL-1 and IL-6. (a–d) BMDMswere stimulated with Pam2CSK4 (a, b) (black bars) or LPS (c, d) (blackbars) overnight followed by qPCR (a, c) or analysis for cytokine secretion(b, d). White bars, control. (e–k) Conditioned media (Mac) fromBMDMs stimulated with Pam2CSK4 (Pam2) (e, f) or LPS (g, h) andcontrol islet media (No Mac) spiked with the indicated ligands wereadded to islets for 48 h. Thereafter, GSIS was assessed (e, g) (white bars,2.8 mmol/l glucose; black bars, 16.7 mmol/l glucose), insulin content wasassayed (f, h) or gene expression was analysed (i–k). (l) Conditionedmedia from untreated, TAK-242-treated (white bars), LPS-treated (blackbars) and LPS + TAK-242-treatedmacrophages (grey bars) were added to

islets for 48 h. Mφ, macrophages. (m–o) Conditioned media (CM) wastreated with isotype (white bars) or IL-6 antibody (light grey bars) andadded to islets in the absence or presence of IL-1Ra (2 μg/ml) for 48 hRNA (dark grey bars, IL-1Ra; black bars, anti-IL-6 antibody + IL-1Ra),followed by qPCR analysis. (a–h) *p<0.05, ***p<0.001 vs Ctrl: Mac, astested using Student’s t test. (i–k) *p<0.05 vs Ctrl: No Mac, †p<0.05 vsCtrl: Mac, as tested by ANOVA using Newman–Keuls post hoc test. (l)*p<0.05 vs CM macrophage control, †p<0.05 vs CM macrophage +LPS, as tested by ANOVA using Newman–Keuls post hoc test. (m–o)*p<0.05, **p<0.01 vs CM macrophage isotype, as tested by ANOVAusing Dunnett’s post hoc test n=4–8 mice performed in at least threeindependent experiments

Diabetologia (2014) 57:1645–1654 1651

Page 86: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

islet IL-1 expression in response to TLR2/6 and TLR4 li-gands. Further, we propose that TLR2/6 and TLR4 ligandsreduce insulin gene expression in a non-cell-autonomousmanner and, via effects on beta cells and other islet cells(e.g. endothelial cells, alpha cells), increase chemokine secre-tion to attract circulating monocytes. Infiltrating islet macro-phages activated by TLR2/6 and/or TLR4 ligands might thenfurther reduce beta cell insulin gene transcription and insulinsecretion via IL-1 and IL-6, contributing to beta cell dysfunc-tion during type 2 diabetes (Fig. 7).

A number of recent studies have confirmed a role formacrophages in regulating islet inflammation and beta cellfunction in rodents with type 2 diabetes [7, 8, 34], with dataindicating a prominent role for IL-1β in mediating theseeffects [7, 34]. Our experiments using macrophage-conditioned media support these findings and once againhighlight the sensitivity of pancreatic beta cells to low levelsof IL-1β [40], with effects on insulin gene expression. How-ever, the effects of macrophages on beta cells are complex,and likely also include cytokine-mediated beta cell death inaddition to impairment of insulin secretion via effects oninsulin gene expression [41]. It also remains to be determinedwhether TLR2- and/or TLR4-activated macrophages impairbeta cell insulin secretion in vivo in type 2 diabetes.

Recently published clinical studies support the initial ob-servation that IL-1 inhibition improves beta cell function andreduces HbA1c levels in humans with type 2 diabetes [42].These include industry-sponsored studies using IL-1β-specific antibodies [43–45] and a clinical study in non-diabetic individuals with the metabolic syndrome [46]. How-ever, one unpublished clinical trial using an IL-1β-specificantibody reported no effects on HbA1c [47]. Hyperglycaemiawas originally shown to induce human beta cell IL-1β ex-pression [48] but macrophages may represent an additionalcellular origin of IL-1β in type 2 diabetes [7, 8, 49]. In agree-ment with these studies, our data clearly show that TLR2 andTLR4 ligands induce islet IL1A and IL1BmRNA expression inislets and that macrophages are a major cellular source of IL-1βin response to these stimuli, despite only comprising a verysmall proportion of islet cells. Whether pancreatic beta cells arealso a cellular source of IL-1β in response to TLR2 and/orTLR4 ligands requires further investigation.

Overall, our findings are consistent with those recentlyreported by Eguchi and colleagues on the in vivo effects ofethyl palmitate on pancreatic beta cells, acting via macro-phages to reduce insulin gene expression [8]. However, incontrast to these findings [8], our present rodent beta cell dataand previous human beta cell data [26] do not support a role

TLR2/6 and TLR4 ligands

CCL2/IL-8

Infiltrating macrophages

Inflamed isletin type 2 diabetes

Insulin

IL-1/IL-6

TLR2/6

IL1a, IL1b

Macrophage

IL-8, TNF, CCl2

Beta cell

IL-8, CCL2

Non-beta cell

TLR2/6

Pancreaticislet

TLR4

TLR4TLR2/6?

Fig. 7 The role of macrophages in the regulation of islet cytokineexpression and beta cell function by TLR2/6 and TLR4 ligands. Inaddition to inducing islet IL1A/B mRNA expression via effects on isletresident macrophages, TLR2/6 increases chemokine secretion (CCL2 inmouse; IL-8 in humans) from beta cells, while TLR4 increases chemo-kine secretion mostly from non-beta cells (e.g. endothelial cells, alpha

cells) in islets. These chemokines attract circulating monocytes to islets,which when activated by TLR2/6 and/or TLR4 ligands reduce beta cellinsulin gene transcription and insulin secretion via IL-1 and IL-6, poten-tially contributing to beta cell dysfunction during type 2 diabetes. Basedon our findings and others’ [26]

1652 Diabetologia (2014) 57:1645–1654

Page 87: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

for TLR4-induced expression of the chemokines CCL2 andIL-8 in beta cells. This is consistent with the Tlr4 messagebeing undetectable in purified rat beta cells, while in MIN6beta cells we could not detectCd14 at the mRNA level. Whilewe did not analyse TLR4 signalling in purified mouse betacells, it is unlikely that a highly conserved receptor such asTLR4would show differences in beta cell expression betweenspecies. Thus, while islet TLR4 activation is undoubtedly ableto increase islet CCL2/IL-8 expression, we propose thatnon-beta cells (e.g. endothelial cells, alpha cells) areresponsible for this effect (Fig. 7). Tissue-specific dele-tion of TLR4 in vivo will ultimately be required todetermine the role of TLR4 signalling in islet inflam-mation in type 2 diabetes.

In contrast to LPS, TLR2/6 activation did increase Tnf andCcl2 mRNA in purified rat beta cells and MIN6 cells, andpreviously increased IL-8 expression in human beta cells [26].This suggests cell-type-specific expression of TLR2 vs TLR4in islets, with TLR2 expressed on beta cells, macrophages andpotentially non-beta cells, while TLR4 expression is mainlyconfined to non-beta cells and macrophages.

Our studies have important clinical implications. Inaddition to increased systemic TLR2 and TLR4 ligands,monocytes from individuals with type 2 diabetes showhyper-responsiveness to these ligands [50]. NeutralisingTLR2 and/or inhibiting TLR4 signalling was effective inreducing islet cytokine expression and reversing the effectsof these ligands on insulin gene expression. In addition,TAK-242 reversed the effects of TLR4-activated macro-phages on Ins1, Ins2 and Pdx1 gene expression. Theeffects of systemic TLR2 and/or TLR4 PAMPs andDAMPs on islet inflammation may be exacerbated whencombined with local inducers of islet inflammation such asislet amyloid deposits [34, 49], promoting end-stage betacell dysfunction and death in type 2 diabetes. While therelative contribution of TLR2/6 vs TLR4 activation to isletinflammation and beta cell function in type 2 diabetesremains to be determined, therapeutically targeting thesereceptors may improve hyperglycaemia in this disease.

Acknowledgements We thank L. Xu and M. Komba for technicalassistance provided by the CFRI FACS core and islet isolation corefacilities, respectively.

Funding This work was supported by funding from the Child andFamily Research Institute (JAE), the University of British Columbia(JAE), the Canadian Institutes of Health Research (PCN-110793 andPNI-120292; JAE), the European Research Council (KM), the DiabetesCompetence Network KKNDm supported by the Federal Ministry ofGermany (BMBF; KM), and a collaborative research agreement withServier (JAE, KM). JAE has salary support from a Child and FamilyResearch Institute Investigator Award and a Canadian Diabetes Associa-tion scholar award. DN is supported by a UBC Transplantation TrainingProgram and a CIHR-Vanier Canada Graduate Scholarship. CW-R issupported by a CIHR-Vanier Canada Graduate Scholarship.

Duality of interest CS-K and BG are employees of Servier, France. Allother authors declare that there is no duality of interest associated withtheir contribution to this manuscript.

Contribution statement DN, MD, WH, RK, AS, SR, CW-R, AC, MSdesigned and performed experiments, and analysed data. KM designedexperiments and CS-K and BG contributed to the conception and designof the study. All authors edited the manuscript and approved the finalversion. JAE supervised the study, designed and performed experiments,analysed data and wrote the manuscript. JAE is the guarantor of this workand, as such, had full access to all the data in the study and takesresponsibility for the integrity of the data and the accuracy of the dataanalysis.

References

1. Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabe-tes. J Clin Invest 115:1111–1119

2. Pickup JC, Crook MA (1998) Is type II diabetes mellitus a disease ofthe innate immune system? Diabetologia 41:1241–1248

3. Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatorydisease. Nat Rev Immunol 11:98–107

4. Ehses JA, Perren A, Eppler E et al (2007) Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 56:2356–2370

5. Richardson SJ, Willcox A, Bone AJ, Foulis AK, Morgan NG (2009)Islet-associated macrophages in type 2 diabetes. Diabetologia 52:1686–1688

6. Ehses JA, Lacraz G, GiroixMH et al (2009) IL-1 antagonism reduceshyperglycemia and tissue inflammation in the type 2 diabetic GK rat.Proc Natl Acad Sci U S A 106:13998–14003

7. Jourdan T, Godlewski G, Cinar R et al (2013) Activation of the Nlrp3inflammasome in infiltrating macrophages by endocannabinoids me-diates beta cell loss in type 2 diabetes. Nat Med 19:1132–1140

8. Eguchi K, Manabe I, Oishi-Tanaka Yet al (2012) Saturated fatty acidand TLR signaling link beta cell dysfunction and islet inflammation.Cell Metab 15:518–533

9. Homo-Delarche F, Calderari S, Irminger JC et al (2006) Islet inflam-mation and fibrosis in a spontaneous model of type 2 diabetes, theGK rat. Diabetes 55:1625–1633

10. Ehses JA, Meier DT, Wueest S et al (2010) Toll-like receptor 2-deficient mice are protected from insulin resistance and beta celldysfunction induced by a high-fat diet. Diabetologia 53:1795–1806

11. Dasu MR, Devaraj S, Park S, Jialal I (2010) Increased toll-likereceptor (TLR) activation and TLR ligands in recently diagnosedtype 2 diabetic subjects. Diabetes Care 33:861–868

12. Westwell-Roper C, Nackiewicz D, Dan M, Ehses JA (2014)Toll-like receptors and NLRP3 as central regulators of pancre-atic islet inflammation in type 2 diabetes. Immunol Cell Biol92:314–323

13. Creely SJ, McTernan PG, Kusminski CM et al (2007)Lipopolysaccharide activates an innate immune system re-sponse in human adipose tissue in obesity and type 2 diabetes.Am J Physiol Endocrinol Metab 292:E740–E747

14. Liang H, Hussey SE, Sanchez-Avila A, Tantiwong P, Musi N (2013)Effect of lipopolysaccharide on inflammation and insulin action inhuman muscle. PLoS One 8:e63983

15. Brun P, Castagliuolo I, Di Leo V et al (2007) Increased intestinalpermeability in obese mice: new evidence in the pathogenesis ofnonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol292:G518–G525

16. Cucak H, Grunnet LG, Rosendahl A (2014) Accumulation of M1-like macrophages in type 2 diabetic islets is followed by a systemicshift in macrophage polarization. J Leukoc Biol 95:149–160

Diabetologia (2014) 57:1645–1654 1653

Page 88: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

17. Cani PD, Amar J, Iglesias MA et al (2007) Metabolic endotoxemiainitiates obesity and insulin resistance. Diabetes 56:1761–1772

18. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS (2006)TLR4 links innate immunity and fatty acid-induced insulin resis-tance. J Clin Invest 116:3015–3025

19. TsukumoDM, Carvalho-FilhoMA, Carvalheira JB et al (2007) Loss-of-function mutation in Toll-like receptor 4 prevents diet-inducedobesity and insulin resistance. Diabetes 56:1986–1998

20. Kuo LH, Tsai PJ, JiangMJ et al (2011) Toll-like receptor 2 deficiencyimproves insulin sensitivity and hepatic insulin signalling in themouse. Diabetologia 54:168–179

21. Himes RW, Smith CW (2010) Tlr2 is critical for diet-inducedmetabolicsyndrome in a murine model. FASEB J 24:731–739

22. Poggi M, Bastelica D, Gual P et al (2007) C3H/HeJ mice carrying atoll-like receptor 4 mutation are protected against the development ofinsulin resistance inwhite adipose tissue in response to a high-fat diet.Diabetologia 50:1267–1276

23. Kim F, Pham M, Luttrell I et al (2007) Toll-like receptor-4 mediatesvascular inflammation and insulin resistance in diet-induced obesity.Circ Res 100:1589–1596

24. Vives-Pi M, Somoza N, Fernandez-Alvarez J et al (2003)Evidence of expression of endotoxin receptors CD14, toll-likereceptors TLR4 and TLR2 and associated molecule MD-2 andof sensitivity to endotoxin (LPS) in islet beta cells. Clin ExpImmunol 133:208–218

25. Wen L, Peng J, Li Z, Wong FS (2004) The effect of innate immunityon autoimmune diabetes and the expression of Toll-like receptors onpancreatic islets. J Immunol 172:3173–3180

26. Boni-Schnetzler M, Boller S, Debray S et al (2009) Free fatty acidsinduce a proinflammatory response in islets via the abundantlyexpressed interleukin-1 receptor I. Endocrinology 150:5218–5229

27. Amyot J, Semache M, Ferdaoussi M, Fontes G, Poitout V (2012)Lipopolysaccharides impair insulin gene expression in isolated isletsof Langerhans via Toll-like receptor-4 and NF-kappaB signalling.PLoS One 7:e36200

28. Gibson DL, Montero M, Ropeleski MJ et al (2010) Interleukin-11reduces TLR4-induced colitis in TLR2-deficient mice and restoresintestinal STAT3 signaling. Gastroenterology 139:1277–1288

29. Ii M, Matsunaga N, Hazeki K et al (2006) A novel cyclohexenederivat ive, ethyl (6R)-6-[N -(2-chloro-4-f luorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), selectivelyinhibits toll-like receptor 4-mediated cytokine productionthrough suppression of intracellular signaling. Mol Pharmacol69:1288–1295

30. Matsunaga N, Tsuchimori N, Matsumoto T, Ii M (2011) TAK-242(resatorvid), a small-molecule inhibitor of Toll-like receptor(TLR) 4 signaling, binds selectively to TLR4 and interfereswith interactions between TLR4 and its adaptor molecules. MolPharmacol 79:34–41

31. Takashima K, Matsunaga N, Yoshimatsu M et al (2009) Analysis ofbinding site for the novel small-molecule TLR4 signal transductioninhibitor TAK-242 and its therapeutic effect on mouse sepsis model.Br J Pharmacol 157:1250–1262

32. Westwell-Roper C, Dai DL, Soukhatcheva G et al (2011) IL-1blockade attenuates islet amyloid polypeptide-induced proinflamma-tory cytokine release and pancreatic islet graft dysfunction.J Immunol 187:2755–2765

33. Ribaux P, Ehses JA, Lin-Marq N et al (2007) Induction of CXCL1 byextracellular matrix and autocrine enhancement by IL-1 in rat pan-creatic β-cells. Endocrinology 148:5582–5590

34. Westwell-Roper CY, Ehses JA, Verchere CB (2014) Residentmacrophages mediate islet amyloid polypeptide-induced islet

IL-1beta production and beta cell dysfunction. Diabetes 63:1698–1711

35. Ellingsgaard H, Ehses JA, Hammar EB et al (2008) Interleukin-6regulates pancreatic alpha-cell mass expansion. Proc Natl Acad SciU S A 105:13163–13168

36. Calderon B, Suri A, Miller MJ, Unanue ER (2008) Dendritic cells inislets of Langerhans constitutively present beta cell-derived peptidesbound to their class II MHC molecules. Proc Natl Acad Sci U S A105:6121–6126

37. Yin N, Xu J, Ginhoux F et al (2012) Functional specialization of isletdendritic cell subsets. J Immunol 188:4921–4930

38. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expres-sion data using real-time quantitative PCR and the 2(-delta deltaC(T)) method. Methods 25:402–408

39. Igoillo-Esteve M, Marselli L, Cunha DA et al (2010) Palmitateinduces a pro-inflammatory response in human pancreatic islets thatmimics CCL2 expression by beta cells in type 2 diabetes.Diabetologia 53:1395–1405

40. Wadt KA, Larsen CM, Andersen HU, Nielsen K, Karlsen AE,Mandrup-Poulsen T (1998) Ciliary neurotrophic factor poten-tiates the beta-cell inhibitory effect of IL-1beta in rat pancre-atic islets associated with increased nitric oxide synthesis andincreased expression of inducible nitric oxide synthase.Diabetes 47:1602–1608

41. Novotny GW, Lundh M, Backe MB et al (2012) Transcriptional andtranslational regulation of cytokine signaling in inflammatorybeta-cell dysfunction and apoptosis. Arch Biochem Biophys528:171–184

42. Larsen CM, Faulenbach M, Vaag A et al (2007) Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 356:1517–1526

43. Rissanen A, Howard CP, Botha J, Thuren T, for the Global I (2012)Effect of anti-IL-1β antibody (canakinumab) on insulin secretionrates in impaired glucose tolerance or type 2 diabetes: results of arandomized, placebo-controlled trial. Diabetes ObesMetab 14:1088–1096

44. Sloan-Lancaster J, Abu-Raddad E, Polzer J et al (2013) Double-blind, randomized study evaluating the glycemic and anti-inflammatory effects of subcutaneous LY2189102, a neutralizingIL-1beta antibody, in patients with type 2 diabetes. Diabetes Care36:2239–2246

45. Cavelti-Weder C, Babians-Brunner A, Keller C et al (2012)Effects of gevokizumab on glycemia and inflammatory markersin type 2 diabetes. Diabetes Care 35:1654–1662

46. van Asseldonk EJ, Stienstra R, Koenen TB et al (2010) The effect ofthe interleukin-1 cytokine family members IL-1F6 and IL-1F8 onadipocyte differentiation. Obesity 18:2234–2236

47. Xoma Ltd (2011) XOMA 052 Phase 2b top line results: glucosecontrol not demonstrated, positive anti-inflammatory effect, cardio-vascular biomarker and lipid improvement and safety confirmed.Available from http://investors.xoma.com/releasedetail.cfm?ReleaseID=559470

48. Maedler K, Sergeev P, Ris F et al (2002) Glucose-induced beta cellproduction of IL-1beta contributes to glucotoxicity in human pancre-atic islets. J Clin Invest 110:851–860

49. Masters SL, Dunne A, Subramanian SL et al (2010) Activation of theNLRP3 inflammasome by islet amyloid polypeptide provides amechanism for enhanced IL-1beta in type 2 diabetes. Nat Immunol11:897–904

50. Lee HM, Kim JJ, Kim HJ, Shong M, Ku BJ, Jo EK (2013)Upregulated NLRP3 inflammasome activation in patients withtype 2 diabetes. Diabetes 62:194–204

1654 Diabetologia (2014) 57:1645–1654

Page 89: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

1

Electronic supplementary material (ESM)

ESM Fig. 1 Dose response of Pam2CSK4 (a) and LPS (b) on cytokine expression in

mouse islets. Islets were stimulated for 6h with the indicated concentrations of

Pam2CSK4 (a) (white bars, 0.1 ng/ml; light grey bars, 1 ng/ml; dark grey bars, 10 ng/ml;

black bars, 100 ng/ml) and LPS (b) (white bars, 10 ng/ml; dark grey bars, 100 ng/ml;

black bars, 1 μg/ml). * Represents p<0.05 vs untreated control as tested by ANOVA

using Dunnett’s post-hoc test. Data represent mean ± SEM from n=3-8 mice performed in

at least three independent experiments.

Page 90: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

2

ESM Fig. 2 Specificity of Pam2CSK4 for TLR2 and LPS for TLR4 in mouse islets. (a-d)

Islets from WT (black bars), Tlr2-/- (white bars), and Tlr4-/- (grey bars) mice were

stimulated with Pam2CSK4 (a, c) or LPS (b, d). (e-f) Islets from WT were stimulated

with Pam2CSK4 (e) (black bars) or LPS (f) (black bars) in the presence of (e) a TLR2

neutralizing antibody (white bars) or TAK-242 (f) (white bars). * Represents p<0.05,

**p<0.01 vs WT or treatment control as tested by Student’s t-test. Data represent mean ±

SEM from n=3-8 mice performed in at least three independent experiments.

Page 91: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

3

ESM Fig. 3 Gating strategy for flow cytometry sorting of islet F4/80+Cd11b+Cd11c+ and

F4/80-Cd11b-Cd11c- cells. (a-c) Islets were dispersed and sorted by flow cytometry.

Events were gated to exclude dead cells (a), debris (b), and doublets (c).

Page 92: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

4

ESM Fig. 4 Il1a, Il1b, and Il6 mRNA expression following TLR2 or TLR4 activation in

purified rat beta cells. Rat purified beta cells were treated with Pam2CSK4 (black bars)

or LPS (grey bars) for the indicated time followed by qPCR for Il1a (a), Il1b (b), and Il6

(c) mRNA expression. White bars, control. Data represent n=3 independent experiments.

Page 93: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

5

ESM Fig. 5 TLR2/6 and TLR4 activation increase beta cell apoptosis. Mouse islets were

treated for 24h with 100 ng/ml Pam2CSK4 (Pam2) or 1 μg/ml LPS. (a) TUNEL+ beta

cells were quantified in images obtained from a BX61 microscope (representative images

shown in b). 0.33% ± 0.09% (n=4) TUNEL+ beta cells were detected under control

conditions. An average of 4700 ± 760 beta cells were counted per experimental condition

per experiment. Data represent mean ± SEM from n=3-4 mice performed in at least three

independent experiments.

Page 94: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 95: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 96: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 97: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

per se

Page 98: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 99: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 100: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

TLR4 as key player in inflammation in metabolic disease.

Page 101: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

TLR4 and -cell failure.

Page 102: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Cytokines, chemokines and -cell failure.

in vitro

Page 103: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 104: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Escherichia coli

IL1b IL6 TNF CCL2 IL8 CD68

ITGAM TLR4PPIA

Page 105: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 106: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 107: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 108: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

1. Nolan, C.J., Damm, P. & Prentki, M. Type 2 diabetes across generations: from pathophysiology

to prevention and management. 378, 169 181 (2011).

2. Herder, C. Low grade inflammation, obesity, and insulin resistance in adolescents.

92, 4569 4574 (2007).

3. Koenig, W. Increased concentrations of C reactive protein and IL 6 but not IL 18 are

independently associated with incident coronary events in middle aged men and women:

results from the MONICA/KORA Augsburg case cohort study, 1984 2002.

26, 2745 2751 (2006).

4. Donath, M.Y. Inflammation as a sensor of metabolic stress in obesity and type 2 diabetes.

152, 4005 4006 (2011).

5. Donath, M.Y. & Shoelson, S.E. Type 2 diabetes as an inflammatory disease.

11, 98 107 (2011).

6. Donath, M.Y., Storling, J., Maedler, K. & Mandrup Poulsen, T. Inflammatory mediators and islet

beta cell failure: a link between type 1 and type 2 diabetes. 81, 455 470 (2003).

7. Wellen, K.E. & Hotamisligil, G.S. Inflammation, stress, and diabetes.

115, 1111 1119 (2005).

8. Donath, M.Y., Dalmas, E., Sauter, N.S. & Boni Schnetzler, M. Inflammation in obesity and

diabetes: islet dysfunction and therapeutic opportunity. 17, 860 872 (2013).

9. Weir, G.C. & Bonner Weir, S. Five stages of evolving beta cell dysfunction during progression to

diabetes. 53 Suppl 3, S16 21 (2004).

10. Meyer, A. Manganese mediated MRI signals correlate with functional beta cell mass

during diabetes progression. 64, 2138 2147 (2015).

11. Schulthess, F.T. CXCL10 impairs beta cell function and viability in diabetes through TLR4

signaling. 9, 125 139 (2009).

12. Sahin, H. Proapoptotic effects of the chemokine, CXCL 10 are mediated by the

noncognate receptor TLR4 in hepatocytes. 57, 797 805 (2013).

13. Pal, D. Fetuin A acts as an endogenous ligand of TLR4 to promote lipid induced insulin

resistance. 18, 1279 1285 (2012).

14. Creely, S.J. Lipopolysaccharide activates an innate immune system response in human

adipose tissue in obesity and type 2 diabetes.

292, E740 747 (2007).

15. Dasu, M.R., Devaraj, S., Park, S. & Jialal, I. Increased toll like receptor (TLR) activation and TLR

ligands in recently diagnosed type 2 diabetic subjects. 33, 861 868 (2010).

16. Shi, H. TLR4 links innate immunity and fatty acid induced insulin resistance.

116, 3015 3025 (2006).

17. Mehta, N.N. Experimental endotoxemia induces adipose inflammation and insulin

resistance in humans. 59, 172 181 (2010).

18. Sartorius, T. Toll like receptors 2 and 4 impair insulin mediated brain activity by

interleukin 6 and osteopontin and alter sleep architecture. 26, 1799 1809 (2012).

19. Kim, F. Toll like receptor 4 mediates vascular inflammation and insulin resistance in

diet induced obesity. 100, 1589 1596 (2007).

20. Saberi, M. Hematopoietic cell specific deletion of toll like receptor 4 ameliorates hepatic

and adipose tissue insulin resistance in high fat fed mice. 10, 419 429 (2009).

Page 109: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

21. Poggi, M. C3H/HeJ mice carrying a toll like receptor 4 mutation are protected against

the development of insulin resistance in white adipose tissue in response to a high fat diet.

50, 1267 1276 (2007).

22. Zhang, N. Pharmacological TLR4 Inhibition Protects against Acute and Chronic

Fat Induced Insulin Resistance in Rats. 10, e0132575 (2015).

23. Vives Pi, M. Evidence of expression of endotoxin receptors CD14, toll like receptors TLR4

and TLR2 and associated molecule MD 2 and of sensitivity to endotoxin (LPS) in islet beta cells.

133, 208 218 (2003).

24. Osterbye, T. A subset of human pancreatic beta cells express functional CD14 receptors:

a signaling pathway for beta cell related glycolipids, sulfatide and beta galactosylceramide.

26, 656 667 (2010).

25. Amyot, J., Semache, M., Ferdaoussi, M., Fontes, G. & Poitout, V. Lipopolysaccharides impair

insulin gene expression in isolated islets of Langerhans via Toll Like Receptor 4 and NF kappaB

signalling. 7, e36200 (2012).

26. Garay Malpartida, H.M. Toll like receptor 4 (TLR4) expression in human and murine

pancreatic beta cells affects cell viability and insulin homeostasis. 12, 18

(2011).

27. Nackiewicz, D. TLR2/6 and TLR4 activated macrophages contribute to islet inflammation

and impair beta cell insulin gene expression via IL 1 and IL 6. 57, 1645 1654

(2014).

28. Ris, F. Impact of integrin matrix matching and inhibition of apoptosis on the survival of

purified human beta cells in vitro. 45, 841 850 (2002).

29. Ii, M. A novel cyclohexene derivative, ethyl

(6R) 6 [N (2 Chloro 4 fluorophenyl)sulfamoyl]cyclohex 1 ene 1 carboxylate (TAK 242),

selectively inhibits toll like receptor 4 mediated cytokine production through suppression of

intracellular signaling. 69, 1288 1295 (2006).

30. Takashima, K. Analysis of binding site for the novel small molecule TLR4 signal

transduction inhibitor TAK 242 and its therapeutic effect on mouse sepsis model.

157, 1250 1262 (2009).

31. Matsunaga, N., Tsuchimori, N., Matsumoto, T. & Ii, M. TAK 242 (resatorvid), a small molecule

inhibitor of Toll like receptor (TLR) 4 signaling, binds selectively to TLR4 and interferes with

interactions between TLR4 and its adaptor molecules. 79, 34 41 (2011).

32. Vivot, K. Pro inflammatory and pro oxidant status of pancreatic islet in vitro is controlled

by TLR 4 and HO 1 pathways. 9, e107656 (2014).

33. Sporeno, E. Human interleukin 6 receptor super antagonists with high potency and wide

spectrum on multiple myeloma cells. 87, 4510 4519 (1996).

34. Boni Schnetzler, M. Increased interleukin (IL) 1beta messenger ribonucleic acid

expression in beta cells of individuals with type 2 diabetes and regulation of IL 1beta in

human islets by glucose and autostimulation. 93, 4065 4074 (2008).

35. Ehses, J.A. Increased number of islet associated macrophages in type 2 diabetes.

56, 2356 2370 (2007).

36. Gerszten, R.E. MCP 1 and IL 8 trigger firm adhesion of monocytes to vascular

endothelium under flow conditions. 398, 718 723 (1999).

37. Youm, Y.H. Elimination of the NLRP3 ASC inflammasome protects against chronic

Page 110: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

obesity induced pancreatic damage. 152, 4039 4045 (2011).

38. O'Connor, J.C. IL 1beta mediated innate immunity is amplified in the db/db mouse

model of type 2 diabetes. 174, 4991 4997 (2005).

39. Maedler, K. Glucose induced beta cell production of interleukin 1beta contributes to

glucotoxicity in human pancreatic islets. 110, 851 860 (2002).

40. Igoillo Esteve, M. Palmitate induces a pro inflammatory response in human pancreatic

islets that mimics CCL2 expression by beta cells in type 2 diabetes. 53, 1395 1405

(2010).

41. Suganami, T. Attenuation of obesity induced adipose tissue inflammation in C3H/HeJ

mice carrying a Toll like receptor 4 mutation.

354, 45 49 (2007).

42. Kim, S.J., Choi, Y., Choi, Y.H. & Park, T. Obesity activates toll like receptor mediated

proinflammatory signaling cascades in the adipose tissue of mice.

23, 113 122 (2012).

43. Song, M.J., Kim, K.H., Yoon, J.M. & Kim, J.B. Activation of Toll like receptor 4 is associated with

insulin resistance in adipocytes. 346,

739 745 (2006).

44. Catalan, V. Increased tenascin C and Toll like receptor 4 levels in visceral adipose tissue

as a link between inflammation and extracellular matrix remodeling in obesity.

97, E1880 1889 (2012).

45. Reyna, S.M. Elevated toll like receptor 4 expression and signaling in muscle from

insulin resistant subjects. 57, 2595 2602 (2008).

46. Cucak, H. Macrophage contact dependent and independent TLR4 mechanisms induce

beta cell dysfunction and apoptosis in a mouse model of type 2 diabetes. 9, e90685

(2014).

47. Chang, W.W., Zhang, L., Jin, Y.L. & Yao, Y.S. Toll like receptor 4 gene Asp299Gly and Thr399Ile

polymorphisms in type 2 diabetes mellitus: A meta analysis of 15,059 subjects: Need for

clarification of data in a recent meta analysis. 110, e31 32 (2015).

48. Yin, Y.W., Wang, Q., Sun, Q.Q., Hu, A.M. & Liu, H.L. Toll like receptor 4 gene Asp299Gly and

Thr399Ile polymorphisms in type 2 diabetes mellitus: a meta analysis of 15,059 subjects.

107, 338 347 (2015).

49. Belforte, F.S., Coluccio Leskow, F., Poskus, E. & Penas Steinhardt, A. Toll like receptor 4 D299G

polymorphism in metabolic disorders: a meta analysis. 40, 3015 3020 (2013).

50. Cani, P.D. Changes in gut microbiota control metabolic endotoxemia induced

inflammation in high fat diet induced obesity and diabetes in mice. 57, 1470 1481

(2008).

51. Cani, P.D., Delzenne, N.M., Amar, J. & Burcelin, R. Role of gut microflora in the development of

obesity and insulin resistance following high fat diet feeding. 56, 305 309

(2008).

52. Hwang, D. Modulation of the expression of cyclooxygenase 2 by fatty acids mediated through

toll like receptor 4 derived signaling pathways.

15, 2556 2564 (2001).

53. Lee, J.Y., Sohn, K.H., Rhee, S.H. & Hwang, D. Saturated fatty acids, but not unsaturated fatty

acids, induce the expression of cyclooxygenase 2 mediated through Toll like receptor 4.

Page 111: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

276, 16683 16689 (2001).

54. Nguyen, M.T. A subpopulation of macrophages infiltrates hypertrophic adipose tissue

and is activated by free fatty acids via Toll like receptors 2 and 4 and JNK dependent pathways.

282, 35279 35292 (2007).

55. Hwang, D.H., Kim, J.A. & Lee, J.Y. Mechanisms for the activation of Toll like receptor 2/4 by

saturated fatty acids and inhibition by docosahexaenoic acid.

785, 24 35 (2016).

56. Herder, C. Chemokines as risk factors for type 2 diabetes: results from the

MONICA/KORA Augsburg study, 1984 2002. 49, 921 929 (2006).

57. Eguchi, K. Saturated fatty acid and TLR signaling link beta cell dysfunction and islet

inflammation. 15, 518 533 (2012).

58. Kiely, A., Robinson, A., McClenaghan, N.H., Flatt, P.R. & Newsholme, P. Toll like receptor agonist

induced changes in clonal rat BRIN BD11 beta cell insulin secretion and signal transduction.

202, 365 373 (2009).

59. Westwell Roper, C.Y., Ehses, J.A. & Verchere, C.B. Resident macrophages mediate islet amyloid

polypeptide induced islet IL 1beta production and beta cell dysfunction. 63,

1698 1711 (2014).

60. Del Rey, A. & Besedovsky, H.O. Metabolic and neuroendocrine effects of pro inflammatory

cytokines. 22 Suppl 1, 10 15 (1992).

61. Maedler, K. Low Concentration of Interleukin 1{beta} Induces FLICE Inhibitory

Protein Mediated {beta} Cell Proliferation in Human Pancreatic Islets. 55, 2713 2722

(2006).

62. Timper, K. Glucose Dependent Insulinotropic Peptide Stimulates Glucagon Like Peptide 1

Production by Pancreatic Islets via Interleukin 6, Produced by alpha Cells.

151, 165 179 (2016).

63. Ellingsgaard, H. Interleukin 6 enhances insulin secretion by increasing glucagon like

peptide 1 secretion from L cells and alpha cells. 17, 1481 1489 (2011).

64. Eizirik, D.L. & Mandrup Poulsen, T. A choice of death the signal transduction of

immune mediated beta cell apoptosis. 44, 2115 2133 (2001).

65. Eizirik, D.L. Cytokines suppress human islet function irrespective of their effects on nitric

oxide generation. 93, 1968 1974 (1994).

66. Donath, M.Y. Targeting inflammation in the treatment of type 2 diabetes: time to start.

13, 465 476 (2014).

67. Herder, C., Dalmas, E., Boni Schnetzler, M. & Donath, M.Y. The IL 1 Pathway in Type 2 Diabetes

and Cardiovascular Complications. 26, 551 563 (2015).

68. Donath, M.Y. Multiple benefits of targeting inflammation in the treatment of type 2 diabetes.

59, 679 682 (2016).

69. Stienstra, R. The inflammasome mediated caspase 1 activation controls adipocyte

differentiation and insulin sensitivity. 12, 593 605 (2010).

70. Sun, X.J. Deletion of interleukin 1 receptor associated kinase 1 (IRAK1) improves glucose

tolerance primarily by increasing insulin sensitivity in skeletal muscle. (2017).

71. Lazar, M.A. How obesity causes diabetes: not a tall tale. 307, 373 375 (2005).

72. Ellingsgaard, H. Interleukin 6 regulates pancreatic alpha cell mass expansion.

105, 13163 13168 (2008).

Page 112: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

73. Weisberg, S.P. CCR2 modulates inflammatory and metabolic effects of high fat feeding.

116, 115 124 (2006).

74. Keane, K.N., Cruzat, V.F., Carlessi, R., de Bittencourt, P.I., Jr. & Newsholme, P. Molecular Events

Linking Oxidative Stress and Inflammation to Insulin Resistance and beta Cell Dysfunction.

2015, 181643 (2015).

75. Wali, J.A., Masters, S.L. & Thomas, H.E. Linking metabolic abnormalities to apoptotic pathways

in Beta cells in type 2 diabetes. 2, 266 283 (2013).

76. Scholtes, V.P. Toll like receptor 2 and 4 stimulation elicits an enhanced inflammatory

response in human obese patients with atherosclerosis. 121, 205 214 (2011).

77. Huang, S. Saturated fatty acids activate TLR mediated proinflammatory signaling

pathways. 53, 2002 2013 (2012).

78. Snodgrass, R.G. Hypoxia Potentiates Palmitate induced Pro inflammatory Activation of

Primary Human Macrophages. 291, 413 424 (2016).

79. Shu, L. TCF7L2 promotes beta cell regeneration in human and mouse pancreas.

55, 3296 3307 (2012).

80. Ardestani, A. MST1 is a key regulator of beta cell apoptosis and dysfunction in diabetes.

20, 385 397 (2014).

81. Zhao, G., Dharmadhikari, G., Maedler, K. & Meyer Hermann, M. Possible role of

interleukin 1beta in type 2 diabetes onset and implications for anti inflammatory therapy

strategies. 10, e1003798 (2014).

82. Sauter, N.S., Schulthess, F.T., Galasso, R., Castellani, L.W. & Maedler, K. The antiinflammatory

cytokine interleukin 1 receptor antagonist protects from high fat diet induced hyperglycemia.

149, 2208 2218 (2008).

83. Repnik, U., Knezevic, M. & Jeras, M. Simple and cost effective isolation of monocytes from

buffy coats. 278, 283 292 (2003).

Page 113: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 114: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 115: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

IL1b IL6 IL8 TNF CCL2

Page 116: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

IL1b IL6 IL8 TNF CCL2

Page 117: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 118: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 119: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

IL1b IL6 IL8 TNF CCL2

CD68 CD11b TLR4

Page 120: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 121: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 122: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 123: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 124: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 125: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 126: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 127: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 128: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Tlr4

)

RNAlater

Page 129: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Ppia Actb Il1bIl6 Tnf Ccl2 Il4

Il10 Tgfb Cd68Emr1 Itgam Itgax

Nos2 Mrc1 Arg1

Page 130: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Tlr4

Tlr4

Tlr4

Tlr4in vitro

Tlr4

Tlr4

Tlr4

Page 131: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Il1b Il1b Ccl2 Mcp1Tnf Il1b Il6 Ccl2 Tnf Ccl2 Il1b Ccl2Il1b

Il6 Ccl2 Tnf

Il1b Il6 Ccl2

Il10 Tgfb Il4Tgfb

Il4Il4

Il6 TnfTlr4

Il10Il4

Cd68 Emr1 Cd11b Itgam Cd11c

Page 132: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Itgax Nos2 Cd206 Mrc1Arg1

ItgaxMrc1

Arg1

Cd6 8Emr1 Itgax

Itgax Mrc1 Arg1

Page 133: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

in vivo

ex vivoper se

in vivo

in vitroIn

vivo

Page 134: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

per se

per se

Il-1b Ccl2Cd68

in vivo in vitro,

Itgax Tnf

Page 135: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 136: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

et alTlr4-/-

in vivo ex vivo

Page 137: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Tlr4-/-

Tlr4-/-

Tlr4-/-

Tlr4-/-

Tlr4-/-

in vitro

Tlr4-/-

Page 138: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Tlr4-/-

Tlr4-/-

Tlr4-/-

Tlr4-/-

Tlr4-/-

Tlr4-/-

Tlr4-/-

Tlr4-/-

Tlr4-/-

Tlr4-/-

Page 139: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

1. Wellen, K.E. and G.S. Hotamisligil, J Clin Invest, 2005. 115(5): p. 1111 9.

2. Donath, M.Y. and S.E. Shoelson, Nat Rev Immunol, 2011. 11(2): p.

98 107.

3. Osborn, O. and J.M. Olefsky,

Nat Med, 2012. 18(3): p. 363 74.

4. Hill, A.A., W. Reid Bolus, and A.H. Hasty, Immunol Rev,

2014. 262(1): p. 134 52.

5. Kraakman, M.J., et al.,

Front Immunol, 2014. 5: p. 470.

6. Morris, D.L., Mol Endocrinol,

2015. 29(7): p. 946 62.

7. Shi, H., et al., J Clin Invest, 2006. 116(11): p.

3015 25.

8. Mehta, N.N., et al.,

Diabetes, 2010. 59(1): p. 172 81.

9. Orr, J.S., et al.,

Diabetes, 2012. 61(11): p. 2718 27.

10. Amyot, J., et al.,

PLoS One, 2012. 7(4): p. e36200.

11. Saberi, M., et al.,

Cell Metab, 2009. 10(5): p. 419 29.

12. Jia, L., et al., Nat

Commun, 2014. 5: p. 3878.

13. Nackiewicz, D., et al.,

Diabetologia, 2014. 57(8): p. 1645 54.

14. Li, J., et al., Acta Biochim Biophys Sin

(Shanghai), 2013. 45(12): p. 1030 8.

15. Creely, S.J., et al.,

Am J Physiol Endocrinol Metab, 2007. 292(3): p. E740 7.

16. Dasu, M.R., et al.,

Diabetes Care, 2010. 33(4): p. 861 8.

17. Herder, C., et al.,

Diabetologia, 2006. 49(5): p. 921 9.

18. Schulthess, F.T., et al., Cell

Metab, 2009. 9(2): p. 125 39.

19. Hwang, D.,

FASEB J, 2001. 15(14): p. 2556 64.

20. Lee, J.Y., et al.,

J Biol Chem, 2001. 276(20): p. 16683 9.

21. Nguyen, M.T., et al.,

J Biol Chem, 2007. 282(48): p.

35279 92.

Page 140: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

22. Pal, D., et al., Nat Med,

2012. 18(8): p. 1279 85.

23. Brix, J.M., et al., J Clin

Endocrinol Metab, 2010. 95(11): p. 4877 81.

24. Stefan, N., et al.,

PLoS One, 2014. 9(3): p. e92238.

25. Cani, P.D., et al.,

Diabetes, 2008. 57(6): p. 1470 81.

26. Cani, P.D., et al.,

Pathol Biol (Paris), 2008. 56(5): p. 305 9.

27. Kuwabara, T., et al.,

Clin Exp Nephrol, 2014. 18(4): p. 584 92.

28. Meneilly, G.S. and D. Tessier, J Gerontol A Biol Sci Med Sci, 2001. 56(1): p. M5 13.

29. Almaca, J., et al., Proc Natl Acad Sci U S A, 2014. 111(49):

p. 17612 7.

30. Horrillo, D., et al., Arch

Physiol Biochem, 2011. 117(3): p. 140 50.

31. Yang, T., et al.,

Diabetologia, 2015. 58(7): p. 1610 20.

32. Lumeng, C.N., et al.,

J Immunol, 2011. 187(12): p. 6208 16.

33. Lin, L., et al., Aging (Albany NY), 2016. 8(1): p.

178 91.

34. Xiong, Y., et al.,

Diabetes, 2017.

35. Johnson, G.B., B.L. Riggs, and J.L. Platt,

FASEB J, 2004. 18(11): p. 1282 4.

36. Salvioli, S., et al.,

Curr Pharm Des, 2006. 12(24): p. 3161 71.

37. Coutinho, A., et al., Eur J Immunol,

1977. 7(5): p. 325 8.

38. Surwit, R.S., et al.,

Metabolism, 1995. 44(5): p. 645 51.

39. Ardestani, A., et al., Nat Med, 2014.

20(4): p. 385 97.

40. Meyer, A., et al.,

Diabetes, 2015. 64(6): p. 2138 47.

41. Fink, L.N., et al.,

Obesity (Silver Spring), 2014. 22(3): p. 747 57.

42. Han, M.S., et al.,

Science, 2013. 339(6116): p. 218 22.

43. Odegaard, J.I., et al.,

Nature, 2007. 447(7148): p. 1116 20.

44. Odegaard, J.I., et al.,

Page 141: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Cell Metab, 2008. 7(6): p. 496 507.

45. Sauter, N.S., et al.,

Endocrinology, 2008. 149(5): p. 2208 18.

46. Maedler, K., et al.,

Diabetes, 2006. 55(9): p. 2455 62.

47. Tschen, S.I., et al.,

Diabetes, 2009. 58(6): p. 1312 20.

48. Aguayo Mazzucato, C., et al.,

Cell Metab, 2017. 25(4): p. 898 910 e5.

49. Wang, S.Y., P.A. Halban, and J.W. Rowe,

J Clin Invest, 1988. 81(1): p. 176 84.

50. Reers, C., et al., Eur J Endocrinol, 2009. 160(2): p.

185 91.

51. Dhawan, S., S.I. Tschen, and A. Bhushan,

Genes Dev, 2009. 23(8): p. 906 11.

52. Chen, H., et al.,

Genes Dev, 2009. 23(8): p. 975 85.

53. Ferrucci, L., et al., Blood, 2005. 105(6): p. 2294 9.

54. Pedersen, M., et al.,

Mech Ageing Dev, 2003. 124(4): p. 495 502.

55. Mahbub, S., C.R. Deburghgraeve, and E.J. Kovacs, J Interferon

Cytokine Res, 2012. 32(1): p. 18 26.

56. Jackaman, C., et al.,

Aging Cell, 2013. 12(3): p. 345 57.

57. Bouzakri, K., P. Ribaux, and P.A. Halban,

J Biol Chem, 2009. 284(41): p. 27892 8.

58. Donath, M.Y., Nat Rev Drug Discov, 2014.

13(6): p. 465 76.

59. Nyugen, J., et al., J Clin

Immunol, 2010. 30(6): p. 806 13.

60. Plowden, J., et al., Aging Cell, 2004. 3(4): p. 161 7.

61. Seidler, S., et al.,

BMC Immunol, 2010. 11: p. 30.

62. van Duin, D., et al., J Immunol, 2007. 178(2): p. 970 5.

63. van Duin, D. and A.C. Shaw, J Am Geriatr Soc, 2007. 55(9): p. 1438 44.

64. Olefsky, J.M. and C.K. Glass, Annu Rev Physiol, 2010. 72: p.

219 46.

65. Lumeng, C.N., J.L. Bodzin, and A.R. Saltiel,

J Clin Invest, 2007. 117(1): p. 175 84.

66. Lumeng, C.N., et al.,

Diabetes, 2007. 56(1): p. 16 23.

67. Mauer, J., et al.,

Page 142: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Nat Immunol, 2014. 15(5): p. 423 30.

68. Ka, S.O., et al., J

Endocrinol, 2015. 224(2): p. 109 18.

69. Cucak, H., L.G. Grunnet, and A. Rosendahl,

J Leukoc Biol, 2014. 95(1): p. 149 60.

70. Eguchi, K., et al., Cell

Metab, 2012. 15(4): p. 518 33.

71. Poggi, M., et al.,

Diabetologia, 2007. 50(6): p. 1267 76.

72. Suganami, T., et al.,

Biochem Biophys Res Commun, 2007. 354(1): p. 45 9.

73. Davis, J.E., et al., Obesity

(Silver Spring), 2008. 16(6): p. 1248 55.

74. Cucak, H., et al.,

PLoS One, 2014. 9(3): p. e90685.

Page 143: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 144: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 145: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Il10

Tnf

Ccl2 Tgf Il10

Il6

Tgf

Il6Il1 Tnf

Ccl2

Il1

Il1 Il6 Tnf

Ccl2 Il10

Page 146: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Cd68 Emr1 Itgam

Mrc1 Arg1Itgax

Cd68 Emr1 Itgam

Mrc1 Arg1Itgax

Cd68 Emr1

Mrc1 Arg1Itgax

Page 147: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Il4

Page 148: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 149: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

in vivo

Page 150: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

in vitro in vivo

Page 151: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 152: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

db/db

Page 153: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 154: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

in vivo

ex vivoper se

in vivo

in vitroIn

vivo

Page 155: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

per se

Il1b Ccl2

Page 156: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

Cd68

in vivo in vitro ,

Itgax Tnf

db/db

Page 157: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

et al

Tlr4-/-

Page 158: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj
Page 159: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

in vivo

1. Pal, D., et al.,Nat Med, 2012. 18(8): p. 1279 85.

2. Poggi, M., et al.,

Diabetologia, 2007. 50(6): p. 1267 76.

3. Saberi, M., et al.,Cell Metab, 2009. 10(5):

p. 419 29.

4. Shi, H., et al., J ClinInvest, 2006. 116(11): p. 3015 25.

5. Suganami, T., et al.,Biochem Biophys Res Commun,

2007. 354(1): p. 45 9.

6. Kim, S.J., et al.,J Nutr Biochem, 2012. 23(2): p. 113 22.

7. Song, M.J., et al.,Biochem Biophys Res Commun, 2006. 346(3): p. 739 45.

8. Catalan, V., et al.,J

Clin Endocrinol Metab, 2012. 97(10): p. E1880 9.

Page 160: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

9. Reyna, S.M., et al.,Diabetes, 2008. 57(10): p. 2595 602.

10. Cucak, H., et al.,PLoS One,

2014. 9(3): p. e90685.

11. Schulthess, F.T., et al.,Cell Metab, 2009. 9(2): p. 125 39.

12. Dasu, M.R., et al.,Diabetes Care, 2010. 33(4): p. 861 8.

13. Cani, P.D., et al.,Diabetes, 2008. 57(6):

p. 1470 81.

14. Cani, P.D., et al.,Pathol Biol (Paris), 2008. 56(5): p. 305 9.

15. Hwang, D.,FASEB J, 2001. 15(14): p. 2556 64.

16. Lee, J.Y., et al.,J Biol Chem, 2001.

276(20): p. 16683 9.

17. Nguyen, M.T., et al.,

J Biol Chem, 2007. 282(48): p. 35279 92.

18. Hwang, D.H., J.A. Kim, and J.Y. Lee,Eur J Pharmacol, 2016.

785: p. 24 35.

19. Trepanowski, J.F., J. Mey, and K.A. Varady,Int J Obes (Lond), 2015. 39(5): p. 734 41.

20. Herder, C., et al.,Diabetologia, 2006. 49(5): p. 921 9.

21. Vives Pi, M., et al.,

Clin Exp Immunol, 2003. 133(2): p. 208 18.

22. Osterbye, T., et al.,

Diabetes Metab Res Rev, 2010. 26(8): p. 656 67.

23. Amyot, J., et al.,PLoS One, 2012. 7(4): p.

e36200.

24. Nackiewicz, D., et al.,Diabetologia,

2014. 57(8): p. 1645 54.

Page 161: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

25. Eguchi, K., et al.,Cell Metab, 2012. 15(4): p. 518 33.

26. Kiely, A., et al.,J Endocrinol, 2009. 202(3): p. 365 73.

27. Garay Malpartida, H.M., et al.,BMC Immunol, 2011.

12: p. 18.

28. Mandrup Poulsen, T., et al.,Diabetologia, 1986. 29(1): p. 63 7.

29. Eizirik, D.L. and T. Mandrup Poulsen,Diabetologia, 2001. 44(12): p. 2115 33.

30. Donath, M.Y.,Nat Rev Drug Discov, 2014. 13(6): p. 465 76.

31. Herder, C., et al.,Trends Endocrinol Metab, 2015. 26(10): p. 551 63.

32. Donath, M.Y.,Diabetologia, 2016. 59(4): p. 679 82.

33. Stienstra, R., et al.,Cell Metab, 2010. 12(6): p. 593 605.

34. Sun, X.J., et al.,J Biol Chem,

2017.

35. Lazar, M.A., Science, 2005. 307(5708): p.373 5.

36. Spranger, J., et al.,

Diabetes, 2003. 52(3): p. 812 7.

37. Campbell, I.L., et al.,J Immunol, 1989. 143(4): p. 1188 91.

38. Timper, K., et al.,

Gastroenterology, 2016. 151(1): p. 165 79.

39. Choi, S.E., et al.,Transpl Immunol, 2004.

13(1): p. 43 53.

40. Paula, F.M., et al.,FASEB J, 2015. 29(5): p. 1805 16.

41. Ellingsgaard, H., et al.,Nat Med, 2011. 17(11): p. 1481 9.

Page 162: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

42. Ellingsgaard, H., et al., ProcNatl Acad Sci U S A, 2008. 105(35): p. 13163 8.

43. Wadt, K.A., et al.,

Diabetes, 1998. 47(10): p. 1602 8.

44. Kristiansen, O.P. and T. Mandrup Poulsen,Diabetes, 2005. 54 Suppl 2: p. S114 24.

45. Shi, C. and E.G. Pamer, Nat RevImmunol, 2011. 11(11): p. 762 74.

46. Wynn, T.A., A. Chawla, and J.W. Pollard,Nature, 2013. 496(7446): p. 445 55.

47. Weisberg, S.P., et al.,J Clin Invest, 2006. 116(1): p. 115 24.

48. Ehses, J.A., et al.,Diabetes, 2007. 56(9): p. 2356 70.

49. Scholtes, V.P., et al.,Clin Sci (Lond),

2011. 121(5): p. 205 14.

50. Lackey, D.E. and J.M. Olefsky,Nat Rev Endocrinol, 2016. 12(1): p. 15 28.

51. Hume, D.A., et al.,

J Exp Med, 1983. 158(5): p. 1522 36.

52. Homo Delarche, F., et al.,Diabetes, 2006. 55(6): p. 1625 33.

53. Richardson, S.J., et al., Diabetologia,2009. 52(8): p. 1686 8.

54. Kamata, K., et al.,Amyloid, 2014. 21(3): p. 191 201.

55. Ehses, J.A., et al.,Proc Natl Acad Sci U S A, 2009. 106(33): p. 13998 4003.

56. Maedler, K., et al.,J Clin Invest, 2002. 110(6): p. 851 60.

57. Hui, Q., et al.,Mol Metab, 2017. 6(8): p. 833 844.

58. Keane, K.N., et al.,Oxid Med Cell Longev, 2015. 2015: p. 181643.

59. Wali, J.A., S.L. Masters, and H.E. Thomas,Cells, 2013. 2(2): p. 266 83.

Page 163: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

60. Weisberg, S.P., et al.,J Clin Invest, 2003. 112(12): p. 1796 808.

61. Xu, H., et al.,J Clin Invest, 2003. 112(12): p. 1821 30.

62. Lumeng, C.N., S.M. Deyoung, and A.R. Saltiel,Am J Physiol

Endocrinol Metab, 2007. 292(1): p. E166 74.

63. Sauter, N.S., et al.,Endocrinology, 2008. 149(5): p. 2208

18.

64. Maedler, K., et al.,

Diabetes, 2006. 55(9): p. 2455 62.

65. Tschen, S.I., et al.,Diabetes, 2009. 58(6): p. 1312 20.

66. Meyer, A., et al.,Diabetes, 2015. 64(6): p. 2138 47.

67. Ardestani, A., et al.,Nat Med, 2014. 20(4): p. 385 97.

68. Aguayo Mazzucato, C., et al.,Cell Metab, 2017. 25(4): p. 898 910 e5.

69. Wang, S.Y., P.A. Halban, and J.W. Rowe,

J Clin Invest, 1988. 81(1): p.176 84.

70. Reers, C., et al., Eur JEndocrinol, 2009. 160(2): p. 185 91.

71. Dhawan, S., S.I. Tschen, and A. Bhushan,Genes Dev, 2009. 23(8): p. 906 11.

72. Chen, H., et al.,Genes Dev, 2009. 23(8): p. 975 85.

73. Ferrucci, L., et al., Blood, 2005. 105(6):p. 2294 9.

74. Pedersen, M., et al.,Mech

Ageing Dev, 2003. 124(4): p. 495 502.

75. Horrillo, D., et al.,Arch Physiol Biochem, 2011. 117(3): p. 140 50.

76. Lumeng, C.N., et al.,J Immunol, 2011. 187(12): p. 6208 16.

Page 164: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

77. Lin, L., et al., Aging(Albany NY), 2016. 8(1): p. 178 91.

78. Yang, T., et al.,

Diabetologia, 2015. 58(7): p. 1610 20.

79. Xiong, Y., et al.,Diabetes, 2017.

80. Goldberg, E.L. and V.D. Dixit,Immunol Rev, 2015. 265(1): p. 63 74.

81. Almaca, J., et al., Proc Natl AcadSci U S A, 2014. 111(49): p. 17612 7.

82. Mahbub, S., C.R. Deburghgraeve, and E.J. Kovacs,J Interferon Cytokine Res, 2012. 32(1): p. 18 26.

83. Jackaman, C., et al.,Aging Cell, 2013. 12(3): p. 345 57.

84. Bouzakri, K., P. Ribaux, and P.A. Halban,

J Biol Chem, 2009. 284(41): p.27892 8.

85. Nyugen, J., et al.,J Clin Immunol, 2010. 30(6): p. 806 13.

86. Plowden, J., et al., Aging Cell,2004. 3(4): p. 161 7.

87. Seidler, S., et al.,BMC Immunol, 2010. 11: p. 30.

88. van Duin, D., et al., J Immunol, 2007.178(2): p. 970 5.

89. Qian, F., et al.,Aging Cell, 2012. 11(1): p. 104 10.

90. Donath, M.Y. and S.E. Shoelson, Nat RevImmunol, 2011. 11(2): p. 98 107.

91. Hill, A.A., W. Reid Bolus, and A.H. Hasty,Immunol Rev, 2014. 262(1): p. 134 52.

92. Kraakman, M.J., et al.,Front Immunol, 2014. 5: p. 470.

93. Morris, D.L.,Mol Endocrinol, 2015. 29(7): p. 946 62.

94. Olefsky, J.M. and C.K. Glass, AnnuRev Physiol, 2010. 72: p. 219 46.

Page 165: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

95. Osborn, O. and J.M. Olefsky,Nat Med, 2012. 18(3): p. 363 74.

96. Lumeng, C.N., J.L. Bodzin, and A.R. Saltiel,J Clin Invest, 2007. 117(1): p. 175 84.

97. Lumeng, C.N., et al.,Diabetes, 2007. 56(1): p. 16 23.

98. Cucak, H., L.G. Grunnet, and A. Rosendahl,J Leukoc Biol,

2014. 95(1): p. 149 60.

99. Mehta, N.N., et al.,Diabetes, 2010. 59(1): p. 172 81.

100. Abe, T., et al.,Diabetes, 2013. 62(6): p. 1957 69.

101. Orr, J.S., et al.,Diabetes, 2012. 61(11): p. 2718 27.

102. Jia, L., et al.,Nat Commun, 2014. 5: p. 3878.

103. Davis, J.E., et al.,Obesity (Silver Spring), 2008. 16(6): p. 1248 55.

104. Martinez, F.O., L. Helming, and S. Gordon,Annu Rev Immunol, 2009. 27: p. 451 83.

105. Thomas, D. and C. Apovian,Metabolism, 2017. 72: p. 120 143.

Page 166: $ 7/5 WULJJHUHG FRPSOH[ LQIODPPDWLRQ LQ … · 7deoh ri frqwhqwv , 6xppdu\ ,, =xvdpphqidvvxqj

162