Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch...

44
Take the Pink Link! www. .com Agarose- Gel-Elektrophorese

Transcript of Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch...

Page 1: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

Take the Pink Link!

www. .com

Agarose-Gel-Elektrophorese

Darmstadt hat eine weitere Topadresse:AppliChem GmbH | Ottoweg 4 D - 64291 Darmstadt Telefon 0049 6151 9357-0 Fax 0049 6151 9357-11

eMail [email protected] internet www.applichem.com

Page 2: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

Agarose-Gel-Elektrophorese • AppliChem © 2009

Liebe Leserinnen und Leser,

es ist Ihnen schon längst aufgefallen – wir von

AppliChem haben eine ganz besondere Art zu

k ommunizieren. Da auch wir Naturwissenschaftler

sind, wissen wir, dass die Geschichte von den

Langweilern im Labor einfach nicht stimmt. Aus

diesem Grund „verpacken“ wir unsere Botschaft an

Sie auch immer mit viel Spaß und einigem, was

wirklich lustig daherkommt.

Das macht es angenehmer durch den Text zu steigen,

der sachlich über das Thema berichtet – der Ihnen

Tipps gibt für den täglichen Job und auch die ein

oder andere Wissenslücke stopft und manch

Vergessenes wieder auffrischt – und der Sie auch

mit Informationen zu unseren vielfältigen Themen

bekannt macht.

AppliChem bietet beste Qualität zu wirtschaftlichen

Preisen und zuverlässigen Terminen. Das sollten

Sie sich merken.

In

fo

&m

or

e

…and more

Page 3: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

In

ha

lt

© 2009 AppliChem • Agarose-Gel-Elektrophorese 1

1 Das Trennmedium Agarose und Alternativen dazu 21.1 Agarose: Die chemische Struktur und ihre Eigenschaften 21.2 Die Alternativen: Stärke- und Polyacrylamid-Gel-Elektrophorese 41.3 Anwendungen: Agarose in der Gel-Elektrophorese 61.4 Native und denaturierende Agarose-Gel-Elektrophorese 81.5 Modifikationen der Agarose-Gel-Elektrophorese 101.6 Isolierung von Nukleinsäuren aus der Agarose-Gel-Matrix 12 1.7 Agarosen: Auswahlkriterien 181.8 Die Charakteristika der AppliChem-Agarosen 201.9 Anwendungstipps 26

2 Puffer-Systeme 282.1 TAE-Puffer 282.2 TBE-Puffer 292.3 MOPS-Elektrophorese-Puffer (10X) 302.4 BPTE-Elektrophorese-Puffer (10X) 312.5 Alkalischer Agarose-Gel-Elektrophorese-Puffer (10X) 322.6 TAFE-Elektrophorese-Puffer 322.7 TPE-Elektrophorese-Puffer 332.8 TTE-Elektrophorese-Puffer 342.9 Low-Molarity Conductive Media 34

3 Trennkapazität 35

4 Farbstoffe 364.1 Nukleinsäure-Farbstoffe-Übersicht 364.2 Protein-Farbstoffe-Übersicht 38

5 Glossar 40

6 Verwandte Produkte 41

Page 4: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

2 Agarose-Gel-Elektrophorese • AppliChem © 2009

1 Das Trennmedium Agarose und Alternativen dazu

1.1 Agarose: Die chemische Struktur und ihre Eigenschaften

Agarose wird aus den Zellwänden ausgewählter Rotalgen (Rhodophyceae) gewonnen. Dazu wird

Agaropektin, ein „Klebstoff“ der Zellwand aus verzweigten, vielfach modifizierten und geladenen

Polysacchariden, entfernt. Nach der weiteren chemischen Modifizierung erhält man eine sehr reine

Agarose mit den erwünschten elektrophoretischen Eigenschaften: Das lineare, ungeladene Molekül

zeigt wenig Interaktion mit anderen Molekülen wie Proteinen und Nukleinsäuren. Diese Eigenschaft

spiegelt sich in geringen Elektroendoosmose (EEO)-Werten wieder.

Die durchschnittliche relative Molekularmasse von Agarose beträgt etwa 120.000. Wenn die

Agarose geschmolzen wird, verflechten sich in den Gelen die langen unverzweigten Agarose-

Moleküle zu Helizes, die wiederum Suprafasern ausbilden (‘polymerisieren’ Abb. 1.2). Das so

entstandene Agarose-Netzwerk bildet Poren mit 100 bis 300 nm Durchmesser (Brown 1988). Die

Porengröße wird durch die Agarose-Konzentration bestimmt. Neben dem Puffersystem ist sie der

entscheidende Parameter für das Trennvermögen von Agarose-Gelen (siehe Tabelle Trennkapazitäten

im Abschnitt 3). Die Grenzen des Auflösungsvermögens ergeben sich aus dem kleinsten

Porendurchmesser; Agarose-Gele liefern gute Auftrennung bei Nukleinsäuren >50 Basenpaare

(bp). Kleinere Nukleinsäuren trennt man meist auf Polyacrylamid-Gelen auf (siehe Abschnitt 1.2).

Die Maximalgröße von auftrennbarer DNA liegt bei etwa 25.000 bp. Auch größere Moleküle werden

noch auf Agarose getrennt. Dazu werden aber Anpassungen des Elektrophorese-Protokolls mit

wechselnden Spannungsfeldern notwendig (siehe hierzu auch Pulsfeld-Gel-Elektrophorese (PFGE)

im Abschnitt 1.3.4).

Agarose wird in der Regel als feines Pulver geliefert. Die Löslichkeit der Agarosen ist nicht gleich.

Manche lösen sich besser, manche schlechter, vor allem wenn sie in höheren Konzentrationen

Abb. 1.1: Agarose ist aus 1,3-glycosidisch verbundenen Einheiten von 1,4-glycosidisch verknüpfter β-D-Galacto-pyranose und 3,6-Anhydro-α-L-Galactopyranose aufgebaut.

Ag

ar

os

e

Page 5: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

© 2009 AppliChem • Agarose-Gel-Elektrophorese 3

eingesetzt werden. Speziell Low Melt Agarosen müssen zum Teil autoklaviert werden, damit sie

überhaupt in Lösung gehen. Wenn die Agarose zum Auflösen autoklaviert wird, ist darauf zu achten,

dass sie sich nicht in einer Lösung mit einem pH-Wert niedriger als pH 5,5 befindet, da sie dann

hydrolysiert. Als Folge wird das Gel nicht fest! Die Lösung muss also gepuffert sein – reines Wasser

kann nicht verwendet werden. Aufgrund des niedrigen Gelierpunktes empfiehlt es sich die Gele

bestimmter Low Melt Agarosen vor Gebrauch für mindestens eine Stunde, manchmal auch über

Nacht bei +4°C zu lagern, da dadurch bei der Elektrophorese eine maximale Auflösung erreicht

wird. Selbst der Gellauf ist dann am besten im Kühlraum durchzuführen, damit sie sich nicht wieder

verflüssigt.

Literatur[1] Ausubel, F.A., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. & Struhl, K. (eds.) 1995 Current

Protocols in Molecular Biology, Greene Publishing & Wiley-Interscience, New York.

[2] Brown, T.A. (1998) Molecular Biology Labfax, 2nd ed., Vol. 1. Academic Press, London

[3] Sambrook, J. & Russel, D.W. (2001) Molecular Cloning: A Laboratory Manual, 3rd Edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Abb. 1.2: Lineare Agarose-Moleküle lagern sich zu Doppel helizes und mit einander verwobenen Suprafasern zusammen und bilden die Gelmatrix.

Ag

ar

os

e

Page 6: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

Al

te

rn

at

iv

en

4 Agarose-Gel-Elektrophorese • AppliChem © 2009

1.2 Die Alternativen: Stärke- und Polyacrylamid-Gel-Elektrophorese

Leider kommt man im Labor selten mit nur einer Gelmatrix aus, da nicht alle Anwendungen mit

einer Matrix durchzuführen sind. Jede Methode hat ihre Stärken und Schwächen. Weitere Matrizes

zur Trennung von Makromolekülen sollen hier nur kurz vorgestellt werden: Stärke und

Polyacrylamid.

1.2.1 Die Stärke-Gel-Elektrophorese taucht in den allgemeinen, molekularbiologischen

Methodenbüchern von heute gar nicht mehr auf. Die Zonen-Elektrophorese mit Stärke-Gelen wurde

zur Trennung von Serumprotein eingeführt (Smithies 1955).

Hydrolysierte Kartoffelstärke wird zu 10-15 % (w/v) in konzentriertem Puffer gelöst und nach

Erhitzen zu einer 0,5-1 cm dicken Gelmatrix gegossen. Die Herstellung der Gele ist etwas auf-

wändiger, zudem gelten die Ergebnisse als schlecht reproduzierbar. Stärke-Gele sind brüchig und

weniger transparent als Agarose- oder Polyacrylamid-Gele. Allerdings sind Gele aus der über-

wiegend naturbelassenen Stärke eine enzymfreundliche Matrix und werden in der Aufreinigung von

Enzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-

Nachweis auf dem Nachweis der Enzymaktivitäten im Gel beruht, werden Stärke-Gele verwendet

(z.B. Silva et al. 2008).

Die ursprüngliche Methode nach Smithies wurde vielfach modifiziert; z.B. eine zweidimensionale,

vertikale Variante (Poulik & Smithies 1958). In Kombination eröffnen die Eigenschaften von Stärke,

Agarose und Polyacrylamid zusätzliche Möglichkeiten. In der Literatur finden sich zahlreiche

Beispiele für solche kombinierten Systeme, beispielsweise Stärke-PAGE oder in-Gel Tests (Fontanini

et al. 2007).

1.2.2 Die Polyacrylamid-Gel-Elektro phorese (PAGE) ist eine vielseitige und die am weitesten

verbreitete Methode zur Trennung von Peptiden und Proteinen sowie für Nukleinsäuren. PA-Gele

werden durch die Polymerisation von Acrylamid-Monomeren zu langen Ketten und deren

Quervernetzung mittels bifunktionalen Molekülen (Cross-Linkern), wie Bisacrylamid (N,N'-

Methylenbisacrylamid), hergestellt. Ammoniumpersulfat (APS) dient als Initiator der Polymerisation

von Acrylamid, TEMED katalysiert die Bildung freier Radikale des Initiators.

Das Ergebnis der Poylmerisation von Acrylamid und Cross-Linkern ist eine definierte Matrix mit

regelmäßiger Porengröße. Die Porendurchmesser werden durch die Gesamtkonzentration an

Acrylamid und durch das Verhältnis von Acrylamid zu Cross-Linker, welches den Vernetzungsgrad

bestimmt, eingestellt.

Page 7: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

© 2009 AppliChem • Agarose-Gel-Elektrophorese 5

Die PAGE findet in zwei grundsätzlich unterschiedlichen Variationen An wendung:

1. PA-Gele für die native Gel-Elektrophorese bestehen aus Poly acrylamid und Puffer ohne Zusatz

von denaturierenden Substanzen. Damit bleiben Sekundärstruktur und Strukturen höherer

Ordnung während der Elektrophorese weitgehend erhalten.

2. Gele mit Zusätzen, die Moleküle während der Trennung im denaturierten Zustand erhalten,

werden als denaturierende Gele bezeichnet. Beispielsweise wird die Analyse sehr kleiner RNA

und Einzelstrang-DNA in Harnstoff-haltigen PA-Gelen durchgeführt. Harnstoff unterbricht die

Wasserstoffbrückenbindungen zwischen den Basen der Nukleinsäuren und ermöglicht damit

die Trennung von Oligonukleotiden nahezu ausschließlich nach ihrer Masse ohne den Einfluss

der Struktur. Vielfach wird auch mit Agarosen denaturierende Gel-Elektrophorese von RNA

durchgeführt (siehe 1.4).

Literatur[1] Fontanini, D. et al. (2007) J. Agric. Food Chem. 55, 4334-4339. Simplified electrophoretic assay for human salivary

alpha-amylase inhibitor detection in cereal seed flours.

[2] Hames, B.D. (1990) Kapitel 3 in Gel Electrophoresis of Proteins: A Practical Approach 2nd ed. (Hames, B.D. & Rickwood, D. eds.) IRL Press

[3] Laemmli, U.K. (1970) Nature 227, 680-685. Cleavage of structural proteins during the assembly of the head of Bacteriophage T4.

[4] Ogden, R.C. & Adams, D.A. (1987) Methods Enzymol. 152, 61-87. Electrophoresis in agarose and acrylamide gels.

[5] Poulik, M.D. & Smithies, O. (1958) Biochem. J. 68, 636-643. Comparison and combination of the starch-gel and filter-paper electrophoretic methods applied to human sera: two-dimensional electrophoresis.

[6] Silva, C.A., et al. (2008) Genet. Mol. Res. 7, 791-805. Isoenzyme electrophoretic patterns in discus fish (Symphysodon aequifasciatus Pellegrin, 1904 and Symphysodon discus Heckel, 1840) from the Central Amazon.

[7] Smithies, O. (1955) Biochem. J. 61, 629-641. Zone electrophoresis in starch gels: group variations in the serum proteins of normal human adults. A

lt

er

na

ti

ve

n Aussschnitt aus der chemischen Struktur einer Polyacrylamid-Matrix.Acrylamid N,N‘-Methylenbisacrylamid

Page 8: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

An

we

nd

un

g

6 Agarose-Gel-Elektrophorese • AppliChem © 2009

1.3 Anwendungen: Agarose in der Gel-Elektrophorese

Die Vielfalt der zu trennenden Biomoleküle erfordert entweder eine Vielfalt an Techniken oder eine

flexible Technik. Gerade die Agarose hat hier viel zu bieten. Durch die Auswahl einer Agarose mit

entsprechenden chemisch-physikalischen Eigenschaften und gleichzeitiger Variation des

Puffersystems und der Agarose-Konzentration, können ein sehr breites Spektrum an Methoden

abgedeckt und enorme Unterschiede in den Trenneigenschaften erzielt werden. Dies gilt sowohl für

die Auftrennung von Proteinen, als auch für Nukleinsäuren. Agarosen sind grundsätzlich eher für

die Auftrennung größerer Moleküle geeignet, wobei auch bei höheren Konzentrationen gute

Ergebnisse für kleinere Fragmente erzielt werden.

1.3.1 Analytische Gele dienen in der Regel dem Sichtbarmachen von Unterschieden im

Wanderungsverhalten der Moleküle im Gel. Man will wissen, wie groß zum Beispiel ein

Nukleinsäure-Fragment ist. Die Fragestellung bei Nukleinsäuren heißt häufig: Hat man das richtige

Fragment in einen Vektor kloniert?! Die Größe wird durch Vergleich mit den Banden eines

Größenstandards ermittelt. Die Fragmentgrößen des Standards, auch Marker genannt, sind

bekannt.

1.3.2 Präparative Gele werden dann eingesetzt, wenn man ein Molekül aufreinigen möchte. Eine

Mischung von Fragmenten wird elektrophoretisch aufgetrennt und gezielt die Bande mit dem

gewünschten Fragment aus dem Gel herausgeholt. Hierfür gibt es verschiedene Techniken: Nach

dem Ausschneiden oder Ausstanzen der Bande wird die Nukleinsäure durch Elektroelution, Verdau

der Agarosematrix durch β-Agarase oder Schmelzen der Agarose in Natriumiodid und anschließen-

der Bindung der Nukleinsäure an eine Silikamatrix, gereinigt (s.u.).

1.3.3 Manipulationen von Nukleinsäuren im Gel ersparen Zeit. Diese „In-gel applications“ wer-

den nach Verflüssigung der Gelmatrix ohne deren Beseitigung durchgeführt. Bei den angewendeten

Temperaturen schmilzt die DNA nicht. Zu den Einsatzgebieten zählen enzymatische Verdaus, 'Nick

translation', Ligationen und DNA-Markierungen. Geeignet sind demnach Agarosen mit einem nied-

rigen Schmelzpunkt.

1.3.4 Die Gel-Elektrophorese im gepulsten Feld (englisch: Pulsed Field Gel Electrophoresis;

PFGE) ist eine Technik zur verbesserten Auftrennung besonders großer DNA-Moleküle (>20 kb).

Da in der normalen Gel-Elektrophorese Moleküle nach deren Länge aufgetrennt werden, ist eine

Trennung sehr großer Moleküle praktisch nicht möglich. Daher wurde diese Technik modifiziert:

Das elektrische Feld wird während des Gellaufs geographisch geändert, weshalb sich Moleküle neu

ausrichten müssen. Kleinere Moleküle schaffen dies einfach schneller als große.

1.3.5 Zur Identifizierung eines Individuums wird die Technik des ‘DNA typing’ eingesetzt. Im

menschlichen Genom, das von Mensch zu Mensch um weniger als ein Tausendstel variiert, sind

variable Regionen vorhanden, in denen sich die Unterschiede „häufen“. Statt das Genom oder Teile

davon zu sequenzieren, vergleicht man mehrere dieser Regionen und kann so ein individuelles

Profil eines jeden Menschen erstellen.

Page 9: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

An

we

nd

un

g

© 2009 AppliChem • Agarose-Gel-Elektrophorese 7

1.3.6 Kapillarelektrophorese wird in Kapillaren/Glasröhrchen durchgeführt und nicht im

Flachbett, wie die übliche Agarose-Gel-Elektrophorese. Ziel ist eine teilweise Automatisierung.

1.3.7 Bei der Immun-Elektrophorese macht man sich die Bildung von Markromolekülen,

bestehend aus vielfachen Antigen-Antikörper-Einheiten, zunutze. Diese präzipitieren, wenn das

Mengenverhältnis Antigen-Antikörper richtig eingestellt wurde.

1.3.8 Blotting ist im engeren Sinne keine elektrophoretische Anwendung. Mit dieser Technik

werden Moleküle, die zuvor im Agarose-Gel aufgetrennt wurden, auf eine andere Matrix (Blotting-

Membran) im elektrischen Feld oder durch den Flüssigkeitsstrom im Kapillar-Blot übertragen.

1.3.9 In der Zell- und Gewebekultur werden feste oder halbfeste Kulturmedien eingesetzt.

Hierbei kann Agarose den häufig verwendeten Agar ersetzen. Einsatzgebiete sind die Pflanzenzüchtung,

dreidimensionale Zell- und Gewebekulturen, einschließlich der Klonierung von Hybridomazellen,

der Herstellung von Pflanzenprotoplasten und dem viralen Plaque-Asssay.

Abb. 1.3: Agarose-Gel auf einem Gelträger nach der Elektrophorese. Marker-DNA (M) und unbekannte Proben von Plasmid-DNA (pDNA) wurden getrennt und mit Ethidiumbromid gefärbt. Die dunklen Banden werden durch die so genannten ‘tracking dyes’ Bromphenolblau bzw. Xylencyanol hervorgerufen. Sie erleich-tern die Orientierung bezüglich der bereits zurückgelegten Laufstrecke.

M pDNA

pDNA

M

Abb. 1.4: Beispiel eines DNA-Markers; hier: AppliChem DNA Ladder 100 bp (Artikel-Nr. A3470). Fragmentlängen und Massen der einzelnen Fragmente sind definiert und erlauben die Abschätzung der Größe und Masse einer unbekannten Probe.

Page 10: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

8 Agarose-Gel-Elektrophorese • AppliChem © 2009

1.4 Native und denaturierende Agarose-Gel-Elektrophorese

In der Regel werden Nukleinsäuren unter nicht-denaturierenden (= nativen) Bedingungen aufge-

trennt. D.h. bei der elektrophoretischen Auftrennung spielen Ladungsverhältnisse, Größe und Form

des Moleküls eine Rolle.

Eine spezielle Ausnahme bildet die RNA in der Agarose-Gel-Elektrophorese. Als einzelsträngiges

Molekül ist sie in der Lage durch intramolekulare Basenpaarungen eine Sekundärstruktur auszu-

bilden, die die Auftrennung nach Molekülgröße verfälscht. Daher wird die RNA entwe-

der durch Zugabe von Formaldehyd/Formamid oder deionisiertem

Glyoxal/DMSO denaturiert. Formaldehyd bildet insta-

bile Schiff-Basen mit der Iminogruppe des Guanosin,

weshalb Formaldehyd im Ladepuffer und im Gel

vorhanden sein muss. Es wird meist in einer

Endkonzentration im Gel von 2,2 M zugegeben. Der

Ladepuffer enthält neben Formaldehyd auch

Formamid (z.B. Ref. 1 Seite 4.9.3).

Formaldehyd-haltige Gele werden unter

dem Abzug gegossen! Achtung, die

Dämpfe sind schädlich. Die Gele sind

weniger stabil als nicht-denaturierende

Agarose-Gele. Die hohe Formaldehyd-

Konzentration im Gel gewährleistet, dass während des gesam-

ten langen Gellaufes (ca. 5 h) die Denaturierung der RNA erhalten bleibt. Für

kürzere Läufe (2-3 h) kann die Konzentration bis auf 0,4 M reduziert werden (2).

Die Denaturierung in DMSO (50-60 %)/Glyoxal (0,88-1,2 M) erfolgt erst vor dem

Laden. Dies ist möglich, weil die RNA glyoxyliert wird und diese Verbindungen bei

pH-Werten unter 7,0 stabil sind. Achtung: Oxidationsprodukte des Glyoxal wür-

den die RNA schädigen. Daher muss es immer deionisiert eingesetzt werden.

Welche der beiden Denaturierungsmethoden ist vorzuziehen? Die RNA-Banden

sind nach Glyoxal-Behandlung schärfer als mit Formaldehyd. Allerdings lässt sich

Formaldehyd leichter von der RNA entfernen, was für den eventuell folgenden

Northern-Blot von Vorteil ist. Der Gesundheitsaspekt im Fall von Formaldehyd

nimmt an Bedeutung zu!

Geht es bei der RNA-Auftrennung nur darum, eine RNA-Isolierung zu prüfen, genügen

oft auch native Agarose-Gele ohne entsprechende Zusätze. Ribosomale RNA-

Untereinheiten werden klar getrennt.

na

tiv

+d

en

atu

rie

rt

Page 11: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

na

tiv

+d

en

atu

rie

rt

© 2009 AppliChem • Agarose-Gel-Elektrophorese 9

Literatur [1] Ausubel, F.A., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. & Struhl, K. (eds.) (1995) Current

Protocols in Molecular Biology. Seite 4.9.1 ff Suppl. 67. Greene Publishing & Wiley-Interscience, New York. (Analyse von RNA durch Northern und Slot Blot Hybridisierung).

[2] Goda, S.K. & Minton, N.P. (1995) Nucleic Acids Res. 23, 3357-3358. (Einfache Methode für Gel-Elektrophorese und Northern-Blotting von RNA.)

[3] Rave, N. et al. (1979) Nucleic Acids Res. 6, 3559-3567 (Identifizierung der Prokollagen-mRNA nach Transfer aus Formaldehyd-Agarose-Gelen.)

[4] Sambrook, J. & Russel, D.W. (2001) Molecular Cloning: A Laboratory Manual, 3rd Edition. Seite 7.28. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. (Auftrennung von RNA entsprechend der Größe; Protokolle 5 und 6).

Formaldehyd

Formaldehyd

Guanin

Guanosin

Schiff-Base

Schiff-Base

Page 12: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

Mo

di

fi

ka

ti

on

10 Agarose-Gel-Elektrophorese • AppliChem © 2009

1.5 Modifikationen der Agarose-Gel-Elektrophorese

Neben den zuvor beschriebenen Standard-Anwendungen, gibt es auch Modifikationen, die an

spezielle Erfordernisse angepasst wurden. Im Folgenden werden einige dieser wahrscheinlich eher

selteneren Anwendungen vorgestellt.

1.5.1 Polyvinylpyrrolidon-Agarose-Gel-Elektrophorese: Ziel dieser Modifikation ist die

Isolierung von PCR-amplifizierbarer DNA aus Bodenproben. Der Zusatz von Polyvinylpyrrolidon

(PVP) zur Agarose-Matrix bremst die Wanderung von denaturierenden Huminsäuren mit phenoli-

schen Gruppen aus der Probe so stark, dass sie nicht mehr mit den Nukleinsäuren wandern. Auch

das phenolische Bromphenolblau wird zurückgehalten, während Xylencyanol unverändert wandert.

PVP in einer Konzentration über 0,5 % hemmt die PCR.

Laufbedingung 5 V/cm (über Nacht)

Laufpuffer TAE oder TBE (sind gleichwertig)

Low Melt Agarose 1,25 % (w/v)

PVP 2 % (w/v)

Young, C.C. et al. (1993) Appl. Environ. Microbiol. 59(6), 1972-1974

1.5.2 ‘Electrophoretic Mobility Shift Assay’ (EMSA) mittels Agarose-Gel-Elektrophorese:

Eigentlich werden EMSAs nur in 3,5 %-5 % Polyacrylamid-Gelen durchgeführt, weil kleine DNA-

Fragmente und kleinere Proteine im Agarose-Gel nicht gut zu trennen sind. Eine Alternative stellen

gemischte Agarose-Polyacrylamid-Gele dar. In dieser Publikation wird beschrieben, dass die

Immobilisierung von Synergel™, einem chemisch-modifizierten Galactomannan, in der Agarose-

Matrix zu einer großen Verbesserung der Auflösungskapazität des Agarose-Gels führt. Bis zu 30 bp

kleine DNA-Fragmente, gebunden an den Glucocorticoid-Rezeptor, konnten getrennt werden.

Laufbedingung Vorlauf 70 V für 45 min. bei +4°C

Auftrennung 70 V für 3 h bei +4°C

Laufpuffer 0,5X TBE

Agarose 1,2 %

Synergel™ 1,2 %

Chandrasekhar, S. et al. (1998) BioTechniques 24, 216-218

Page 13: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

Mo

di

fi

ka

ti

on

© 2009 AppliChem • Agarose-Gel-Elektrophorese 11

1.5.3 SDS-Agarose-Gel-Elektrophorese für Proteine: Die klassische SDS-PAGE für die

Auftrennung von Proteinen lässt sich auch mit Agarosen durchführen. Dazu wird eine hochauf-

lösende Agarose (Resolving Gel) mit einer Agarose mit hoher Gelstärke (Stacking Gel) kombiniert.

Sowohl die Sensitivität bei Färbung mit Coomassie®, als auch die Transfereffizienz beim Blotten sind

bei SDS-Agarose besser, als bei der klassischen SDS-PAGE (Wu & Kusukawa 1998).

Laufbedingung 15 V/cm konstant Volt

Laufpuffer 1X TBE-SDS (89 mM Tris, 89 mM Borsäure, 2 mM EDTA, 0,1 % SDS)

Agarose (resolve) 7 % (w/w)

Agarose (stacking) 1 % (w/w)

Wu, M. & Kusukawa, N. (1998) BioTechniques 24, 676-678. SDS Agarose Gels for Analysis of Proteins. [Für das Resolving Gel kann Agarose IMG Art.-Nr. A2121 – und für das Stacking Agarose MP Art.-Nr. A1091 eingesetzt werden.]

A

Page 14: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

Is

ol

ie

ru

ng

12 Agarose-Gel-Elektrophorese • AppliChem © 2009

1.6 Isolierung von Nukleinsäuren aus der Agarose-Gel-Matrix

1.6.1 Elektroelution

Die Technik der Elektroelution erlaubt grundsätzlich die Isolierung aller DNA-Fragmentgrößen aus

Agarose-Gelen, aber besonders die Isolierung großer DNA-Fragmente (≥2 kb), da so gut wie keine

Scherkräfte auf die DNA wirken. Dazu wird das gewünschte DNA-Fragment aus dem Gel ausge-

schnitten, in einen Dialyse-Schlauch überführt und dieser mit TAE-Puffer gefüllt. Der gefüllte

Dialyse-Schlauch wird in die mit TAE-Puffer gefüllte Gelkammer gelegt. Man lässt die DNA im elek-

trischen Feld in den TAE-Puffer wandern.

[1] Ausubel, F.A., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. & Struhl, K. (eds.) (1995) Current Protocols in Molecular Biology. Seite 2.6.1 ff Suppl. 59. Greene Publishing & Wiley-Interscience, New York. (Isolierung und Analyse großer DNA Restriktionsfragmente aus Agarose-Gelen).

1.6.2 β-Agarase (Artikel-Nr. A4712)

(EC 3.2.1.81 aus Pseudomonas atlantica)

Wie wahrscheinlich für jedes polymere Naturprodukt, gibt es auch Enzyme die Agarose verdauen

können. Üblicherweise wird dafür rekombinante β-Agarase aus Pseudomonas atlantica verwen-

det. Das Enzym verdaut spezifisch das Polysaccharidgerüst der Agarose, bestehend aus 1,3-ver-

knüpfter β-D-Galactopyranose und 1,4-verknüpfter 3,6-Anhydro-α-L-Galactopyranose, zu

Neoagaro-Oligosacchariden. Die Technik des Agarose-Verdaus ermöglicht besonders die Isolierung

großer DNA-Fragmente (≥10 kb), da so gut wie keine Scherkräfte auf die DNA wirken, die anson-

sten bei allen anderen Isolierungstechniken auftreten. Die DNA bzw. RNA lässt sich durch Alkohol-

Präzipitation einfach isolieren. β-Agarase ist im pH-Bereich zwischen 5,0-8,5 aktiv, das Optimum

liegt bei 6,0. Die optimale Temperatur liegt bei 40-42°C. Eine Agarase-Einheit verdaut 100 µl (ca.

100 mg) geschmolzener 1%iger low melt-Agarose bei 42°C innerhalb von 30 Minuten in 1X TBE-

Puffer. Die Erhöhung der Temperatur auf 45°C beschleunigt zwar die Reaktion, senkt aber die

Stabilität. Über 50°C wird das Enzym schnell inaktiviert. Die so erhaltenen Nukleinsäuren können

für viele weitere Versuche wie z.B. Restriktionsendonuklease-Verdau, Ligation, Markierung,

Sequenzierung, Amplifikation etc. verwendet werden. Um eine Kopräzipitation der Agarose-

Oligosaccharide zu vermeiden, sollte die Präzipitation bei Raumtemperatur mit Ammoniumacetat

(statt Natriumacetat) ausgeführt werden. Dabei ist allerdings zu beachten, dass Ammonium-Ionen

bereits in Konzentrationen über 7 mM die Polynukleotidkinase hemmen. Falls die isolierte DNA

phosphoryliert werden soll, muss Natriumacetat verwendet werden.

Folgende AppliChem-Agarosen sind für den Verdau mit β-Agarase geeignet: A2121 Agarose IMG,

A2119 Agarose Low Melt 3, A3762 Agarose Low Melt Large DNA grade.

Page 15: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

© 2009 AppliChem • Agarose-Gel-Elektrophorese 13

Literatur[1] Ausubel, F.A., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. & Struhl, K. (eds.) (1995). Current

Protocols in Molecular Biology. Suppl. 59. Seite 2.6.6-2.6.7. John Wiley & Sons, New York.

[2] Morrice, L.M. et al. (1983). Eur. J. Biochem. 135, 553-558. β-Agarase I and II from Pseudomonas atlantica. Purification and some properties.

[3] Sambrock, J. & Russel, D.W. (2001) Molecular Cloning: A Laboratory Manual, 3rd Edition; Seite 5.33-5.35. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Protokoll zum Verdau der Agarose

1. Zur Ermittlung des Gewichtes des Agarose-Stückes wird zunächst das leere Reaktionsgefäß

gewogen und erst dann mit dem Agarosestück, um den Differenzbetrag

zu ermitteln.

2. Für die Isolierung der Nukleinsäure wird die Bande möglichst präzise

aus dem Agarose-Gel geschnitten und in dem 1,5 ml Reaktionsgefäß

bei bis zu 70°C vollständig geschmolzen.

Achtung: Höhere Temperaturen können zum

Schmelzen der DNA führen. Es sollten pro Ansatz

nicht mehr als 200-500 mg Agarose eingesetzt werden.

Nicht vollständig geschmolzene Agarose wird auch nicht

vollständig hydro lysiert.

3. Das Reaktionsgefäß wird dann für ca. 10 Minuten in einem

Wasserbad bei 40-42°C inkubiert, um auf die für den Verdau opti-

male Reaktionstemperatur einzustellen.

4. Durch Zugabe von einer Einheit der β-Agarase pro 100 µl (ca. 100 mg) geschmolzener Agarose,

wird die Agarose 30 Minuten bei 40-42°C verdaut. Wenn höhere Agarose-Konzentrationen ver-

wendet wurden, wird die Menge an Agarase proportional erhöht.

Reinigung der DNA (große Fragmente)

1. Fragmente größer als 30 kb müssen besonders vorsichtig behandelt werden, um mechanische

Zerstörung durch Scherkräfte zu vermeiden. Deshalb werden nach dem Verdau durch Agarase

unverdaute Kohlenhydrate für ca. 10 Minuten bei 15000 x g abzentrifugiert.

2. Oligosaccharide und Agarase werden durch Dialyse entfernt. Die DNA kann aber auch in der

geschmolzenen Agarose weiter bearbeitet werden.

Pr

ot

ok

ol

l

Page 16: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

Pr

ot

ok

ol

l

14 Agarose-Gel-Elektrophorese • AppliChem © 2009

Reinigung der DNA (kleine Fragmente)

1. DNA-Fragmente kleiner als 30 kb können durch Ethanol-Präzipitation von der verdauten

Agarose abgetrennt werden. Zur hydrolysierten Agarose wird Salz zugegeben: Entweder

Ammoniumacetat (Endkonzentration 2,5 M) oder Natriumacetat (Endkonzentration 0,3 M).

Achtung: Um eine Kopräzipitation von Agarose-Oligosacchariden zu vermeiden, sollte die

Präzipitation bei Raumtemperatur mit Ammoniumacetat statt Natriumacetat ausgeführt werden.

Dabei ist allerdings zu beachten, dass Ammonium-Ionen bereits in Konzentrationen über 7 mM

die Polynukleotidkinase hemmen. Wenn also die isolierte DNA phosphoryliert werden soll, muss

Natriumacetat verwendet werden.

2. Nach Salzzugabe wird 5 Minuten auf Eis inkubiert und dann bei 15000 x g für 10 Minuten

abzentrifugiert.

3. Der Überstand wird in ein neues Reaktionsgefäß transferriert und entweder 1 Volumen

Isopropanol oder 2-3 Volumina Ethanol zugegeben. Vorsichtig mischen und für mindestens

30 Minuten bei 0°C bis 22°C inkubieren.

4. Bei 15000 x g für 15 Minuten zentrifugieren, den Überstand verwerfen und das Pellet trocknen.

Die DNA wird in Abhängigkeit von der weiteren Behandlung in einem geeigneten Puffer gelöst.

Folgende AppliChem-Agarosen sind für den Verdau mit β-Agarase geeignet: A2121 Agarose IMG,

A2119 Agarose Low Melt 3, A3762 Agarose Low Melt Large DNA grade

β-Agarase zeigt in verschiedenen Puffern eine hohe Aktivität:150 % 50 mM Bis-Tris, pH 6,5 1 mM EDTA Alternativ: 100 mM Bis-Tris, pH 6,5 (Ref. 2) 10 mM EDTA Filtersterilisieren; unbegrenzt haltbar bei Raumtemperatur Alternativ: 10 mM Tris, pH 7,6 (Ref. 1) 5 mM EDTA, pH 8,0 0,1 M NaCl120 % Alternativ: 90 mM Tris-Phosphat (TPE-Puffer) 2 mM EDTA120 % Alternativ: 40 mM Tris-Acetat (TAE-Puffer) 1 mM EDTA100 % Alternativ: 45 mM Tris-Borat (TBE-Puffer) 1 mM EDTA

Ethidiumbromid bis zu einer Konzentration von 5 µg/ml hemmt Agarase nicht!

Page 17: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

Pr

ot

ok

ol

l

© 2009 AppliChem • Agarose-Gel-Elektrophorese 15

1.6.3 Natriumiodid

Als Bestandteil eines DNA-Isolierungskits (AppliChem Art.-Nr. A3421,0300), bestehend aus einer

Glaspulver-Suspension (Glasmilch), einer Natriumiodid-Lösung (6 M) und einem Wasch-

lösungskonzentrat, wird Natriumiodid zur Isolierung von Nukleinsäuren aus Agarose eingesetzt.

Das Reinigungsprinzip beruht auf der Bindung der Nukleinsäure an die Glaspartikel (Silika-Batch-

Verfahren) nach Schmelzen der Agarose in Natriumiodid. Fragmente mit einer Größe von über 300

Basenpaaren werden mit einer Effizienz von über 80 % isoliert. Mit abnehmender Fragmentgröße

nimmt auch die Effizienz ab.

Isolierung von DNA-Fragmenten aus Agarose-Gelen: Die DNA-Bande von Interesse wird aus dem

Agarose-Gel möglichst genau ausgeschnitten und in der Natriumiodid-Lösung bei 55°C geschmolzen.

Zur geschmolzenen Agarose wird Glaspulver-Suspension zugegeben und 5 Minuten inkubiert.

Danach werden die Glaspartikel durch kurze Zentrifugation pelletiert und dreimal mit Waschpuffer

gewaschen. Die DNA wird mit Wasser oder TE-Puffer von den Glaspartikeln eluiert.

Protokoll für die DNA-Isolierung aus Agarose mit Glaspulver

(DNA Isolation Kit Art.-Nr. A3421)

1. Die DNA-Bande wird aus dem Ethidiumbromid-gefärbten Gel mit einer Rasierklinge unter

UV-Licht (312 nm) ausgeschnitten und in ein Reaktionsgefäß transferriert.

2. Zu dem Gel-Stück wird das entsprechend dreifache Volumen an 6 M NaI-Lösung zugegeben.

Falls TBE als Laufpuffer verwendet wurde, wird ein ½ Volumen an 3 M Natriumacetat-Lösung

(pH 5,2) und 4,5 Volumina an NaI-Lösung, bezogen auf das Volumen des Gelstückes, zugege-

ben. Die Endkonzentration von NaI sollte mindestens 4 M sein.

Für 2-5 Minuten bei 55°C inkubieren, den Inhalt des Reaktionsgefäßes mischen und es für

weitere 1-2 Minuten zurück in das Wasserbad stellen. Jetzt sollte das Agarose-Gelstück vollstän-

dig aufgelöst sein.

3. Zur Agarose : DNA : NaI-Lösung wird jetzt die Glaspulver-Suspension gegeben. Es werden 6 µl

gut-gemischter Suspension für die ersten 2 µg DNA eingesetzt und zusätzlich je 1 µl für jede

weitere 0,5 µg DNA.

Gut mischen und für 5 Minuten bei Raumtemperatur inkubieren. Alle 1-2 Minuten mischen. Um

die Bindungseffizienz für Fragmente kleiner als 1000 bp zu erhöhen, bei 55°C inkubieren.

4. Für 10 Sekunden in einer Mikrozentrifuge bei maximaler Geschwindigkeit abzentrifugieren und

den Überstand verwerfen.

5. Das Glaspellet mit Waschpuffer waschen. Dabei 50 Volumina Waschpuffer bezogen auf das

ursprüngliche Glaspulver-Volumen verwenden. Das Glaspellet durch Auf- und Abpipettieren

oder durch vorsichtiges Schnalzen des Gefäßes resuspendieren. Achtung: Sehr vorsichtig pipet-

tieren, wenn mit großen DNA-Stücken (>15 kb) gearbeitet wird.

Page 18: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

Pr

ot

ok

ol

l

16 Agarose-Gel-Elektrophorese • AppliChem © 2009

6. Den Waschschritt zweimal wiederholen.

7. Nach Entfernen des Überstandes des letzten Waschschrittes, das Gefäß nochmal kurz abzentri-

fugieren und soviel Waschpuffer wie möglich mit einer Mikropipette entfernen.

8. Das Glaspellet in 1-2 Volumina sterilem, destilliertem Wasser oder TE-Puffer (10 mM Tris pH

7,5-8,0; 1 mM EDTA) suspendieren – Volumina bezogen auf das ursprüngliche Glaspulver-

Volumen, das für die Isolierung eingesetzt wurde. Für 3-5 Minuten bei 55°C unter gelegentli-

chem Mischen eluieren.

9. In der Mikrozentrifuge bei maximaler Geschwindigkeit für 30-45 Sekunden zentrifugieren.

Vorsichtig den DNA-haltigen Überstand in ein neues Reaktionsgefäß transferrieren. Die DNA-

Ausbeute kann um 10-15 % erhöht werden, wenn eine zweite zusätzliche Elution durchgeführt

wird.

Literatur

[1] Sambrook, J. & Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual, 3rd

Edition. Seite 1.32-34. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

[2] Vogelstein, B. & Gillespie, D. (1979) Proc. Natl. Acad. Sci. USA 76, 615-619. Präparative

und analytische Reinigung von DNA aus Agarose.

1.6.4 Crush & Soak

1. In ein 1,5 ml Reaktionsgefäß wird mit einer Nadel ein Loch in den Boden gestochen. In dieses

Reaktionsgefäß wird das Gel-Stück mit der zu isolierenden DNA gegeben und das Ganze in ein

zweites 1,5 ml Reaktionsgefäß gestellt. In einer Tischzentrifuge wird das Gelstück durch das

kleine Loch im Boden in das untere Reaktionsgefäß zentrifugiert und dabei zerkleinert

("crush").

2. Zum zerkleinerten Gelstück werden 500 µl TE-Puffer gegeben und über Nacht bei 37°C geschüt-

telt.

3. In ein neues 1,5 ml Reaktionsgefäß wird ebenfalls mit einer Nadel ein

Loch in den Boden gestochen. Dieses Reaktionsgefäß wird bis auf die

Hälfte mit Glaswolle vollgestopft und dann in ein zweites 1,5 ml

Reaktionsgefäß gestellt. Auf die Glaswolle wird das über Nacht geschüt-

telte zerkleinerte Gelstück gegeben und in einer Tischzentrifuge kurz

durch die Glaswolle zentrifugiert.

Page 19: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

Pr

ot

ok

ol

l

© 2009 AppliChem • Agarose-Gel-Elektrophorese 17

4. Die aufgefangene DNA wird jetzt mit dem doppelten Volumen an Isopropanol gefällt.

ca. 500 µl Probe

+ 50 µl 3 M NaOAc pH 7,4

+ 4 µl Acrylamid-Carrier (DNA-PrecipitAid Art.-Nr. A6587,0001)

+ 1 ml Isopropanol

5. ca. 1 Stunde auf Eis (aus Erfahrung reichen meist schon 10 Minuten)

6. 10 Minuten bei 13.000 rpm in der Tischzentrifuge abzentifugieren

7. Pellet mit 80 % Ethanol waschen

8. SpeedVac® trocknen

9. Pellet in 20 µl TE-Puffer resuspendieren.

1.6.5 Nukleinsäure-Nachweis auf der EtBr-Agarose-Platte

Wer kurz testen will, ob er nach einem Nukleinsäure-Reinigungsschritt überhaupt DNA in seiner

Lösung hat, kann 1 µl auf eine Ethidiumbromid-Platte auftragen. Zur Herstellung der Platte werden

10 ml 1 % Agarose + 1 µl 10 mg/ml EtBr in eine Petrischale gegossen. Nach dem Festwerden

(Erkalten), mit Parafilm abdichten und in Alufolie einpacken. Umgedreht – Deckel nach unten – im

Kühlschrank lagern. Die Stellen, auf die DNA-Lösung aufgetropft wurde, makieren; am einfachsten

ein Raster mit Filzstift auf den Boden zeichnen und benutzte Felder auskreuzen. Die Platte kann im

Prinzip so lange ver wendet werden, bis sie eingetrocknet ist. Zum Betrachten jeweils kurz auf den

UV-Tisch legen. Manchmal ist der 1 µl gut investiert, denn, wenn man aus irgendwelchen Gründen

die DNA verloren hat, braucht man nicht weiterarbeiten und erspart sich zum Beispiel beim

Klonieren leere Agarplatten, weil evtl. gar kein Insert oder Vektor vorhanden war.

Page 20: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

Au

swa

hlk

rite

rie

n

18 Agarose-Gel-Elektrophorese • AppliChem © 2009

1.7 Agarosen: Auswahlkriterien

„Wer die Wahl hat, hat die Qual“. Das muss nicht sein, denn aufgrund der speziellen Eigenschaften

jeden Agarose-Typs, können diese entsprechenden Anwendungen zugewiesen werden. Je höher

konzentriert eine Agarose zum Beispiel eingesetzt wird, desto geringer ist deren Transparenz.

Diese spielt aber insofern eine große Rolle, da das zu isolierende Molekül mittels Färbung (oder

im Fall von DNA auch ‘UV shadowing’) sichtbar gemacht werden muss. Die Nachweisgrenze steigt

mit zunehmender Agarose-Konzentration. Schmelzpunkt bzw. Geltemperatur sind besonders für

‘low melt’ Agarosen wichtig. Je niedriger der Schmelzpunkt, desto einfacher verflüssigt sich die

Agarose, desto einfacher werden die aufgetrennten Moleküle freigsetzt. Im direkten Zusammenhang

wird häufig die Gelstärke gesehen. Je höher diese ist, desto besser lässt sich ein „gegossenes“,

verfestigtes Gel hantieren. ‘low melt’ Agarosen zerbrechen aufgrund der niedrigen Gelstärken

leicht. Es sollte daher immer auf die Konzentrationsangabe, bei der dieser Parameter bestimmt

wurde, geachtet werden. Die Elektroendoosmose ist das Maß der Wechselwirkung zwischen

Molekül (Protein, Nukleinsäuren) und Matrix (Agarose). Mit wenigen Ausnahmen liegen die

Art.-Nummer A2114 A2115 A2116 A2117 A2118 A2119 A2120 A3762 A2121 A2122 A1091

Bezeichnung Anwendung

Low EEO

High EEO

Medium EEO

Special EEO

Low Melt S

Low Melt 3

Low Melt 4

Low Melt Large DNA grade

IMG SMG MP

Analytische Trennung ≥1000 bp

Analytische Trennung ≤1000 bp

Präparative Elektrophorese

PFGE

DNA typing

Blotting

Hohe Auflösung

In-gel Anwendungen

Kapillar-Elektrophorese

Gewebe/Zellkultur

Immuno-Elektrophorese

Agarase-Verdau

Besondere Eignungen für bestimmte Anwendungen sind hervorgehoben.

Page 21: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

Au

swa

hlk

rite

rie

n

© 2009 AppliChem • Agarose-Gel-Elektrophorese 19

Art.-Nr. Bezeichnung EEO Geltemperatur (1,5 % Gel)

Anwendung

A2114 Agarose low EEO (Agarose Stamdard)

0,09-0,13 36 ± 1,5°C Nukleinsäure-Auftrennung – analytisch, präparativ (besonders Fragmente ≥1000 bp), Blotting; Konzentration 0,8-2%

A2115 Agarose high EEO 0,23-0,26 36 ± 1,5°C Auftrennung von Serumproteinen, Immunoelektrophorese, Counterimmunoelektrophorese

A2116 Agarose medium EEO

0,16-0,19 36 ± 1,5°C Nukleinsäure-Auftrennung; Auftrennung von Serumproteinen, Immunoelektrophorese

A2117 Agarose special EEO ≥0,3 36 ± 1,5°C Immunoelektrophorese, besonders Counter-immuno elektrophorese

A2118 Agarose Low Melt S ≤0,12 17°C Kapillarelektrophorese, Klonierungsexperimente in der Gewebekultur (z.B. Hybridome, Pflanzenprotoplasten, „viral plaque assay“ etc.); Nukleinsäure-Auftrennung/Manipulation im Gel

A2119 Agarose Low Melt 3 ≤0,12 24-28°C Präparative Elektrophorese von Nukleinsäuren (DNA/RNA) und Proteinen; „viral plaque assay“; Gewebekultur

A2120 Agarose Low Melt 4 ≤0,12 24-31°C Kapillarelektrophorese; analytische DNA-Gele (besonders Fragmente ≤500 bp); hohe Gelstärke für low melt Agarose, sehr transparent bei hoher Konzentration

A3762 Agarose Low Melt Large DNA grade

≤0,12 24-28°C analytische und präparative DNA-Gele (besonders große DNA-Fragmente ≥1000 bp); enzymatische Manipulationen im geschmolzenen Gel (z.B. Verdau, Ligation, PCR, etc.), ideal für den Verdau durch β-Agarase

A2121 Agarose IMG ≤0,12 ≤30°C analytische DNA-Gele (besonders Fragmente ≤1000 bp); Blotting

A2122 Agarose SMG ≤0,12 ≤36,5°C analytische DNA/RNA-Gele (Fragmente 100-1000 bp); Blotting

A1091 Agarose MP ≤0,12 ≤36°C analytische und präparative Nukleinsäure-Elektrophorese von 0,4-2 % sehr gute Trennung (entsprechend 100 bp-50 kb); Blotting

Werte für fast alle Agarosen unter 0,12. Ein weiteres, durchaus bedeutendes Auswahlkriterium, ist

die Verdaubarkeit durch β-Agarase, wenn große Nukleinsäuremoleküle aus der Matrix isoliert

werden sollen (geringe Scherkräfte!).

Agarosen für die Gel-Elektrophorese – Übersicht

Page 22: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

Ch

ar

ak

ter

isti

ka

20 Agarose-Gel-Elektrophorese • AppliChem © 2009

1.8 Die Charakteristika der AppliChem-Agarosen

Agarose low EEO (Agarose-Standard) (Artikel-Nr. A2114)

Diese Agarose besitzt einen sehr niedrigen EEO-Wert und zeichnet sich durch eine niedrige DNA-

bindende Aktivität aus. Sie wird besonders für die Herstellung präparativer und analytischer Gele

(z. B. Kontrolle eines Restriktionsenzymverdaus) mit einer sehr guten Auftrennung von Nukleinsäure-

Fragmenten größer als 1000 bp empfohlen. Sie ist auch für Blot-Experimente (z.B. Northern,

Southern,…) geeignet und kann in Konzentrationen zwischen 0,8 % und 2 % in allen üblichen

Puffersystemen verwendet werden.

Die Agarosen mit den Bezeichnungen low EEO, medium EEO, high EEO und special EEO unterschei-

den sich hauptsächlich in ihren EEO-Werten. Diese Werte sind bei der Trennung von Makromolekülen

sehr wichtig, besonders bei der Auftrennung von Proteinen. Diese vier Agarosen können mitein-

ander gemischt werden, wenn man andere als die durch die einzelne Agarose vorgegebenen EEO-

Werte erreichen möchte.

A2114

DNasen/RNasen/Proteasen nicht nachweisbar Gelstärke (1 %) ≥1200 g/cm2

Asche ≤0,5 % Gelstärke (1,5 %) ≥2500 g/cm2

Elektroendoosmose 0,09-0,13 (EEO) Geltemperatur (1,5 %) 36 ±1,5°C

Feuchtigkeit ≤7 % Schmelzpunkt 88 ± 1,5°C

Sulfat ≤0,2 %

Agarose medium EEO (Artikel-Nr. A2116)

Die Agarose medium EEO wird für die Elektrophorese von Serumproteinen und für Anwendungen

in der Immunoelektrophorese empfohlen. Sie ist auch für die elektrophoretische Auftrennung von

Nukleinsäuren geeignet. Sie besitzt eine niedrige DNA-Bindung, ist aber im Gegensatz zur Agarose

low EEO nicht für Blotting-Experimente geeignet.

Die Agarosen mit den Bezeichnungen low EEO, medium EEO, high EEO und special EEO unterschei-

den sich hauptsächlich in ihren EEO-Werten. Diese Werte sind bei der Trennung von Makromolekülen

sehr wichtig, besonders bei der Auftrennung von Proteinen. Diese vier Agarosen können mitein-

ander gemischt werden, wenn man andere als die durch die einzelne Agarose vorgegebenen EEO-

Werte erreichen möchte.

A2116

DNasen/RNasen/Proteasen nicht nachweisbar Gelstärke (1 %) ≥750 g/cm2

Asche ≤0,5 % Gelstärke (1,5 %) ≥2000 g/cm2

Elektroendoosmose 0,16-0,19 (EEO) Geltemperatur (1,5 %) 36 ± 1,5°C

Feuchtigkeit ≤7 % Schmelzpunkt 88 ± 1,5°C

Sulfat ≤0,25 %

Page 23: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

Ch

ar

ak

ter

isti

ka

© 2009 AppliChem • Agarose-Gel-Elektrophorese 21

Agarose high EEO (Artikel-Nr. A2115)

Die Agarose high EEO ist für die Elektrophorese von Serumproteinen und für Anwendungen in der

Immunoelektrophorese und der 'Counterimmunoelektrophorese' geeignet.

Die Agarosen mit den Bezeichnungen low EEO, medium EEO, high EEO und special EEO unter-

scheiden sich hauptsächlich in ihren EEO-Werten. Diese Werte sind bei der Trennung von

Makromolekülen sehr wichtig, besonders bei der Auftrennung von Proteinen. Diese vier Agarosen

können miteinander gemischt werden, wenn man andere als die durch die einzelne Agarose vor-

gegebenen EEO-Werte erreichen möchte.

A2115

DNasen/RNasen/Proteasen nicht nachweisbar Gelstärke (1 %) ≥750 g/cm2

Asche ≤1,1 % Gelstärke (1,5 %) ≥1000 g/cm2

Elektroendoosmose 0,23–0,26 (EEO) Geltemperatur (1,5 %) 36 ± 1,5°C

Feuchtigkeit ≤7 % Schmelzpunkt 88 ± 1,5°C

Sulfat ≤0,25 %

Agarose special EEO (Artikel-Nr. A2117)

Die Agarose special EEO wird besonders für die Counterimmunoelektrophorese und für

Anwendungen in der Immunoelektrophorese (besonders IgG und IgM) empfohlen.

Die Agarosen mit den Bezeichnungen low EEO, medium EEO, high EEO und special EEO unter-

scheiden sich hauptsächlich in ihren EEO-Werten. Diese Werte sind bei der Trennung von

Makromolekülen sehr wichtig, besonders bei der Auftrennung von Proteinen. Diese vier Agarosen

können miteinander gemischt werden, wenn man andere als die durch die einzelne Agarose vor-

gegebenen EEO-Werte erreichen möchte

A2117

DNasen/RNasen/Proteasen nicht nachweisbar Gelstärke (1 %) ≥700 g/cm2

Asche ≤1,5 % Gelstärke (1,5 %) ≥1100 g/cm2

Elektroendoosmose ≥0,3 (EEO) Geltemperatur (1,5 %) 36 ± 1,5°C

Feuchtigkeit ≤7 % Schmelzpunkt 88 ± 1,5°C

Sulfat ≤0,3 %

Agarose Low Melt S (Artikel-Nr. A2118)

Die Agarose Low Melt S wird besonders für die Kapillarelektrophorese, für die Klonierung von

Hybridomazellen und Gewebezellen, für die Herstellung von Pflanzenprotoplasten, für den

so genannten ‘viral plaque assay’ und den 'verankerungsunabhängigen Wachstumsversuch' empfoh-

len. Sie besitzt eine niedrige DNA- Bindungkapazität und ist für die Herstellung hochprozentiger

Gele empfehlenswert. Die Verwendung aller Puffersysteme ist möglich. Der niedrige Schmelzpunkt

(≤60°C) erlaubt die schonende Gewinnung von Nukleinsäuren unterhalb deren Schmelzpunkt. Die

Page 24: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

Ch

ar

ak

ter

isti

ka

22 Agarose-Gel-Elektrophorese • AppliChem © 2009

niedrige Geltemperatur (≤17°C) ermöglicht verschiedene Manipulationen von DNA im Gel (z.B.

enzymatischer Verdau, Ligation, DNA-Markierung, ‘Nick Translation’, usw.), da bei den ent-

sprechenden Temperaturen das Gel im flüssigen Zustand vorliegt. Die DNA muss nicht vorher extra

aus einem Gelstück isoliert werden.

Achtung: Die Agarose Low Melt S soll in Gelkonzentrationen höher als 1,2 % angewendet werden,

da bei niedrigeren Gelkonzentrationen die Gele sehr zerbrechlich sind und kaum hantiert werden

können. Da der Gelpunkt unterhalb der Raumtemperatur liegt, müssen Gele über Nacht bei +4°C

gelieren.

A2118

DNasen/RNasen/Proteasen nicht nachweisbar Gelstärke (1 %) ≥100 g/cm2

Asche ≤0,3 % Gelstärke (1,5 %) ≥350 g/cm2

Elektroendoosmose ≤0,12 (EEO) Geltemperatur (1,5 %) ≤17°C

Feuchtigkeit ≤7 % Schmelzpunkt (1,5 %) ≤60°C

Sulfat ≤0,14 %

Agarose Low Melt 3 (Artikel-Nr. A2119)

Die Agarose Low Melt 3 wird besonders für die präparative Elektrophorese von DNA und RNA, aber

auch von Proteinen empfohlen. Sie ist auch für den sogenannten 'viral plaque assay' und

Anwendungen in der Gewebekultur geeignet. Sie besitzt eine niedrige DNA-Bindungskapazität und

ist für die Herstellung hochprozentiger Gele empfehlenswert. Die Verwendung aller Puffersysteme

ist möglich. Der niedrige Schmelzpunkt (≤65,5°C) erlaubt die schonende Gewinnung von

Nukleinsäuren unterhalb deren Schmelzpunkt. Die niedrige Geltemperatur (24-28°C) ermöglicht

verschiedene Manipulationen von DNA im Gel (z.B. enzymatischer Verdau, Ligation, DNA-

Markierung, ‘Nick Translation’, usw.), da bei den entsprechenden Temperaturen das Gel im flüssi-

gen Zustand vorliegt. Die DNA muss nicht vorher extra aus einem Gelstück isoliert werden.

Achtung: Aufgrund des niedrigen Gelpunktes empfiehlt es sich die Gele vor Gebrauch für eine

Stunde bei +4°C zu lagern, da dadurch bei der Elektrophorese eine maximale Auflösung erreicht

wird. Wenn die Agarose zum Auflösen autoklaviert wird, ist darauf zu achten, dass sie sich nicht in

einer Lösung mit einem pH-Wert unter pH 5,5 befindet, da sie dann hydrolysiert (Gel wird nicht

fest!). Die Lösung muss also gepuffert sein – reines Wasser kann nicht verwendet werden.

A2119

DNasen/RNasen/Proteasen nicht nachweisbar Gelstärke (1 %) ≥300 g/cm2

Asche ≤0,3 % Gelstärke (1,5 %) ≥550 g/cm2

Elektroendoosmose ≤0,12 (EEO) Geltemperatur (1,5 %) 24–28°C

Feuchtigkeit ≤7 % Schmelzpunkt (1,5 %) ≤65,5°C

Sulfat ≤0,12 %

Page 25: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

Ch

ar

ak

ter

isti

ka

© 2009 AppliChem • Agarose-Gel-Elektrophorese 23

Agarose Low Melt 4 (Artikel-Nr. A2120)

Die Agarose Low Melt 4 wird besonders für die Kapillarelektrophorese und für analytische DNA-

Gele empfohlen. Sie besitzt eine niedrige DNA-Bindungskapazität, ist auch bei hohen

Gelkonzentrationen (5 %) sehr transparent und kann mit allen Puffersystemen verwendet werden.

Die für eine 'Low Melting Point'-Agarose sehr hohe Gelstärke (≥500 g/cm2; 3 % Gel) minimiert das

Risiko des Zerbrechens des Geles beim Hantieren sehr stark. Diese Agarose wird besonders für die

Auftrennung von DNA-Fragmenten mit weniger als 500 Basenpaaren empfohlen, gerade im Bereich

der Größe von Primern. Bei einer Konzentration von 3 % erreicht man eine zur Elektrophorese von

DNA-Fragmenten im 8%igen Polyacrylamidgel vergleichbare Auflösung – und das bei einfacherer

Handhabung und ohne die Giftigkeit des Acrylamids.

Achtung: Die Agarose Low Melt 4 besitzt eine sehr hohe Viskosität. Zur Herstellung von Gelen mit

einer Konzentration ≤3 % ist das Erhitzen in einer Mikrowelle ausreichend. Für die Herstellung von

Gelen mit einer Konzentration von 4 %-5 %, aber auch allen anderen Konzentrationen, ist die

Erhitzung im kochenden Wasserbad empfehlenswert. Bei Konzentrationen ≥5 % empfiehlt es sich

die Agarose im Autoklaven (121°C; 15 Minuten) zu lösen. Die mechanischen Eigenschaften und die

Trennfähigkeit werden dadurch nicht verändert.

Um eine höchstmögliche Auflösung mit Agarose Low Melt 4-Gelen zu erzielen, muss die Gelierung

der Gele bei +4°C über Nacht bzw. bis zu 20 Stunden durchgeführt werden. Die Verwendung dieser

Agarose in Blotting-Experimenten wird nicht empfohlen.

A2120

DNasen/RNasen/Proteasen nicht nachweisbar Gelstärke (3 %) ≥500 g/cm2

Asche ≤0,3 % Gelstärke (5 %) ≥1000 g/cm2

Elektroendoosmose ≤0,12 (EEO) Geltemperatur (3 %) 24–31°C

Feuchtigkeit ≤7 % Schmelzpunkt (1,5 %) ≤75°C

Sulfat ≤0,11 %

Page 26: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

Ch

ar

ak

ter

isti

ka

24 Agarose-Gel-Elektrophorese • AppliChem © 2009

Agarose Low Melt Large DNA grade (Artikel-Nr. A3762)

Diese Agarose ist eine „low melting point“-Agarose mit einer sehr hohen Trennkapaziät für große

DNA-Fragmente (≥1000 bp). Im geschmolzenen Gel können enzymatische Manipulationen vor-

genommen werden (z.B. Verdau, Ligation, PCR. usw.). Eine Extraktion der DNA ist daher nicht

notwendig. Agarose Low Melt Large DNA grade ist hervorragend für den Verdau mit β-Agarase

geeignet. Große DNA-Fragmente können dadurch besonders schonend isoliert werden. Sie wird im

analytischen und präparativen Bereich eingesetzt.

A3762

DNasen/RNasen/Proteasen nicht nachweisbar Gelstärke (1 %) ≥250 g/cm2

Asche ≤0,4 % Geltemperatur (1,5 %) 24–28°C

Elektroendoosmose ≤0,12 (EEO) Schmelzpunkt (1,5 %) ≤65,5°C

Feuchtigkeit ≤7 % Verdau durch Agarase entspricht

Sulfat ≤0,1 %

Agarose IMG (Artikel-Nr. A2121)

Die Agarose IMG verfügt über einen intermediären Schmelzpunkt (≤70°C; 1,5 % Gel) und Gelpunkt

(≤30°C; 1,5 % Gel) und einer niedrigen DNA-Bindungskapazität. Ihre Anwendung empfiehlt sich

besonders für analytische DNA-Gele mit Fragmentgrößen ≤1000 Basenpaaren, wie zum Beispiel

PCR-Produkte, kleine DNA-Fragmente nach Restriktionsenzymverdau und DNA-Fragmenten in

Mutationsanalysen. Diese Agarose ist auch für Blotting-Experimente mit DNA-Fragmenten

≤600 Basenpaare geeignet. Sie ist bei hohen Gelkonzentrationen (3-4,5 %) sehr transparent und

kann mit allen Puffersystemen verwendet werden. Die hohe Gelstärke (≥500 g/cm2; 1,5 % Gel)

minimiert das Risiko des Zerbrechens des Geles beim Hantieren sehr stark.

Achtung: Zur Herstellung von Gelen mit einer Konzentration ≥3 % ist das Erhitzen im kochenden

Wasserbad oder im Autoklaven (121°C; 15 Minuten) empfehlenswert. Die mechanischen

Eigenschaften und die Trennfähigkeit werden dadurch nicht geändert.

Um eine höchstmögliche Auflösung mit Agarose IMG-Gelen zu erzielen, muss das Gel vor Gebrauch

für 30 Minuten bei +4°C gekühlt werden.

A2121

DNasen/RNasen/Proteasen nicht nachweisbar Gelstärke (1,5 %) ≥500 g/cm2

Asche ≤0,35 % Gelstärke (3 %) ≥1500 g/cm2

Elektroendoosmose ≤0,12 (EEO) Geltemperatur (1,5 %) ≤30°C

Feuchtigkeit ≤7 % Schmelzpunkt (1,5 %) ≤70°C

Sulfat ≤0,11 %

Page 27: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

Ch

ar

ak

ter

isti

ka

© 2009 AppliChem • Agarose-Gel-Elektrophorese 25

Agarose SMG (Artikel-Nr. A2122)

Die Agarose SMG verfügt über einen Standardschmelzpunkt (≤89°C; 1,5 % Gel) und Standardgelpunkt

(≤36,5°C; 1,5 % Gel). Ihre Anwendung empfiehlt sich besonders für analytische DNA/RNA-Gele mit

Fragmentgrößen von 100-1000 Basenpaaren (bei einer Gelkonzentration von 2-5 %). Diese

Agarose ist auch für Blotting- Experimente geeignet. Bei einer Gelkonzentration von 4 % können

DNA-Fragmente von ca. 150-2200 Basenpaare im Southern-Blot transferriert werden. Sie besitzt

eine niedrige DNA-Bindungskapazität und ist auch bei hohen Gelkonzentrationen sehr transparent

und kann mit allen Puffersystemen verwendet werden. Die hohe Gelstärke (≥2000 g/cm2; 1,5 %

Gel) gegenüber vergleichbaren Agarosen minimiert das Risiko des Zerbrechens des Geles beim

Hantieren sehr stark und erlaubt auch die Herstellung von Gelen mit einer Konzentration ≤1 % bei

hervorragender Auflösung.

A2122

DNasen/RNasen/Proteasen nicht nachweisbar Gelstärke (1,5 %) ≥2000 g/cm2

Asche ≤0,35 % Gelstärke (4 %) ≥4250 g/cm2

Elektroendoosmose ≤0,12 (EEO) Geltemperatur (1,5 %) ≤36,5°C

Feuchtigkeit ≤7 % Schmelzpunkt (1,5 %) ≤89°C

Sulfat ≤0,11 %

Agarose MP (Artikel-Nr. A1091)

Die Agarose MP besitzt eine hohe Gelstärke und ist in der Molekularbiologie zur Auftrennung von

Proteinen und Nukleinsäuren (z.B. in der PFGE) einsetzbar. Sie lässt sich sehr leicht in der

Mikrowelle auflösen. Aufgrund ihrer hohen Gelstärke kann sie in sehr niedrigen (bis 0,4 %) oder

hohen (ca. 2 %) Konzentrationen in allen Puffersystemen verwendet werden. Bei der Auftrennung

hoch-molekularer DNA (bis ca. 50 kb lineare DNA; ca. 0,4 %iges Gel) ist die Agarose dem

Acrylamid weit überlegen. Aber selbst im Bereich von nur 100 Basenpaaren erzielt man mit Agarose

MP (~2%iges Gel) gute Ergebnisse. Durch entsprechende Wahl der Agarose MP- Konzentration

können praktisch alle DNA-Fragmentgrößen auf getrennt werden. Die DNA-Bindungskapazität ist

sehr niedrig. Agarose MP ist für Blotting-Experimente und präparatives Arbeiten hervorragend

geeignet.

A1091

DNasen/RNasen/Proteasen nicht nachweisbar Gelstärke (1 %) ≥1800 g/cm2

Asche ≤0,25 % Gelstärke (1,5 %) ≥3200 g/cm2

Elektroendoosmose ≤0,12 (EEO) pH (1 %) 5,0–6,0

Feuchtigkeit ≤7 % Schmelzpunkt 88 ± 1,5°C

Gelpunkt 36 ± 1,5°C Sulfat ≤0,12 %

Page 28: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

Ti

pp

s &

Tr

ic

ks

26 Agarose-Gel-Elektrophorese • AppliChem © 2009

1.9 Anwendungstipps

1.9.1 Zur Herstellung eines Geles wird die Agarose meist im Laufpuffer erhitzt und zum Schmelzen gebracht. Dafür bedient man sich eines Wasserbades oder heute häufiger der Mikrowelle. Da der Aufwärmvorgang in der Mikrowelle sehr schnell geht, muss man ständig dabeibleiben, um ein Überkochen zu verhindern. Achtung: Siedeverzüge. Wenn man die sich lösende, heiße Mischung leicht schwenkt, kocht sie häufig stark auf! Immer geeignete Hitze-resistente Handschuhe tragen.

1.9.2 Gel vor dem Gießen auf ca. 50°C-55°C abkühlen lassen, am einfachsten unter fließendem Leitungswasser. Erst dann EtBr zugeben.

1.9.3 Gelläufe über Nacht brauchen hohe Pufferkapazität, daher 1X TBE. Gelläufe bei hohen Volt-Zahlen (>60 V) ebenso. Pufferzirkulation ist ebenfalls eine Lösung, um die Pufferkapazität aufrechtzuerhalten.

1.9.4 Höhere Volt-Zahlen reduzieren die Auflösung.

1.9.5 Dünnere Kämme erhöhen die Auflösung, ebenso kleinere Volumina beim Beladen des Gels. Große DNA-Mengen führen zum Schmieren (= überladen).

1.9.6 Ethidiumbromid, anwesend während des Gellaufes, kann zu verändertem Laufverhalten der DNA führen. Wenn dies als Problem bei der aktuellen Anwendung betrachtet wird, empfiehlt sich die Färbung nach dem Gellauf in 0,5-1 µg/ml Ethidiumbromid.

1.9.7 Ethidiumbromid-Färbung (0,5-1 µg/ml) nach dem Gellauf liefert einen besseren Kontrast, wenn das Gel in Wasser für ca. 30 Minuten auch wieder entfärbt wird. Eine Verringerung der Ethidiumbromid-Konzentration hat u.U. einen vergleichbaren Effekt.

1.9.8 Gelläufe bei zu hohen Temperaturen können DNA zum Schmelzen bringen.

1.9.9 Wenn zu wenig Laufpuffer in die Gelkammer gefüllt wird, kann das Gel während des Laufes austrocknen. Der Puffer soll wenigstens 1 mm über dem Gel stehen.

1.9.10 Wenn ganze Plasmide geladen werden, sind in der Regel mehrere Banden zu beobachten: supercoiled Plasmide sind am kleinsten „gepackt“ und wandern am schnellsten, „aufgewundene“ Plasmide (‘relaxed‘ oder ‘nicked‘) wandern langsamer als ‘supercoiled‘. U.U. bilden sich Katenane (Plasmide sind wie Kettenglieder zusammenhängend und können ein leiterförmiges Bild auf dem Gel ergeben, ähnlich eines Größenstandards). Linearisierte Plasmid-DNA (open chain DNA) wan-dert etwas langsamer als die ‘supercoiled’ Form des selben Plasmids.

1.9.11 Hohe Salzkonzentrationen in der Puffer-/DNA-Lösung verlangsamen die Wanderung.

1.9.12 Wenn die Geltaschen nach der EtBr-Färbung wie ein Weihnachtsbaum leuchten, ist das in der Regel chromosomale, bakterielle DNA, die zu groß war, um in das Gel zu wandern oder dort ausgefallen ist.

1.9.13 Der mit EtBr anfärbbare Schmier, der weit vor der bakteriellen DNA im Gel läuft, ist RNA. Diese kann durch RNase-Behandlung in der Probe entfernt werden.

Page 29: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

Ti

pp

s &

Tr

ic

ks

© 2009 AppliChem • Agarose-Gel-Elektrophorese 27

1.9.14 Hochprozentige Agarose-Gele (>3 %), hergestellt aus Standard-Agarosen, verlieren an Flexibilität und sind mitunter brüchig.

1.9.15 Einige DNA-Gel-Extraktionsmethoden funktionieren nicht mit TBE. In diesen Fällen TAE-Laufpuffer verwenden.

1.9.16 Es empfiehlt sich den Erlenmeyer-Kolben mit der Agarose und dem Puffer zu wiegen, bevor die Agarose-Lösung in der Mikrowelle erhitzt wird. Je länger erhitzt wird, desto mehr Flüssigkeit geht verloren. Diese (= Wasser) kann auf der Waage einfach nachgefüllt werden.

1.9.17 Luftblasen, die sich in der Agarose beim Gießen bilden, können mit einer Pipettenspitze zerstört werden oder, falls das nicht geht, an den Rand manövriert werden, wo sie u.U. weniger oder gar nicht stören.

1.9.18 Bromphenolblau läuft ungefähr bei 300 bp und Xylencyanol bei ca. 4 kb DNA. Es sollte bedacht werden, dass DNA-Fragmente durch die Farbstoffe quasi verdeckt und dadurch „un sichtbar“ werden. Abhilfe verschaffen Ladepuffer, die nur die eine, nicht störende „tracking dye“ enthalten. Beide Farbstoffe wandern (bei pH ca. 8) wie die DNA zur Anode.

1.9.19 Wenn beim Anschalten des Power Supply's keine Luftblasen an den Elektroden aufsteigen, wurde möglicherweise Wasser statt Laufpuffer eingefüllt! Es findet dann auch keine Wanderung/Auftrennung der Moleküle statt.Wird versehentlich unverdünnter (konzentrierter) Puffer verwendet, heizt sich das Gel stark auf und kann schmelzen.

1.9.20 Lineare DNA wandert ungefähr invers proportional zum log10 ihres Molekulargewichtes.

1.9.21 Besonders bei der Handhabung von präparativen Gelen gilt: die UV-Licht-Exposition auf dem Leuchttisch möglichst kurz halten, da UV-Licht die Bildung von Pyrimidin-Dimeren begünstigt, die in der Folge zu Mutationen oder Strangbrüchen führen können.

1.9.22 Hohe Salzkonzentrationen in der Probe verschlechtern die Auflösung im Agarose-Gel: Viele DNA-Manipulationen werden unter Hochsalzbedingungen durchgeführt. Ein direkter Auftrag des Probenansatzes führt dann im Agarose-Gel zu einer schlechten Auftrennung. Hierfür gibt es eine einfache Abhilfe: Ha et al. haben zum einen die Proben nach dem Auftragen auf das Gel 30 Minuten in den Geltaschen ruhen lassen, bevor der Gellauf gestartet wurde. In dieser Zeit diffundieren die Salze in den umgebenden TBE-Puffer. Ausserdem wurde die TBE-Konzentration von den üblichen 0,5X oder 1X auf 2X erhöht.Ha, W.-Y. et al. (1999) BioTechniques 26, 425-426

1.9.23 Langzeit-Lagerung von DNA in Agarose-Gelen: Nach dem Gel-Lauf und der Ethidiumbromid-Färbung wird das Gel/Gelstück einfach in 70 % Ethanol gelegt und kann bei Raumtemperatur gelagert werden. Das Gel muss vor dem nächsten Betrachten neu gefärbt werden, da EtBr in den Ethanol diffundiert. Die DNA-Banden bleiben unverändert im Gel erhalten, wahrscheinlich einfach durch eine Ethanol-Fällung.Jacobs, D. & Neilan, B. A. (1995) BioTechniques 19, 892-894

Page 30: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

Pu

ff

er

-S

ys

te

me

28 Agarose-Gel-Elektrophorese • AppliChem © 2009

2 Puffer-Systeme

Neben dem Agarose-Typ ermöglicht die Pufferwahl weitere Variationsmöglichkeiten und

Optimierungen von Anwendungen. Die sicher bekanntesten Agarose-Gel-Elektrophorese-Puffer

sind TAE- und TBE-Puffer, die die meisten Anwendungen abdecken. Es stehen außerdem spezielle

Puffer zur Verfügung. Dieser Abschnitt liefert Puffer-Rezepturen und einige Erläuterungen dazu. Bei

der Information „Laufbedingung“ in V/cm bezieht sich die Angabe „cm“ auf den Abstand zwischen

den Elektroden.

2.1 TAE-Puffer

TAE-Puffer ist heute DER Elektrophorese-Puffer für Agarose-Gele. Ursprünglich wurde er jedoch für

die Polyacrylamid-Gel-Elektrophorese mit geringfügig anderer Zusammensetzung entwickelt

(40 mM Tris; 20 mM NaOAc; 2 mM EDTA · Na2; pH 7,8 bei 5°C mit Essigsäure; Ref. 1). Natriumacetat

wurde zur Stabilisierung der Sekundärstruktur der RNA eingesetzt. Da bei der Einstellung des pH-

Wertes mit Salzsäure während der Elektrophorese durch Elektrolyse Hypochlorit entstehen kann,

wurde als Anion Acetat gewählt (1). Die Zugabe von EDTA zu den Elektrophorese-Puffern minimiert

eine Aggregation von Nukleinsäuren durch Magnesium-Ionen. Heute verwendet man den Puffer in

leicht modifizierter Form (40 mM Tris-Acetat; 1 mM EDTA · Na2 (~pH 8,5)). TAE hat eine niedrigere

Pufferkapazität als TBE und TPE, allerdings wandert doppelsträngige, lineare DNA 10 % schneller

bei gleicher Auflösung durch TAE als durch TBE oder TPE. ‘Supercoiled’ DNA wird in TAE besser

aufgetrennt als in TBE. Für lange Gelläufe sollte daher der Puffer rezirkuliert werden. TAE hat

gegenüber TBE einen weiteren Vorteil. Er interagiert nicht mit der Agarose und in der präparativen

Nukleinsäure – Agarose-Gel-Elektrophorese ist dadurch die Ausbeute an Nukleinsäuren hoch (2).

Normalerweise verwendet man den Puffer in der Arbeitskonzentration 1X (seltener 0,5X). TAE wird

bei Raumtemperatur gelagert.

Laufbedingung: 1-10 V/cm

(Laufbedingung Minigel: 5-20 V/cm)

50X TAE-Elektrophorese-Puffer (nach Ref. 3) (nach Ref. 4)

2 M Tris (242 g/L) 2 M Tris (242 g/L)

1 M Essigsäure (57,1 ml/L Eisessig) 1 M Essigsäure (57,1 ml/L Eisessig)

0,05 M EDTA-Na2 (100 ml von 0,5 M EDTA pH 8) 0,1 M EDTA-Na2 · 2H2O (37,2 g/L)

Der finale pH-Wert des 1X Puffers liegt bei ca. 8,5.

Page 31: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

© 2009 AppliChem • Agarose-Gel-Elektrophorese 29

[1] Ausubel, F.A., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. & Struhl, K. (eds.) (1995) Current Protocols in Molecular Biology. Suppl. 40 Seite A.2.5. Greene Publishing & Wiley-Interscience, New York.

[2] Loening, U.E. (1967) Biochem. J. 102, 251-257 The fractionation of high-molecular-weight Ribonucleic acid by polyacrylamide-gel electrophoresis.

[3] Ogden, R.C. & Adams, D.A. (1987) Methods Enzymol. 152, 61-87 Electrophoresis in agarose and acrylamide gels.

[4] Sambrook, J. & Russel, D.W. (2001) Molecular Cloning: A Laboratory Manual, 3rd Edition. Seiten 5.8 und A1.17. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

2.2 TBE-Puffer

TBE-Puffer wird als Elektrophorese-Puffer für Polyacrylamid-Gele und Agarose-Gele verwendet.

TBE hat eine höhere Pufferkapazität als TAE, allerdings wandert doppelsträngige, lineare DNA bei

gleicher Auflösung 10 % schneller durch TAE als durch TBE. ‘Supercoiled’ DNA wird besser in TAE

als in TBE aufgetrennt. Normalerweise verwendet man den Puffer in der Arbeitskonzentration 1X

für Polyacrylamid-Gele und 0,5X für Agarose-Gele. Für ‘band shifts’ (gel mobility shift assay) wird

ebenfalls 0,5X TBE eingesetzt. Für die präparative Agarose-Gel-Elektrophorese mit anschließender

Isolierung von Nukleinsäuren ist grundsätzlich von der Verwendung von TBE-Puffer abzuraten, da

dieser Puffer mit der Agarose inter agieren kann und die Ausbeute an Nukleinsäuren dadurch sehr

schlecht ist (2). Die Zugabe von EDTA zu den Elektrophorese-Puffern minimiert eine Aggregation

von Nukleinsäuren durch Magnesium-Ionen und andere schwerere Metallionen.

TBE wird meistens als 10X oder 5X Konzentrat hergestellt und bei Raumtemperatur gelagert. Bei

langer Lagerung bildet sich besonders im 10X Konzentrat, stärker als im 5X Konzentrat, meist ein

Präzipitat. Filtration mit einem 0,22 µm Filter verzögert die Präzipitat-Bildung.

Abb. 2.1: Struktur und Reaktionsschema von Tris (Tris-(hydroxymethyl)-aminomethan)

Abb. 2.2: Struktur und Reaktionsschema von Borsäure

Pu

ff

er

-S

ys

te

me

Page 32: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

30 Agarose-Gel-Elektrophorese • AppliChem © 2009

Laufbedingung: 1-10 V/cm

(Laufbedingung Minigel: 5-20 V/cm)

10X TBE-Elektrophorese-Puffer (nach Ref. 3,4)

0,89 M Tris (108 g/L)

0,89 M Borsäure (55,3 g/L)

0,02 M EDTA-Na2 (40 ml von 0,5 M EDTA pH 8)

Der finale pH-Wert des 10X Puffers liegt bei ca. 8,3.

[1] Ausubel, F.A., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. & Struhl, K. (eds.) (2001) Current Protocols in Molecular Biology, Suppl. 40, Seite A.2.5. Greene Publishing & Wiley-Interscience, New York.

[2] Ogden, R.C. & Adams, D.A. (1987) Methods Enzymol. 152, 61-87. Electrophoresis in agarose and acrylamide gels.

[3] Peacock, A.C. & Dingman, C.W. (1968) Biochemistry 7, 668-674. Molecular weight estimation and separation of ribonucleic acid by electrophoresis in Agarose-Acrylamide composite gels.

[4] Sambrook, J. & Russel, D.W. (2001) Molecular Cloning: A Laboratory Manual, 3rd Edition, Seiten 5.8 und A.1.17. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

2.3 MOPS-Elektrophorese-Puffer (10X)

Der Laufpuffer (1X) wird in denaturierenden Formaldehyd-enthaltenden Agarose-Gelen und in

Gelen Glyoxal/DMSO-behandelter RNA eingesetzt. Allerdings hat er eine relativ niedrige

Pufferkapazität und wird inzwischen häufig durch den neueren BPTE-Puffer abgelöst. Dieser Typ

von RNA-Gel hat relativ lange Laufzeiten (4-5 h). Während des Gellaufes baut sich ein pH-Gradient

auf. Im pH-Bereich >8,0 würde Glyoxal von der RNA dissoziieren. Daher sollte während des

Gellaufes der MOPS-Laufpuffer zirkulieren oder alle 30 Minuten im Puffertank durchmischt werden

(1, 2).

Laufbedingung: 4-5 V/cm

10X MOPS-Elektrophorese-Puffer (nach Ref. 1) (nach Ref. 2)

0,2 M MOPS (pH 7,0) 0,4 M MOPS (pH 7,0)

20 mM Natriumacetat 100 mM Natriumacetat

10 mM EDTA (pH 8,0) 10 mM EDTA (pH 8,0) (Lagerung 3 Monate bei +4°C)

Abb. 2.3: Struktur und Reaktionsschema von MOPS (3-Morpholino propan sulfonsäure)

Pu

ff

er

-S

ys

te

me

Page 33: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

Pu

ff

er

-S

ys

te

me

© 2009 AppliChem • Agarose-Gel-Elektrophorese 31

MOPS-Lösungen werden beim Autoklavieren oder bei Lagerung unter Lichteinfluss leicht gelblich,

ohne jedoch an Qualität zu verlieren. Erst wenn sich die Lösungen dunkel verfärben, sollten sie

nicht mehr verwendet werden.

1] Ausubel, F.A., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. & Struhl, K. (eds.) (2001) Current Protocols in Molecular Biology, Suppl. 67, Seite 4.9.15. Greene Publishing & Wiley-Interscience, New York.

[2] Sambrook, J. & Russel, D.W. (2001) Molecular Cloning: A Laboratory Manual, 3rd Edition, Seite 7.32. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

2.4 BPTE-Elektrophorese-Puffer (10X)

Der BPTE-Laufpuffer wird für die Trennung von RNA im Agarose-Gel eingesetzt. Die Mischung

zweier Puffersubstanzen mit ähnlichem pKa-Wert führt zu einem stabileren Laufpuffer, der nicht

mehr rezirkuliert werden muss. Er soll damit das relativ giftige Formaldehyd-System ablösen.

Laufbedingung: 5 V/cm

10X BPTE-Elektrophorese-Puffer (nach Ref. 1, 2)

100 mM PIPES

300 mM Bis-Tris

10 mM EDTA (pH 8,0)

Der finale pH-Wert des 10X Puffers liegt bei ca. 6,5. Nach der DEPC-Behandlung autoklavieren.

[1] Burnett, W.V. (1997) BioTechniques 22, 668-671. Northern Blotting of RNA Denatured in Glyoxal Without Buffer Recirculation.

[2] Sambrook, J. & Russel, D.W. (2001) Molecular Cloning: A Laboratory Manual, 3rd Edition, Seite 7.28. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Page 34: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

32 Agarose-Gel-Elektrophorese • AppliChem © 2009

2.5 Alkalischer Agarose-Gel-Elektrophorese-Puffer (10X)

Dieses Puffersystem ist eigentlich veraltet. Dennoch gibt es Anwendungen, bei denen dieser einfache

Puffer gute Ergebnisse liefert. Er zählt zu den denaturierenden Systemen, da die Wasserstoffbrücken-

Bildung in der doppelsträngigen DNA unterbunden wird. Anwendung findet er heute noch bei der

Längenbestimmung der DNA in DNA-RNA-Hybriden und der von ‘first’ und ‘second strand’ cDNAs

(1). Aufgrund des hohen pH-Wertes ist Bromphenolblau als ‘tracking dye’ ungeeignet. Stattdessen

wird Bromkresolgrün eingesetzt. Alkalische Agarose-Gele heizen sich stärker auf und werden daher

bei niedrigerer Stromstärke laufen gelassen. Es kann eine teil weise basische Hydrolyse der Agarose

auftreten, die die DNA im Gel ungleichmäßig laufen lässt. Um dies zu verhindern, sollte das Gel vor

dem Start auf Raumtemperatur abgekühlt sein.

Laufbedingung: < 3,5 V/cm

10X Alkalischer Agarose-Gel-Elektrophorese-Puffer (nach Ref. 1)

500 mM NaOH (50 ml/L 10 N NaOH)

10 mM EDTA (20 ml/L 0,5 M EDTA pH 8,0)

Der 10X Puffer wird direkt vor Gebrauch mit Wasser auf 1X verdünnt.

[1] Sambrook, J. & Russel, D.W. (2001) Molecular Cloning: A Laboratory Manual, 3rd Edition, Seiten 5.36 und A1.17. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

2.6 TAFE-Elektrophorese-Puffer

TAFE steht für 'transverse alternating field electrophoresis'. Wie bei der 'Pulsed-field Gel

Electrophoresis' (PFGE) wird das elektrische Feld umgeschaltet und die DNA wandert im wechseln-

den elektrischen Feld quasi hin und her. Entscheidend ist dafür die Puls-Länge. Je länger der Puls

anhält, desto größere Fragmente können getrennt werden. Alternativen zum 1X TAFE-Puffer sind

der GTBE-Puffer, TBE mit Zusatz von Glycin, oder einfach 0,5X TBE.

Abb. 2.4: Struktur und Reaktionsschema von Glycin

Pu

ff

er

-S

ys

te

me

Page 35: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

Pu

ff

er

-S

ys

te

me

© 2009 AppliChem • Agarose-Gel-Elektrophorese 33

TAFE-Gel-Elektrophorese-Puffer (nach Ref. 1)

20 mM Tris-acetat (pH 8,2)

0,5 mM EDTA (die freie Säure verwenden!)

Der pH-Wert der Tris-Lösung wird mit Essigsäure auf 8,2 eingestellt.

GTBE-Gel-Elektrophorese-Puffer (nach Ref. 2)

50 ml 10X TBE-Puffer (Endkonz. 0,5X)

50 ml 2 M Glycin (Endkonz. 0,1 M)

900 ml Wasser

Der Puffer wird bei Raumtemperatur gelagert.

[1] Ausubel, F.A., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. & Struhl, K. (eds.) (2001) Current Protocols in Molecular Biology, Suppl. 51 Seite 2.5B.1. Greene Publishing & Wiley-Interscience, New York.

[2] Sambrook, J. & Russel, D.W. (2001) Molecular Cloning: A Laboratory Manual, 3rd Edition, Seiten 5.74 und A1.18. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

2.7 TPE-Elektrophorese-Puffer

TPE-Puffer hat ähnliche Eigenschaften wie TBE-Puffer und damit eine wesentlich höhere

Pufferkapazität als TAE. Allerdings wandert doppelsträngige, lineare DNA 10 % langsamer bei glei-

cher Auflösung durch TPE als durch TAE. Die Trennkapazität ist für kleine DNA-Moleküle besser in

TPE und TBE als in TAE, für große Fragmente ist es genau umgekehrt (1). Der Puffer wird als 1X

(1) oder 0,5X (2) Lösung eingesetzt.

10X TPE-Gel-Elektrophorese-Puffer (nach Ref. 1)

900 mM Tris 108 g Tris

900 mM Phosphat 15,5 ml Phosphorsäure 85 % (1,679 g/ml)

20 mM EDTA 40 ml 0,5 M EDTA (pH 8,0)

[1] Li, T.-K. et al. (2003) Cancer Res. 63, 8400-8407. Characterization of ARC-111 as a Novel Topoisomerase I-Targeting Anticancer Drug.

[2] Sambrook, J. & Russel, D.W. (2001) Molecular Cloning: A Laboratory Manual, 3rd Edition, Seiten 5.8 und A1.17. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Page 36: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

Pu

ff

er

-S

ys

te

me

34 Agarose-Gel-Elektrophorese • AppliChem © 2009

2.8 TTE-Elektrophorese-Puffer

Tris-Taurin-EDTA-Puffer ist eine Alternative zu TBE, wenn Borsäure zum Problem wird. Taurin hat

einen ähnlichen pKa-Wert wie Borsäure. Warum Borsäure austauschen? Borsäure kann mit Glycerin

negativ-geladene Ester bilden, die in der Elektrophorese zur Anode wandern. Glycerin wird den

meisten Enzympräparationen in relativ hoher Konzentration (bis 50 %) zugesetzt, um ein Einfrieren

während der Lagerung zu vermeiden. Außerdem enthalten verschiedene Ladepuffer Glycerin, um

die Dichte der zu ladenden Lösung zu erhöhen. Allerdings dürfte dieses Problem primär bei emp-

findlichen Sequenziergelen eine Rolle spielen, wenn die Glycerin-Konzentration 8 % in der Probe

überschreitet (1).

20X TTE-Gel-Elektrophorese-Puffer

1,78 M Tris 216 g/L Tris

570 mM Taurin 72 g/L Taurin

10 mM EDTA 2 g/L EDTA-Na2

[1] Sambrook, J. & Russel, D.W. (2001) Molecular Cloning: A Laboratory Manual, 3rd Edition, Seiten 12.108 und 13.90. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

2.9 Low-Molarity Conductive Media

Das Problem vieler Elektrophorese-Puffer ist die relativ hohe Ionenkonzentration, die während des

Gel-Laufes zur starken Aufheizung und zum Schmelzen des Agarose-Gels führen kann. Zusätzlich

sind die Laufzeiten ziemlich lang. In einem Versuch diese beiden Probleme, Temperatur und

Laufzeit, zu verbessern, wurde im Laufpuffer für DNA-Agarose-Gele die Puffersubstanz Tris einfach

durch Natrium ersetzt und EDTA weggelassen. Für RNA-Gele wurde der MOPS-Puffer und EDTA

durch Li-Ionen ersetzt. Im Ergebnis konnte eine Auftrennung von nur 1 bp bei 35 bp bzw. 36 bp

Oligos erzielt werden.

Laufbedingung: 29 V/cm (DNA)

Laufbedingung: 40 V/cm (RNA)

1X DNA Puffer (nach Ref. 1)

1 mM Lithium-Borsäure oder

10 mM Natrium-Borsäure (für DNA 100 bp-5 kb) oder

5 mM Lithiumacetat (für DNA >3,0 kb)

0,5X RNA Puffer (nach Ref. 1)

5 mM Natrium-Borsäure (pH 6,0) oder Lithiumacetat

[1] Brody, J.R. et al. (2004) BioTechniques 37, 598-602. Ultra-fast high-resolution agarose electrophoresis of DNA and RNA using low-molarity conductive media.

Page 37: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

Tr

en

nk

ap

az

it

ät

© 2009 AppliChem • Agarose-Gel-Elektrophorese 35

3 Trennkapazität

Alle AppliChem-Agarosen zeigen aufgrund der hohen chemischen Reinheit sehr gute Auflösungs-

vermögen und Trennkapazitäten in der Gel-Elektrophorese.

Als Faustregel gilt: bei geeigneter Agarosekonzentration und Pufferbedingungen sind 4 %

Fragmentlängen-Unterschiede zu identifizieren. Die folgende Tabelle gibt Aufschluss über geeignete

Gelkonzentrationen.

Beispiel: 1,5 % Agarose Standard (A2144) in TBE-Puffer wird zur Trennung von dsDNA mit

Fragmentlängen von etwa 1000 bp verwendet. Dann sind noch Unterschiede von 40 bp leicht zu

identifizieren.

1X TAE-Puffer Agarose-Konzentration [%] 1X TBE-Puffer Trennbereich (bp) Trennbereich (bp)

Agarose Low EEO (Agarose Standard) A2114 20000 – 1000 0,6 15000 – 1000 12000 – 500 0,8 10000 – 500 8000 – 300 1,0 7000 – 250 6000 – 200 1,2 5000 – 200 3500 – 100 1,5 3000 – 100 2000 – 50 2,0 2000 – 50

Agarose MP A1091 40000 – 3000 0,3 20000 – 2000 22000 – 2000 0,5 12000 – 1500 15000 – 1000 0,8 9000 – 1000 10000 – 400 1,0 6000 – 500 5000 – 200 1,8 3000 – 200

Agarose Low Melt 4 A2120 500 – 80 3,0 300 – 50 300 – 30 4,0 100 – 10 200 – 10 5,0 < 100

Agarose SMG A2122 2500 – 700 2,0 1500 – 500 1200 – 500 3,0 800 – 100 700 – 100 4,0 500 – 50 250 – 30 5,0 250 – 20

Agarose IMG A2121 1500 – 100 2,0 1200 – 100 1000 – 50 3,0 700 – 40 500 – 20 4,0 200 – 20 300 – 10 5,0 < 100

Agarose Low Melt Large DNA grade A3762 20000 – 500 0,75 12000 – 500 16000 – 300 1,00 8000 – 300 10000 – 250 1,25 4000 – 200 5000 – 200 1,50 3000 – 150 2500 – 100 1,75 2000 – 100 1500 – 50 2,00 1000 – 50

Page 38: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

36 Agarose-Gel-Elektrophorese • AppliChem © 2009

Fa

rb

st

of

fe

Art.-Nr. Bezeichnung DNA/RNA-Farbkomplex Anregung/Emission Sensitivität empfohlene Konzentration Stammlösung

A1398 Acridinorange ◆ dsDNA/RNA grüne Fluoreszenz; ssDNA/RNA rote Fluoreszenz 490 nm / 525 nm 50 ng 30 µg/ml 10 mM Salzlösung oder 1 mg/ml in dest. Wasser (6 Monate bei 2–8°C)

A1001 DAPI spez. Bindung an AT-Basenpaare; Interkalation in GC-Basenpaare; weißlich-blaue Fluoreszenz

365 nm / 450 nm 70 ng 0,1 µg/ml in PBS oder andere wässrige Lösung

A1151 Ethidiumbromid• Interkalation 260-360 oder 546 nm / 590 nm

0,5 ng 0,2–0,5 µg/ml 10 mg/ml in Wasser; 2-8°C

A0691 Kristallviolett DNA (purpurrot) 590 nm 10 ng 1 µg/ml

A2388 Malachitgrünoxalat DNA 626 nm ✤

A5595 DNA-Dye Methylenblau DNA 40 ng 0,0025 % in 0,1x TAE-Puffer z.B. 200X

A1402 Methylenblau RNA-Färbung im sauren pH-Bereich 297 nm / 672 nm 40–80 ng 0,2 % in 0,4 M NaOAc/0,4 M Essigsäure

A1403 Methylgrün spez. Bindung an AT-reiche Sequenzen; DNA (grün) 638 nm ▲ 1 µg/ml

A0581 Methylorange 10 ng 0,0005 % 0,25 % in Wasser

A3918 Nilblau DNA-Interkalator (blau) 630 nm / 673 nm Agarose 40 ng; getr. Gele 4 ng

1 µg/ml 1 µg/ml in 0,25X TAE-Puffer pH 8,0

A2261 Propidiumiodid DNA-Interkalator; keine Aufnahme in lebende Zellen 530 nm / 625 nm n.a. 1 µg/ml 2–8°C oder RT

A1406 Pyronin Y DNA/RNA (rot) 488-530 nm / 565-574 nm ✶ 0,05 % oder 1 µg/ml

A3944 Silbernitrat DNA (braun) Agarose 2,5 ng ds DNA

A1400 Stains all RNA (blau-violett) DNA (blau)

RNA (lmax. 600 nm) DNA (lmax. 620 nm)

dsDNA (5–10 ng) TX DNA 3 ng

0,005 % 0,1 % in Formamid; 5,6 mg/10 ml in 50 % Dioxan; frisch ansetzen

• Es sind verschiedene ready-to-use-Lösungen erhältlich! A1152 Ethidiumbromid-Lösung 1 % BioChemica A2273 Ethidiumbromid-Lösung 0,07 % „dropper-bottle“◆ Acridinorange wird hauptsächlich für die Färbung von ssDNA und RNA eingesetzt.▲ Wird häufiger in der histochemischen DNA-Färbung eingesetzt. Auch Enzymnachweise im Gel

(z.B. DNase im Polyacrylamid-Gel) findet man in der Literatur.✶ eingesetzt hauptsächlich als „tracking dye“ und als „counter-dye“.✤ eingesetzt hauptsächlich für den Nachweis von anorganischem Phosphat (= Nachweis einer

ATPase-Aktivität)

HinweisNicht alle Nukleinsäure-Farbstoffe werden auch in der Agarose-Gel-Elektrophorese eingesetzt. Sensitivitäten (Nachweisgrenzen) beziehen sich daher nicht immer auf Färbungen in Agarose-Gelen.

AbkürzungenDAPI (4',6-Diamidino-2-phenylindol-Dihydrochlorid) NaOAc (Natriumacetat)PBS (Phosphate-buffered saline) TX DNA (Triple Helix DNA)

4 Farbstoffe

4.1 Nukleinsäure-Farbstoffe-Übersicht

Page 39: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

© 2009 AppliChem • Agarose-Gel-Elektrophorese 37

Fa

rb

st

of

fe

Art.-Nr. Bezeichnung DNA/RNA-Farbkomplex Anregung/Emission Sensitivität empfohlene Konzentration Stammlösung

A1398 Acridinorange ◆ dsDNA/RNA grüne Fluoreszenz; ssDNA/RNA rote Fluoreszenz 490 nm / 525 nm 50 ng 30 µg/ml 10 mM Salzlösung oder 1 mg/ml in dest. Wasser (6 Monate bei 2–8°C)

A1001 DAPI spez. Bindung an AT-Basenpaare; Interkalation in GC-Basenpaare; weißlich-blaue Fluoreszenz

365 nm / 450 nm 70 ng 0,1 µg/ml in PBS oder andere wässrige Lösung

A1151 Ethidiumbromid• Interkalation 260-360 oder 546 nm / 590 nm

0,5 ng 0,2–0,5 µg/ml 10 mg/ml in Wasser; 2-8°C

A0691 Kristallviolett DNA (purpurrot) 590 nm 10 ng 1 µg/ml

A2388 Malachitgrünoxalat DNA 626 nm ✤

A5595 DNA-Dye Methylenblau DNA 40 ng 0,0025 % in 0,1x TAE-Puffer z.B. 200X

A1402 Methylenblau RNA-Färbung im sauren pH-Bereich 297 nm / 672 nm 40–80 ng 0,2 % in 0,4 M NaOAc/0,4 M Essigsäure

A1403 Methylgrün spez. Bindung an AT-reiche Sequenzen; DNA (grün) 638 nm ▲ 1 µg/ml

A0581 Methylorange 10 ng 0,0005 % 0,25 % in Wasser

A3918 Nilblau DNA-Interkalator (blau) 630 nm / 673 nm Agarose 40 ng; getr. Gele 4 ng

1 µg/ml 1 µg/ml in 0,25X TAE-Puffer pH 8,0

A2261 Propidiumiodid DNA-Interkalator; keine Aufnahme in lebende Zellen 530 nm / 625 nm n.a. 1 µg/ml 2–8°C oder RT

A1406 Pyronin Y DNA/RNA (rot) 488-530 nm / 565-574 nm ✶ 0,05 % oder 1 µg/ml

A3944 Silbernitrat DNA (braun) Agarose 2,5 ng ds DNA

A1400 Stains all RNA (blau-violett) DNA (blau)

RNA (lmax. 600 nm) DNA (lmax. 620 nm)

dsDNA (5–10 ng) TX DNA 3 ng

0,005 % 0,1 % in Formamid; 5,6 mg/10 ml in 50 % Dioxan; frisch ansetzen

Page 40: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

38 Agarose-Gel-Elektrophorese • AppliChem © 2009

Fa

rb

st

of

fe 4.2 Protein-Farbstoffe–Übersicht

Art.-Nr. Bezeichnung Bemerkung Absorptionsmaxima Sensitivität empfohlene Konzentration Stammlösung

A2176 Bismarckbraun R zur Erhöhung der Sensitivität von CBB R-250-Färbung

lmax. 468 nm 25 ng ✤ Coomassie® Brillant Blau R-250 (0,2 % w/v) Bismarckbraun R (0,05 % w/v)

Lösungsmittel MeOH : Esigsäure : Wasser (40:7:53) Farbstoffe in getrennten Lösungen, dann 1:0,75 gemischt (v/v)

A3480 Coomassie® Brillant Blau G-250

färbt auch Ampholyte im IEF-Gel!• < 0,5 ng 80 ml der Stammlösung werden erst vor Gebrauch mit 20 ml MeOH gemischt.

0,1 % w/v CBB in 2 % w/v Phosphorsäure, 10 % w/v Ammoniumsulfat (nicht filtrieren!)

A1092 Coomassie® Brillant Blau R-250

färbt auch Ampholyte im IEF-Gel! lmax. mit Protein 549 nm, ohne Protein 555 nm

10 ng 0,1 % in 20 % MeOH, 10 % Essigsäure

A0822 Eosin Y reversible Färbung ähnlich CBB R-250 0,25 % (w/v) in 0,1 N NaOH Färbelösung täglich frisch ansetzen; kann für mehrere Gele verwendet werden

A1346 Eriochromschwarz T 560 nm 10 ng 0,01 % 0,02 % in 40 % MeOH / 7 % Essigsäure; in Kombination mit Rhodamin B

A1401 Fast Green FCF Farbkomplex im sauren pH-Bereich lmax. (pH 8,3) 615; (MeOH) 620 nm lmax. (mit Protein) 635 nm

400 ng 0,25 % (w/v) in 10 % Essigsäure bis 1 % (w/v) in 7 % Essigsäure

A2385 Kongorot Färbung im sauren pH-Bereich weniger sensitiv als CBB

0,1 % (w/v) in 0,2 M Acetat-Puffer (pH 3,5) 1 % (w/v) in dest. Wasser

A2388 Malachitgrünoxalat Phosphatase-Nachweis im Gel Färbelösung = 3 Vol. Lsg.1 + 1 Vol. Lsg. 2 (3 Wochen stabil; jeweils vor Gebrauch filtrieren)

Lösung 1: 0,15 g Malachitgrünoxalat in 300 ml Wasser; Lösung 2: 4,2 g Ammoniummolybdat-Tetrahydrat in 100 ml 5 N HCl

Nilrot 5 ng

A1405 Ponceau S saurer Diazofarbstoff lmax. (H2O) 517–823 nm 500 ng 0,1–0,5 % in 3 % TCA oder 1 ml Eisessig ad 100 ml Wasser

vor Gebrauch frisch ansetzen

A7808 Proteo-Dye RuBPS lmax. 617 nm 2–5 ng 1 µM 1 mM

A3930 Rhodamin B ◆ 560 nm 10 ng 0,01 % 0,02 % in 40 % MeOH / 7 % Essigsäure; in Kombination mit Eriochromschwarz T

A3972 Silbernitrat braun 2–5 ng

A1400 Stains all•• färbt verschiedene Proteintypen in unterschiedlichen Farben

lmax. für BSA 515 nm wie CBB 0,005 % 0,1 % in Formamid oder 5,6 mg/10 ml in 50 % Dioxan; frisch ansetzen

Zink-Imidazol reverse Färbung 10–20 ng SDS-PAGE 40–80 ng native PAGE

✤ nur in Verbindung mit Coomassie®!◆ Nachweis auch von Phosphoproteinen: Bildung eines unlöslichen Phosphat-Komplexes

(Sensitivität: 0,1 nM)• Allen, R.E. et al. (1980) Anal. Biochem. 104, 494-498. Staining Protein in Isoelectric Focusing

Gels with Fast Green.•• färbt zum Beispiel Sialoglycoproteine und Phosphoproteine blau, fast alle anderen Proteine

rot.

AbkürzungenBSA (Bovine Serum Albumin) CBB (Coomassie® Brillantblau) MeOH (Methanol) RuBPS (Ruthenium(II)tris(bathophenanthrolindisulfonat)) TCA (Trichloressigsäure)

Page 41: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

© 2009 AppliChem • Agarose-Gel-Elektrophorese 39

Fa

rb

st

of

fe

Art.-Nr. Bezeichnung Bemerkung Absorptionsmaxima Sensitivität empfohlene Konzentration Stammlösung

A2176 Bismarckbraun R zur Erhöhung der Sensitivität von CBB R-250-Färbung

lmax. 468 nm 25 ng ✤ Coomassie® Brillant Blau R-250 (0,2 % w/v) Bismarckbraun R (0,05 % w/v)

Lösungsmittel MeOH : Esigsäure : Wasser (40:7:53) Farbstoffe in getrennten Lösungen, dann 1:0,75 gemischt (v/v)

A3480 Coomassie® Brillant Blau G-250

färbt auch Ampholyte im IEF-Gel!• < 0,5 ng 80 ml der Stammlösung werden erst vor Gebrauch mit 20 ml MeOH gemischt.

0,1 % w/v CBB in 2 % w/v Phosphorsäure, 10 % w/v Ammoniumsulfat (nicht filtrieren!)

A1092 Coomassie® Brillant Blau R-250

färbt auch Ampholyte im IEF-Gel! lmax. mit Protein 549 nm, ohne Protein 555 nm

10 ng 0,1 % in 20 % MeOH, 10 % Essigsäure

A0822 Eosin Y reversible Färbung ähnlich CBB R-250 0,25 % (w/v) in 0,1 N NaOH Färbelösung täglich frisch ansetzen; kann für mehrere Gele verwendet werden

A1346 Eriochromschwarz T 560 nm 10 ng 0,01 % 0,02 % in 40 % MeOH / 7 % Essigsäure; in Kombination mit Rhodamin B

A1401 Fast Green FCF Farbkomplex im sauren pH-Bereich lmax. (pH 8,3) 615; (MeOH) 620 nm lmax. (mit Protein) 635 nm

400 ng 0,25 % (w/v) in 10 % Essigsäure bis 1 % (w/v) in 7 % Essigsäure

A2385 Kongorot Färbung im sauren pH-Bereich weniger sensitiv als CBB

0,1 % (w/v) in 0,2 M Acetat-Puffer (pH 3,5) 1 % (w/v) in dest. Wasser

A2388 Malachitgrünoxalat Phosphatase-Nachweis im Gel Färbelösung = 3 Vol. Lsg.1 + 1 Vol. Lsg. 2 (3 Wochen stabil; jeweils vor Gebrauch filtrieren)

Lösung 1: 0,15 g Malachitgrünoxalat in 300 ml Wasser; Lösung 2: 4,2 g Ammoniummolybdat-Tetrahydrat in 100 ml 5 N HCl

Nilrot 5 ng

A1405 Ponceau S saurer Diazofarbstoff lmax. (H2O) 517–823 nm 500 ng 0,1–0,5 % in 3 % TCA oder 1 ml Eisessig ad 100 ml Wasser

vor Gebrauch frisch ansetzen

A7808 Proteo-Dye RuBPS lmax. 617 nm 2–5 ng 1 µM 1 mM

A3930 Rhodamin B ◆ 560 nm 10 ng 0,01 % 0,02 % in 40 % MeOH / 7 % Essigsäure; in Kombination mit Eriochromschwarz T

A3972 Silbernitrat braun 2–5 ng

A1400 Stains all•• färbt verschiedene Proteintypen in unterschiedlichen Farben

lmax. für BSA 515 nm wie CBB 0,005 % 0,1 % in Formamid oder 5,6 mg/10 ml in 50 % Dioxan; frisch ansetzen

Zink-Imidazol reverse Färbung 10–20 ng SDS-PAGE 40–80 ng native PAGE

Page 42: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

Gl

os

sa

r

40 Agarose-Gel-Elektrophorese • AppliChem © 2009

5 Glossar

Gelstärke (engl. Gel strength): mechanische Stabilität eines ausgehärteten Gels unter definierten

Bedingungen. Die maximale Belastbarkeit pro Fläche wird ausgedrückt in g/cm². Die Gelstärken

für Agarosen liegen typischerweise zwischen 250 g/cm² (wenig stabil) bis 3200 g/cm² (sehr

stabil und reißfest). Agarose-Qualitäten mit hohem Schmelzpunkt sind in der Regel stabiler als

solche mit niedrigem Schmelzpunkt.

Geltemperatur (engl. Gelling temperature): aufgeschmolzene Agarose verfestigt sich zur

Gelmatrix nahe der Geltemperatur. Anmerkung: einzelne, hochauflösende Agarose-Qualitäten

zeigen ihr optimales Auflösungsvermögen erst nachdem das Gel längere Zeit bei 4°C gekühlt

wurde.

Hysterese, hier: unterschiedliche Temperaturen bei denen Agarose flüssig oder fest wird –

abhängig vom Zustand aus dem das Gel kommt. Beispielsweise schmilzt Standard-Agarose bei

88°C, im Temperaturbereich zwischen 36–88°C bleibt sie flüssig und wird erst in der Nähe der

Geliertemperatur von ca. 36°C wieder fest. Ein ausgehärtetes Gel bleibt dagegen bis zum erneuten

Aufschmelzen fest. So kann also Agarose bei z.B. 45°C – abhängig von der Vorbehandlung –

flüssig oder fest sein.

Schmelzpunkt (engl. Melting point): Man unterscheidet Agarose-Typen mit niedrigem oder

normalem Schmelzpunkt. Standard-Agarose hat einen normalen Schmelzpunkt von ca. 88°C.

Agarosen mit niedrigem Schmelzpunkt (LMP, low melting point) weisen typischerweise einen

Schmelzpunkt bei <65°C auf. Intermediäre Schmelzpunkte können durch Mischen beider

Qualitäten erreicht werden.

Präparative Gele werden häufig mit LMP-Agarosen durchgeführt, um eingeschlossene Moleküle

bei geringeren Temperaturen möglichst schonend aus der Matrix zu trennen ohne gleichzeitig die

DNA aufzuschmelzen.

Elektroendoosmose (EEO): ein Grenzflächenphänomen, welches die Bewegung einer

Flüssigkeit relativ zu einer geladenen Oberfläche in einem elektrischen Feld beschreibt. Die EEO

spielt nur bei sehr dünnen Flüssigkeitsschichten oder sehr kleinen Kapillaren wie den Poren

eines Agarosegels eine Rolle. In der Praxis sind Agarosen mit geringen Werten

(EEO <0,12) für die Trennung von Nukleinsäuren gefragt.

Page 43: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

© 2009 AppliChem • Agarose-Gel-Elektrophorese 41

Pr

od

uk

te

Gel-MatrizesA2114 Agarose low EEO (Agarose Standard)A2115 Agarose high EEOA2116 Agarose medium EEOA2117 Agarose special EEOA2118 Agarose Low Melt SA2119 Agarose Low Melt 3A2120 Agarose Low Melt 4A3762 Agarose Low Melt Large DNA gradeA2121 Agarose IMGA2122 Agarose SMGA1091 Agarose MPA3812 Acrylamid für die MolekularbiologieA0385 Acrylamid-Lösung (40 %) - Mix 29 : 1

für die MolekularbiologieA4983 Acrylamid-Lösung (30 %) - Mix 29 : 1

für die MolekularbiologieA0711 Acrylamid 4K-Fertiglösung für die SDS-PAGE

(10 %)A0725 Acrylamid 4K-Fertiglösung

für die nicht denaturierende DNA-PAGE (12 %)A7740 Acrylamid 4K-Fertiglösung nach Ahn „single gels“ (10 %)A2224 Stärke (Smithies) hydrolisierte Stärke für die

Elektrophorese

LaufpufferA4686 TAE-Puffer (50X) für die MolekularbiologieA4227 TAE-Puffer (10X) für die MolekularbiologieA1691 TAE-Puffer (50X)A1416 TAE-Puffer (10X)A3945 TBE-Puffer (10X) für die MolekularbiologieA4228 TBE-Puffer (5X) für die MolekularbiologieA0972 TBE-Puffer (10X)A1417 TBE-Puffer (5X)A3843 TPE-Puffer (10X)A3435 TPE-Puffer (1X)

LadepufferA3144 Ladepuffer DNA IA2571 Ladepuffer DNA IIA6307 Ladepuffer DNA II bA3147 Ladepuffer DNA IIIA3481 Ladepuffer DNA IVA3476 Ladepuffer DNA VIII

(für Glyoxal/DMSO-RNA-Gele)A5212 Ladepuffer X (PCR)

6 Verwandte Produkte

DNA-GrößenstandardsA5191 DNA Ladder 100 bpA5216 DNA Ladder 100 bp plusA5207 DNA Ladder 1 kbA5220 DNA Marker Phage Lambda BstE IIA5223 DNA Marker Phage Lambda Hind IIIA5194 DNA Marker Phage Lambda Sty IA5229 DNA Marker pBR322 - Hae IIIA5235 DNA Marker pUC19 - Msp IA6430 DNA Ladder 1 kb concatamer (lyophylisiert) A2667 DNA Ladder 1 kp (lyophylisiert)A3470 DNA Ladder 100 bp (lyophylisiert) A3302 DNA Ladder 100 bp equalized (lyophylisiert) A3982 DNA Ladder 250 bp (lyophylisiert) A3660 DNA Ladder Mix 100-5000 (lyophylisiert) A4406 DNA Marker pBR322 -– Hae III (lyophylisiert) A6927 DNA Marker pBR328 Mix (lyophylisiert) A5589 DNA Marker Phage Lambda Hind III

(lyophylisiert)A4412 DNA Marker Phage Lambda-BstE II (lyophylisiert) A3996 DNA Marker pUC19-Msp I (lyophylisiert) A7215 DNA Marker quick-run (lyophylisiert) A7222 DNA Marker quick-run extended (lyophylisiert)

FarbstoffeA1151 Ethidiumbromid (kristallin)A1152 Ethidiumbromid-Lösung 1 %A2273 Ethidiumbromid-Lösung 0,07 % „dropper bottle“

(für das sichere Hantieren von EtBr)A5595 DNA-Dye Methylenblau (200X konzentrierte

Lösung (nicht giftiger DNA-Farbstoff)A1408 XylencyanolA3640 Bromophenolblau-NatriumsalzA6810 Proteo-Dye Blue-VisA6794 Proteo-Dye Green-FluoA6803 Proteo-Dye Red-FluoA7808 Proteo-Dye RuBPS

TransfermembranenA5237 Reprobe Nitrocellulose supported 0,22 µm A5242 Reprobe Nitrocellulose supported 0,45 µm A5250 Pure Nitrocellulose unsupported 0,22 µm A5239 Pure Nitrocellulose unsupported 0,45 µm A4399 Pure Nylon Neutral Transfermembran 0,22 µmA5248 Pure Nylon Neutral Transfermembran 0,45 µm A5255 Reprobe Nylon Positiv-geladen 0,45 µm

Alle weiteren Produkte für die Gel-Elektrophorese finden Sie in unserem umfangreichen Gesamtkatalog !

Page 44: Agarose- Gel-Elektrophorese - · PDF fileEnzymen und Serumprotein weiterhin verwendet. Auch für Zymogramme, bei denen der Protein-Nachweis auf dem Nachweis der Enzymaktivitäten im

A68, D

Agarose-Gel-Elektrophorese

Darmstadt hat eine weitere Topadresse:AppliChem GmbH | Ottoweg 4 D - 64291 Darmstadt Telefon 0049 6151 9357-0 Fax 0049 6151 9357-11

eMail [email protected] internet www.applichem.com

4t M

atth

es +

Tra

ut ·

Darm

stadt