AUFBAUKURS MECHANIK - uibk.ac.at · Grundgrößen der Mechanik SI Einheiten Länge (Meter [m]) Zeit...

30
Studienblätter zum AUFBAUKURS MECHANIK LVA Nr. 844.501 Wintersemester 2010/11 Verfasser: Univ.Prof. Dipl.-Ing. Dr. Christoph Adam Vortragende: Univ.Prof. Dipl.-Ing. Dr. Christoph Adam Dipl.-Ing. Alexander Tributsch Arbeitsbereich für Angewandte Mechanik Institut für Grundlagen der Bauingenieurwissenschaften Leopold-Franzens-Universität Innsbruck

Transcript of AUFBAUKURS MECHANIK - uibk.ac.at · Grundgrößen der Mechanik SI Einheiten Länge (Meter [m]) Zeit...

Studienblätter zum

AUFBAUKURS MECHANIK LVA Nr. 844.501

Wintersemester 2010/11

Verfasser:

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam

Vortragende:

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam

Dipl.-Ing. Alexander Tributsch

Arbeitsbereich für Angewandte Mechanik

Institut für Grundlagen der Bauingenieurwissenschaften

Leopold-Franzens-Universität Innsbruck

Studienblätter1 zum

AUFBAUKURS MECHANIK

LVA Nr. 844.501

Wintersemester 2010/11

Verfasser:

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam

Vortragende:

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam

Dipl.-Ing. Alexander Tributsch

Diese Unterlagen1 dienen ausschließlich als begleitendes Studienmaterial zum Aufbaukurs

aus Mechanik (LVA Nr. 844.501), der von C. Adam und A. Tributsch an der Leopold-

Franzens-Universität Innsbruck abgehalten wird. Ohne schriftliche Genehmigung des Verfas-

sers ist es nicht gestattet, die Studienblätter oder Teile daraus zu vervielfältigen.

Die Studienblätter wurden nach bestem Wissen und Gewissen angefertigt. Für den Inhalt wird

aber keine Gewähr übernommen. Entsprechende Hinweise über Fehler nimmt der Verfasser

gerne entgegen.

___________________________________________________________________________ 1Copyright©2010 Christoph Adam. Alle Rechte vorbehalten.

AUFBAUKURS MECHANIK (LVA Nr. 844.501) WS 2010/11

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam ii ____________________________________________________________________________________________________________________________________________________________________________________________

Vorwort

Mechanik ist eines der wesentlichsten Fundamente der Ingenieurin und des Ingenieurs, und

gute Kenntnisse in diesem Fach werden Ihnen bei Ihrem weiteren Studium, aber noch wichti-

ger, in Ihrem Berufsleben eine unentbehrliche Stütze sein. Im Aufbaukurs sollen Sie in die

Welt der Mechanik hineinschnuppern. Je nach besuchtem Schultypus haben Sie schon einiges

davon im Physik/Mechanik/Statik-Unterricht gehört. Es werden die wichtigsten Grundprinzi-

pien der Mechanik vorgestellt und Beispiele dazu gerechnet. Besonderes Augenmerk wird

dabei auf die mechanische Modellbildung gelegt. Außerdem werden die für die Vorlesung aus

Mechanik 1 notwendigen mathematischen Grundlagen erläutert.

Viel Erfolg bei Ihrem Studium!

Innsbruck, im September 2010

Christoph Adam

AUFBAUKURS MECHANIK (LVA Nr. 844.501) WS 2010/11

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam 1 ____________________________________________________________________________________________________________________________________________________________________________________________

GRUNDBEGRIFFE DER MECHANIK

Einteilung der Mechanik

Die Mechanik ist die Lehre von ruhenden und bewegten Körpern, auf die Kräfte einwirken.

Sie ist eine Erfahrungswissenschaft, bei der die entwickelten Theorien durch Experimente

bestätigt werden müssen. Die Grundlage sind Axiome (Erfahrungssätze), die das reale Ver-

halten der Körper unter Verwendung von Idealisierungen und Abstraktionen hinlänglich ge-

nau beschreiben. Ein Axiom ist damit eine Aussage, die grundlegend ist und deshalb nicht in-

nerhalb ihres Systems begründet werden kann bzw. muss.

Nach dem Untersuchungsgegenstand unterscheidet man zwischen der

Mechanik der festen Körper (starr oder verformbar) und der

Mechanik der flüssigen Körper (tropfbar bzw. gasförmig).

Das Gesamtgebiet der Mechanik lässt sich in die Gebiete

Kinematik,

Statik und

Dynamik

einteilen.

Kinematik

In der Kinematik wird die Bewegung von Körpern studiert, ohne auf deren Ursache einzu-

gehen.

Statik

In der Statik wird die Wirkung von Kräften auf Körper untersucht, die sich in Ruhe oder in

gleichförmiger Bewegung (d.h. im Gleichgewicht) befinden.

Dynamik

Die Dynamik studiert den Zusammenhang zwischen der beschleunigten Bewegung von Kör-

pern und der Einwirkung von Kräften.

AUFBAUKURS MECHANIK (LVA Nr. 844.501) WS 2010/11

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam 2 ____________________________________________________________________________________________________________________________________________________________________________________________

Grundgrößen der Mechanik

SI Einheiten

Länge (Meter [m])

Zeit (Sekunde [s])

Masse (Kilogramm [kg])

Abgeleitete Einheiten

Geschwindigkeit [m/s]

Beschleunigung [m/s2]

Kraft (Newton [N], [kg m/s2])

Ein Newton entspricht derjenigen Kraft, die einem Körper mit der Masse von einem Kilo-

gramm eine Beschleunigung von einem Meter je Sekundenquadrat erteilt.

SI Präfixe

1 000 000 000 109 Giga G

1 000 000 106 Mega M

1 000 103 Kilo k

0,001 10-3 Milli m

0,000 001 10-6 Mikro μ

0,000 000 001 10-9 Nano n

Die Newtonschen Axiome der Mechanik

Das erste Newtonsche Axiom - Trägheitsprinzip

Ein Körper beharrt im Zustand der Ruhe oder der gleichförmigen geradlinigen Bewegung, so-

lange die Summe aller auf ihn einwirkenden Kräfte gleich Null ist. Die Geschwindigkeit eines

solchen sich „frei“ bewegenden Körpers ist nach Betrag und Richtung konstant.

Das zweite Newtonsche Axiom - Beschleunigungsprinzip (Aktionsprinzip bzw. dynami-

sches Grundgesetz)

Durch einwirkende Kräfte erfährt ein Körper eine Beschleunigung, die der Kraft proportional ist

und deren Richtung besitzt. Bei konstanter Masse gilt: Kraft = Masse x Beschleunigung.

Das dritte Newtonsche Axiom - Wechselwirkungsprinzip (Reaktionsprinzip)

Übt ein Körper auf einen zweiten Körper eine Kraft aus, so übt der zweite Körper auf den ersten

eine gleich große Gegenkraft aus, die entgegengesetzt der ersten Kraft gerichtet ist.

AUFBAUKURS MECHANIK (LVA Nr. 844.501) WS 2010/11

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam 3 ____________________________________________________________________________________________________________________________________________________________________________________________

KINEMATIK DER GERADLINIGEN BEWEGUNG

Ein Punkt bewegt sich entlang einer geraden Linie, deren Richtung durch den Einheitsvektor e

vorgegeben ist. Der Ursprung des Vektors e ist das sogenannte Bezugssystem, von dem der

Punkt beobachtet wird. Die Lage des Punktes zum Zeitpunkt t ist durch die Ortskoordinate

r(t) festgelegt, deren Ursprung im Bezugssystem liegt.

"t0 "

r0 eBezugs-

system

s(t)

P0

"t" "t2 "

P2

r r2

P Δr

Die Ortskoordinate r(t) gibt keinen Aufschluss über den zeitlichen Ablauf der Bewegung. Be-

zieht man die Differenz der Ortskoordinaten r2 und r zu den Zeitpunkten t2 > t( ) und t auf

das zugehörige Zeitintervall t = t2 t , erhält man die mittlere Geschwindigkeit,

vm =

r2 r(t)

t2 t=

r(t + t) r(t)

t + t t=

r

t= tan( )

welche ein Maß für die Schnelligkeit der Bewegung zwischen den betrachteten Orten ist. Je

schneller sich der Punkt von P nach P2 bewegt, desto größer ist vm . Je kleiner das Zeitintervall

t gewählt wird, eine desto genauere Aussage gibt vm über die Geschwindigkeit des Punktes

beim Passieren des Ortes P(t) . Durch den Grenzübergang t 0 erhält man die (Momentan-)

Geschwindigkeit

v(t) = lim

t 0

r

t=

dr

dtr( )

Ort-Zeit-Diagramm

α β

t

r

t t2 t0

r

Δt

r2

Δr

r0

v(t)

AUFBAUKURS MECHANIK (LVA Nr. 844.501) WS 2010/11

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam 4 ____________________________________________________________________________________________________________________________________________________________________________________________

des Punktes zum Zeitpunkt t . Im Ort-Zeit-Diagramm verläuft die Geschwindigkeit tangential

zur Ort-Zeit-Kurve, d.h.

v(t) = tan

Mit r(t) und v(t) ist die geradlinige Bewegung eines Punktes vollständig beschrieben.

Wenn die Geschwindigkeit im Zeitraum zwischen t0 und t immer größer gleich Null ist, v 0 ,

berechnet sich der in diesem Zeitraum zurückgelegte Weg s gemäß

s(t) = r(t) r0

Dabei ist r0 die Lage des Punktes bei Beginn der Beobachtung zum Zeitpunkt t0 .

In der Mechanik spielt zusätzlich die kinematische Größe der Beschleunigung eine wesentliche

Rolle (zweites Newtonsches Axiom). Die mittlere Beschleunigung ist wie folgt definiert:

am =v2 v(t)

t2 t=

v(t + t) v(t)

t + t t=

v

t

Der Grenzübergang t 0 ergibt die (Momentan-)Beschleunigung

a(t) = limt 0

v

t=

dv

dtv( ) =

d2r

dt2r( )

Damit entspricht die Steigung der Tangente der Kurve im Geschwindigkeit-Zeit-Diagramm zum

Zeitpunkt t der Beschleunigung,

a(t) = tan

Geschwindigkeit-Zeit-Diagramm

v

t t0

t t2

v v2

γ

Δt

Δv

v0

a(t)

AUFBAUKURS MECHANIK (LVA Nr. 844.501) WS 2010/11

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam 5 ____________________________________________________________________________________________________________________________________________________________________________________________

Bewegung des freien Falls

An einem festen Ort auf der Erde und ohne Vorhandensein von Luftwiderstand fallen alle

Körper mit derselben konstanten Beschleunigung. Der Vektor der Fallbeschleunigung ist ge-

gen den Erdmittelpunkt gerichtet und entspricht in etwa der Erdbeschleunigung. Deren Betrag

g hat einen Wert von ungefähr 9,81 m/s2.

"t = 0"

"t"

v0

ez

r v

r0

−g ez

Integration von

a =

dv

dt dt

nach der Zeit liefert unter Berücksichtigung, dass beim freien Fall a = g = const , das fol-

gende Geschwindigkeit-Zeit-Gesetz:

v(t) = adt=0

t

+ v0 = g t + v0

v0 = v(t = 0) ist die zum Zeitpunkt t = 0 bekannte Anfangsgeschwindigkeit. Mit einer weite-

ren Zeitintegration von

v =

dr

dt dt

erhält man mit der Anfangslage r0 = r(t = 0) das Ort-Zeit-Gesetz des freien Falls,

r(t) = vdt=0

t

+ r0 = gt2

2+ v0t + r0

AUFBAUKURS MECHANIK (LVA Nr. 844.501) WS 2010/11

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam 6 ____________________________________________________________________________________________________________________________________________________________________________________________

F

F = F

WirkungslinieAngriffspunkt

FY

Xx

y

0

KRAFT UND KRÄFTEGRUPPEN. GLEICHGEWICHTSBEDINGUNGEN

Eine Kraft ist eine gerichtete Größe, die sich der unmittelbaren Beobachtung entzieht. Man

erkennt sie an ihren Auswirkungen:

Festgehaltene Körper werden verformt.

Bewegliche Körper werden in Bewegung gesetzt.

Nach ihrer Ausdehnung unterscheidet man zwischen

Einzelkräften (Maßeinheit: Newton [N]),

Linienkräften (Maßeinheit [N/m]),

Flächenkräften (Maßeinheit [N/m2]) und

Volumenkräften (Maßeinheit [N/m3]).

Die Einzelkraft

Eine Einzelkraft F ist eine vektorielle Größe, die durch

den Betrag F ,

die Richtung und

den Angriffspunkt

festgelegt ist.

Eine in der (x,y)-Ebene liegende Einzelkraft kann durch ihre koordinatenparallelen Kompo-

nenten X und Y dargestellt werden,

F = X ex + Y ey =X

Y

Die Addition von zwei Kräften liefert die Resultierende R ,

R = F1 + F2 = F2 + F1

F1

F2

F1 F1

F2

F2

Lageplan Kräfteplan

R R

AUFBAUKURS MECHANIK (LVA Nr. 844.501) WS 2010/11

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam 7 ____________________________________________________________________________________________________________________________________________________________________________________________

Die Gewichtskraft

Gemäß dem zweiten Newtonschen Axiom entsteht während des freien Falls eines Körpers mit

der Masse m durch die Fallbeschleunigung g die Gewichtskraft G , die gegen die Erdober-

fläche gerichtet ist,

G = mg ez = G ez , G = mg

Ihr Betrag G wird als Gewicht bezeichnet.

m

G = −mg ez G = mg bzw.

ez ez ez

G

B = −A = G

A = −G

G

A = G

B = A = G

A = −G A = G

GG

freier Fall RuhelageReaktionskraft

RuhelageReaktions- und Aktionskraft

Schnitt

Untergrund Untergrund

Wenn sich der Körper nach dem Auftreffen auf den Untergrund in Ruhe befindet, verschwin-

det die auf ihn wirkende Gewichtskraft nicht. Da das erste Newtonsche Axiom besagt, dass

die auf den ruhenden Körper wirkende Gesamtkraft (resultierende Kraft) Null ist, muss auf

den Körper eine betragsmäßig gleich große nach oben gerichtete Gegenkraft A wirken:

G + A = 0 A = G (vektoriell)

ez : G + A = 0 A = G (skalar)

Diese Gegenkraft wird Kontaktkraft oder Reaktionskraft genannt.

Laut dem dritten Newtonschen Axiom ist die vom Körper auf den Untergrund ausgeübte Kraft

B entgegengesetzt der Kraft A gerichtet:

B = A = G (vektoriell)

B = A = G (skalar)

AUFBAUKURS MECHANIK (LVA Nr. 844.501) WS 2010/11

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam 8 ____________________________________________________________________________________________________________________________________________________________________________________________

Das zentrale ebene Kraftsystem

Ein zentrales ebenes Kraftsystem besteht aus mehreren in einer Ebene liegenden Einzelkräf-

ten, die einen gemeinsamen Angriffspunkt haben.

y

x

R

F1

F2

Fi

Fn

y

x

Xi

Yi

A A

Reduktion des zentralen ebenen Kraftsystems im Angriffspunkt

Die Resultierende R im Angriffspunkt ersetzt die Wirkung der Einzelkräfte statisch äquiva-

lent,

R = F1 + F2 + ...+ Fn = Fi

i=1

n

Die Ebene, in der die Kräfte liegen, wird hier durch ein kartesisches (x,y)-Koordinatensystem

festgelegt. Werden die Kräfte in Richtung dieser Koordinaten zerlegt,

Fi = Xi ex + Yi ey

kann die Resultierende wie folgt komponentenweise dargestellt werden:

Rx = X1 + X2 + ...+ Xn = Xi

i=1

n

, Ry = Y1 + Y2 + ...+ Yn = Yi

i=1

n

R = Rx ex + Ry ey

Gleichgewichtsbedingungen des ebenen zentralen Kraftsystems

Für ein zentrales ebenes Gleichgewichtssystem gilt, dass

R = 0 bzw.

Rx = Xi

i=1

n

= 0 , Ry = Yi

i=1

n

= 0

Diese beiden skalaren Gleichgewichtsbedingungen sind für Gleichgewicht eines zentralen

Kraftsystems notwendig.

AUFBAUKURS MECHANIK (LVA Nr. 844.501) WS 2010/11

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam 9 ____________________________________________________________________________________________________________________________________________________________________________________________

Fa

Drehrichtung0

Das Moment einer Kraft

Unter dem Moment einer Kraft in Bezug auf einen Punkt 0, der nicht auf der Wirkungslinie

liegt, versteht man das Produkt aus dem Betrag F der Kraft F und dem Normalabstand a

der Wirkungslinie von diesem Punkt,

M = Fa

a wird auch Hebelarm genannt. Die Maßeinheit des Moments ist Newtonmeter [Nm].

Das Kräftepaar

Ein Kräftepaar besteht aus zwei parallelen, gleich großen, entgegengesetzt gerichteten Einzel-

kräften, die nicht auf derselben Wirkungslinie liegen.

F

−F

a

positiveDrehrichtung

y

xz

X

Y

x

y

′x

′y

A

′A

Ein Kräftepaar übt auf einen Körper eine Drehwirkung aus und stellt somit eine Kraftwirkung

dar, die durch zwei Bestimmungsstücke charakterisiert ist, nämlich

dem Moment M und

der Orientierung der Wirkungsebene, welche durch den Normalenvektor en festgelegt ist.

Diese Bestimmungsstücke werden zum Momentenvektor M zusammengefasst, der orthogo-

nal zur Wirkungsebene gerichtet ist. Liegt das Kräftepaar in einer (x,y)-Ebene, besitzt der

Momentenvektor nur eine Komponente in z-Richtung. Er berechnet sich zu

M = x x( )Y y y( ) X ez ,

M = M = F a

x und y sind dabei die Koordinaten eines beliebigen Punktes A auf der Wirkungslinie von F ,

und x , y die Koordinaten eines beliebigen Punktes A auf der Wirkungslinie von F .

AUFBAUKURS MECHANIK (LVA Nr. 844.501) WS 2010/11

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam 10 ____________________________________________________________________________________________________________________________________________________________________________________________

Reduktion einer Einzelkraft

Eine Einzelkraft F mit dem Angriffspunkt A soll in einen Punkt 0 reduziert werden, der nicht

auf der Wirkungslinie liegt.

0 x

y F

A

Dazu wird durch den Reduktionspunkt 0 ein zentrales Gleichgewichtssystem aus den beiden

Kräften F und F gelegt. Man erkennt, dass die Kraft F mit dem Angriffspunkt A und die

Kraft F mit dem Angriffspunkt 0 ein Kräftepaar in 0 mit dem Momentenvektor M0 bilden.

Die Wirkung der Einzelkraft F bezüglich eines Punktes 0, der nicht auf der Wirkungslinie

liegt, wird damit statisch äquivalent durch den Momentenvektor M(0) und der Einzelkraft F

in 0 beschrieben.

0

F

x

y

Kräftepaar

0x

y F

X

Y

x

y

−F

F

a

A

M (0)

Liegt die Kraft in einer (x,y)-Ebene und wird diese in den Koordinatenursprung 0 reduziert,

kann der Momentenvektor M(0) wie folgt berechnet werden:

M (0)

= M (0) ez = xY y X( )ez

x und y sind dabei die Koordinaten vom Bezugspunkt 0 zu einem beliebigen Punkt auf der

Wirkungslinie von F (und nicht notwendigerweise von 0 zu A).

AUFBAUKURS MECHANIK (LVA Nr. 844.501) WS 2010/11

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam 11 ____________________________________________________________________________________________________________________________________________________________________________________________

Das allgemeine ebene Kraftsystem

Das allgemeine ebene Kraftsystem ist eine Kräftegruppe aus mehreren in einer Ebene liegen-

den Kräften, die verschiedene Angriffspunkte haben.

′A

R

M ′A

y

x0

F1 F2

Fn′Axi

yi

riy

x0

Fi

Xi

Yi

Reduktion des allgemeinen ebenen Kraftsystems in den Bezugspunkt A

Jede Kraft wird getrennt in den Punkt A reduziert. Anschließend werden die Kräfte und die

Momentenvektoren addiert.

F1 in A und M1 = x1Y1 y1 X1( )ez

Fi in A und Mi = xi Yi yi Xi( )ez

Fn in A und Mn = xn Yn yn Xn( )ez

R = Fi

i=1

n

in A und M A = xi Yi yi Xi( )ez

i=1

n

Rx = Xi

i=1

n

, Ry = Yi

i=1

n

, R = Rx ex + Ry ey

Gleichgewichtsbedingungen des allgemeinen ebenen Kraftsystems

R = 0 , M A = 0 bzw.

Rx = Xi

i=1

n

= 0 , Ry = Yi

i=1

n

= 0 , M A = xi Yi yi Xi( )i=1

n

= 0

Für eine einzelne starre Scheibe sind die drei Gleichgewichtsbedingungen notwendig, da die-

se drei Freiheitsgrade (unabhängige Bewegungsmöglichkeiten) besitzt.

AUFBAUKURS MECHANIK (LVA Nr. 844.501) WS 2010/11

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam 12 ____________________________________________________________________________________________________________________________________________________________________________________________

Das ebene Parallelkraftsystem

Der Spezialfall eines ebenen Parallelkraftsystems liegt vor, wenn die Wirkungslinien der

Kräfte eines allgemeinen ebenen Kraftsystems parallel sind.

x

y

0

R

F1

Fi

Fn

x

y

0

F2

x1 xi xnx2M (0)

Für die folgenden Betrachtungen wird angenommen, dass die Kräfte in einer (x,y)-Ebene lie-

gen. Wird die y-Koordinate so gewählt, dass diese parallel zu den Wirkungslinien liegt, besit-

zen die Kräfte nur eine Y-Komponente,

Fi = Yi ey , i = 1,...,n

Reduktion des ebenen Parallelkraftsystems in einen allgemeinen Bezugspunkt 0

Die Reduktion in den Punkt 0 ergibt:

R = Fi

i=1

n

= ey Yi

i=1

n

= Rey , R = Yi

i=1

n

, M (0)= ez xi Yi

i=1

n

= M (0) ez , M (0)= xi Yi

i=1

n

Der Kräftemittelpunkt

Der momentenfreie Angriffspunkt AM der Resultierenden R wird Kräftemittelpunkt ge-

nannt. Da das Moment um den Kräftemittelpunkt AM definitionsgemäß Null ist, gilt:

ez : M ( M ) 0 = M (0) xM R

xM

x

y

0

R AM

R

M (0)

AUFBAUKURS MECHANIK (LVA Nr. 844.501) WS 2010/11

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam 13 ____________________________________________________________________________________________________________________________________________________________________________________________

Aus dieser Beziehung folgt die Koordinate des Kräftemittelpunktes in x-Richtung,

xM =M (0)

R=

1

Yi

i=1

nxi Yi

i=1

n

F1

Fi

Fn

x

y

xM

0

yM

R

AM

′R

′R

π / 2

F1′

Fi′

Fn′

y1

yi

yn

M (0)′

Zur Berechnung der Koordinate yM denkt man sich die Kräfte positiv um / 2 verschwenkt,

Fi = Yi ex , i = 1,...,n

Reduktion der verschwenkten Kräfte in den Punkt 0 liefert:

R = Fi

i=1

n

= ex Yi

i=1

n

= R ex , R = Yi

i=1

n

, M (0)= ez yi Yi

i=1

n

= M (0) ez , M (0)= yi Yi

i=1

n

Das Moment der verschwenkten Kräfte muss um den Kräftemittelpunkt AM verschwinden,

ez : M ( M ) 0 = M (0) yM R

Auflösen dieser Beziehung nach yM ergibt:

yM =M0

R=

1

Yi

i=1

nyi Yi

i=1

n

Zusammenfassend können die Koordinaten des Kräftemittelpunktes AM wie folgt ange-

schrieben werden:

xM =1

Yi

i=1

nxi Yi

i=1

n

, yM =1

Yi

i=1

nyi Yi

i=1

n

AUFBAUKURS MECHANIK (LVA Nr. 844.501) WS 2010/11

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam 14 ____________________________________________________________________________________________________________________________________________________________________________________________

Schwerpunkt einer Scheibe

Man stößt auf ein eben verteiltes Parallelkraftsystem, wenn man eine Scheibe mit konstanter

Dicke betrachtet, deren Mittelebene normal zur Erdoberfläche steht. Denkt man sich die Flä-

che der Scheibe A mosaikförmig aus n kleinen Flächenelementen Ai ( i = 1,...,n )

zusammengesetzt, so besitzt jedes dieser Teilchen das Volumen Vi und die Masse mi ,

Vi = h Ai ,

mi = i Vi = i h Ai , i = 1,...,n

h ist die Scheibendicke und i bezeichnet die Massendichte im iten Scheibenelement.

S

V=hAdA

y

z

y

z

yS

zS

ρ

dy

dz

y

z

G

zi

yi

ΔAi ,ρi

SzS

yS

V=hA

G

ΔGi dG

Auf dieses Element wirkt die Gewichtskraft

Gi ,

Gi = mi g ez = Gi ez ,

Gi = mi g , i = 1,...,n

wobei die z-Koordinate von der Erdoberfläche nach oben positiv gerichtet ist.

Gi ist das

Gewicht des Scheibenelementes. Die Resultierende der Gewichtskräfte aller Scheibenelemen-

te ist gleich der Gewichtskraft der gesamten Scheibe,

G = Gi

i=1

n

= Gi

i=1

n

ez = g ez mi

i=1

n

= h g ez i Ai

i=1

n

= m g ez = G ez

m ist die Masse und G ist das Gewicht der Scheibe,

m = mi

i=1

n

= h i Ai

i=1

n

, G = m g

Der Kräftemittelpunkt AM eines schweren Körpers wird Schwerpunkt S genannt. Diesen ge-

winnt man für die betrachtete Scheibe gemäß den zuvor hergeleiteten Beziehungen für ein

ebenes Parallelkraftsystem. Für das in der oben stehenden Abbildung eingezeichnete (y,z)-

Koordinatensystem erhält man:

AUFBAUKURS MECHANIK (LVA Nr. 844.501) WS 2010/11

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam 15 ____________________________________________________________________________________________________________________________________________________________________________________________

yS =1

Gi

i=1

nyi Gi

i=1

n

=h g

Gyi i Ai

i=1

n

=h

myi i Ai

i=1

n

zS =1

Gi

i=1

nzi Gi

i=1

n

=h g

Gzi i Ai

i=1

n

=h

mzi i Ai

i=1

n

Da die Schwerkraft über die ganze Scheibenfläche A kontinuierlich verteilt ist, muss man sich

die Flächenelemente Ai unendlich klein vorstellen. Mathematisch ausgedrückt wird der

Grenzübergang Ai 0 ausgeführt. Aus der Summe von ursprünglich endlich vielen und

endlich großen Summanden wird daraus beim Grenzübergang die Summe von unendlich vie-

len, unendlich kleinen Summanden, welche man als Integral bezeichnet. Das heißt:

, Ai dA , yi y ,

zi z , i(xi , yi ) (x, y)

Die exakten Gleichungen für die Koordinaten des Schwerpunktes lauten also:

yS =h

my dA

A

, zS =h

mz dA

A

,

m = h dA

A

Die Lage des geometrischen Schwerpunktes S( A) (auch Flächenschwerpunkt genannt) einer

ebenen Fläche entspricht dem Schwerpunkt einer homogenen Scheibe, da bei dieser die Dich-

te in jedem Punkt gleich groß ist ( = const ). Die Lage von S( A) berechnet sich dann gemäß

yS( A)

=1

AydA

A

, zS( A)

=1

Az dA

A

Mit dA = dydz wird daraus

yS( A)

=1

Aydydz

A

,

zS( A)

=1

Az dydz

A

Ist eine ebene Fläche A aus n Teilflächen Ai zusammengesetzt, deren Teilschwerpunkte

( yi , zi ) bekannt sind, können die Integrale wieder in eine endliche Summe umgewandelt wer-

den:

yS( A)

=1

Ayi Ai

i=1

n

, zS( A)

=1

Azi Ai

i=1

n

AUFBAUKURS MECHANIK (LVA Nr. 844.501) WS 2010/11

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam 16 ____________________________________________________________________________________________________________________________________________________________________________________________

EBENE STABTRAGWERKE

Mechanische Modellbildung für Stabtragwerke

Ein Tragwerk, dessen Querschnittsabmessungen klein im Verhältnis zu seiner Längserstre-

ckung sind, kann als Stab idealisiert werden. Im mechanischen Modell wird ein Stab durch

seine Stabachse repräsentiert, welche als die Verbindungslinie der geometrischen Quer-

schnittsschwerpunkte definiert ist. Gerade Stäbe, die vorwiegend quer zu ihrer Stabachse be-

lastet werden, bezeichnet man als Balken bzw. Träger.

Mechanische Modellbildung am Beispiel einer Fußgängerbrücke

Stabachse

q

GleitlagerFestlager

Gleichlast (z.B. Eigengewicht)

Auflagerreaktionen

Gelenk

Stützweite

Zugehöriges mechanisches Modell: Einfeldträger

Tragwerk: Fußgängerbrücke

L

Ausgewählte Trägerquerschnittsformen

Rechteck-querschnitt

I-Querschnitt Kastenquerschnitt,Verbundquerschnitt

Kreisquerschnitt

AUFBAUKURS MECHANIK (LVA Nr. 844.501) WS 2010/11

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam 17 ____________________________________________________________________________________________________________________________________________________________________________________________

Auflager

Ein Auflager (Lager) verbindet ein Tragwerk mit seiner Umgebung. Kräfte, welche über Auf-

lager in die Umgebung übertragen werden, heißen Auflagerreaktionen. Die Anzahl der einge-

schränkten Bewegungsmöglichkeiten ist die Wertigkeit r eines Auflagers.

Bewegungs-möglichkeit

Symbol,KraftübertragungGelenkiges Gleitlager: einwertig, r = 1

Gelenkiges Festlager: zweiwertig, r = 2

Vollständige Einspannung: dreiwertig, r = 3

LagerbockZapfenlager

PendelstützeRollenlager

Statische Bestimmtheit eines Tragwerks

Ein Tragwerk ist (äußerlich) statisch bestimmt, wenn die Auflagerreaktionen allein aus den

Gleichgewichtsbedingungen berechnet werden können. Bei einem (äußerlich) statisch unbe-

stimmten Tragwerk sind zur Bestimmung der Auflagerreaktionen neben den Gleichgewichts-

bedingungen auch Formänderungsbedingungen zu erfüllen, d.h. hier spielen auch die Quer-

schnittsabmessungen und die Werkstoffeigenschaften eine Rolle.

Überprüfung der statischen Bestimmtheit eines ebenen Tragwerks:

3n r

> 0 : bewegliches (kinematisches) System

= 0 : notwendige Bedingung für statisch bestimmte Lagerung

< 0 : notwendige Bedingung für statisch unbestimmte Lagerung

n Anzahl der Tragwerksscheiben

r Summe der Auflagerwertigkeiten

Summe der Wertigkeiten der Bindungselemente zwischen den Tragwerksscheiben.

z.B. Vollgelenk: = 2

AUFBAUKURS MECHANIK (LVA Nr. 844.501) WS 2010/11

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam 18 ____________________________________________________________________________________________________________________________________________________________________________________________

Mechanische Modelle von Stabtragwerken

Kragträger

biegesteife Rahmenecke

Riegel

Stiel

Einfeldträger/beidseitig gelenkig gelagerter Träger

Dreigelenkbogen

Rahmen

n = 1, r = 3

Durchlaufträger (hier Zweifeldträger)

Halbgelenkn = 1, r = 4

n = 2, r = 4, = 2ν

n = 1, r = 3

n = 1, r = 3

GerberträgerGerbergelenk (Vollgelenk)

n = 2, r = 4, = 2ν

Einspannung

AUFBAUKURS MECHANIK (LVA Nr. 844.501) WS 2010/11

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam 19 ____________________________________________________________________________________________________________________________________________________________________________________________

Einfluss der Konstruktion auf das statische System

Beispiele

anliegende Leiter

eingehängte Leiter

Dachträger aus Holz

AUFBAUKURS MECHANIK (LVA Nr. 844.501) WS 2010/11

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam 20 ____________________________________________________________________________________________________________________________________________________________________________________________

Schnittgrößen

Die inneren Kräfte

Innerhalb eines Tragwerks wirken zwischen den Elementen die sogenannten inneren Kräfte,

welche durch die von außen einwirkenden Kräfte verursacht werden. Durch die inneren Kräf-

te wird das Material des Tragwerks beansprucht. Es ist der Nachweis zu erbringen, dass die

Materialbeanspruchung eines Tragwerks innerhalb der zulässigen Grenze liegt.

Die inneren Kräfte werden über den Stabquerschnitt zu Resultierenden zusammengefasst. Bei

ebenen Stabtragwerken sind diese Resultierenden der inneren Kräfte

das Biegemoment M,

die Querkraft Q und

die Normalkraft N.

In einem Stab kann dann ein Biegemoment auftreten, wenn die Relativverdrehung zweier

benachbarter Querschnitte verhindert ist (d.h. es ist kein Gelenk dazwischen geschaltet). Die

Querkraft entsteht dadurch, dass zwei benachbarte Querschnitte keine Relativverschiebung

normal zur Stabachse ausführen können. Voraussetzung für das Auftreten einer Normalkraft

ist die verhinderte Relativverschiebung zweier benachbarter Querschnitte in Längsrichtung.

qF

x

z

Schnitt

F

x

z

M(x)

Q(x)

N(x)

positives Schnittufer

q

negatives Schnittufer

M(x)Q(x)

N(x)

M(x) Biegemoment an der Stelle x

N(x) Normalkraft an der Stelle x

Q(x) Querkraft an der Stelle x

Schnittgrößen:

AUFBAUKURS MECHANIK (LVA Nr. 844.501) WS 2010/11

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam 21 ____________________________________________________________________________________________________________________________________________________________________________________________

Schnittprinzip

Die Resultierenden der inneren Kräfte werden durch das Aufschneiden des Tragwerks freige-

legt. Deshalb werden sie auch Schnittgrößen genannt. Gemäß dem Schnittprinzip wird der

abgetrennte Tragwerksteil statisch äquivalent durch das Biegemoment, die Querkraft und die

Normalkraft ersetzt, damit er wie das Gesamtsystem reagiert. Am Schnitt des zweiten Trag-

werksteiles (d.h. am gegenüberliegenden Schnittufer) sind die Schnittgrößen entgegengesetzt

gerichtet anzusetzen. Wenn beide Teile wieder zusammengefügt werden, heben sich so die

Resultierenden der inneren Kräfte auf. Die Schnittgrößen werden mit Hilfe der Gleichge-

wichtsbeziehungen des ebenen allgemeinen Kraftsystems bestimmt, welche auf einen der bei-

den Tragwerksteile angewendet werden. Wenn das Gesamtsystem im Gleichgewicht ist, müs-

sen auch alle Teilsysteme im Gleichgewicht sein.

Schnittgrößenverläufe

In Abhängigkeit von den äußeren Kräften kann à priori eine qualitative Aussage gemacht

werden, welcher Funktion die Schnittgrößen entlang der Stabachse gehorchen. Untenstehend

ist exemplarisch das Verhalten der Querkraft und des Momentes in einem Stabteil in

Abhängigkeit von der äußeren Belastung dargestellt.

Trapezlastunbelastet

F

Einzelkraft

konstant quadrat. ParabelSprung

F

quadrat. Parabel kub. Parabellinear Knick

1

F

Belastung q(x)

Querkraftverlauf Q(x)

Biegemomentenverlauf M(x)

Gleichlast

q0

linear

1 q0

dQdx

= −q

dMdx

= Q

d2 M

dx2= −q

AUFBAUKURS MECHANIK (LVA Nr. 844.501) WS 2010/11

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam 22 ____________________________________________________________________________________________________________________________________________________________________________________________

EBENE FACHWERKE

Ein Fachwerk ist ein Tragwerk, welches aus miteinander gelenkig verbundenen geraden Stä-

ben besteht. Liegen alle Stabachsen in einer Ebene, spricht man von einem ebenen Fachwerk.

Mechanische Modellbildung bei Fachwerken

Die statischen Untersuchungen erfolgen am mechanischen Modell des idealen Fachwerks,

welches die folgenden Eigenschaften besitzt:

Die Achsen der Fachwerkstäbe sind gerade.

Die Stäbe sind an den Knoten durch reibungsfreie Gelenke verbunden.

Die Achsen der an einem Knoten angeschlossenen Stäbe schneiden sich in einem Punkt.

Die äußeren Kräfte werden als Einzelkräfte idealisiert, die nur in den Knoten angreifen.

Mechanische Modellbildung am Beispiel eines Dachträgers

Knoten

Diagonale/Strebe Pfosten/Ständer

Untergurt

Obergurt

Tragwerk: Dachträger Zugehöriges mechanisches Modell

Statische Bestimmtheit eines ebenen Fachwerks

Notwendige Bedingung für ein innerlich und äußerlich statisch bestimmtes ebenes Fachwerk:

n + r = 2k

n Anzahl der Stäbe

r Summe der Auflagerwertigkeiten

k Anzahl der Knoten

AUFBAUKURS MECHANIK (LVA Nr. 844.501) WS 2010/11

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam 23 ____________________________________________________________________________________________________________________________________________________________________________________________

Stabkräfte

In den Stäben eines idealen Fachwerks werden nur Normalkräfte und keine Biegemomente

und Querkräfte übertragen. Die Normalkraft in einem Fachwerkstab wird Stabkraft genannt.

Berechnung der Stabkräfte mit dem Rundschnittverfahren

Für die Berechnung der Stabkräfte werden die einzelnen Knoten des Fachwerks freigeschnit-

ten und die unbekannten Stabkräfte als Zugkräfte (Konvention) am jeweiligen Knoten ange-

bracht. Die Stabkräfte werden mit den Gleichgewichtsbedingungen des so an jedem Knoten

entstandenen zentralen Kraftsystems bestimmt. Bei jedem Rundschnitt dürfen nur zwei unbe-

kannte Stabkräfte freigelegt werden.

F1

13

2

4

Rundschnitt

A

B

Rundschnitt

S2AH

S1

AV

Knoten A

Vi∑ = 0 : S1 = −AV

Hi∑ = 0 : S2 = −AH

F1

S1

Knoten B

S3

S4

α = π / 4

Vi∑ = 0 : S1 +

S3

2+ F1 = 0 ⇒ S3

Hi∑ = 0 :

S3

2+ S4 = 0 ⇒ S4

AUFBAUKURS MECHANIK (LVA Nr. 844.501) WS 2010/11

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam 24 ____________________________________________________________________________________________________________________________________________________________________________________________

ANHANG: MATHEMATISCHE FORMELSAMMLUNG FÜR MECHANIK

Vektoralgebra

Komponentendarstellung für einen zweidimensionalen Vektor c in Bezug auf ein kartesi-

sches Koordinatensystem:

c =cx

cy

= cxex + cyey

Betrag (Länge) von c : c = cx

2+ cy

2

Komponenten von c : cx = c cos , cy = c sin

Einheitsvektoren in Richtung der x- und y-Achse:

ex =1

0 , ey =

0

1 , ex = ey = 1

Komponentendarstellung für einen dreidimensionalen Vektor a in Bezug auf ein kartesisches

Koordinatensystem:

a =

ax

ay

az

= axex + ayey + azez

Betrag (Länge) von a :

a = ax

2+ ay

2+ az

2

Einheitsvektoren in Richtung der x-, y- und z-Achse:

ex =

1

0

0

,

ey =

0

1

0

,

ez =

0

0

1

, ex = ey = ez = 1

Einheitsvektor in Richtung von a : ea =a

a

c

α x

y

cx

cy

ex

ey

x

y

z

ax

ay

az

ex ey

ez a

a

AUFBAUKURS MECHANIK (LVA Nr. 844.501) WS 2010/11

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam 25 ____________________________________________________________________________________________________________________________________________________________________________________________

a

b

a

b a + b

a − b

α a

b

b cosα

Multiplikation mit skalarer Größe :

a = a =

ax

ay

az

Vektoraddition und -subtraktion:

a ± b = ax ± bx( )ex + ay ± by( )ey + az ± bz( )ez

Rechenoperationen mit 2 Vektoren

Skalares Produkt (inneres Produkt): ergibt einen skalaren Wert

a b = b a =

ax

ay

az

bx

by

bz

= axbx + ayby + azbz , a b = a b cos cos =a b

a b

: Winkel zwischen (sich schneidenden Vektoren) a und b

a b = 0 a b

Vektorielles Produkt (äußeres Produkt, Kreuzprodukt, Ex-Produkt): ergibt einen Vektor

a b = b a =

ax

ay

az

bx

by

bz

=

=

ex ey ez

ax ay az

bx by bz

=

aybz byaz

axbz + bxaz

axby bxay

a b = 0 a b a b = a b sin sin =a b

a b

Multiplikation mit skalarer Größe : a b( ) =

ax

ay

az

bx

by

bz

=

ax

ay

az

bx

by

bz

a

b a × b

a × b

Fläche: a × b

′a

a × b = ′a × b

α

AUFBAUKURS MECHANIK (LVA Nr. 844.501) WS 2010/11

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam 26 ____________________________________________________________________________________________________________________________________________________________________________________________

b

ac

α

cosα sinα

cotα

tanα

P

1II I

III IV

α

Winkelfunktionen

Grundlegende Definitionen:

sin =a

c a = c sin

cos =

b

c b = c cos

tan =

sin

cos=

a

b a = b tan

cot =

1

tan=

cos

sin=

b

a b = acot

Vorzeichen:

Quadrant sin cos tan cot

I + + + +

II +

III + +

IV +

Auswertungen für spezielle Winkel:

sin

4sin 45°( ) =

1

2

2

2, cos

4cos 45°( ) =

1

2

2

2, tan

4tan 45°( ) = 1

sin

3sin 60°( ) =

3

2 , cos

3cos 60°( ) =

1

2 , tan

3tan 60°( ) =

3

33

sin6

sin 30°( ) =1

2 ,

cos

6cos 30°( ) =

3

2 ,

tan

6tan 30°( ) =

1

3

3

3

AUFBAUKURS MECHANIK (LVA Nr. 844.501) WS 2010/11

Univ.Prof. Dipl.-Ing. Dr. Christoph Adam 27 ____________________________________________________________________________________________________________________________________________________________________________________________

UNTERLAGEN

Skripten, Bücher

Fotiu, P.A., 2006. Technische Mechanik I. Skriptum. Fachhochschule Wr. Neustadt.

Giancoli, D.C., 2006. Physik. 3., aktualisierte Auflage. München: Pearson Studium.

Hahn, H.G., 1992. Technische Mechanik fester Körper. 2. Auflage. München, Wien: Hanser.

Heuer, R., 2006. Studienblätter für den Aufbaukurs Mathematik, gehalten im Wintersemester

2006/07. Technische Universität Wien.

Mann, W., 1997. Vorlesungen über Statik und Festigkeitslehre. Einführung in die Tragwerks-

lehre. 2. Auflage. Aardt KG.

Papula, L., 2000. Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler.

6.Auflage. Braunschweig/Wiesbaden: Vieweg.

Meyer, H., 2006. Holzmann, Meyer, Schumpich Technische Mechanik Kinematik und Kine-

tik. 9., neu bearbeitete Auflage. Wiesbaden: Teubner Verlag / GGWV Fachverlage GmbH.

Ziegler, F., 1998. Technische Mechanik der festen und flüssigen Körper. 3. Auflage. Wien,

New York: Springer.

Fotoverzeichnis und Quellenangabe

Foto 1, Seite 16: Pankebrücke in Berlin. Quelle: Gregull + Spang. Ingenieurgesellschaft für

Stahlbau mbH, Berlin. http://www.gregull-spang.de/_content/Referenzen/FussgaengerBrue-

cken.htm

Foto 2, Seite 22: Pratt truss in Las Vegas, Nevada. Photographer: William G. Godden. Cour-

tesy of the National Information Service for Earthquake Engineering, EERC, University of

California, Berkeley. http://nisee.berkeley.edu/elibrary/Image/GoddenD5