50 MONATE BETRIEBSERFAHRUNG DER ARGE … · Internationale Energiewirtschaftstagung an der TU Wien...

15
IEWT 2005: 4. Internationale Energiewirtschaftstagung an der TU Wien „Energiesysteme der Zukunft“ 50 MONATE BETRIEBSERFAHRUNG DER ARGE-BRENNSTOFFZELLE MIT SOFC- UND PEM-BRENNSTOFFZELLEN-HEIZGERÄTEN Dipl.-Ing. Heinrich Wilk, Energie AG OÖ, A-4021 Linz Böhmerwaldstrasse 3, Tel. ++43-732 9000 3514, e-mail: [email protected] Ing. Rudolf Zappe, Erdgas OÖ GmbH & Co KG, A-4030 Linz, Neubauzeile 99, Tel. ++43 732 9011 171, e-mail: [email protected] Ing. Johannes Kraus, Erdgas OÖ GmbH & Co KG, A-4030 Linz, Neubauzeile 99, Tel. ++43 732 9011 174, e-mail: [email protected] 1. Motivation und zentrale Fragestellung Traditionell übernehmen Energie AG OÖ und Erdgas OÖ bei der Entwicklung neuer Energietechniken eine Vorreiterrolle. So auch bei den jüngsten Innovationsprojekten: Im Mai 2001 gründeten die Energie AG OÖ und die OÖ Ferngas AG zwecks Nutzung von Synergieeffekten die Arbeitsgemeinschaft Brennstoffzelle. Die Ziele der ARGE-BZ sind die Errichtung von Pilotanlagen, das Sammeln von Erfahrungen im Betrieb von Brennstoffzellen, das Initiieren von praxisorientierten Weiterentwicklungen und die Erleichterung des Markteintritts innovativer Energietechnologien. Die Erfahrungen, die die ARGE-BZ aus den Innovationsprojekten in Zusammenarbeit mit den Herstellerfirmen Sulzer Hexis AG und Vaillant GmbH sammeln konnte, werden ausgewertet und analysiert. Kunden der ARGE-Partner profitieren bei der Energieberatung also stets von den neuesten Erkenntnissen. Abb. 1: Sulzer Hexis HXS1000: P el. 1 kW Vaillant EURO 2: P el. 4,6 kW

Transcript of 50 MONATE BETRIEBSERFAHRUNG DER ARGE … · Internationale Energiewirtschaftstagung an der TU Wien...

Page 1: 50 MONATE BETRIEBSERFAHRUNG DER ARGE … · Internationale Energiewirtschaftstagung an der TU Wien „Energiesysteme der Zukunft“ 4. Betriebsergebnisse der Testanlagen 4.1 Sulzer

IEWT 2005: 4. Internationale Energiewirtschaftstagung an der TU Wien „Energiesysteme der Zukunft“

50 MONATE BETRIEBSERFAHRUNG DER ARGE-BRENNSTOFFZELLE MIT

SOFC- UND PEM-BRENNSTOFFZELLEN-HEIZGERÄTEN

Dipl.-Ing. Heinrich Wilk, Energie AG OÖ, A-4021 Linz Böhmerwaldstrasse 3, Tel. ++43-732 9000 3514, e-mail: [email protected]

Ing. Rudolf Zappe, Erdgas OÖ GmbH & Co KG, A-4030 Linz, Neubauzeile 99,

Tel. ++43 732 9011 171, e-mail: [email protected]

Ing. Johannes Kraus, Erdgas OÖ GmbH & Co KG, A-4030 Linz, Neubauzeile 99,

Tel. ++43 732 9011 174, e-mail: [email protected]

1. Motivation und zentrale Fragestellung

Traditionell übernehmen Energie AG OÖ und Erdgas OÖ bei der Entwicklung neuer

Energietechniken eine Vorreiterrolle. So auch bei den jüngsten Innovationsprojekten: Im Mai

2001 gründeten die Energie AG OÖ und die OÖ Ferngas AG zwecks Nutzung von

Synergieeffekten die Arbeitsgemeinschaft Brennstoffzelle. Die Ziele der ARGE-BZ sind die

Errichtung von Pilotanlagen, das Sammeln von Erfahrungen im Betrieb von Brennstoffzellen,

das Initiieren von praxisorientierten Weiterentwicklungen und die Erleichterung des

Markteintritts innovativer Energietechnologien. Die Erfahrungen, die die ARGE-BZ aus den

Innovationsprojekten in Zusammenarbeit mit den Herstellerfirmen Sulzer Hexis AG und Vaillant

GmbH sammeln konnte, werden ausgewertet und analysiert. Kunden der ARGE-Partner

profitieren bei der Energieberatung also stets von den neuesten Erkenntnissen.

Abb. 1: Sulzer Hexis HXS1000: P el. 1 kW Vaillant EURO 2: P el. 4,6 kW

Page 2: 50 MONATE BETRIEBSERFAHRUNG DER ARGE … · Internationale Energiewirtschaftstagung an der TU Wien „Energiesysteme der Zukunft“ 4. Betriebsergebnisse der Testanlagen 4.1 Sulzer

IEWT 2005: 4. Internationale Energiewirtschaftstagung an der TU Wien „Energiesysteme der Zukunft“

2. Wahl der Technologie

In der derzeitigen Entwicklungsphase steht die Brennstoffzellen-Technik erst am Beginn der

praktischen Einsatzmöglichkeiten. Trotzdem wird ihr heute schon von international anerkannten

Fachleuten und der EU eine wichtige Position in der Energieversorgung von morgen zugesichert.

Die ARGE-BZ sieht im betrachteten Leistungsbereich von einigen kW die SOFC- und die PEM-

Brennstoffzellen derzeit als die aussichtsreichsten Technologien für den stationären Einsatz an.

Stärken Schwächen

PEM Materialtechnisch gut beherrschbarer Temperatur-Bereich im Stack von 50 - 90 °C

Leistung schnell modulierbar

max. el. Wirkungsgrad im Kleinleistungsbereich von ca. 30 %

Kaltstart in 2 Stunden möglich

Abschalten bei zu kleinem Wärmebedarf ist kein Problem

Wärmeauskopplung derzeit nur für Niedertemperaturanwendungen geeignet: TRL max. 55 °C

externer Wasserdampf - Reformer, arbeitet bei ca. 700 °C, mehrstufige CO-Feinreinigung erforderlich

Stack-Abwärme ist nicht nutzbar für den endothermen Reformierprozess

PEM-Material noch sehr teuer (Pt-Kat.)

Wasserhaushalt der Membrane ist kritisch

Stack derzeit meist nicht aus Europa

SOFC einfachere Brennstoffaufbereitung durch internes Reforming, auf den Zellen kein Platin als Katalysator erforderlich

Stackabwärme nutzbar für endothermen Reformierprozess

max. el. Wirkungsgrad im Kleinleistungsbereich von ca. 40 %

Wärmeauskopplung auf höherem Temperaturniveau möglich, Vorteil für betriebliche Prozesse

weitgehend europäisches Know-how (Sulzer)

Stacktemperatur von 900 °C erfordert spezielle und teure Materialien, z.B: spez. Chromlegierungen für Bipolarplatten

Kaltstart dauert 8 - 12 Stunden

Auskühlvorgänge nach Abschaltungen oder Fehlern können zu bleibendem Leistungsverlust führen

Begrenzte Zahl von thermischen Zyklen

Tab. 1: Technologievergleich, Brennstoffzellen-Heizgeräte

Page 3: 50 MONATE BETRIEBSERFAHRUNG DER ARGE … · Internationale Energiewirtschaftstagung an der TU Wien „Energiesysteme der Zukunft“ 4. Betriebsergebnisse der Testanlagen 4.1 Sulzer

IEWT 2005: 4. Internationale Energiewirtschaftstagung an der TU Wien „Energiesysteme der Zukunft“

Beide Technologien haben Stärken und Schwächen. Bei der Wasseraufbereitung ist bei beiden

Konzepten ein gewisser Aufwand erforderlich (Deionat). Sulzer will daher bei der neuen Serie

ab 2005 vom Wasserdampfreformer auf den Partial Oxidation Reformer umsteigen. Wegen der

umfassenden Praxiserfahrungen auf dem Gebiet der Brennstoffzellen-Heizgeräte entschieden wir

uns 2001 für die Firmen Sulzer und Vaillant. Sie haben derzeit rund 100 Anlagen (Sulzer) bzw.

mehr als 50 Anlagen (Vaillant) im Praxistest. Das ist weltweit – abgesehen von der legendären

ONSI (PAFC 200 kW), die es auf über 200 Stück brachte, jedoch nicht mehr weiter entwickelt

wird - eine beachtliche Zahl. Die Firmen haben professionelle Betreuungsteams und setzen die

Betriebserfahrungen fortlaufend in Verbesserungen der Geräte um. Ausschlaggebend für unsere

Entscheidung war auch die CE Zertifizierung bei Sulzer und Vaillant nach positiv absolvierten

DVGW- und TÜV-Prüfungen

Abb. 2: Sulzer HXS1000: SOFC-Stack 1 kW Vaillant EURO 2: PEM-Stack 4,6 kW

Page 4: 50 MONATE BETRIEBSERFAHRUNG DER ARGE … · Internationale Energiewirtschaftstagung an der TU Wien „Energiesysteme der Zukunft“ 4. Betriebsergebnisse der Testanlagen 4.1 Sulzer

IEWT 2005: 4. Internationale Energiewirtschaftstagung an der TU Wien „Energiesysteme der Zukunft“

3. Anlagenbeschreibung

3.1: Das SOFC-Projekt in Attnang-Puchheim

Nach längerer Partnersuche begannen wir im Jahr 2000 unsere Aktivitäten mit einer 1 kW

Hochtemperatur SOFC-Brennstoffzellenanlage der Firma Sulzer aus Winterthur in der Schweiz.

Sulzer war zu diesem Zeitpunkt - und ist immer noch - der einzige SOFC-Anbieter in diesem

Leistungsbereich mit der von uns geforderten Professionalität und Erfahrung. Sulzer hat bis

heute rund 110 Brennstoffzellen-Heizgeräte vom Typ HXS1000 Premiere hergestellt. Eigentlich

ist die Anlage für ein Einfamilienhaus konzipiert. Wegen des innovativen Baukonzepts, der

leichteren Zugänglichkeit/Erreichbarkeit, der besseren Testbedingungen und der vorhandenen

Seminar-Infrastruktur haben wir das Technologiezentrum Salzkammergut in Attnang-Puchheim

als Aufstellungsort für die erste stationäre Kleinleistungsbrennstoffzelle Österreichs gewählt.

Seit Jänner 2002 unterstützt das Brennstoffzellen-Heizgerät die Wärme- und Stromversorgung

des Gebäudes in dem bei 22 Firmen ca. 55 Mitarbeiter tätig sind.

Abb. 3: Technologiezentrum Salzkammergut in Attnang-Puchheim

Objekt-Daten: (Neubau, Baujahr 2000)

Beheizte Fläche 1.500 m2: Büros, Werkstätten, Seminarräume, Cafeteria

Heizlast 90 kW: Gasbrennwertkessel 14 bis 135 kW modulierend,

Heizkreise: TVL=65°C / TRL=57°C bei –2 °C Außentemperatur, Gasbedarf ca. 19.500 m3/Jahr

Brennstoffzellen-Heizgerät über hydraulische Weiche in das Heizsystem integriert

Warmwasserspeicher: 200 Liter, mit Warmwasser-Zirkulationsleitung

Gesamter Kaltwasserbedarf: 739 Liter/Tag ca. 13 Liter/Person.Tag (Mittelwerte)

Page 5: 50 MONATE BETRIEBSERFAHRUNG DER ARGE … · Internationale Energiewirtschaftstagung an der TU Wien „Energiesysteme der Zukunft“ 4. Betriebsergebnisse der Testanlagen 4.1 Sulzer

IEWT 2005: 4. Internationale Energiewirtschaftstagung an der TU Wien „Energiesysteme der Zukunft“

Kenndaten Brennstoffzellen-Heizgerät Sulzer Hexis HXS 1000 PREMIERE:

Elektrische Leistung 1,0 kW max.

Thermische Leistung Brennstoffzelle 2,5 kW max.

Thermische Leistung Zusatzheizgerät 12, 16, 22 kW (bei uns deaktiviert)

Elektrischer Wirkungsgrad dzt. 25 %

Gesamtwirkungsgrad ca. 80 %

Wasseraufbereitung für den Reformer: Papier-Feinfilter und Ionenaustauscher-Patrone,

Wasserbedarf ca. 0,48 Liter/Stunde

Erdgasbetrieb, Wasserdampf Reformer, Erdgas-Entschwefelung mit Aktivkohle, CE-Zertifikat

Abb. 4: Brennstoffzellen-Heizgerät HXS 1000, 3D-Schema Sulzer Hexis 2004 [12]

3.2: Das PEM-Projekt in Dietachdorf/Steyr

Als zweites ARGE-BZ-Pilotprojekt wurde im Landgasthof „Wirt im Feld“ - mit über 100

Hotelbetten - die erste oberösterreichische Brennstoffzellen-Anlage für die gewerbliche Nutzung

installiert. Das Brennstoffzellen-Heizgerät EURO 2 stammt von Vaillant/Remscheid und basiert

auf der PEM-Technologie der US-Firma PLUG-POWER.

Schwefelfilter

Ionenaustauscher

Zusatzheizkessel

Wechselrichter

Regelung

Stack, ohne Vacuum-Isolierhaube

Speicher Heizwasser

USV

Page 6: 50 MONATE BETRIEBSERFAHRUNG DER ARGE … · Internationale Energiewirtschaftstagung an der TU Wien „Energiesysteme der Zukunft“ 4. Betriebsergebnisse der Testanlagen 4.1 Sulzer

IEWT 2005: 4. Internationale Energiewirtschaftstagung an der TU Wien „Energiesysteme der Zukunft“

Abb. 5: Wirt im Feld, Fam. Schweinschwaller, Dietachdorf/Steyr

Objekt-Daten:

Gasthof / Hotel, 40 Betten im Altbau, 50 Betten im Neubau, 8.000 Übernachtungen/Jahr

Gaststätte, Bar, großer Saal, Seminarräume, Hotelzimmer

4 Gasbrennwertkessel Vaillant ecoVIT, mit je 45 kW modulierend

Altbau: Radiatorenheizung TVL = 55°C bei -3 °C Außentemperatur

Gasbezug ca. 70.000 m3/Jahr, davon 30.000 m3/ Jahr im Altbau (2003: 24.300 m3)

Strombezug 2003: 168.000 kWh

Brennstoffzellen-Heizgerät zur Rücklaufanhebung in das Heizsystem integriert

Brauchwarmwasserspeicher: 500 Liter, Zirkulationsleitung, Vorspeicher: 500 Liter

Kenndaten Brennstoffzellen-Heizgerät Vaillant EURO 2:

Elektrische Leistung 1,5 - 4,6 kW

Thermische Leistung 3 – 11 kW (bei TVL/RL = 40/30°C)

Elektrischer Wirkungsgrad dzt. 30 % max.

Gesamtwirkungsgrad 82 %

Erdgasbetrieb, autothermer Wasserdampf Reformer, Erdgas-Entschwefelung mit Aktivkohle

Wasseraufbereitung für den Reformer: Ionenaustauscher und Umkehrosmosefilter

max. Rücklauftemperatur: 55°C, CE-Zertifikat: 2003, DVGW

Page 7: 50 MONATE BETRIEBSERFAHRUNG DER ARGE … · Internationale Energiewirtschaftstagung an der TU Wien „Energiesysteme der Zukunft“ 4. Betriebsergebnisse der Testanlagen 4.1 Sulzer

IEWT 2005: 4. Internationale Energiewirtschaftstagung an der TU Wien „Energiesysteme der Zukunft“

Abb. 6: Brennstoffzellen-Heizgerät von Vaillant, Ansicht und Schema

Page 8: 50 MONATE BETRIEBSERFAHRUNG DER ARGE … · Internationale Energiewirtschaftstagung an der TU Wien „Energiesysteme der Zukunft“ 4. Betriebsergebnisse der Testanlagen 4.1 Sulzer

IEWT 2005: 4. Internationale Energiewirtschaftstagung an der TU Wien „Energiesysteme der Zukunft“

4. Betriebsergebnisse der Testanlagen

4.1 Sulzer Hexis HXS 1000

Das Brennstoffzellen-Heizgerät wurde von Anbeginn an auf Dauerbetrieb eingestellt. Wir

wollten bei unserem ersten BZ-Projekt das zeitliche Verhalten der Brennstoffzelle sehen und

nicht die Besonderheiten des Klimas. Wir haben deshalb die von der Außentemperatur geführte

Steuerung auf einen Fixwert eingestellt. Die Anlage ist nun schon 3 Jahre in Betrieb. Mit

Stichtag 31.12.04 ergibt das eine gesamte Kalender-Zeit von 25.758 Stunden. Davon betrug die

Betriebszeit mit Gaszufuhr 21.784 Stunden. Die Differenz erklärt sich aus den organisatorischen

Abläufen die zwischen den Betriebsperioden der einzelnen Stacks erforderlich waren (Zeit für

Verbesserungen, terminliche Abstimmung, zeitliche Verfügbarkeit der Mitarbeiter/Monteure,

Spedition, Zoll etc.). Die Zeitdauer mit Stromproduktion und Netzeinspeisung betrug insgesamt

20.474 Stunden. Daraus errechnet sich eine technische Verfügbarkeit von 94 %.

Gasverbrauch: 7.635 m3 Hu=8,58 kWh/m3 bei 35°C und h=420 m

Wärmeproduktion: 44.974 kWh Nutzungsgrad therm. = 68 %

Stromproduktion brutto: 10.331 kWh Nutzungsgrad el. brutto = 15,8 %

Stromeinspeisung netto: 8.153 kWh Nutzungsgrad el. netto = 12,5 %

Zur Ermittlung der Netto-Stromeinspeisung haben wir von der Brutto-Stromproduktion der

Brennstoffzelle am Ausgang des Wechselrichters den Eigenbedarf der Steuer-Elektronik von ca.

100 W abgezogen. Das ist bei dieser Anlage möglich weil beide Strompfade getrennt

herausgeführt sind und über Wechselstrom-Zähler einzeln gemessen werden.

Ein zusätzlicher Strombedarf entsteht durch die elektrische Stackheizung, die beim Anfahren der

Anlage bis zum Erreichen der Stack-Betriebstemperatur eingeschaltet ist. Diese Heizung wird

auch bei Störungen aktiv um die Zeit bis zur Reparatur ohne Abkühlung überbrücken zu können.

Insgesamt benötigte die el. Heizung 1.650 kWh aus dem Stromnetz. Dieser Energieeintrag

kommt mit einem gewissen Wirkungsgrad (ca. 70 % ) der Wärmelieferung zu Gute.

Der aktuelle und bislang beste Stack ergab folgende Messdaten über die letzten 7010 Stunden:

Gasverbrauch: 2.643 m3 Hu=8,58 kWh/m3 bei 35°C und h=420 m

Wärmeproduktion: 14.307 kWh Nutzungsgrad therm. = 63,1 %

Stromproduktion brutto: 4.530 kWh Nutzungsgrad el. brutto = 20 %

Stromeinspeisung netto: 3.829 kWh Nutzungsgrad el. netto = 16,9 %

Page 9: 50 MONATE BETRIEBSERFAHRUNG DER ARGE … · Internationale Energiewirtschaftstagung an der TU Wien „Energiesysteme der Zukunft“ 4. Betriebsergebnisse der Testanlagen 4.1 Sulzer

IEWT 2005: 4. Internationale Energiewirtschaftstagung an der TU Wien „Energiesysteme der Zukunft“

Der anfängliche Maximalwert des elektr. Wirkungsgrades betrug 27 % brutto und 24 % netto.

Unsere Anlage war eine der Ersten die 2001 in dieser Vor-Serie gebaut wurden. In den

vergangenen 3 Jahren hat Sulzer die technische Verfügbarkeit des Gesamtsystems massiv

verbessert. Beim derzeit aktuellen Stack liegt sie bei 99 %. Beim ersten Stack betrug sie noch

80 %. Verbesserungen waren an der Gasdosierung, der Wasserdosierung und der Steuersoftware

notwendig. Mittlerweilen sind vom Typ HXS 1000 rund 100 Anlagen in Europa in Betrieb.

An der Weiterentwicklung des Stacks und speziell an der Verbesserung der Leistungskonstanz

hat Sulzer Hexis mit großem Engagement gearbeitet. Es stellten sich auch entsprechende Erfolge

ein. Bei unserem ersten Stack lag die Degradation noch bei ca. 45 % / 1000 Stunden und die

Lebensdauer bei rund 1.600 Betriebsstunden. Beim aktuellen Stack konnte die Degradation auf

5,5 % / 1000 Stunden heruntergedrückt werden. Dieser Stack ist heute seit fast einem Jahr in

Betrieb und hat immer noch eine DC-Leistung von 600 W. Möglich wurden die Verbesserungen

durch die Weiterentwicklung der Zellen. Spezielle Beschichtungen von Anode und Kathode

wurden erprobt. Insbesondere an den Bipolarplatten arbeiteten die Forscher von Sulzer Hexis.

Sie werden aus einer Chromverbindung durch Pressen und Sintern von Plansee in Tirol

hergestellt.

Abb. 7: Sulzer Hexis HXS 1000: Fortschritte bei der Weiterentwicklung der Haltbarkeit der

Brennstoffzellenstapel. Quelle: Sulzer Hexis, 2004 [12]

Page 10: 50 MONATE BETRIEBSERFAHRUNG DER ARGE … · Internationale Energiewirtschaftstagung an der TU Wien „Energiesysteme der Zukunft“ 4. Betriebsergebnisse der Testanlagen 4.1 Sulzer

IEWT 2005: 4. Internationale Energiewirtschaftstagung an der TU Wien „Energiesysteme der Zukunft“

0102030405060708090

16.3.-24.3.

7.4.-30.4

18.5.-21.6.

1.8.-20.8.

16.9.-5.10.

4.11.-19.11

2.12-21.12

31.12-12.1.

Wirku

ngsg

rad [

%]

-->

Eta gesamtEta therm.Eta elektr.

Abb. 8: Sulzer HXS 1000: Nutzungsgrade beim aktuellen Stack vom 16.3.04 bis zum Stichtag

31.12.04, beim elektr. Wirkungsgrad wurde die Brutto-Stromproduktion herangezogen [x]

Das Zusammenspiel mit dem Heizsystem des Technologiezentrums funktioniert gut. Speziell im

Winter gibt es genug Abnahme für die Brennstoffzellen-Wärmeproduktion. In der warmen

Jahreszeit ist die zentrale Warmwasserbereitung der einzige Wärmenutzer. Wir haben gelernt,

dass in Bürogebäuden der Wasserverbrauch in der Praxis generell gering ist. Der gemessene

Kaltwasserverbrauch betrug nur 13 Liter/Mitarbeiter und Tag. Die Wärmeabnahme im Sommer

war also nicht optimal. Man sieht das auch an den niedrigeren Werten des therm.

Nutzungsgrades in der Abb. 8. Als Abhilfe hätte man das Gerät abschalten können

( 1 Thermozyklus / Jahr) oder mit Teillast betreiben, was wir aber nicht wollten (siehe oben).

4.2 Betriebsergebnisse Brennstoffzellen-Heizgerät EURO2 von Vaillant

Das Brennstoffzellen-Heizgerät unterstützt die Heizung und die Warmwasserbereitung des

Gasthaus- und Hotelbetriebes „Wirt im Feld“. Der Einsatz des Brennstoffzellen-Heizgerätes

erfolgt über einen eigenen Regler, der auch das Zusammenspiel mit den 4 bestehenden Vaillant

Kesseln organisieren soll. Bei geringem Wärmebedarf wird die Brennstoffzelle in der Leistung

reduziert. Um die BZ-Laufzeit zu verlängern wurde im Kaltwasserstrang ein 500 Liter

Vorspeicher installiert. Wenn die Raumheizung keine Wärme braucht wird über ein

Mehrwegeventil der Vorspeicher für das Brauchwarmwasser aufgeheizt.

Die Anlage ist nun schon seit dem 16.2.2004 in Betrieb. Mit Stichtag 31.12.04 ergibt das eine gesamte Kalender-Zeit von 7.662 Stunden. Davon betrug die Betriebszeit mit Gaszufuhr und

Page 11: 50 MONATE BETRIEBSERFAHRUNG DER ARGE … · Internationale Energiewirtschaftstagung an der TU Wien „Energiesysteme der Zukunft“ 4. Betriebsergebnisse der Testanlagen 4.1 Sulzer

IEWT 2005: 4. Internationale Energiewirtschaftstagung an der TU Wien „Energiesysteme der Zukunft“

Stromproduktion 4.591 Stunden. Für das erste Jahr errechnet sich der Anteil der Zeiten mit Stromeinspeisung zu 60 % (siehe Abb. 9). Ein kleinerer Teil der Stillstandszeiten entstand in der heizfreien Zeit durch zu geringe Wärmeabnahme der Warmwasserbereitung. Zu manchen Tageszeiten z.B. am Nachmittag und nach Mitternacht ist der Warmwasserverbrauch sehr gering. Die elektr. Leistung der Brennstoffzelle wurde dann auf bis zu 1,5 kW reduziert und wenn auch das nicht reichte ganz abgeschaltet. Ein weiterer Stillstandsanteil wurde durch zu hohe Rücklauftemperaturen verursacht. Diese ergaben sich dadurch, dass ein Frischluftheizer für die Gaststube mit großem Wasserdurchsatz die Rücklauftemperatur fast auf die Vorlauftemperatur anhob. Unser Hydraulikspezialist hat dieses Problem durch den Einbau eines temperaturgeregelten Bypasses behoben.

Gasverbrauch: 6.641 m3 Hu = 9,3 kWh/m3

Wärmeproduktion: 34.371 kWh Nutzungsgrad therm. = 55,7 %

Stromproduktion netto: 14.526 kWh Nutzungsgrad el. = 23,5 %

Strombezug BZ-Gerät: 387 kWh

Stromeinspeisung netto: 14.139 kWh Nutzungsgrad el. netto = 22,9 %

Betrachtet man nur die Zeiträume mit Dauerbetrieb ohne Startvorgänge so erhält man bei einem neuen Stack elektrische Wirkungsgrade zwischen rund 27 und 28 % [x]. Jeder Startvorgang benötigt Gas und Strom liefert aber ca. 2 Stunden lang keinen Strom sondern nur Wärme, was den elektr. Nutzungsgrad bei mehreren Abschaltungen etwas absenkt.

Anteil der Zeiten mit Stromeinspeisung %

81 80 74

22

1,4

7281

9078

38

66

0

20

40

60

80

100

Feb.

04

Mär

.04

Apr

.04

Mai

.04

Jun.

04

Jul.0

4

Aug

.04

Sep

.04

Okt

.04

Nov

.04

Dez

.04

Abb. 9: Anteil der Zeiten mit Stromeinspeisung (Feb. 04: Betrieb ab 17.2.2004)

Page 12: 50 MONATE BETRIEBSERFAHRUNG DER ARGE … · Internationale Energiewirtschaftstagung an der TU Wien „Energiesysteme der Zukunft“ 4. Betriebsergebnisse der Testanlagen 4.1 Sulzer

IEWT 2005: 4. Internationale Energiewirtschaftstagung an der TU Wien „Energiesysteme der Zukunft“

Elektrischer System-Nutzungsgrad %

26,0 26,223,8

20,5

7,5

25,1 24,2 24,6 23,520,6 20,1

05

1015202530

Feb.

04

Mär

.04

Apr

.04

Mai

.04

Jun.

04

Jul.0

4

Aug

.04

Sep

.04

Okt

.04

Nov

.04

Dez

.04

Abb. 10: Monatswerte des elektrischen Nutzungsgrades, berechnet aus Zählerdaten [x]

Bei diesem BZ-Heizgerät werden die inneren Stromverbräuche intern direkt vom

Wechselrichterausgang abgezweigt. Messtechnisch zugänglich ist nur die Netto-

Stromproduktion. Die Netto-Einspeisung ermittelt sich durch Abzug des Strombezugs des BZ-

Heizgerätes von der Netto-Stromerzeugung. Der Strombezug entsteht unter anderem durch die

elektrische Heizung die beim Start den Reformer auf Temperatur bringt und die Stromaufnahme

von Pumpen, Gebläsen sowie der elektronischen Steuerung. Wenn die Brennstoffzelle den

Normalbetrieb erreicht und Strom produziert wird der Eigenbedarf intern abgedeckt.

In der Anfangsphase sammelte sich in der Abgasführung zum Kamin Kondensat in einer von

außen nicht sichtbaren Senke an. Durch den reduzierten Querschnitt schaltete die Brennstoffzelle

wegen des Ansprechens der Drucküberwachung immer wieder ab. Der Fehler wurde nach

längerem Suchen entdeckt und vom Installateur behoben. Durch die Abwärme stieg die

Temperatur im BZ-Aufstellungsraum trotz Lüfter auf bis zu 30 °C an. Dadurch erreichte auch

der Wechselrichter zu hohe Temperaturen. Eine Änderung in der Kühlluftführung brachte

Abhilfe. Der Ausfall einer internen Pumpe konnte durch Sicherungstausch behoben werden. Die

Steuerungssoftware musste unter Anderem bezüglich der Vorspeicherladung modifiziert werden.

Auch das Zusammenspiel von BZ und den 4 Kesseln wurde optimiert. Besonders im Sommer ist

es natürlich wichtig, dass die Anforderung des Warmwasserspeichers zuerst von der

Brennstoffzelle umgesetzt wird und nicht von den wesentlich leistungsfähigeren Kesseln.

Page 13: 50 MONATE BETRIEBSERFAHRUNG DER ARGE … · Internationale Energiewirtschaftstagung an der TU Wien „Energiesysteme der Zukunft“ 4. Betriebsergebnisse der Testanlagen 4.1 Sulzer

IEWT 2005: 4. Internationale Energiewirtschaftstagung an der TU Wien „Energiesysteme der Zukunft“

Im ersten Betriebsjahr wurde ein Stackwechsel nach 2.300 Stunden durchgeführt. Es konnte eine

Wirkungsgradverschlechterung von ca. 2,9 % / 1.000 Std. festgestellt werden. Diese kann durch

Degradation oder durch geänderte Betriebsbedingungen hervorgerufen worden sein. Der genaue

Grund für das relativ frühe Ende des Stacks ist noch unklar, es dürfte aber möglicherweise von

den Folgen einer Fehlfunktion einer Rückschlagklappe verursacht worden sein. Der zweite Stack

ist bis jetzt 4.500 Stunden im Einsatz (-5,9 % / 1.000 Stunden). Nach Herstellerangaben liegt die

Stacklebensdauer je nach Betriebsbedingungen in der Regel zwischen 4.000 und 6.000 Sunden.

Nutzungsgrade EURO 2

0102030405060708090

17.0

2.20

04

02.0

3.20

04

16.0

3.20

04

30.0

3.20

04

13.0

4.20

04

27.0

4.20

04

11.0

5.20

04

25.0

5.20

04

08.0

6.20

04

22.0

6.20

04

06.0

7.20

04

20.0

7.20

04

03.0

8.20

04

17.0

8.20

04

31.0

8.20

04

14.0

9.20

04

28.0

9.20

04

12.1

0.20

04

26.1

0.20

04

09.1

1.20

04

23.1

1.20

04

07.1

2.20

04

21.1

2.20

04

% --

>

eta ges.eta th.eta el.

Abb. 11: Zeitverlauf der Nutzungsgrade im Betrieb der EURO 2 in Dietachdorf, berechnet aus den Ablesewerten der Gas- und Stromzähler, Realbetrieb inkl. Starts und Stops [x]

5. Bewertung der bisherigen Ergebnisse

Unsere beiden Anlagen wurden von äußerst professionellen Firmen nach dem heutigen Stand der Technik entwickelt, produziert und in Betrieb gesetzt. Die CE-Zertifikate von renommierten Prüfinstituten bestätigen das. Gut geschulte Teams der Lieferfirmen betreuen die Anlagen vor Ort. Dennoch muss man feststellen, dass es sich hier um eine junge Technik handelt, die bis zur Serienreife noch mehrere Jahre an Weiterentwicklung und Perfektionierung benötigen wird: Der von den Herstellern angegebene Zeithorizont 2010 erscheint realistisch. Bei beiden Anlagen konnten wir miterleben wie sich die Verfügbarkeit und die Wirkungsgrade mit jedem Optimierungsschritt – zu denen auch die ARGE-BZ ihren Anteil leisten durfte - verbessert haben. Dieser Prozess lebt besonders von den vielen Rückmeldungen aus den Pilotanlagen in Kundenhand. Die Labortests liefern bis zu einem gewissen Grad leider nur Ergebnisse unter „geschützten“ Bedingungen. Die Einbindung in das bestehende Hydrauliksystem jeder

Page 14: 50 MONATE BETRIEBSERFAHRUNG DER ARGE … · Internationale Energiewirtschaftstagung an der TU Wien „Energiesysteme der Zukunft“ 4. Betriebsergebnisse der Testanlagen 4.1 Sulzer

IEWT 2005: 4. Internationale Energiewirtschaftstagung an der TU Wien „Energiesysteme der Zukunft“

individuellen Heizanlage ist eine eigene Herausforderung: Das Zusammenspiel von Heizkessel und Brennstoffzelle-Heizgerät muss unbedingt optimal abgestimmt werden. Das Fachhandwerk und die Programmierer der Steuerungssoftware haben hier eine wichtige Aufgabe. Wir haben die Erfahrung gemacht, dass auch große Gebäude wie das Technologiezentrum und der „Wirt im Feld“ im Sommer zeitweise fast gar keinen Wärmebedarf haben. Im Landgasthof hätte man natürlich einen noch größeren Warmwasserspeicher installieren können. Bei Ein- und Mehrfamilienhäusern ist dieser Umstand sicher noch gravierender. Dort ist die Modulierbarkeit der BZ-Anlage ein besonders wichtiges Thema.

6. Schlussfolgerungen und Ausblick

Die Integration von Brennstoffzellen in das Energiesystem von Gebäuden wird von anerkannten Experten wegen ihrer Effizienz und umweltschonenden Betriebsweise, aber auch als Beitrag zur Vision „Virtuelles Kraftwerk“ als Option für die Energiebereitstellung der Zukunft gesehen. Brennstoffzellen eignen sich als Kraft-Wärme-Kopplung gut für die dezentrale Versorgung von Kundenanlagen mit Strom und Wärme. Alle namhaften Hersteller von Heizgeräten wie Vaillant, Buderus, Viessmann, die Baxi-Group und Andere befassen sich deshalb heute intensiv mit dem Thema Brennstoffzellen-Heizgerät. Die stationäre Brennstoffzelle auf Erdgasbasis steht in diesem Kleinleistungsbereich aber in Konkurrenz zu anderen Marktteilnehmern wie den bestehenden Gasmotor-BHKW (z.B. Senertec 4,6 kW bzw. EcoPower/Vaillant 4,6 kW), aber künftig vielleicht auch zu den Stirling-Aggregaten (z.B. Solo 9 kW) und Mikrogasturbinen (z.B. Capstone, Turbec etc.).

Die dezentrale, parallele Bereitstellung von Wärme und Strom ist eine faszinierende Aufgabe. Die technischen Grundlagen zeigen jedoch, dass es bei kleinen Einheiten generell schwieriger ist den Eigenverbrauch, den Nutzungsgrad und die Geräte- bzw. Wartungskosten rasch in den Griff zu bekommen. Für die Wirtschaftlichkeit aller dezentralen BHKW-Anlagen braucht man Objekte die möglichst Winter und Sommer ausreichend Wärme und Strom benötigen.

Die Brennstoffzelle hat langfristig gute Chancen alle diese Anforderungen zu erfüllen: Sie hat ein hohes Potential auch bei kleinen Einheiten einen hohen Wirkungsgrad zu erreichen. Zusammenfassend kann gesagt werden, dass die Technik der Brennstoffzellen-Heizgeräte einen beachtlichen Entwicklungsstand erreicht hat. Zur künftigen Markteinführung müssen noch viele Herausforderungen angenommen werden. Als wesentlichste Punkte sehen wir dabei:

• Reduzierung der Komplexität und Senkung der Kosten

• Lebensdauer, Zuverlässigkeit und Wirkungsgrade verbessern, el. Eigenbedarf reduzieren

• Optimierung der Steuerungssoftware und der konventionellen Komponenten

• hydraulische Einbindung und Steuerung/Regelung optimieren

Page 15: 50 MONATE BETRIEBSERFAHRUNG DER ARGE … · Internationale Energiewirtschaftstagung an der TU Wien „Energiesysteme der Zukunft“ 4. Betriebsergebnisse der Testanlagen 4.1 Sulzer

IEWT 2005: 4. Internationale Energiewirtschaftstagung an der TU Wien „Energiesysteme der Zukunft“

Die ARGE-Brennstoffzelle und ihre Partner haben in den letzten Jahren einiges zu einer positiven Entwicklung beigetragen und sind bereit dies auch weiterhin zu tun.

7. Literatur

1) Haiböck, Zappe (OÖ Ferngas), Stockenreitner, Wilk (Energie AG OÖ) „Das oberösterreichische Brennstoffzellenprojekt“, VEÖ Journal, Juni 2001 2) Wilk H., Energie AG, „Brennstoffzellen: Betriebsweisen und Systemeinbindung aus Sicht eines EVU“, Vortrag: Symposium „Biogas - Brennstoffzellensysteme“, bmvit und E.V.A., PROFACTOR Steyr, 15. Mai 2001 3) Tagungsband Symposium “Zukunft Wasserstoff - Forum Brennstoffzelle”, 14./15. 10. 2003, Eigentümer Verleger und Herausgeber: Energie AG OÖ, A-4021 Linz und Erdgas OÖ 4) U. Wagner, C. Hutter, Th. Krammer, TU-München, Inst. für Energiewirtschaft, Simulation eines Einfamilienhauses mit einer Brennstoffzelle (1 kW el.) 5) Steinecker W., „Das Projekt der Energie AG: Erste Erfahrungen in Österreich mit der Sulzer Hexis SOFC“, Ueberreuter Managerakademie, Wien, 20. 3. 2003 6) Rechberger N., „Brennstoffzellen - die Technologie des 21. Jahrhunderts“, Ueberreuter Managerakademie Wien, 26./27. 2. 2002 7) Wilk, Zappe, Kraus, "Integrated Fuel Cell Energy Systems for Building Applications - 48 Months of Experience with SOFC and PEMFC Systems", Workshop Profactor 1/05, Steyr 8) Dorninger, Zappe, „Natural- and biogas: basic-energy sources for stationary fuel-cells“, Workshop Profactor Jänner 2005, Steyr 9) Emad Batawi, Cyril Voisard, Ueli Weissen, Jan Hoffmann, Yvonne Sikora u. Jeanette Frei Sulzer Hexis AG, “Materials Development at Sulzer Hexis for the Provision of a Combined Heat and Power SOFC System”, European Fuel Cell Forum 2004, Luzern 10) Alexander Schuler, Sulzer Hexis AG, „An intermediate report on the way to a near-series Sulzer Hexis fuel cell system“, European Fuel Cell Forum 2004, Luzern 11) Björn Pietzak, Harald Raak, Sulzer Hexis AG, “Die 1 kW SOFC-Brennstoffzelle zur Strom-und Wärmeerzeugung in Einfamilienhäusern”, Publikation 2004 12) Harald Raak, Sulzer Hexis AG „The 1 kW SOFC Fuel Cell Power and Heat Generation in Single Family Homes“, The Fuel Cell World, Lucerne 2004 [13] Rudolf Zappe, Erdgas OÖ, „Innovationsprojekt Brennstoffzellen: Erfahrungsbericht, Chancen und Risken“, WKO, Wien, Jänner 2005 [x] Alle gezeigten Ergebnisse der Betriebsmessungen sind mit gewissen Unsicherheiten behaftet: Der Stromzähler hat eine Genauigkeit von 0,5 % der Gaszähler von 2 %. Die Umrechnung von gemessenen Gasmengen am Gaszähler auf Heizwert Hu erfolgte mit Annäherungsmethoden je nach mittlerer Temperatur des Gaszähleraufstellungsraumes und der Höhenlage des Standortes