Aufgaben zu stöchiometrischen Berechnungen · PDF fileAufgaben zu stöchiometrischen...

10
Aufgaben zu stöchiometrischen Berechnungen Chem. Reaktionsgleichungen geben nicht nur eine qualitative sondern auch eine quantitative Beschreibung der chem. Vorgänge: die linke Seite einer Gleichung muß in Anzahl und Art der Atome mit der rechten übereinstimmen. Auch die Summen der Massen sind auf beiden Seiten gleich (Gesetz von der Erhaltung der Masse). Die Koeffizienten einer Reaktionsgleichung geben einerseits die Zahl der beteiligten Moleküle (bzw. Atome) andererseits aber auch den Stoffmengenumsatz an. Das Maß für die Stoffmenge n ist das Mol. Ein Mol einer molekularen Substanz besteht aus N A Teilchen (N A : Avogadrosche Zahl: 6,022 × 10 23 ) und hat die Masse in (in g), deren Zahlenwert der relativen Molekülmasse M entspricht. M ergibt sich aus der Summe der relativen Atommassen aller Atome eines Moleküls. Die molare Masse ist die Masse eines Mols. Masse m molare Masse = M = [g/mol] Stoffmenge n Aufgabe: Wieviel g H 2 und O 2 benötigt man, um 20 g H 2 O herzustellen? 2 H 2 + O 2 2 H 2 O Molmassen: 2 g/mol 32 g/mol 18 g/mol 2 mol H 2 + 1 mol O 2 2 mol H 2 O da 20 g H 2 O m 20 g n = = = 1,11 mol M 18 g/mol H 2 O ergibt sich somit: 1,11 mol H 2 + 0,5 × 1,11 mol O 2 1,11 mol H 2 O an H 2 werden benötigt: M × n = m 2 g/mol × 1,11 mol = 2,22 g H 2 an O 2 werden benötigt: 32 g/mol × 0,5 × 1,11 mol = 17,78 g O 2 Wieviel L gasförmigem H 2 bzw. O 2 entspricht dies? Molvolumen idealer Gase: 1 mol eines idealen Gases nimmt bei Normalbedingungen ( 0 °C = 273 K, 1013 mbar = 1 atm) ein Volumen von 22,4 L ein. Anders formuliert: V m = 22,4 L/mol d.h. 1,11 mol × 22,4 L/mol = 24,86 L H 2 bzw. 12,43 L O 2 1

Transcript of Aufgaben zu stöchiometrischen Berechnungen · PDF fileAufgaben zu stöchiometrischen...

Page 1: Aufgaben zu stöchiometrischen Berechnungen · PDF fileAufgaben zu stöchiometrischen Berechnungen Chem. Reaktionsgleichungen geben nicht nur eine qualitative sondern auch eine quantitative

Aufgaben zu stöchiometrischen Berechnungen Chem. Reaktionsgleichungen geben nicht nur eine qualitative sondern auch eine quantitative Beschreibung der chem. Vorgänge: die linke Seite einer Gleichung muß in Anzahl und Art der Atome mit der rechten übereinstimmen. Auch die Summen der Massen sind auf beiden Seiten gleich (Gesetz von der Erhaltung der Masse). Die Koeffizienten einer Reaktionsgleichung geben einerseits die Zahl der beteiligten Moleküle (bzw. Atome) andererseits aber auch den Stoffmengenumsatz an. Das Maß für die Stoffmenge n ist das Mol. Ein Mol einer molekularen Substanz besteht aus NA Teilchen (NA: Avogadrosche Zahl: 6,022 × 1023) und hat die Masse in (in g), deren Zahlenwert der relativen Molekülmasse M entspricht. M ergibt sich aus der Summe der relativen Atommassen aller Atome eines Moleküls. Die molare Masse ist die Masse eines Mols.

Masse mmolare Masse = M = [g/mol]Stoffmenge n

Aufgabe: Wieviel g H2 und O2 benötigt man, um 20 g H2O herzustellen? 2 H2 + O2 → 2 H2O Molmassen: 2 g/mol 32 g/mol 18 g/mol 2 mol H2 + 1 mol O2 → 2 mol H2O

da 20 g H2O ⇒ m 20 gn = = = 1,11 molM 18 g/mol

H2O ergibt sich somit:

1,11 mol H2 + 0,5 × 1,11 mol O2 → 1,11 mol H2O an H2 werden benötigt: M × n = m ⇒ 2 g/mol × 1,11 mol = 2,22 g H2an O2 werden benötigt: 32 g/mol × 0,5 × 1,11 mol = 17,78 g O2 Wieviel L gasförmigem H2 bzw. O2 entspricht dies?

Molvolumen idealer Gase:

1 mol eines idealen Gases nimmt bei Normalbedingungen ( 0 °C = 273 K, 1013 mbar

= 1 atm) ein Volumen von 22,4 L ein. Anders formuliert:

Vm = 22,4 L/mol d.h. 1,11 mol × 22,4 L/mol = 24,86 L H2 bzw. 12,43 L O2

1

Page 2: Aufgaben zu stöchiometrischen Berechnungen · PDF fileAufgaben zu stöchiometrischen Berechnungen Chem. Reaktionsgleichungen geben nicht nur eine qualitative sondern auch eine quantitative

Aufgabe: Eine Steinkohle enthält 1,5 Gew.% Schwefel, der beim Verbrennen vollständig in SO2 umgewandelt wird. a) Wieviel kg SO2 entstehen dabei aus einer Tonne Kohle? S + O2 → SO2 M(S) = 32 g/mol, M(SO2) = 64 g/mol 1t Kohle enthält:

1,51000 kg = 15 kg = 15000 g Schwefel100

m 15000 gn = = = 468,75 mol SchwefelM 32g/mol

×

nach der Reaktionsgleichung werden damit auch 468,75 mol SO2 gebildet. m (SO2) = 468,75 mol × 64 g/mol = 30 kg SO2 b) Wieviel L gasförmigem SO2 entspricht dies? 468,75 mol × 22,4 L/mol = 10500 L SO2 c) Wieviel L Sauerstoff werden für die Verbrennung des Schwefel verbraucht? (machen Sie mal einen Vorschlag, Lösung gibts an dieser Stelle nicht! ;-) Konzentrationsberechnungen Die Konzentration einer Lösung ist die Menge eines gelösten Stoffes pro Menge der Lösung. Es gibt verschiedene Maßeinheiten für die Konzentration u.a.

Stoffmenge n GelöstesMolarität = in [mol/L]1 Liter Lösung

Masse m GelöstesGewichtsprozent = in [%]100 g Lösung

Zur Umrechnung dieser beiden Konzentrationsangaben benötigt man noch die Dichte in [g/mL] = [g/cm3] bzw. [kg/L] der Lösung:

MasseDichte = in [g/mL] oder [kg/L]Volumen

ρ

2

Page 3: Aufgaben zu stöchiometrischen Berechnungen · PDF fileAufgaben zu stöchiometrischen Berechnungen Chem. Reaktionsgleichungen geben nicht nur eine qualitative sondern auch eine quantitative

Aufgabe: Wieviel mL 70%iger HNO3 (Dichte ρ : 1,42 kg/L) benötigt man zur Herstellung von 250 mL 2-molarer (d.h. c = 2 mol/L) HNO3? M(HNO3) = 63 g/mol 1.) zuerst bestimmen, welcher Stoffmenge entspricht 70%ige HNO3: in 1 Liter „100%ige HNO3

“ wären: (V = 1 Liter)

3m = m = V = 1420 g/L 1L = 1420 g HNOV

ρ ρ⇒ × ×

in 1 Liter 70%iger HNO3-Lösung sind daher: (V = 1 Liter)

3m 70 = m = 1420 g/L 1L = 994 g HNOV 100

ρ ⇒ × ×

(d.h. die Konzentration einer 70%igen HNO3-Lösung beträgt 994 g pro Liter = 994 g/L)

3 3

3

994 g994 g HNO = 15,78 mol HNO 63 g/mol

15,78 mol/L HNO

2.) Zur Herstellung von 250 mL 2-molarer HNO3 benötigt man: es gilt: c1 × V1 = c2 × V2 mit c1 = 15,78 mol/L, c2 = 2 mol/L und V2 = 250 mL = 0,25 L

1 32 mol/L × 0.25 L V = = 0,0317 L = 31,7 mL 70%ige HNO

15,78 mol/L⇒

31,7 mL 70%ige HNO3 werden mit Wasser auf 250 mL aufgefüllt und man erhält damit 250 mL 2-molare HNO3

3

Page 4: Aufgaben zu stöchiometrischen Berechnungen · PDF fileAufgaben zu stöchiometrischen Berechnungen Chem. Reaktionsgleichungen geben nicht nur eine qualitative sondern auch eine quantitative

Zum Versuch Extraktion – Verteilungsgleichgewicht von I2 in Wasser/Pentan Problem: I2 schlecht löslich in H2O Warum?

HO

HI Iδ+δ+

δ−

Dipol, polaresprotisches LM

kein Dipol,unpolar

Kaliumiodid (Salz, ionische Verbindung), gute Löslichkeit in polaren Lösungsmitteln KI + H2O K+ + H2O + I- H2O kann Kationen durch Ausbildung einer Hydrathülle stabilisieren, Anionen lassen sich durch Ausbildung von Wasserstoffbrücken stabilisieren:

K+

HO

H

HO

H

H

O H

HO

H

H

OH

I-H

O

H HO

H

Löslichkeit von I2 in Wasser verbessern durch Zugabe von KI:

I- I3- I5- I7-I2 I2 I2 Bildung von Polyiodidionen, gute Löslichkeitin Wasser

I I I-Beispiel I3-

I2 reagiert dabei als Lewis-Säure (Elektronenpaar-Akzeptor), das Iodid-Ion als Lewis-Base (Elektronenpaar-Donor) I5- werden in Helix der Stärke-Moleküle eingelagert --> Einschlußverbindungen blaue Farbe durch Bildung von Charge-Transfer-Komplex (CT-Komplex), d.h. Ladungstransferkomplex, e- wird zwischen den Orbitalen versch. Atome/Moleküle übertragen:

E E

+ hν

(E = hν)

4

Page 5: Aufgaben zu stöchiometrischen Berechnungen · PDF fileAufgaben zu stöchiometrischen Berechnungen Chem. Reaktionsgleichungen geben nicht nur eine qualitative sondern auch eine quantitative

Extraktion – physikalische Grundlagen Gibt man zur Lösung einer Verbindung (A) in einem Solvens (1) ein zweites, mit (1)

nicht mischbares Solvens (2), so verteilt sich – nach Einstellung des Gleichgewichts

– die Verbindung A zwischen den beiden Solventien entsprechend dem Verhältnis

der Löslichkeit von A in diesen beiden Solventien. Die Gleichgewichtslage wird durch

den Nernst‘schen Verteilungssatz beschrieben:

Der einfache Nernst‘sche Verteilungssatz (wie hier abgebildet) gilt nur, wenn sich die

beiden Medien (hier Solvens (1) und (2)) nicht miteinander mischen und keine

Assoziations- oder Dissoziationsvorgänge berücksichtigt werden müssen.

Pentan

Wasser

2 B

2 A

[I ] c = = k[I ] c

vor Einstellung des Gleichgewichts: A B0 0

A B 2A B

n nc = und c = = 0 , da am Anfang kein I in Pentan vorliegt

V V

Scheidetrichter wird „geschüttelt“ --> GG stellt sich ein, Verteilung nach 1-mal

Extrahieren: A B

gesamt A A B1 1A B 0 0 1

A B

n nc = und c = wobei n = n = n + n

V V 1

1

A A0 1

AB A 0B

A AA B1 1

A

AA 01 B

A

n -nnc VVk = = = ( -1)

c Vn nV

n n = Vk

V

⇒⋅ +

5

Page 6: Aufgaben zu stöchiometrischen Berechnungen · PDF fileAufgaben zu stöchiometrischen Berechnungen Chem. Reaktionsgleichungen geben nicht nur eine qualitative sondern auch eine quantitative

nach i-maligem Extrahieren mit jeweils demselben Volumen VB erhält man: A

A 0i B i

A

nn = V(k 1)

V⋅ +

Beispiel: 1 mol I2 wird in 100 mL Wasser gelöst und 2-mal mit jeweils 100 mL Pentan

ausgeschüttelt. Wieviel I2 befindet sich nach der Extraktion noch in der wässrigen

Phase? (der Verteilungskoeffizient beträgt k = 5)

Pentan

Wasser

2 B

2 A

[I ] c = = k[I ] c

Index A bezieht sich auf H2O, Index B bezieht sich auf Pentan

mit noA = 1 mol, VA = 100 mL und no

B = 0 , VB = 100 mL ergibt sich: B

nach 1-maligem Extrahieren:

A21

1

1 mol 1n = = mol = 0.17 mol I100 mL 6(5 1)100 mL⋅ +

es befinden sich noch 0,17 mol I2 im Wasser, während die restlichen 0.83 mol I2

bereits in die Pentanphase extrahiert wurden.

nach Trennen der beiden Phasen Wasser/Pentan wird die wässrige Phase nochmal

mit 100 mL Pentan ausgeschüttelt (in diesem Pentan befindet sich am Anfang

natürlich auch kein I2)

nach 2-maligem Extrahieren:

A22

2

1 mol 1n = = mol = 0.03 mol I100 mL 36(5 1)100 mL⋅ +

es befinden sich nun noch 0,03 mol I2 im Wasser (und 0.97 mol I2 in insgesamt

200 mL Pentan), d.h. nach 2-mal Extrahieren mit insgesamt 200 mL Pentan haben

Sie 97% der ursprünglich in Wasser gelösten I2-Menge in die organische Phase

überführt.

6

Page 7: Aufgaben zu stöchiometrischen Berechnungen · PDF fileAufgaben zu stöchiometrischen Berechnungen Chem. Reaktionsgleichungen geben nicht nur eine qualitative sondern auch eine quantitative

Zum selber rechnen:

Wieviel I2 verbleibt im Wasser, wenn Sie nur 1-mal, aber dafür mit 200 mL = VB

Pentan ausschütteln? (Lösung: 0.091 mol I2 verbleiben im Wasser)

Wieviel mL Pentan benötigen Sie, um mit 1-mal Extrahieren 97% der I2-Menge in die

organische Phase zu überführen? (Lösung: VB = 647 mL Pentan)

Chemisches Gleichgewicht (chem. GG) Viele chem. Reaktionen sind reversibel, d.h. aus den Ausgangsstoffen werden

Endprodukte gebildet (Hinreaktion →), die Endprodukte zerfallen aber wieder in die

ursprünglichen Ausgangsstoffe (Rückreaktion ←):

aA + bB cC + dD

Anfangs wird die Geschwindigkeit der Hinreaktion größer sein als die der

Rückreaktion. Nach einiger Zeit haben sich die Geschw. beider Reaktionen

angeglichen: es hat sich ein chemisches Gleichgewicht eingestellt (die

Konzentrationen aller beteiligten Stoffe bleiben konstant), das so lange bestehen

bleibt, bis das System in irgendeiner Weise geändert wird.

Achtung: GG heißt nicht, dass keine Reaktion mehr stattfindet, sondern nur das die

Geschw. für Hin-und Rückreaktion gleich groß sind → dynamisches GG!

Aussagen über die Konzentrationsverhältnisse der Stoffe im GG-Zustand („Lage des

GG) macht das Massenwirkungsgesetz (MWG) mit der Gleichgewichtskonstanten K:

c d

a b[C] [D]K = [A]: Konzentration von A (in mol/L)[A] [B]

⋅⋅

K ist abhängig von der Temperatur, aber nicht von den Konzentrationen oder vom

Druck.

Die Temperaturabhängigkeit ist über die Beziehung zur freien Enthalpie G gegeben

mit: ΔG = -RT × ln K

7

Page 8: Aufgaben zu stöchiometrischen Berechnungen · PDF fileAufgaben zu stöchiometrischen Berechnungen Chem. Reaktionsgleichungen geben nicht nur eine qualitative sondern auch eine quantitative

Ist ΔG = 0, dann ist das System im Gleichgewicht.

Chemische Prozesse laufen freiwillig ab, wenn ΔG < 0 ist.

Wird das System geändert, z.B. durch die Erhöhung der Konzentration eines

Reaktionspartners, so verändern sich die Konzentrationen der anderen

Reaktionspartner derart, daß K wieder erfüllt ist:

Wird z.B. die Konzentration von A erhöht, vergrößern sich damit die Konzentrationen

der Endprodukte (das GG verschiebt sich auf die Seite der Endprodukte). Ähnliches

gilt, wenn die Konzentration eines Endprodukts z.B. C, etwa durch Ausfällung,

vermindert wird: auch hier verschiebt sich das GG nach rechts auf die Seite der

Endprodukte (Prinzip des kleinsten Zwangs nach Le Chatelier).

Aufgabe: 0,25 mol H2 und 0,5 mol I2 werden in einem 1-Liter-Kolben (also V = 1L) auf 448 °C

erhitzt. Wie groß sind die Konzentrationen an H2, I2 und HI nach Einstellung des

Gleichgewichts (K = 50,5)?

Reaktionsgleichung: H2 + I2 → 2 HI

d.h. H2 + I2 = 2 HI

Beginn der Rkt.: 0,25 0,5 0 mol/L

im GG: 0,25-x 0,5-x 2x mol/L 2

2 2

2

2

2 2

2

1,2

[HI]K = [H ] [I ]

(2x)50,5 = (0,25-x)(0,5-x)

50,5(0,25-x)(0,5-x) = 4x

x - 0,815x + 0,136 = 0 quadratische Gleichung x + px + q = 0

0,815 0,815x = ± - 0,136 2 4

2

1,2p p x = - ± - q2 4

(x1 = 0,58) weil [H2] = 0,25 -x keine sinnvolle Lösung

x2 = 0,234

⇒ [H2] = 0,25 - x = 0,25 - 0,234 = 0,016 mol/L

⇒ [I2] = 0,5 - x = 0,5 - 0,234 = 0,266 mol/L

⇒ [HI] = 2x = 0,468 mol/L

8

Page 9: Aufgaben zu stöchiometrischen Berechnungen · PDF fileAufgaben zu stöchiometrischen Berechnungen Chem. Reaktionsgleichungen geben nicht nur eine qualitative sondern auch eine quantitative

Welche Konzentration an HI erhält man, wenn man die Reaktion mit 0,25 mol H2 und

0,25 mol I2 durchführt? (hier brauchen Sie keine quadratische Gl. zu lösen ;-)

Ein „Spezialfall“ des Massenwirkungsgesetzes ist das

Löslichkeitsprodukt Wird eine schwerlösliche Substanz mit Wasser in Kontakt gebracht, so stellt sich

nach einiger Zeit ein GG zwischen der festen Phase (Niederschlag) und der flüssigen

Phase (Lösung) ein (heterogenes GG):

MmXn (fest) mM+(gelöst) + nX-

(gelöst) bzw.

MmXn (fest) = mM+(gelöst) + nX-

(gelöst) Die Geschwindigkeit der Auflösung und die Ausfällung ist dann gleich groß. Das GG

wird durch das MWG beschrieben, wobei die Konzentration der festen Phase

konstant ist und in die GG-Konstante einbezogen wird. Damit erhält man das

Löslichkeitsprodukt KL: m

+ m - nL n

molK = [M ] [X ] in L

Das Löslichkeitsprodukt ist, wie alle GG-Konstanten, von der Temperatur abhängig.

Die Löslichkeit von Salzen (angegeben in g/L) ist in der Praxis häufig größer als nach

dem Löslichkeitsprodukt zu erwarten wäre, da neben der Ausfällung weitere

Reaktionen stattfinden können, wie z.B. eine Komplexbildung, die den Niederschlag

teilweise wieder auflöst, ....

9

Page 10: Aufgaben zu stöchiometrischen Berechnungen · PDF fileAufgaben zu stöchiometrischen Berechnungen Chem. Reaktionsgleichungen geben nicht nur eine qualitative sondern auch eine quantitative

Aufgabe:

Wieviel g CaCO3 (KL = 4,9 × 10-9 mol2/L2) lösen sich in 1L Wasser?

CaCO3 → Ca2+ + CO32-

[Ca2+] × [CO32-] = KL = 4,9 × 10-9 mol2/L2

laut Reaktionsgleichung gilt: [Ca2+] = [CO32-]

d.h. [Ca2+]2 = 4,9 × 10-9 mol2/L2

[Ca2+] = 7 × 10-5 mol/L und damit auch (siehe Reaktionsgl.): [CO32-] = 7 × 10-5 mol/L

⇒ 7 × 10-5 mol CaCO3 (M = 100 g/mol) lösen sich in 1 Liter Wasser, und damit:

100 g/mol × 7 × 10-5 mol = 7 × 10-3 g CaCO3 lösen sich in 1 Liter.

Löslichkeit von CaCO3 in Wasser ist damit 7 × 10-3 g/L also ca. 7 mg/L, d.h. CaCO3

ist in reinem Wasser kaum löslich!

10