Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf ·...

170
Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama Bank, Florida Straits) Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften am Fachbereich Geowissenschaften der Universität Bremen vorgelegt von Johanna Schwarz Bremen, 2007

Transcript of Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf ·...

Page 1: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Carbonate preservation in Pliocene to Holocene periplatform sediments

(Great Bahama Bank, Florida Straits)

Dissertationzur Erlangung des Doktorgrades

der Naturwissenschaften

am Fachbereich Geowissenschaften der Universität Bremen

vorgelegt von Johanna Schwarz

Bremen, 2007

Page 2: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

II

Tag des Kolloquiums: 16. Mai 2007

Gutachter:Rebecca Rendle-Bühring

Hildegard Westphal

Prüfer:Gerhard Bohrmann

John Reijmer

Page 3: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

III

Page 4: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

IV

Page 5: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Abstract

V

Abstract

The oceanic carbon cycle mainly comprises the production and dissolution/

preservation of carbonate particles in the water column or within the sediment. Carbon

dioxide is one of the major controlling factors for the production and dissolution of carbonate.

There is a steady exchange between the ocean and atmosphere in order to achieve an

equilibrium of CO2; an anthropogenic rise of CO2 in the atmosphere would therefore also

increase the amount of CO2 in the ocean. The increased amount of CO2 in the ocean, due to

increasing CO2-emissions into the atmosphere since the industrial revolution, has been

interpreted as “ocean acidification” (Caldeira and Wickett, 2003). Its alarming effects, such as

dissolution and reduced CaCO3 formation, on reefs and other carbonate shell producing

organisms form the topic of current discussions (Kolbert, 2006).

Decreasing temperatures and increasing pressure and CO2 enhance the dissolution of

carbonate particles at the sediment-water interface in the deep sea. Moreover, dissolution

processes are dependent of the saturation state of the surrounding water with respect to calcite

or aragonite. Significantly increased dissolution has been observed below the aragonite or

calcite chemical lysocline; below the aragonite compensation depth (ACD), or calcite

compensation depth (CCD), all aragonite or calcite particles, respectively, are dissolved.

Aragonite, which is more prone to dissolution than calcite, features a shallower lysocline and

compensation depth than calcite. In the 1980´s it was suggested that significant dissolution

also occurs in the water column or at the sediment-water interface above the lysocline.

Unknown quantities of carbonate produced at the sea surface, would be dissolved due to this

process. This would affect the calculation of the carbonate production and the entire carbonate

budget of the world´s ocean. Following this assumption, a number of studies have been

carried out to monitor supralysoclinal dissolution at various locations: at Ceara Rise in the

western equatorial Atlantic (Martin and Sayles, 1996), in the Arabian Sea (Milliman et al.,

1999), in the equatorial Indian Ocean (Peterson and Prell, 1985; Schulte and Bard, 2003), and

in the equatorial Pacific (Kimoto et al., 2003). Despite the evidence for supralysoclinal

dissolution in some areas of the world´s ocean, the question still exists whether dissolution

occurs above the lysocline in the entire ocean. The first part of this thesis seeks answers to

this question, based on the global budget model of Milliman et al. (1999). As study area the

Bahamas and Florida Straits are most suitable because of the high production of carbonate,

and because there the depth of the lysocline is the deepest worldwide. To monitor the

occurrence of supralysoclinal dissolution, the preservation of aragonitic pteropod shells was

determined, using the Limacina inflata Dissolution Index (LDX; Gerhardt and Henrich,

Page 6: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Abstract

VI

2001). Analyses of the grain-size distribution, the mineralogy, and the foraminifera

assemblage revealed further aspects concerning the preservation state of the sediment. All

samples located at the Bahamian platform are well preserved. In contrast, the samples from

the Florida Straits show dissolution in 800 to 1000 m and below 1500 m water depth.

Degradation of organic material and the subsequent release of CO2 probably causes

supralysoclinal dissolution. A northward extension of the corrosive Antarctic Intermediate

Water (AAIW) flows through the Caribbean Sea into the Gulf of Mexico and might enhance

dissolution processes at around 1000 m water depth.

The second part of this study deals with the preservation of Pliocene to Holocene

carbonate sediments from both the windward and leeward basins adjacent to Great Bahama

Bank (Ocean Drilling Program Sites 632, 633, and 1006). Detailed census counts of the sand

fraction (250-500 µm) show the general composition of the coarse grained sediment. Further

methods used to examine the preservation state of carbonates include the amount of organic

carbon and various dissolution indices, such as the LDX and the Fragmentation Index.

Carbonate concretions (nodules) have been observed in the sand fraction. They are similar to

the concretions or aggregates previously mentioned by Mullins et al. (1980a) and Droxler et

al. (1988a), respectively. Nonetheless, a detailed study of such grains has not been made to

date, although they form an important part of periplatform sediments. Stable isotope-

measurements of the nodules´ matrix confirm previous suggestions that the nodules have

formed in situ as a result of early diagenetic processes (Mullins et al., 1980a). The two cores,

which are located in Exuma Sound (Sites 632 and 633), at the eastern margin of Great

Bahama Bank (GBB), show an increasing amount of nodules with increasing core depth. In

Pliocene sediments, the amount of nodules might rise up to 100%. In contrast, nodules only

occur within glacial stages in the deeper part of the studied core interval (between 30 and

70 mbsf) at Site 1006 on the western margin of GBB. Above this level the sediment is

constantly being flushed by bottom water, that might also contain corrosive AAIW, which

would hinder cementation. Fine carbonate particles (<63 µm) form the matrix of the nodules

and do therefore not contribute to the fine fraction. At the same time, the amount of the coarse

fraction (>63 µm) increases due to the nodule formation. The formation of nodules might

therefore significantly alter the grain-size distribution of the sediment. A direct comparison of

the amount of nodules with the grain-size distribution shows that core intervals with high

amounts of nodules are indeed coarser than the intervals with low amounts of nodules. On the

other hand, an initially coarser sediment might facilitate the formation of nodules, as a high

porosity and permeability enhances early diagenetic processes (Westphal et al., 1999). This

Page 7: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Abstract

VII

suggestion was also confirmed: the glacial intervals at Site 1006 are interpreted to have

already been rather coarse prior to the formation of nodules. This assumption is based on the

grain-size distribution in the upper part of the core, which is not yet affected by diagenesis,

but also shows coarser sediment during the glacial stages. As expected, the coarser, glacial

deposits in the lower part of the core show the highest amounts of nodules. The same effect

was observed at Site 632, where turbidites cause distinct coarse layers and reveal higher

amounts of nodules than non-turbiditic sequences. Site 633 shows a different pattern: both the

amount of nodules and the coarseness of the sediment steadily increase with increasing core

depth.

Based on these sedimentological findings, the following model has been developed: a

grain-size pattern characterised by prominent coarse peaks (as observed at Sites 632 and

1006) is barely altered. The greatest coarsening effect due to the nodule formation will occur

in those layers, which have initially been coarser than the adjacent sediment intervals. In this

case, the overall trend of the grain-size pattern before and after formation of the nodules is

similar to each other. Although the sediment is altered due to diagenetic processes, grain size

could be used as a proxy for e.g. changes in the bottom-water current. The other case

described in the model is based on a consistent initial grain-size distribution, as observed at

Site 633. In this case, the nodule reflects the increasing diagenetic alteration with increasing

core depth rather than the initial grain-size pattern. In the latter scenario, the overall grain-size

trend is significantly changed which makes grain size unreliable as a proxy for any

palaeoenvironmental changes.

The results of this study contribute to the understanding of general sedimentation

processes in the periplatform realm: the preservation state of surface samples shows the

influence of supralysoclinal dissolution due to the degradation of organic matter and due to

the presence of corrosive water masses; the composition of the sand fraction shows the

alteration of the carbonate sediment due to early diagenetic processes. However, open

questions are how and when the alteration processes occur and how geochemical parameters,

such as the rise in alkalinity or the amount of strontium, are linked to them. These

geochemical parameters might reveal more information about the depth in the sediment

column, where dissolution and cementation processes occur.

Page 8: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Kurzfassung

VIII

Kurzfassung

Der Karbonatkreislauf im Ozean besteht im Wesentlichen aus der Produktion und der

Lösung bzw. Erhaltung karbonatischer Partikel in der Wassersäule und im Sediment. Ein

wichtiger Steuerfaktor für die Produktion und Lösung von Karbonat ist der CO2-Gehalt im

umgebenden Wasser. Zwischen Ozean und Atmosphäre findet ein steter Austausch von CO2

statt, so dass durch den anthropogenen Anstieg des Kohlendioxids in der Atmosphäre auch

dessen Gehalt im Ozean gestiegen ist. Die steigenden CO2-Emissionen in die Atmosphäre seit

der Industrialisierung werden aktuell in Bezug auf deren drastische Auswirkungen auf marine

Organismen, z.B. Riffe, aber auch alle anderen karbonatbildenden Organismen, diskutiert

(Kolbert, 2006). In dem Zusammenhang wurde der Begriff „Ozean-Versauerung“ eingeführt

(Caldeira und Wickett, 2003).

Je tiefer die Temperatur, je höher der Druck und je höher der CO2-Gehalt des

umgebenden Wassers, desto leichter werden Karbonatpartikel an der Wasser-Sediment-

Grenze in der Tiefsee wieder gelöst. Ein weiterer wichtiger Punkt ist die Sättigung des

Wassers in Bezug auf Kalzit und Aragonit. Verstärkte Lösung von Aragonit und Kalzit findet

unterhalb der jeweiligen chemischen Lysokline und vollständige Lösung unterhalb der

jeweiligen Kompensationstiefe statt. Die Lysokline und Kompensationstiefe von Aragonit

liegen dabei in geringeren Wassertiefen als die von Kalzit. Im Nordatlantik, wo die

Korrosivität niedrig ist, liegen Lysokline und Kompensationstiefe in großen Tiefen, im

korrosiveren Pazifik dagegen relativ flach. In den 80er Jahren wurde die These aufgestellt,

dass eine signifikante Lösung von Karbonat bereits oberhalb der Lysokline stattfindet,

entweder noch in der Wassersäule oder an der Sediment-Wasser-Grenze. Unbekannte Mengen

an der Meeresoberfläche produzierten Karbonats würden dadurch gelöst. Diese unbekannte

Menge würde sich wiederum auf die Berechnung der Karbonatproduktion und damit des

gesamten Karbonathaushaltes im Ozean auswirken. Supralysoklinale Lösung wurde daraufhin

tatsächlich an vielen Stellen weltweit nachgewiesen, z.B. am Ceara Rise im äquatorialen

Westatlantik (Martin und Sayles, 1996), in der Arabischen See (Milliman et al., 1999), im

Äquatorial-Indik (Peterson und Prell, 1985; Schulte und Bard, 2003) und im Äquatorial-

Pazifik (Kimoto et al., 2003). Trotzdem bleibt die Frage bestehen, ob supralysoklinale Lösung

ein generelles Phänomen oder auf einige wenige Gebiete begrenzt ist. Der erste Teil dieser

Studie versucht darauf eine Antwort zu finden, basierend auf den Berechnungen des globalen

Karbonathaushalts von Milliman et al. (1999). Die Bahamas und die Floridastraße eignen sich

dafür sehr gut, da die Karbonatlysokline dort aufgrund der hohen Karbonatproduktion

weltweit am tiefsten liegt. Da Aragonit leichter löslich ist als Kalzit, wurde ein

Page 9: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Kurzfassung

IX

Lösungsanzeiger verwendet, der den Erhaltungsgrad von aragonitischen Pteropodenschalen

bewertet: der Limacina inflata-Lösungsindex (Limacina inflata Dissolution Index; LDX),

entwickelt von Gerhardt und Henrich (2001). Zusätzliche Korngrößenanalysen des Sediments

erlaubten Rückschlüsse auf Fragmentationsprozesse; des Weiteren wurden die mineralogische

Zusammensetzung und die Faunenvergesellschaftung der planktischen Foraminiferen

untersucht. Während alle Proben von der Bahama-Plattform eine gute Karbonaterhaltung

aufweisen, wurden in der Florida-Straße Lösungs-Erscheinungen in 800-1000 m und

unterhalb 1500 m Wassertiefe festgestellt. Als Ursache für diese supralysoklinale Lösung

kann der Abbau organischen Materials und die dadurch verursachte Freisetzung von CO2

angesehen werden. Der nördliche Ausläufer des korrosiven Antarktischen Zwischenwassers

fließt durch die Karibik bis in den Golf von Mexiko und weiter in die Floridastraße und

könnte somit zu den korrosiveren Bedingungen im Bodenwasser bei 1000 m Wassertiefe

beitragen.

Im zweiten Teil der Arbeit wurde die Erhaltung pliozäner bis holozäner

Karbonatsedimente anhand dreier Kerne des Ocean Drilling Programs (ODP) aus westlich

und östlich der Großen Bahama-Bank (GBB) liegenden Becken untersucht (Sites 1006 bzw.

632 und 633). Die generelle Zusammensetzung der Sandfraktion (größer als 63 µm) wurde

anhand detaillierter Zählungen der repräsentativen Fraktion 250-500 µm bestimmt. Zusätzlich

wurden der Anteil an organischem Kohlenstoff gemessen und verschiedene Lösungsindizes

berechnet, u.a. der LDX und die Fragmentationsrate. In der Sandfraktion wurden

Karbonatkonkretionen („nodules“) gefunden, die in dieser oder ähnlicher Form bereits in

mehreren Arbeiten über die Sedimente rund um die Bahama-Plattform beschrieben wurden

(u.a. Mullins et al., 1980a; Droxler et al., 1988a). Obwohl die „nodules“ einen wichtigen

Bestandteil von Periplattform-Sedimenten bilden, wurden sie jedoch bislang nicht detailliert

untersucht. Stabile Isotopen-Messungen der „nodule“-Matrix bestätigten die bisherige

Vermutung, dass solche Konkretionen durch frühdiagenetische Prozesse in situ gebildet

wurden. Die beiden Kerne im Exuma Sound (Sites 632 und 633), auf der Ostseite der GBB

gelegen, weisen einen mit der Kerntiefe zunehmenden Anteil an „nodules“ auf, der in den

pliozänen Sedimenten bis auf 100% ansteigt. Site 1006, an der Westseite der GBB gelegen,

ist dagegen nur im unteren Teil des untersuchten Kernabschnittes (in 30-70 m Kerntiefe) von

der „nodule“-Bildung betroffen und auch dort nur in den Sedimenten der Glazialstadien.

Oberhalb 30 m Kerntiefe wird das Sediment ständig von Bodenwasser durchspült. Dieses

Bodenwasser beinhaltet möglicherweise korrosives antarktisches Zwischenwasser, was

wiederum eine Zementation in dieser Zone verhindern würde. Feine Karbonatpartikel (kleiner

Page 10: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Kurzfassung

X

als 63 µm) bilden die Matrix der grobkörnigen „nodules“ und sind somit nicht mehr

Bestandteil der Feinfraktion. Gleichzeitig wird der Grobfraktionsanteil (>63 µm) durch die

gebildeten Karbonat-konkretionen erhöht. Der gesamte Prozess kann somit die

Korngrößenverteilung eines Sediments beträchtlich verändern. Ein Vergleich der „nodule“-

Häufigkeit mit der Korngrößenverteilung im Sediment ergab, dass tatsächlich die

Kernintervalle mit großen Anteilen an „nodules“ deutlich gröber sind als die Intervalle mit

geringen Anteilen an „nodules“. Andererseits mag ein ursprünglich gröberes Sediment die

Bildung von „nodules“ fördern, da eine höhere Porosität und Permeabilität einen höheren

Porenfluss zur Folge hat und damit frühdiagenetische Prozesse fördert. Auch diese

Vermutung wurde bestätigt: Die glazialen Bereiche in Kern 1006 waren schon vor der

„nodule“-Bildung relativ grob. Diese Annahme basiert auf dem Verteilungsmuster des oberen

Kernabschnitts, der noch nicht durch Diagenese überprägt wurde, aber ebenso grobe

Sedimente während der Glazialstadien aufweist. Erwartungsgemäß weisen die groben,

glazialen Bereiche im unteren Kernabschnitt die höchsten Anteile an „nodules“ auf. Der

gleiche Effekt wurde im Kern 632 beobachtet; allerdings sind in diesem Fall Turbidite für die

ursprünglich gröberen Lagen verantwortlich. Kern 633 zeigt ein anderes Muster: Das

Sediment wird mit zunehmender Tiefe stetig reicher an „nodules“ und gleichzeitig gröber.

Basierend auf den sedimentologischen Befunden wurde folgendes Modell entwickelt:

Die Korngrößenverteilung eines Sediments mit einzelnen, gröberen Lagen, wie in den Kernen

632 und 1006, wird durch die Bildung von „nodules“ kaum verändert, da eine verstärkte

„nodule“-Bildung gerade die Lagen vergröbert, die vorher auch schon gröber waren als das

umliegende Sediment. Da sich der allgemeine Trend der Korngrößenverteilung in diesen

Fällen nicht ändert, könnte man die Korngröße auch nach der frühdiagenetischen

Überprägung noch als Näherungswert (Proxy) für z.B. Änderungen der Bodenwasser-

strömung verwenden. Im zweiten Fall ist die ursprüngliche Korngrößenverteilung sehr

gleichmäßig, wie z.B. in Kern 633, sodass das „nodule“-Verteilungsmuster weniger die

Korngröße widerspiegelt als vielmehr die mit der Kerntiefe zunehmende diagenetische

Überprägung. Dadurch wird der Trend der Korngrößenverteilung signifikant geändert, und

Korngröße kann nicht mehr zuverlässig als Proxy für Veränderungen der Paläo-Umwelt

verwendet werden.

Die Ergebnisse der Arbeit tragen wesentlich zum besseren Verständnis des

Ablagerungsgeschehens im Periplattform-Bereich bei: Die Erhaltung der Oberflächenproben

zeigt den Einfluss supralysoklinaler Lösung aufgrund der Degradierung organischen Materials

und aufgrund korrosiver Wassermassen; die genaue Zusammensetzung der Sandfraktion zeigt

Page 11: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Kurzfassung

XI

die Veränderung des Sediments durch frühdiagenetische Prozesse nach der Ablagerung.

Unbekannt ist allerdings immer noch, wie und wann diese Prozesse genau ablaufen und in

welcher Weise z.B. ein Anstieg in der Alkalinität oder der Strontiumgehalt damit in

Zusammenhang stehen. Diese geochemischen Parameter könnten Hinweise darauf geben, in

welcher Sedimenttiefe „nodules“ gebildet werden.

Page 12: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Danksagung

XII

Danksagung

In erster Linie möchte ich mich bei Rebecca Rendle-Bühring für die Vergabe und Betreuung der

Doktorarbeit bedanken. Ihr großes Vertrauen in meine Arbeit hat mich immer gestärkt. Und dank ihrer Hilfe und

kompetenten Ratschläge wurden aus meinen Anhäufungen von Argumenten und Ideen in manchmal wohl recht

fragwürdigem Englisch am Ende doch noch vernünftige Publikationen. An Hildegard Westphal als

Zweitgutachterin und Rüdiger Henrich als „Co-Betreuer“ ergeht ebenso großer Dank. In zahlreichen

Doktorandenseminaren oder privaten Gesprächen haben sie mir wichtige Denkanstöße und fachlichen Rat

gegeben bzw. rechtzeitig die Haken meiner Arbeit erkannt.

Ein ganz dickes Dankeschön geht an meinen lieben Kollegen Stephan Steinke für die Einweisung in

planktische Foraminiferen und Schalke 04, für´s kritische Lesen aller möglichen Abstracts, Manuskripte,

Posterentwürfe etc., für alle wissenschaftlichen Ratschläge und Unterstützung in jeglicher Hinsicht und natürlich

für die vergnügliche Zeit miteinander, vor allem im gemeinsamen Büro im TAB-Gebäude.

Für die verschiedenen Messungen und die dazugehörenden Probenvorbereitungen danke ich ganz

herzlich Michael Wendschuh und Christoph Voigt (XRD, Datenauswertung), Michael Frenz (Sedigraph), Renate

Henning und Brit Kockisch (Leco), Helga Heilmann, Kalle Baumann und Rüdiger Henrich (REM), Monika Segl

(Stabile Isotopen) und Barbara Donner (Bereitstellung von Labormaterial). Christoph Voigt und Kalle Baumann

sei noch mal extra gedankt für zahlreiche Anregungen und Kritik, die mir im Laufe meiner Arbeit sehr geholfen

haben.

Der gesamten AG Henrich danke ich für die Integration der AG Rendle in vielen Bereichen, vor allem

bei der Laborbenutzung (Dank an Till Hanebuth für Schlüssel und uneingeschränktes Vertrauen), dem

Doktorandenseminar, den Weihnachtsfeiern zwischen Sedigraph und Abzug und den Sommerfeiern im

Henrichschen Garten.

Nicole Meyer, Inka Meyer und Florian Schroth danke ich für ihren unermüdlichen Einsatz, hunderte

von Proben zu schlämmen, zu sieben, zu mörsern oder zu mikroskopieren. Eure Unterstützung hat mir wertvolle

Zeit gespart, vor allem seit Linus auf der Welt war!

Für wertvolle Diskussionen bei der Erstellung meiner Manuskripte möchte ich ganz herzlich John

Reijmer, Hildegard Westphal und Lars Reuning danken. John Reijmer hat mich außerdem großzügig mit

Probenmaterial versorgt und mit Daten aus älteren Arbeiten, die mir eine große Hilfe bei meiner Arbeit waren.

Als Editor hat John außerdem entscheidende „Geburtshilfe“ bei meinem ersten Paper geleistet. Vielen Dank

dafür!

Ganz besonders möchte ich mich bei der „alten“ Kaffeerunde und Mensacrew aus dem TAB-Gebäude

für eine wunderschöne Zeit bedanken, allen voran Jens Holtvoeth für seine unschätzbare Hilfestellung bei

meinem ersten Paper, für seinen unerschöpflichen Vorrat an Muscheldosen, eingelegter Roter Bete und

Knäckebrot, falls man wieder mal im Büro versumpfte, und für seine stete Bereitschaft für ein Feierabendbier;

Page 13: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Danksagung

XIII

ebenso danke ich Britta Beckmann für ihre Hilfsbereitschaft in allen Dingen, Regina Krammer für ihre

unterhaltsame Art und viele sehr lustige Abende abseits von Foraminiferen und Coccolithen, Sadat Kolonic für

Kaffeekochen und seine Beharrlichkeit, täglich zweimal die gesamte Kaffeerunde zusammenzutrommeln,

Michael „Gustl“ Seyferth für äußerst kreative und frustmindernde Unterhaltungen per email oder bei ner

Zigarette im japanischen Innenhof, Katrin Huhn für ihren Zuspruch in Krisenzeiten und einfach für ihre

Freundschaft, und schließlich meinem Kollegen und Mitbewohner Ingo Kock für´s häufige Hüten von Linus und

die gegenseitige Motivation bei der Beendigung unserer Doktorarbeiten.

Der Umzug ins neue marum-Gebäude ergab nicht nur den Luxus eines Einzelzimmers, sondern wieder

eine neu zusammengewürfelte Mensarunde, der ich hiermit danken möchte für die nette gemeinsame Zeit:

Melanie Reichelt, Petra Günnewig, Xin Li, Frank Strozyk, Julia Schneider, und besonders unser neues

Arbeitsgruppenmitglied Carola Ott, mit der ich leider nur noch ein paar Monate Tür an Tür arbeiten durfte.

Basti, wir haben dank Fernbeziehung, Doktorarbeit und Nachwuchs aufregende und manchmal

schwierige Jahre hinter uns, und ich möchte dir hier ganz offiziell noch mal für deine Liebe und Freundschaft

danken und dafür, dass du mich immer motiviert und unterstützt hast, auch über die große Distanz zwischen

München und Bremen hinweg. Ganz besonders möchte ich dir dafür danken, dass du im letzten Jahr den

Großteil deiner Arbeitszeit nach Bremen verlegt hast, um deiner Familie näher zu sein.

Ein dickes Danke inkl. einem knallroten Feuerwehrauto geht an unseren kleinen Linus, dafür dass er im

Alter von drei Wochen schon ohne Murren auf seinen ersten Kongress gegangen ist bzw. getragen wurde, und

vor allem dafür, dass er sich von klein auf bereitwillig seinen Brei von anderen Leuten in den Mund stopfen ließ,

wenn seine Eltern stattdessen mal wieder irgendwas Wichtiges in den Computer tippen mussten. Der abgerissene

Doppelpunkt-Knopf an meiner Laptop-Tastatur wird allerdings vom Taschengeld abgezogen...

Schließlich möchte ich mich ganz herzlich bei meinen Eltern Otto und Marlene Schwarz und meinen

Brüdern Uli und Florian Schwarz für ihre stete Unterstützung und ganz besonders für´s Korrekturlesen am Ende

der Arbeit bedanken.

Page 14: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Table of contents

XIV

Table of contents

Abstract..................................................................................................................................V Kurzfassung.......................................................................................................................VIII Danksagung ........................................................................................................................ XII

Part I - Introduction.................................................................................................................1 1. Calcium carbonate production on platforms ......................................................................2 2. Carbonate preservation and carbonate dissolution .............................................................2

2.1. Carbonate preservation at the sediment-water interface..............................................4 2.1.1. Lysocline and compensation depth.......................................................................5 2.1.2. Supralysoclinal dissolution...................................................................................6

2.2. Carbonate preservation in the shallow sediment column ............................................7 3. Main Questions...................................................................................................................8 4. Study Area ........................................................................................................................10

4.1. The Bahamas – a modern example of an isolated carbonate platform......................10 4.2. Modern sedimentation ...............................................................................................10 4.3. Water masses and currents ........................................................................................12 4.4. Sample locations........................................................................................................13

4.4.1. Florida Straits .....................................................................................................13 4.4.2. Northwest and Northeast Providence Channel...................................................14 4.4.3. Exuma Sound......................................................................................................15

5. Methods ............................................................................................................................16 5.1. Grain-size analyses ....................................................................................................17 5.2. Mineralogy ................................................................................................................185.3. Carbonate and total organic carbon contents.............................................................18 5.4. Coarse fraction analyses ............................................................................................19 5.5. Dissolution Indices ....................................................................................................21 5.6. Scanning Electron Microscopy..................................................................................21 5.7. Stable isotopes ...........................................................................................................22

6. Organisation of the thesis .................................................................................................22

Part II - Results.......................................................................................................................25 Chapter 1: Controls on modern carbonate preservation in the southern Florida Straits.......26 Chapter 2: Compositional variations and early diagenetic processes in Quaternary periplatform sands: an example from the Great Bahama Bank............................................41 Chapter 3: Diagenetic alteration of periplatform sediments: implications for palaeoenvironmental interpretations based on grain size .....................................................65

Part III - Summary.................................................................................................................77 1. Conclusions ......................................................................................................................78

1.1. Supralysoclinal dissolution of aragonite ...................................................................78 1.2. Spatial and temporal distribution of nodules (diagenetic products) ..........................79 1.3. Formation conditions of nodules ...............................................................................79 1.4. Interplay of the grain-size distribution and the formation of nodules .......................80

2. Outlook .............................................................................................................................81

Part IV - References ...............................................................................................................83

Page 15: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Table of contents

XV

Part V - Appendix...................................................................................................................93 1. Samples 2. Data

2.1. Grain Size 2.2. Leco 2.3. XRD 2.4. Census Counts (main component groups) 2.5. Detailed census counts (foraminifera assemblage) 2.6. LDX 2.7. Stable Isotopes

Page 16: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

XVI

Page 17: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

1

Part I

Introduction

Page 18: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part I

2

1. Calcium carbonate production on platforms

Carbonate sediments are, with approximately three billion tons annually, the second

most abundant sediment in the global ocean after fluvially derived sediment (Milliman and

Syvitski, 1992). Modern carbonate sediments are, apart from oolites and lime muds, mainly

the result of biogenic production (Tucker and Wright, 1990). Calcium carbonate is produced

in the shallow seawater through the secretion of shells by planktonic organisms; these shells

then fall to the sea floor, and, in the deep ocean below several thousand meters water depth,

the calcium carbonate is mostly returned to the oceans by dissolution. These processes help to

maintain the calcium and carbon balance of the ocean and the carbon balance of the

atmosphere (Gieskes, 1974; Broecker, 1971; Pytkowicz, 1968; Broecker and Peng, 1982).

On carbonate platforms the production of carbonates and their preservation state is

high. There are five major types of carbonate platforms: shelf, ramp, epeiric platform, isolated

platform, and drowned platform (Tucker and Wright, 1990). The Bahama platform is a

modern example of an isolated carbonate platform (Vecsei, 2003). The growth and

distribution of isolated platforms is related to current- and climate-influenced properties of the

sea-water (temperature or carbonate ion saturation: Kleypas et al., 1999; nutrient

concentration: Hallock and Schlager, 1986; salinity: Wilson and Roberts, 1992).

Carbonate sediments have, according to Tucker and Wright (1990) four major

constituents: carbonate skeletons, silicious skeletons, terrigenous silt and clay, and authigenic

components. In the shallow-water realm, benthic production dominates and carbonate

sediments mainly consist of aragonite and high-Mg calcite (HMC) with more than 4 mol% of

MgCO3 (Milliman, 1974; Bathurst, 1971). Pelagic production is much lower than neritic

production; the mineralogy of pelagic produced carbonates is dominated by low-Mg calcite

(LMC) with less than 4 mol% of MgCO3 (Garrison, 1981; Milliman and Droxler, 1996).

Around the margins of carbonate platforms, the neritic and pelagic sources of carbonate

sediment create a third, mixed type of carbonate sediment, referred to as periplatform ooze

(Schlager and James, 1978).

2. Carbonate preservation and carbonate dissolution

After the deposition of carbonate sediments on the sea floor, they are generally

affected by diagenesis (Milliman, 1974). Cementation, microbial micritization, neophormism,

dissolution, compaction, and dolomitisation are the most important diagenetic processes

(Tucker and Wright, 1990). These diagenetic processes are mainly controlled by the

composition and mineralogy of the sediment, the pore-fluid chemistry and flow rates, changes

Page 19: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Introduction

3

in burial, uplift, and sea-level, the influx of different pore-fluids and the climate (Tucker and

Wright, 1990).

Fig. 1: The carbonate diagenetic environments. In sediments below sea-level, they are divided into meteoric, mixing zone, and marine phreatic diagenesis. Meteoric or marine vadose diagenesis occurs above sea-level. The samples used in this study are affected by marine phreatic diagenesis in the shallow burial environment. Figure taken from Tucker and Wright (1990).

Schlanger and Douglas (1974) introduced the concept of “diagenetic potential” to

pelagic carbonates to account for the local variations in diagenetic grade observed in

sedimentary records. They interpreted the composition and nature of the original sediment to

be controlled by the conditions of sedimentation; namely water depth, deposition rate,

temperature, productivity, sediment compaction and grain size. These conditions determine

the progress of diagenesis, such as the rates of mechanical compaction, grain breakage, grain

dissolution and CaCO3 precipitation. Previous studies documented extensive surficial

submarine diagenesis in high-energy, current-swept, periplatform environments (Mullins et

al., 1980a) as well as in relatively low-energy, deeper-water settings, where erosion and/or

low sedimentation rates resulted in long-term exposure of surficial sediment to seawater

(Milliman, 1966; Fisher and Garrison, 1967; Milliman and Muller, 1977; Schlager and James,

1978). Periplatform oozes possess a high diagenetic potential in their depositional

environment because of the metastability of aragonite and HMC in deep, cold seawater

(James and Choquette, 1983). Diagenetic processes in periplatform carbonates generally

include the dissolution of aragonite and HMC and the recrystallization of LMC.

Mineralogical and geochemical studies of sediments (Dix and Mullins, 1988a,b; Malone et

al., 1990), combined with studies focused on the chemistry of the associated interstitial water

(Swart and Guzikowski, 1988; Swart et al., 1993), also showed that periplatform sediments

have a higher diagenetic potential than monomineralic, deep-sea pelagic carbonates (Malone

et al., 2001).

Carbonate diagenesis operates in three principal environments (Fig. 1): the marine,

meteoric, and burial environments. Marine diagenesis takes place on the seafloor and within

Page 20: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part I

4

the sediment, and on tidal flats and beaches. Meteoric diagenesis affects a sediment soon after

deposition on a supratidal flat or if rainwater falls on the carbonates. The burial environment

occurs in tens to hundreds of meters depth within the sediment column. The term “early

diagenesis” refers to near-surface processes, while “late diagenesis” refers to processes during

deep burial. Studies of the Bahama Transect revealed three diagenetic zones (Melim et al.,

2002): meteoric, mixing-zone, and phreatic-marine diagenesis. The latter is divided into

seafloor diagenesis, shallow marine-burial diagenesis, and deep burial diagenesis. The sites

which have been studied here, were preferentially influenced by seafloor and shallow marine-

burial diagenesis: meteoric and mixing-zone diagenesis can be omitted in water depths of

more than 600 m water depth, and deep-burial diagenesis occurs in deeper sediment than has

been studied.

2.1. Carbonate preservation at the sediment-water interface

At the sediment-water interface, the dissolution of carbonate components is a common

feature. The dissolution of calcium carbonate in deep-sea sediments is controlled by two

major factors: 1) the degree of saturation of the oceanic bottom waters overlying the sediment

(e.g. Berger, 1968; Li et al., 1969; Broecker, 1971; Morse and Berner, 1972; Volat et al.,

1980; Broecker and Peng, 1982) and 2) the interstitial reaction with metabolically released

carbon dioxide into sediment pore waters during organic matter remineralization (Emerson

and Bender, 1981; Archer et al., 1989b; Berelson et al., 1990; Jahnke et al., 1994, 1997; Hales

and Emerson, 1996, 1997; Martin and Sayles, 1996; Adler et al., 2001; Wenzhöfer et al.,

2001). Carbonate dissolution is enhanced by an increasing rain ration, i.e. the ratio of organic

carbon to calcium carbonate, reaching the sediment (Emerson and Bender, 1981).

Calcite has the unusual property of becoming more soluble with increasing pressure

and decreasing temperature, i.e. with depth in the ocean. The carbonate dissolution within the

sea therefore is a result of decreased temperature, increased pressure, and increased CO2

content. Carbon dioxide and temperature are more critical in regulating carbonate dissolution

than pressure (Revelle, 1934). The distinct dissolution rate of carbonate sediments depends on

the particle size (Chave and Schmalz, 1966), the type, shape and amount of carbonate grains

(Keir, 1980, 1982), and the reaction kinetics describing carbonate dissolution as a function of

carbonate ion concentration in bottom waters (Morse and Berner, 1972; Broecker and Peng,

1982). A high sedimentation rate or a very rapid deposition by turbidites can result in the

protective burial of calcite before it is dissolved in the overlying bottom water (Berner et al.,

1976).

Page 21: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Introduction

5

Fig. 2: Carbonate dissolution and saturation in the Pacific and AtlanticOcean. Figure after Jenkyns (1986) and Scholle et al. (1983).

2.1.1. Lysocline and compensation depth

The calcite compensation depth (CCD) is the depth, below which carbonate is not

deposited since the rate of carbonate dissolution equals the rate of carbonate deposition

(Pytkowicz, 1970). At the shallower lysocline (Berger, 1968), there is a pronounced increase

in the rate of carbonate dissolution (Fig. 2). Aragonite and HMC are both metastable with

respect to LMC (Chave et al., 1962; Chave and Schmalz, 1966) and therefore both tend to

dissolve at shallower oceanic depths than LMC. HMC is slightly less soluble than aragonite in

the deep sea (Milliman, 1974), but more soluble than aragonite in the Bahama region (Swart

and Guzikowski, 1988). Due to the lower solubility, the aragonite compensation depth (ACD)

lies in shallower water depths than the CCD. The same accounts for the aragonite lysocline

relative to the LMC lysocline.

The primary

cause for the depth

variations of the

lysoclines has been

widely debated.

According to Morse

and Berner (1972), the

lysocline is due to

chemical changes in

the water column.

Morse (1974) stated

that the chemical

lysocline is a kinetic

feature that can be defined in the purely thermodynamic terms of pressure, temperature, and

composition. Honjo and Erez (1978) confirmed that the lysocline has a kinetic origin.

Broecker and Takahashi (1978), in contrast, suggest that the lysocline is thermodynamically

controlled (transition from saturation to undersaturation).

The positions of ACD and CCD are variable in space and time. The carbonate

lysocline lies deepest in the North Atlantic (Berger, 1968; Biscaye et al., 1976), and

shallowest in the more corrosive northern Pacific (Berger, 1970; Parker and Berger, 1971).

The depth of the chemical calcite lysocline is approx. 4000-4500 m in the Atlantic Ocean,

3000 m in the Pacific, and 3800 m in the Indian Ocean (Peterson and Prell, 1985; Milliman et

al., 1999). The ACD is found at significantly shallower depths, e.g. the Pacific is saturated

Page 22: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part I

6

with respect to aragonite down to 200 m; the northwestern Atlantic is supersaturated from 0 to

1000 m, saturated from 1000 to 2300 m, and undersaturated below 2300 m water depth (Li et

al., 1969). In the Bahama region the carbonate lysoclines and compensations depths are

depressed relative to the open Atlantic because of the large input of bank-derived carbonate

sediments (Droxler et al., 1988b): saturation for HMC occurs between 900 and 1500 m,

between 3800 and 4500 m for aragonite and at about 5500 m water depth for LMC. Relative

to LMC, the supersaturation is 200-400% on the western edge of the GBB (Cloud, 1962;

Broecker and Takahashi, 1966).

Fig. 3: Model of carbonate budget in the open ocean (after Milliman et al., 1999; numbers in 1012 Mol C/a). The monitoring of supralysoclinal dissolution in surface samples from the Bahamas and the Florida Straits was based on this model.

2.1.2. Supralysoclinal dissolution

Berger (1975) and Ku and Oba (1978) found evidence that dissolution can occur in

carbonate-rich sediments above the lysocline by field-studies on carbonate preservation in the

central Pacific and by laboratory studies, respectively. These findings were confirmed by

several authors (Emerson and Bender, 1981; Sayles, 1981; Archer et al., 1989a; Hales et al.,

1994). In various regions of the world´s ocean, dissolution above the calcite lysocline was

observed; at the Ceara Rise in the western equatorial Atlantic (Martin and Sayles, 1996); in

the Arabian Sea (Milliman et al., 1999); in the equatorial Indian Ocean (Peterson and Prell,

1985; Schulte and Bard, 2003) and in the western equatorial Pacific (Kimoto et al., 2003). The

evaluation of the rate of carbonate dissolution above the lysocline and between the lysocline

and calcite compensation depth is important for the quantification of the global carbonate

budget (Martin and Sayles, 1996).

The global production of pelagic calcium carbonate (58 x 1012 mol C/yr) was

calculated by Milliman et al. (1999) after the following assumptions (Fig. 3):

Page 23: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Introduction

7

Alkalinity flux: 60 x 1012 mol C/yr

Carbonate accumulation in the sediment: 11 x 1012 mol C/yr

Carbonate added to the alkalinity pool from the continent: 10 x 1012 mol C/yr

Hydrothermal input: 3 x 1012 mol C/yr

According to this global budget, only 20% of the planktonic carbonate production

accumulates on the deep-sea floor. The rest dissolves either in the water column or at or near

the sediment-water interface. Martin et al. (1993) showed a 50-60% loss of calcium carbonate

in the upper 1000 m of the water column, which is in close agreement with the global model

of Milliman et al. (1999). Milliman et al. (1999) conclude from their studies, that 60-80% of

the surface-produced carbonate is lost at epi-pelagic depths, i.e. at depths shallower than

about 800 - 1000 m (Fig. 4). A major proportion of the carbonate is lost above the lysocline

by dissolution of the metastable carbonate phases aragonite and HMC (Milliman, 1993).

There are two possible mechanisms suggested by Milliman et al. (1999) which could result in

globally significant dissolution above the lysocline: 1) dissolution within the guts and feces of

grazers, and 2) microbial oxidation of organic matter.

Fig. 4: The theory of Milliman et al. (1999): 30-60% of the yearly produced carbonate (21-24 g/m2) is dissolved. As the mean global average carbonate flux at 1000 m water depth amounts to 8-12 g/m2, they suggest that 60-80% of the dissolution might occur above the lysocline and only 20-40% below the lysocline.

2.2. Carbonate preservation in the shallow sediment column

Several authors, including Saller (1984, 1986), Mullins et al. (1985a, b), Freeman-

Lynde et al. (1986), and Dix and Mullins (1988a), indicated that substantial alteration,

lithification, dissolution, calcite cementation and dolomitisation can occur at shallow-burial

depths in the deep-water realm. Malone et al. (2001) state that diagenetic alteration in shallow

sediments (in this case dissolution of metastable components) is driven by the degradation of

Page 24: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part I

8

organic matter; this process can occur, even when the overlying bottom waters are saturated

or supersaturated with respect to CaCO3.

Early diagenetic processes in periplatform carbonates principally involve the selective

dissolution of aragonite and HMC and reprecipitation of LMC and dolomite (e.g. Mullins et

al., 1985b). According to Dix and Mullins (1988a), shallow-burial diagenesis of periplatform

carbonates proceeds in two discrete stages. Stage 1 occurs in the top 10 m of the sediment

column, where rapid, extensive diagenetic changes occur, including enrichment of oxygen

isotopes, depletion of carbon isotopes, dissolution of aragonite, exsolution of Mg from HMC,

and incipient lithification. Stage 2 diagenesis (in a core depth of 10-200 m) is a slower,

longer-term process of calcite precipitation and lithification, gradual loss of Mg and Sr, and

isotopic equilibrium with still relatively cold, marine-derived pore waters. In water depths less

than 700 m, diagenetic alteration is manifested primarily through cementation by HMC in

well-lithified, surficial hardgrounds or near-surface nodular oozes (Milliman, 1974; Mullins et

al., 1980a; Wilber and Neumann, 1993). Cements from water depths greater than 700 m are

composed of LMC (Schlager and James, 1978).

Mullins et al. (1980a) found so-called nodules (grain-supported intra-micrites,

cemented by HMC) in Bahamian cores north of Little Bahama Bank (LBB) and in the

Northwestern Providence Channel, which have formed during early diagenesis: stable isotope

analyses showed that the nodules are in closer equilibrium with ambient bottom waters than

the surrounding sediment. This strongly suggests an in situ submarine cementation process.

Lantzsch et al. (in press) observed nodules similar to those of Mullins et al. (1980a), with

major amounts during the transitions from glacial to interglacial stages and vice versa. Due to

their temporal distribution these nodules are, in contrast, interpreted to be the result of

redeposition events during sea-level change. The principal occurrence of carbonate

concretions and aggregates in Bahamian periplatform sediments is well known and has been

identified by several authors (e.g. Mullins et al., 1980a; Droxler et al., 1988a; Lantzsch et al.,

in press). However, little is known about the distribution of nodules within the sediment

column. More information is necessary about the exact spatial and temporal distribution to

determine the origin of the concretions, and the processes and conditions of their formation.

3. Main Questions

The main goal of this thesis is to determine the preservation state of carbonate

sediments in the periplatform sediments of the Great Bahama Bank (GBB) and the adjacent

Florida Straits. Despite the evidence for supralysoclinal dissolution in some areas of the

Page 25: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Introduction

9

world´s ocean, the question still exists whether dissolution does occur above the lysocline in

the entire ocean. The first part of this thesis seeks answers to this question, based on the

global budget models of Milliman et al. (1999). As study area, the Bahamas and Florida

Straits are most suitable because of the extreme conditions of the carbonate factory at this

location: the production of carbonate is very high and the depth of the lysocline is the deepest

worldwide. The preservation state of the surface sediment was determined using a proxy for

aragonite dissolution, the Limacina inflata Dissolution Proxy (LDX; Gerhardt and Henrich,

2001), as aragonite is more prone to dissolution than calcite. This study of surface sediments

was expanded by a study on downcore samples (Pliocene to Holocene) of three Ocean

Drilling Program (ODP) cores from the western margin of GBB and from the more easterly

located Exuma Sound. Quantitative census counts of these sedimentary sequences gave

detailed insights into the composition of sand-sized material in this area and for this time

interval. This revealed the opportunity to determine the preservation state of the sediments via

the amount of metastable aragonite particles and the occurrence of early diagenetic products,

namely carbonate concretions (nodules), which have been observed in all three cores. In the

process of this study, it could be shown that the nodules have been formed in situ during early

diagenesis. This finding raises the question whether the formation of nodules alters the initial

grain-size distribution of the surrounding sediment.

The main questions of this thesis are:

Surface samples 1. Are the surface samples of the Florida Straits and Great Bahama Bank

affected by supralysoclinal dissolution? What are the reasons for the

observed preservation patterns?

2. Is the previously investigated LDX also suitable as a proxy for the

reconstruction of the palaeo-corrosiveness of water masses in highly

saturated areas?

Downcore samples

3. How are nodules spatially and temporally distributed in the sediments of

Great Bahama Bank?

4. Are the nodules present in the sediment due to resedimentation processes or

due to early diagenesis?

5. What are the formation conditions? Do nodules influence the grain-size

distribution of the sediment, and/or vice versa?

Page 26: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part I

10

4. Study Area

4.1. The Bahamas – a modern example of an isolated carbonate platform

The Bahama carbonate platform is located in the western equatorial Atlantic. The

southern Blake Plateau (located north of the Bahamas) correlates with the top of a drowned,

shallow-water carbonate platform complex of mid-Cretaceous age. Such a platform underlies

all of the northwestern Bahamas. Platform drowning occurred in steps during the mid-

Cretaceous. During the Late Cretaceous and Tertiary, the north- and west- facing platform

flanks prograded tens of kilometres. During the Pliocene, the GBB evolved from a ramp-

system to a flat-topped, rimmed platform (Beach and Ginsburg, 1980; Schlager and Ginsburg,

1981; Beach, 1982; McNeill et al., 1988; Reijmer et al., 1992).

The average angles of the slopes along the margins of the platform are highly variable,

ranging from less than 1° to 40° or more (Mullins and Neumann, 1979b). Three different

types of slopes have been observed. As platform slopes become steeper, they change from

“depositional slopes” to “by-pass slopes” and finally to “erosional slopes” (Schlager and

Ginsburg, 1981; Rendle and Reijmer, 2002). Depositional slopes are found along the western

flanks of LBB and GBB (Mullins and Neumann, 1979b). Typical by-pass slopes are the

gullied flanks of Tongue of the Ocean. Erosional slopes are for example, the flanks of the

Northeast Providence Channel and the ocean-facing Blake-Bahama Escarpment in the east

(Freeman-Lynde et al., 1979).

4.2. Modern sedimentation

The Bahamas are a tectonically stable carbonate platform consisting of thick shallow-water

banks separated by deep-water channels. This isolated platform is separated from the Florida

peninsula to the west by the Florida Straits and from Cuba to the south by the Old Bahama

Channel (Fig. 5). These deep channels prevent the accumulation of siliciclastic material on the

platform, permitting the deposition of very pure carbonate sediments (Tucker and Wright,

1990). Sedimentation rates on the platform have been 2 cm/ky during the last glacial period,

and nearly 10 cm/ky during the recent sea-level highstand (Boardman and Neumann, 1984):

when the bank tops are flooded during interglacial highstands, large amounts of fine-grained

aragonite are produced and exported to the bank margins (Neumann and Land, 1975). As a

result, thick sections of highstand sediments accumulate along the slopes of the Bahama

banks (e.g. Droxler et al., 1983; Boardman et al., 1986; Slowey and Curry, 1995; Westphal et

al., 1999; Rendle and Reijmer, 2002). This phenomenon has been termed “highstand

shedding” by Droxler and Schlager (1985).

Page 27: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Introduction

11

Fig. 5: The Bahama carbonate platform with its major basins and surface currents. GBB = Great Bahama Bank, LBB = Little Bahama Bank.

The slopes and basins of the Bahama platform are covered with periplatform ooze.

Around carbonate platforms, the processes of resedimentation are commonly due to turbidity

currents, slumps and slides. Previous studies of the Bahama platform showed that when the

platform is flooded, more sediment is produced than can be accumulated on the platform top.

This excess sediment is exported into the periplatform realm during storms and by tidal action

(Boardman, 1978), along mid-water pycnoclines, and as low-density turbidity currents. The

wind regime significantly influences the sediment distribution on the Bahama platform.

During summer, the wind blows largely from easterly directions. During winter, the winds

have an increasing northerly component (Smith, 1940). The mainly easterly winds push the

sand to the western sides of the great islands, inducing a progradation of the platforms from

east to west (Eberli and Ginsburg, 1989). On the flat platform tops, sands migrate to the

leeward margins where storm pulses push them into the deep water (Hine and Neumann,

1977).

Page 28: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part I

12

Sediments in the basins between the Bahama Banks consist of carbonate ooze (nearly

100% carbonate) separated by graded beds of lime sand and mud from sediment gravity flows

(Mullins and Neumann, 1979b; Schlager and Chermak, 1979). All fine sediment is a mixture

of aragonite, HMC, and LMC. The mineralogy of basin sediments shows cyclic variations of

aragonite and LMC, coupled with more irregular variations of HMC (Supko, 1963; Pilkey and

Rucker, 1966; Kier and Pilkey, 1971; Lynts et al., 1973; Boardman, 1978; Droxler et al.,

1988a; Reijmer et al., 1988; Eberli, 2000; Kroon et al., 2000b). The distinct particle sources

are for LMC: planktonic foraminifera and coccoliths; for HMC: fragments of benthic forams,

red algae, calcareous sponges, echinoderms, in situ cement; and for aragonite: aragonite

needles, inorganic precipitates, pteropods (Droxler et al., 1988b).

4.3. Water masses and currents

The water masses of the Bahamas essentially originate in the western Atlantic, as

shown from their temperature-salinity and oxygen-density distribution (Wennekens, 1959).

The mixed surface layer and the upper part of the permanent thermocline (0-180 m water

depth) in the intra-platform channels of the Bahamas contain Western North Atlantic Central

Water (WNACW). Below 1200 m water depth the water masses derive from the North

Atlantic Deep Water (NADW). The general ocean current system around the Bahama Islands

is bound by the currents forming the sources of the Gulf Stream: One part of the Northern

Equatorial Current flows into the Caribbean, and the rest flows northwestward along the

Atlantic Side of the Antilles/Bahama archipelago as the Antillean Current, eventually

contributing to the transport of the Gulf Stream (Gunn and Watts, 1982). The Florida Channel

to the west of the Great Bahama Bank contains the fast-flowing Gulf Stream, whereas the

intra-platform currents are weak, e.g. little water movement to the west in Northwest

Providence Channel, except after northerly winds, or the weak current through the Old

Bahama Channel (Smith, 1940). However, the Old Bahama Channel is important because it

provides a direct connection between the Straits of Florida and the part of the subtropical gyre

that flows northwestward past the Lesser Antilles. From the subtropical North Atlantic, water

flows northwestward through the channel (Atkinson et al., 1995). For more detailed

information about the depth distribution of the waters east of the Bahamas and north of the

Antilles see Gunn and Watts (1982).

The hydrography in the Florida Straits is dominated by the geostrophic Florida

Current, which is interpreted as the major source of the Gulf Stream (Wennekens, 1959). It

flows between Florida and the Bahamas into the North Atlantic, where it converges with the

Page 29: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Introduction

13

smaller Antilles Current to form the Gulf Stream. Short-term sea-level falls intensify the

currents in the seaways because of restriction of the channel area (Richardson et al., 1969).

The water masses of the Florida Current are fed by the western North Atlantic Intermediate

Water (NAIW) and by the more corrosive, low-salinity, oxygen-rich Antarctic Intermediate

Water (AAIW). This source water for the Gulf of Mexico and the Straits of Florida comes

from the Caribbean Sea through the Yucatan Strait: the Yucatan Current enters the Gulf of

Mexico through the Yucatan Channel, becoming the Loop Current (Molinari and Morrison,

1988). The Loop Current then becomes the Florida Current, exiting the Gulf of Mexico at the

Straits of Florida (Molinari and Morrison, 1988). Subsidiary channels with the most important

water mass contributions to the Florida Current are the Northwest Providence Channel, the

Santaren Channel, and the Old Bahama Channel (Leaman et al., 1995).

4.4. Sample locations

A large number of surface and downcore samples have been used for this study,

divided into different sample sets from various regions around GBB; Florida Straits,

Providence Channel, Tongue of the Ocean, Exuma Sound, north of LBB and east of GBB.

The most important sampling regions are described in detail below (chapter 4.4.1. to 4.4.3.).

Tables 1 and 2 give an overview of all sample sets used in this study. For more detailed

information on the samples see Appendix 1.

4.4.1. Florida Straits

The southern Straits of Florida forms an eastward-trending channel bound to the south by

Cuba and on to the north by the Florida shelf (Fig. 5, 6a). The axis of the Straits is tilted,

rising from a depth of 2100 m near the Yucatan Channel to 1000 m at the entrance to the

northern Straits of Florida. The channel is filled with late Mesozoic and Cenozoic chalk and

foraminiferal ooze (Schlager W., Buffler R.T., et al., 1984). Surface sediments consist of

pteropod-foraminiferal sands in the Yucatan Channel and northern Straits of Florida, and of

muddy, pteropod-foraminiferal oozes in the southern Straits of Florida (Brunner, 1986).

Terrigenous and pelagic sediments are transported by turbidity currents to the axis of the

Straits. Neritic material is swept from carbonate banks at the south Florida shelf margin and

may cascade to the axis of the Florida Straits (Mullins et al., 1980b).

Page 30: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part I

14

Table 1: Surface samples

SampleSet

Number of samples

Location Water depth Core type Cruise

115 bulk samples

Florida Straits 845-2325 m Piston Gillies-7603(1976), Trident-149 (1974)

244 bulk samples

Providence Channel 434-1183 m Piston, Gravity, Box

Oceanus-205(1988)

311 bulk samples

Western margin of GBB

351-658 m Drill (ODP) Leg 166 (1996)

413 bulk samples

Around GBB and Little Bahama Bank (LBB)

553-3470 m Drill (ODP) Leg 101 (1985)

538 bulk samples

Exuma Sound, Tongue of the Ocean, southeastern margin of GBB

1275-4796 m Gravity, Piston

Pilsbury P6401 (1964), P6408 (1964), P6804 (1968), P6807 (1968), P7008 (1970), P7102 (1971)

Table 2: Downcore samples

Sample Set Number of samples,

age Location Water depth Core type Cruise

6

20 bulk samples, MIS 1-45, mostly peakglacial/interglacial

western margin of GBB (basin) 658 m Drill (ODP)

ODP Leg 166, 1006A

7a 227 samples >63 µm, Holocene/Pleistocene

Exuma Sound 1996 m Drill (ODP) ODP Leg 101, 632A

8a 326 samples >63 µm, Pliocene to Holocene

Exuma Sound 1681 m Drill (ODP) ODP Leg 101, 633A

954 bulk samples, MIS 3-41

western margin of GBB (basin)

658 m Drill (ODP) ODP Leg 166, 1006A

a These sample sets were kindly provided by John Reijmer and his working group at the Leibniz-Institute, Kiel, Germany, for further measurements. The samples had already been divided from the fine fraction and sieved into five sub-fractions (63-125, 125-25, 250-500, 500-1000, >1000 µm).

4.4.2. Northwest and Northeast Providence Channel

The Providence Channel is a canyon flanked by gullied slopes in the east, which

passes westward into a shallower, U-shaped basin (Fig. 5, 6b). It is shoaling from 4000 m at

the eastern end to 800 m at its entrance into the Florida Straits. The slopes rimming the basin

are rather gentle and gradually pass into the basin floor. The Providence Channel is an open

seaway, where winnowing by contour currents and sea-floor lithification is important

(Mullins and Neumann, 1979b; Mullins et al., 1980a). In Northwest Providence Channel more

than 75% of the Holocene fine fraction is bank-derived (Boardman, 1978) and is mostly

mineralogically metastable (aragonite and HMC). The remaining part of the sediment consists

of skeletons of planktonic or pelagic organisms and is mostly LMC, with minor amounts of

aragonite (Boardman, 1978).

Page 31: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Introduction

15

4.4.3. Exuma Sound

The Exuma Sound is a closed seaway, located at the southeastern edge of GBB (Fig. 5,

6b). It represents one of three intra-platform basins of GBB. It is a relatively narrow trough,

deepening from 1200 m in the north to 2000 m water depth at the connection of the Sound

with the open Atlantic; the basin is physiographically characterised by gullied slopes, basin-

margin rises, and the basin floor (Crevello and Schlager, 1980). The sediments in the basins

consist of interbedded coarse clastic carbonates from the platform margins and slopes, and

carbonate muds derived from the perennial rain of pelagic material and platform-winnowed

fines. There are three main types of gravity flow deposits: graded sand and rubble, poorly

sorted sand and rubble, pebbly mud (for a more detailed description see Crevello and

Fig. 6: The study area with thelocation of a) surface samples and b)downcore samples, and c) a profilethrough Andros Island, the Tongueof the Ocean (TOTO), andEleuthera Island, with major watermasses influencing the FloridaStraits to the west, TOTO, and thesteep escarpment at the easternmargin of Great Bahama Bank(GBB). Providence Channel andExuma Sound are, similar to TOTO,influenced by the water-massdistribution east of GBB. LBB = LittleBahama Bank. For detailedinformation about all samples seeAppendix 1.

Page 32: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part I

16

Schlager, 1980). Turbidites in the Exuma Sound consist of largely unlithified platform

sediments. Aragonite content, oxygen isotopes, nannoplankton assemblages, and

palaeomagnetic signatures document cyclic variations in export and preservation of platform

derived mud in the Pliocene-Pleistocene (Droxler et al., 1988b; Reijmer et al., 1988).

5. Methods

A number of methods were used to determine the sediment characteristics; grain size

(GS), mineralogy (X-ray diffraction; XRD), carbonate and total organic carbon content

(measurements by the Leco), and census counts of the sand fraction. The preservation state of

the sediments was examined with various dissolution indices. Detailed information on the

composition and formation conditions of the nodules were gained with the Scanning Electron

Microscope (SEM) and stable isotope-measurements. Table 3 gives an overview of the

different methods used for each sample set.

Table 3: Overview of all methods used for the different sample sets.

Sample Set GS XRD bulksed.

XRD <63µm

Lecobulksed.

Leco<63 µm

Censuscounts

LDX SEM Stable isotopes

( 18O, 13C)

1 – Gillies/ Trident

X1) X X1) X1) X1) X1) X1)

2 – Oceanus X X1) X1) X1) X1) 3 – Leg 166 surfacesamples

X X X X

4 – Leg 101 surfacesamples

X X X X

5 – Pilsbury X X1) X1) X1) X1) 6 – Site 1006 7 – Site 632 X3) 8 – Site 633 X2) X2,3) X2) X2) X2) (nodules) 9 – Site 1006 X2,3)

1) results see Part II, Chapter 1: Schwarz J., Rendle-Bühring, R., 2005. Controls on modern carbonate preservation in the southern Florida Straits. Sedimentary Geology 175, 153-167. 2) results see Part II, Chapter 2: Schwarz J., Steinke, S., Rendle-Bühring, R., Reijmer, J.J.G., Compositional variations and early diagenetic processes in Quaternary periplatform sands: an example from Great Bahama Bank. Submitted to Marine Geology. 3) results see Part II, Chapter 3: Schwarz J., Steinke, S., Rendle-Bühring, R., Reijmer, J.J.G., Diagenetic alteration of periplatform sediments: implications for palaeoenvironmental interpretations based on grain size. Submitted to Journal of Sedimentary Research.

Page 33: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Introduction

17

5.1. Grain-size analyses

For the grain-size analyses at least 5 cc of bulk sediment were dried, weighed, and wet

sieved (63 µm sieve). The sand fraction was oven dried at 60° C and weighed to obtain the

dry weight percentage of mud and sand fractions. The sand fraction was then dry sieved into

five subdivisions (63-125, 125-250, 250-500, 500-1000, >1000 µm) and their respective

weights measured. The fine fraction was retained in glass-containers (volume: 5 l), decanted

after sedimentation, and stored wet. The average material loss during dry sieving was 0.02%

per sample; small particles tended to stick to the sieve. It is therefore assumed that the smaller

the fraction, the more material is lost, i.e. least material is lost in the >1000 µm fraction, and

most material in the 63-125 µm fraction.

Fig. 7: Comparison of XRD-measurements on fine fraction (<63µm) and bulk samples. The cross plotswith the amount of HMC, LMC, andaragonite of both data sets shows thereliability of the fine fraction data,which have been used in this study(r2 = 0.97 for aragonite; r2 = 0.90 forHMC; r2 = 0.94 for LMC).

Page 34: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part I

18

5.2. Mineralogy

The interpretation of the XRD-measurements focused on the carbonate minerals;

aragonite, HMC, LMC, and dolomite. Dolomite however, was not found in any of the

samples. The insoluble residue (non-carbonates) mainly comprises quartz and clay minerals

(e.g. Smectite, Montmorillonite, Muscovite, Kaolinite).

Following studies of Rendle et al. (2000) the fine fraction signal was used for

interpretation. These results are more reliable because the periplatform sediment in the work

area is generally very fine, and singular big particles in the sand fraction such as coral

fragments or big pteropods, are interpreted to significantly alter the overall grain-size pattern.

However, measurements were done on both bulk sediment and fine fraction and then

compared to test whether fine-fraction values are representative. Figure 7 shows cross plots of

aragonite, LMC, and HMC (fine fraction measurements plotted against bulk sediment

measurements), which shows a very good correlation (r2=0.97 for aragonite; r2=0.90 for

HMC; r2=0.94 for LMC).

Three grams (dry weight) of bulk sediment and three grams (dry weight) of the fine

fraction (<63 µm) of each sample were dried and ground with an achate mortar for three

minutes to get a homogenous powder. The powder was then split for XRD and for Leco (see

below) measurements. Small samples with low initial weights (some of the Oceanus-samples)

could not be split and were therefore measured for XRD first, and then re-used for Leco

measurements. XRD-measurements were carried out using a Philips X´Pert Pro MD

diffractometer. The radiation was Cu k and measurements were carried out within a range of

3-65° with 70 seconds per step at a calculated step size of 0.0167°. The peak area of each

carbonate mineral was analysed with the MacDiff 4.2.5. software (Petschick, 2001). The

results have then been calibrated using the respective calibration curves of Andresen (2000).

5.3. Carbonate and total organic carbon contents

For the calculation of the mineral amounts, the fine fraction values were necessary to

calculate the carbonate content. In contrast, for the interpretation of the total organic carbon

(TOC) the bulk values were used, as the fine fraction values of TOC are much smaller than its

bulk sediment signal (Fig. 8a). Measurements were therefore carried out on both the fine

fraction and bulk sediment. Figure 8b shows cross plots of the carbonate amount (fine fraction

measurements plotted against bulk sediment measurements), which show that both signals are

very close together (r2 = 0.97); these results show the reliability of fine fraction values for the

calculation of the carbonate content.

Page 35: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Introduction

19

Total carbon (TC) and TOC contents were measured using a Leco CS-200 elemental

analyzer (error 1%). The calcium carbonate contents were calculated from the difference of

TC and TOC weight percentages using a standard equation based on molecular weights

(CaCO3 = [TC – TOC] * 8.33).

Fig. 8: Comparison of total carbon (TC) and total organic carbon (TOC) measurements on bulk sediment and fine fraction (<63 µm). It could be shown that bulk sediments contain much more TOC than the fine fraction only. In contrast, the calculation of CaCO3 from the TC content reveals similar results for bulk sediment as for the fine fraction (r2 = 0.97). Values greater than 100% are due to the error of TC-measurements (1%), which is multiplied by the calculation of CaCO3.

5.4. Coarse fraction analyses

Of the Gillies/Trident samples (sample set 1; Table 1), the dry sand fraction was

sieved into the size fractions 63-125, 125-150, 150-250, 250-315, 315-400, and >400 µm. For

census counts, only fractions >150 µm were used. Each fraction was reduced by a

microsplitter to an equivalent containing at least 250 planktonic foraminifera. The error of

census-count results depends on the relative percentage of each particle type (e.g. the amount

of G. ruber) of the total fraction (van der Plas and Tobi, 1965). For details see Part II, Chapter

one, methods section. For identification of the different planktonic foraminifera species the

taxonomy of Hemleben et al. (1989) was used. The species were ordered in relation to their

resistance to dissolution after Berger et al. (1982): thin-walled, fragile shell types of

planktonic foraminifera are more prone to dissolution than thick, robust shells. In addition,

pteropods, benthic foraminifera, ostracods, gastropods, bivalves, heteropods, grains, peloids,

fragments of pteropods and heteropods, and fragments of planktonic foraminifera were

counted.

Page 36: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part I

20

The dry sand fraction of the ODP Sites 632, 633 and 1006 samples (sample sets 7, 8,

9; Table 1) was sieved into the size fractions 63-125, 125-250, 250-500, 500-1000, and >1000

µm. The fraction 250-500 µm, as the representative one for the sand fraction (Wolf and

Thiede, 1991), was used for census counts. It was split by a microsplitter to an equivalent

subsample containing at least 300 specimens. The following groups were counted: planktonic

foraminifera, fragments of planktonic foraminifera, pteropods and heteropods, fragments of

pteropods and heteropods, coral fragments, nodules, and others (which included e.g. benthic

foraminifera, sponge spicules, ostracods, gastropods, bivalves, and otoliths). In Hole 1006A,

planktonic foraminifera with a micritic overgrowth were counted additionally so that a

comparison of the census-count results with previous data from the same core could be made.

To test the representativity of the 250-500 µm fraction, all fractions >125 µm of 17

samples of Hole 633A were counted. Fig. 9 a) and b) show the census-count results for the

whole fraction >125 µm and for the 250-500 µm fraction. The general trend is the same for all

Fig. 9: Comparison of census counts ofa) >125 µm with b) 250-500 µm fraction.Circles = planktonic foraminifera, squares= fragments of planktonic foraminifera,diamonds = pteropods, x = fragments ofpteropods, crosses = coral fragments, fulltriangles = nodules, full circles = others. c)cross plot of all samples and countedparticles to show the direct correlation ofboth fractions (r2=0.93).

Page 37: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Introduction

21

particles in both size fractions. Planktonic foraminifera and particle types with small

percentages (pteropods, fragments of foraminifera, coral fragments, and others) show each

similar absolute amounts in both size fractions. For example, fragments of planktonic

foraminifera range between 0% and 15% in both the 250-500 µm fraction and the whole

fraction >125 µm. Fragments of pteropods are overestimated in the 250-500 µm fraction in

shallower samples (above 10 m; Fig 9), but, as they are mostly bound within the matrix of

nodules, underestimated in deeper samples where nodule amounts are increased. Nodules are

in general slightly overestimated in the 250-500 µm fraction. A good correlation of the results

of the fraction >125 µm with the fraction 250-500 µm (Fig. 9c: all particle types of all

samples; r2=0.93) suggests that the 250-500 µm fraction may be counted as the representative

one for the whole sand fraction.

5.5. Dissolution Indices

A recently developed proxy for aragonite dissolution, the LDX (Gerhardt and Henrich,

2001), was used to determine the aragonite dissolution rate around the highly calcite saturated

platform of GBB and the southern Florida shelf. At least ten adult tests of the pteropod

species Limacina inflata were picked out of the >500 µm fraction of each sample and

classified after six preservation stages (see Part II, Chapter 1, Fig. 2) developed by Gerhardt

and Henrich (2001), using a binocular microscope. The preservation stages range from

transparent (very well preserved) to opaque-white/totally lustreless/perforated (strongly

dissolved). Stage three is established as the threshold to significant dissolution.

The ratio of fragments to whole tests of planktonic foraminifera (Fragmentation

Index), of fragments to whole tests of pteropods/heteropods (Aragonite Fragmentation Index,

AFX), and several ratios of resistant versus non-resistant species (Resistance Indices, Benthic

Foraminifera Index) in terms of dissolution, were calculated for the fraction >150 µm. For an

overview of all indices, their exact equations and parameters, and the relevant references, see

Part II, Chapter 1, Table 2.

5.6. Scanning Electron Microscopy

Nodules taken from nodule-rich samples of ODP Site 633 (from three different

intervals, containing 63-98% nodules) were examined with the Scanning Electron

Miscroscope. This revealed the internal structure of the nodules and the composition of the

matrix. The nodules were glued on an aluminium stub, sputtered with gold palladium, and

Page 38: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part I

22

examined using a Zeiss DMS 940A. Part of the nodules were cut to halves to gain better sight

on the internal structure.

5.7. Stable isotopes

Oxygen and carbon isotopes of the nodules were measured in order to understand the

conditions and location of their formation. The results might indicate if the nodules have

formed in an environment which is or was in equilibrium with the bottom water. For

measurements of stable isotopes a few nodules were picked out of 20 samples from distinct

glacial and interglacial levels between MIS 1 and 23. The nodules were carefully crashed

under the binocular to remove whole foraminifera tests and bigger fragments of all kinds that

would falsify the signal. The remaining matrix material was then put into an autosampler and

measured with a Finnigan MAT 251 mass spectrometer with a Kiel carbonate device (error

<0.05‰ for 13C and <0.07‰ for 18O).

6. Organisation of the thesis

The main results have been published in or submitted to international journals.

Therefore, part II of this thesis has been divided into three chapters, equivalent to three

manuscripts. The first chapter, entitled Controls on modern carbonate preservation in the

southern Florida Straits and published in Sedimentary Geology, focuses on the aragonite

preservation of surface samples from the Florida Straits and from Bahamian intra-platform

channels. A profile from 400 to 5000 m water depth revealed the influence of different water

masses on the supralysoclinal dissolution of aragonite particles in the sediment.

Chapter two, entitled Compositional variations and early diagenetic processes in

Quaternary periplatform sands: an example from Great Bahama Bank and submitted to

Marine Geology, deals with the preservation of periplatform carbonate sediments around

GBB (ODP Sites 632, 633, and 1006). Carbonate concretions (nodules) have been found in

the sediments, which have formed during shallow burial diagenesis. The temporal

distribution of these nodules shows how early diagenetic processes at these locations depend

on the margin type, the bottom water velocity and the pore water chemistry.

Chapter three then deals with the interplay of these nodules and the grain-size

distribution of the surrounding sediment in a paper entitled Diagenetic alteration of

periplatform sediments: implications for palaeoenvironmental interpretations based on

grain size, submitted to the Journal of Sedimentary Research. Here is shown, that coarser

layers in the sediment facilitate the formation of nodules, and that, on the other hand, the

Page 39: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Introduction

23

formation of nodules coarsens the sediment. The observations in three cores around GBB

(see above) lead to a model, showing the alteration of different types of initial grain-size

patterns due to the formation of nodules.

Page 40: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

24

Page 41: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

25

Part II

Results

Page 42: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part II

26

Chapter 1: CONTROLS ON MODERN CARBONATE PRESERVATION IN THE

SOUTHERN FLORIDA STRAITS

Authors: Schwarz J., Rendle-Bühring R.

Status: published in Sedimentary Geology 175 (2005), 153–167

Abstract: The water masses in the Florida Straits and Bahama region are important sources for the Northern

Atlantic surface ocean circulation. In this study, we analyse carbonate preservation in surface sediments located

above the chemical lysocline in the Florida Straits and Bahama region and discuss possible reasons for

supralysoclinal dissolution. Calcite dissolution proxies such as the variation of the foraminiferal assemblage,

Fragmentation Index, Benthic Foraminifera Index, and Resistance Index displayed a good preservation in both

areas. The pteropod species Limacina inflata showed very good preservation in sediments of inter-platform

channels from the Great Bahama Bank (Providence Channel, Exuma Sound) above the aragonite lysocline.

Supralysoclinal aragonite dissolution, however, was observed at two water depth levels (800–1000 m and below

1500 m) in the Florida Straits. Our observations suggest that the supralysoclinal dissolution in the Florida Straits

is due to the degradation of organic material. The presence of Antarctic Intermediate Water (AAIW) may be a

contributing factor for the significant aragonite dissolution in 800–1000 m. The comparison of modern

preservation patterns of the surface sediments with hydrographical measurements shows that the L. inflata

Dissolution Index (LDX) might be an adequate proxy to reconstruct paleo-water mass conditions in an area

which is highly saturated with respect to calcium carbonate.

Keywords: Florida Straits; Supralysoclinal dissolution; Pteropods; Antarctic Intermediate Water (AAIW)

1. Introduction

Supralysoclinal carbonate dissolution has been proven in numerous regions of the

world oceans; South Atlantic Ocean (Dittert et al., 1999; Volbers and Henrich, 2002), western

equatorial Atlantic Ocean (Martin and Sayles, 1996), western North Atlantic (Milliman, 1977;

Franz and Tiedemann, 2002), Indian Ocean (Peterson and Prell, 1985; Schulte and Bard,

2003), Arabian Sea (Milliman et al., 1999), and central and western Pacific Ocean (Troy et

al., 1997; Kimoto et al., 2003).

The highly saturated carbonate region of the Bahamas and the Florida Straits is

important for the development of the Northern Atlantic surface ocean circulation because it

forms the source area of the Gulf Stream (Schmitz and Richardson, 1991; Mooers and Maul,

1998). Therefore, it is necessary to understand the dissolution patterns at shallow and

intermediate water depths in this area. In this study, we analyse carbonate preservation in

surface sediments located above the chemical lysocline of the Florida Straits and Bahama

region and discuss possible reasons for supralysoclinal dissolution.

Page 43: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Modern carbonate preservation in the southern Florida Straits

27

In the Florida Straits, the surface water masses are derived from the Caribbean Current

which is the main surface circulation in the Caribbean Sea (Gordon, 1967). The Caribbean

Current flows over the Nicaragua Rise and, via the Yucatan Channel, into the Gulf of Mexico

(Mooers and Maul, 1998; Ochoa et al., 2001; Fratantoni, 2001; Sheinbaum et al., 2002). Two

branches continue into the southern Florida Straits where they become the Florida Current

(Fig. 1): the Yucatan Current that circles Cuba along its northwestern coast, and the Loop

Current. The Loop Current seasonally varies from a rather direct path that encroaches the

Florida Shelf at Dry Tortugas and flows along the Florida Keys, to an indirect path via a

northerly expansion that reaches the Mississippi delta and the western Florida Shelf (Maul,

1977; Vukovich et al., 1979; Huh et al., 1981; Wiseman and Dinnel, 1988).

The intermediate water masses of the Florida Straits are fed by the western North

Atlantic Intermediate Water (NAIW; Wüst, 1964) and the Antarctic Intermediate Water

(AAIW). They mostly flow into the Caribbean Sea through passages of the Windward Islands

such as Grenada, St. Vincent, and St. Lucia Passage with sill depths of 740–950 m (Gordon,

1967; Stalcup and Metcalf, 1972; Johns et al., 2002) and continue through the Yucatan

Channel and the Gulf of Mexico into the Florida Straits (Mooers and Maul, 1998).

The water masses in the Bahama region consist of surface and intermediate water

masses originating from the western North Atlantic. They bypass the Greater Antillean

Islands and flow north along the eastern side of the Bahamas as the Antillean Current

(Neumann and Pierson, 1966; Gunn and Watts, 1982; Lee et al., 1990, 1996). Part of this

current flows through the Old Bahama Channel and the inter-platform channels to form the

second main component of the Florida Current (Atkinson et al., 1995; Leaman et al., 1995;

Lee et al., 1996; Fig. 1). The upper and lower North Atlantic Deep Water (NADW) lies below

the Antillean Current starting in a water depth of approximately 1200 m (Bainbridge, 1981).

The upper NADW is oversaturated with respect to carbonate ions and is only slightly

corrosive. The lower NADW spans the transition from saturation to undersaturation and is

corrosive (Thunell, 1982).

In addition to the effect of the different water masses on the chemical lysocline, the

large input of bank-derived carbonate sediments leads to suppressed levels of the calcium

carbonate lysocline and the calcite compensation depth (CCD) in the Bahama region (Berner

et al., 1976; Droxler et al., 1988b). Droxler et al. (1988b) found the aragonite lysocline around

the Bahama platform at 3700–4500 m (depending on particle type and size) and the aragonite

compensation depth (ACD) at 5200 m water depth. The calcite lysocline is at 5500 m and the

CCD is at 6000 m in this area.

Page 44: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part II

28

Thus, the identification of supralysoclinal dissolution by variations in calcite

preservation patterns would be difficult. Therefore, we focus on the preservation state of

aragonite which is more sensitive to dissolution (Berger, 1970; Milliman, 1977; Honjo and

Erez, 1978; Morse et al., 1980). Based on previous studies of pteropod dissolution (e.g.,

Berner et al., 1976; Berner, 1977; Berger, 1978; Byrne et al., 1984; Droxler et al., 1991;

Haddad and Droxler, 1996), Gerhardt and Henrich (2001) developed the Limacina inflata

Dissolution Index (LDX). It offers an appropriate tool to detect subtle changes of aragonite

preservation.

Fig. 1: Location map for surface samples used in this study.Enclosed map shows the position of the study area in the western North Atlantic. Numbers in squares stand for (1) southern Florida Straits, (2) Providence Channel and (3) Exuma Sound; GBB = Great Bahama Bank; LBB = Little Ba-hama Bank. Arrows re-present major surface current directions. The dashed arrows are inter-platform currents.

The main focus of this study is to examine the existence of supralysoclinal dissolution

in the surface sediments of the Florida Straits and the Bahamas, and to discuss possible

reasons for the observed preservation patterns. Furthermore, we will test the LDX for its

applicability in the reconstruction of paleo-corrosiveness of water masses in areas which are

supersaturated with respect to calcium carbonate through the comparison with modern

hydrographic data.

Page 45: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Modern carbonate preservation in the southern Florida Straits

29

2. Material and methods

This study is based on a set of 95 surface sediment samples (Fig. 1, Table 1) from the

southern Florida Straits (piston cores from cruises GS-7603 and TR-149, obtained in 1974–

1976) and from the Northeastern and Northwestern Providence Channels, Exuma Sound,

Crooked Island Passage, and the eastern slope of GBB (box, gravity, and piston cores from

various cruises with R/V Pilsbury and R/V Oceanus, obtained in 1964–1988). They cover a

water depth range from 430 to 4800 m. The samples represent the uppermost 2–5 cm of

sediment. This is mainly foraminifera ooze with high carbonate percentages ranging from

70% to 100%.

The standard sedimentological measurements of the surface samples from the

Bahamas extend an existing data set of Droxler et al. (1988b). They were intended to enable a

direct comparison between the sedimentological and dissolution characteristics of identical

samples.

Table 1: Samples used in this study with details on cruise/year, sample location, water depth and coring device.

Ship/cruise Sample Sample location Water depth

[m] Coring device Date

Trident 149 TR-149-31/-32/-34/-35/-36/-37/-38 Southern Florida Straits 875-2325 piston 1974

Gillies 7603 GS-7603-7 to-14 Southern Florida Straits 845-1620 piston 1976

Pilsbury 6401 P6401-4/-5 Eastern slope of GBB 3323/3501 gravity 1964

Pilsbury 6408 P6408-23/-24 Eastern slope of GBB 3766/3204 piston/gravity 1964

Pilsbury 6804 P6804-5/-6/-7/-8/-9/-12 Exuma Sound, Providence Channel

1630-2542 gravity 1968

Pilsbury 6807 P6807-30/-31/-32/-33/-34/-35 Exuma Sound 1524-1745 gravity 1968

Pilsbury 7008 P7008-1/-2 Eastern slope of GBB 4790/4796 gravity/piston 1970 P7102-4/-5/-6/-7/-8/-9/-12/-13/-14/-15/-33/-34/-35/-38/-41

TOTO, Exuma Sound, Crooked Island Passage

1310-3834 gravity Pilsbury 7102

P7102-30/-31/-32/-36/-37 Exuma Sound, Crooked Island Passage

1505-2499 piston 1971

6/ 46/ 97/ 99/ 101/ 107/ 141/ 142 578-1183 piston 12/ 24/ 28/ 31/ 33/ 35/ 38/ 41/ 43/ 75/ 96/ 98/ 100/ 103/ 106/ 108/ 110/ 111/ 140/ 143/ 145/ 148/ 151/ 153

434-1172 gravityOceanus 205-02

48/ 50/ 51/ 52/ 53/ 54/ 55/ 69/ 70/ 72

Providence Channel

595-1140 box

1988

2.1. Grain size analysis

For grain size analysis, at least 5 cm3 of bulk sediment (Florida Straits samples only)

were dried, weighed, and wet sieved through a 63-µm mesh sieve. The coarse fraction was

dried at 60° C and weighed to obtain the dry weight percentage of the mud and coarse

fractions. The sand was further divided into five subfractions (63–125, 125–250, 250–500,

500–1000, >1000 µm).

Page 46: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part II

30

2.2. Total and organic carbon contents, mineralogy

Total carbon (TC) and total organic carbon (TOC) contents of both bulk sediment and

the fine fraction (<63 µm) of each sample were measured using a LECO CS-200 elemental

analyzer. Calcium carbonate contents were calculated from the difference of TC and TOC

weight percentages using a standard equation (CaCO3=[TC-TOC]*8.33).

X-ray diffraction (XRD) measurements were carried out using a Philips X’Pert Pro

MD diffractometer to determine the aragonite, low magnesium calcite (LMC; less than

4 mol% of MgCO3), high magnesium calcite (HMC; more than 4 mol% of MgCO3; Milliman,

1974), and non-carbonate mineral percentages of bulk sediment and the fine fraction. Cu K

radiation was applied, and the measurements were carried out within a range of 3–65° with

70 s per step at a calculated step size of 0.0167°. The peak area of each carbonate mineral was

analysed with the MacDiff 4.2.5. software (Petschick, 2001). The carbonate mineral results

were then compared to an average calibration curve (Andresen, 2000). The results are

presented in weight percent.

Table 2: Carbonate dissolution indices with equations and references. Index Equation Parameter References Remarks LDX(Limacina inflataDissolution Index)

None None Gerhardt and Henrich (2001)

Fragm.-Index (Fragmentation Index)

F = F/(W+F) F = number of fragments W = number of whole foraminiferal tests

Berger (1970), Bé et al. (1975) , Thunell (1976), Peterson and Prell (1985), Le and Shackleton (1992), Dittert et al. (1999)

AFX(Aragonite Fragmentation Index)

AFX = F/(P+F) F = number of fragments P = number of whole pteropod and heteropod tests

Own method, deduced from Fragm.-Index

Pteropods and heteropods are used together due to the difficulty to decide between each fragments

B-Index (Benthic Foraminifera Index)

B = B/(B+W)

B = number of benthic foraminiferal tests W = number of whole planktonic foraminiferal tests

Arrhenius (1952), Berger (1973), Thunell (1976), Peterson and Prell (1985), Dittert et al. (1999)

Res.-Index single comp. (Resistance Index)

Res = r/(r+s)

r = number of resistant speciess = number of less resistant species

Thompson and Saito (1974)

r = P. obliquiloculatas = G. ruber

Res.-Index multi comp. (Resistance Index)

Res = r/(r+s)

r = number of resistant speciess = number of less resistant species

Thunell (1976)

r = G. crassaformis, G. truncatulinoides, N. dutertreis = G. ruber, G. sacculifer, O. universa

2.3. Dissolution proxies

2.3.1. Faunal assemblage

About 10 cm3 of bulk sediment (Florida Straits samples only) were dried, weighed,

and wet sieved through a 63-µm mesh sieve. The coarse fraction was dried at 60° C and

sieved into the size fractions 63–125, 125–150, 150–250, 250–315, 315–400, and >400 µm.

Each fraction >150 µm was reduced by a microsplitter to an equivalent containing at least 250

Page 47: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Modern carbonate preservation in the southern Florida Straits

31

Fig. 2: Examples for the six preservation stages of L. inflata,according to Gerhardt and Henrich (2001). (a) Very good preservation (stage 0; 1172 m water depth, Bahamas); (b) slightshell corrosion (stage 1; 1172 m water depth, Bahamas); (c)initial dissolution on shell surface (stage 2; 2560 m waterdepth, Bahamas); (d) partly dissolved surface layer (stage 3;1310 m water depth, Florida Straits); (e) significant dissolutionwith entirely removed surface layer (stage 4; 1550 m waterdepth, Florida Straits); (f) additional shell damage (stage 5;2325 m water depth, Florida Straits).

planktonic foraminifera. For identification of the different planktonic foraminifera species, we

followed the taxonomy of Hemleben et al. (1989) and ordered the species in relation to their

resistance to dissolution following Berger et al. (1982). According to van der Plas and Tobi

(1965), the relative error of planktonic foraminifera counting lies at 40% or more for all

species accounting for less than 7% of the assemblage (Globoturborotalita rubescens,

Globoturborotalita tenellus, Globigerinella calida, Orbulina universa, Globigerinoides

conglobatus, Neogloboquadrina dutertrei, Globorotalia menardii, Pulleniatina

obliquiloculata, Globorotalia tumida, and Sphaeroidinella dehiscens). Fractions of 10–20%

(Globigerinita glutinata,

Globigerinella aequilateralis, and

Globigerinoides sacculifer) have a

relative error between 26 and 35%.

The Globigerinoides ruber fraction

might have a relative error of up to

12%.

Furthermore, pteropods,

benthic foraminifera, heteropods,

fragments of pteropods/heteropods,

fragments of planktonic

foraminifera, and the amount of

other particles were counted.

“Others” are mainly peloids, grains,

bivalves, gastropods, ostracods,

radiolaria, echinoderms, otoliths, and

sponge spicules. The fragmentation

of planktonic foraminifera

(Fragmentation Index) and pteropods

plus heteropods (Aragonite

Fragmentation Index, AFX) and

several ratios of resistant vs. non-

resistant foraminifera species in terms of dissolution (Resistance Indices, Benthic

Foraminifera Index) were calculated for the fraction >150 µm. All methods and formulas

which are used as dissolution proxies in this study are listed in Table 2.

Page 48: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part II

32

2.3.2. L. inflata dissolution index (LDX)

At least 10 adult tests of the pteropod species L. inflata were picked out of the >500-

µm fraction of each sample. Using a binocular microscope, the pteropods were classified after

six preservation stages (Fig. 2) which were proposed by Gerhardt and Henrich (2001). The

preservation stages range from transparent (very well preserved) to opaque-white/totally

lustreless/perforated (strongly dissolved). Stage 3 is established as the threshold to significant

dissolution (Gerhardt and Henrich, 2001).

Fig. 3: Results of grain-size analysis of samples from the southern Florida Straits. (a) Fine fraction (<63µm); (b) cumulative mass percentage of sand sub-fractions 63–125, 125–250, 250–500, 500–1000 and >1000µm. Stars indicate a turbidite.

3. Results

The grain size analysis shows that around 85% of the surface sediment in the southern

Florida Straits is mud (<63 µm; Fig. 3a). Maximum values (90%) are observed at about

900 m together with higher amounts of fine sand (63–125 µm; Fig. 3b). Within the coarse

fraction, normal sorting is observed, with the exception of the 250–500-µm fraction which is

slightly increased (Fig. 3b). The XRD measurements of the fine fraction and bulk sediment

show similar results (r2=0.94). Therefore, we will focus on the fine fraction. The carbonate

content values (LMC, HMC, and aragonite) for the fine fraction of the southern Florida Straits

sediments are ~85% above 1000 m water depth and decrease down to 70% in 2300 m water

depth (Fig. 4a). In the Bahama region, the carbonate content amounts to more than 95% down

to 2200 m, then decreases to ~75% at 4800 m water depth (Fig. 4b). Proportions of aragonite

in the southern Florida Straits constantly decrease from 63% to 44% with increasing water

depth, and minor fluctuations run parallel to the carbonate content (r2=0.97). LMC increases

slightly with increasing water depth reaching values of over 20%, while HMC decreases from

10% to 5%. Noncarbonate minerals (mainly quartz and clays) reveal a strong increase within

the depth interval from 800 m to 2300 m (Fig. 4a). A similar carbonate mineral distribution to

that observed in the southern Florida Straits is also seen in the Bahamas (Fig. 4b): aragonite is

the dominating carbonate phase with values averaging 70–80% above 2500 m and a decrease

Page 49: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Modern carbonate preservation in the southern Florida Straits

33

to ~50% at 4800 m water depth. HMC and LMC generally reveal values of less than 25%

each. HMC decreases from ~20% to values smaller than 10% between 430 m and 4800 m

water depth, whereas LMC increases within the same depth range from ~5% to nearly 20%.

Non-carbonates have values of less than 5% above 2200 m. Below this depth they increase

reaching a value of 25% at 4800 m.

Fig. 4: Results of XRD analyses of samples from (a) the southern Florida Straits and (b) the Bahama Platform.Cumulative weight per-centages of low mag-nesium calcite (LMC), high magnesium calcite (HMC), aragonite, and non-carbonates. The latter are mainly quartz and clays. Stars indicate a turbidite.

The results of the census counts (Fig. 5a–e) show that about 30–55% of the coarse

fraction consist of planktonic foraminifera, pteropods, and heteropods, while another ~35–

60% are fragments of these species. “Other” components constitute the remaining 5–25%.

Planktonic foraminifera amount to on average 35% of the assemblage (Fig. 5a) which is

nearly four times as much as their fragments which represent ~10% (Fig. 5b). Pteropods and

heteropods, however, are mostly fragmented: there are four times more fragments (30–50%;

Fig. 5d) than whole tests (10–15%; Fig. 5c) present in the sediment. Planktonic foraminifera,

their fragments, and fragments of pteropods and heteropods show higher variation above

900 m water depth, which is also reflected by fluctuations of the grain-size distribution

(Fig. 3).

Sixteen of the planktonic foraminifera species that represent the main calcitic

components in the coarse fraction were ordered in relation to their resistance to dissolution

following Berger et al. (1982; Fig. 6). The average amount of each species does barely change

over the whole depth range. In general, the planktonic foraminifera assemblage consists of

about 80% of slightly resistant and non-resistant species types (light grey area in Fig. 6). G.

ruber and G. sacculifer, which are both less resistant to dissolution, amount to over 50% of

the coarse fraction.

Page 50: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part II

34

Fig. 5: Census counts of the fraction >150 µm of samples from the southern Florida Straits. (a) Planktonic foraminifera; (b) fragments of planktonic foraminifera; (c) pteropods plus heteropods; (d) fragments of pteropods plus heteropods; (e) “others” refer to remaining particles which consist mainly of benthic foraminifera, bivalvia, gastropods, ostracods, radiolaria, echinoderms, otoliths, and sponge spicules. The star indicates a turbidite.

The Aragonite Fragmentation Index reveals high dissolution values of 0.7–0.8

(Fig. 7a). All calcite preservation indices, however, show values below 0.5 which is the value

that represents the beginning of significant dissolution (Fig. 7b–e).

Total organic carbon (TOC) values of the fine fraction are higher in the southern

Florida Straits (up to 1.8%; Fig. 8a: Florida Straits) than at the Bahama platform (less than

0.6%, Fig. 8a: Bahamas). The rain ratio, which is calculated by the molar ratio of organic to

inorganic carbon (Berger and Keir, 1984), shows similar trends (Fig. 8a). The analysis of the

shell structure of L. inflata displays two sedimentological regimes in the study areas: (1) good

to very good aragonite preservation down to 3700 m around Great Bahama Bank (Fig. 8b:

Bahamas), and (2) less wellpreserved sediments in the southern Florida Straits with

dissolution at 800–1000 m and below 1500 m water depth (Fig. 8b: Florida Straits). In the

Florida Straits, the TOC and rain ratio records reveal highest values at 800 m, 1600 m, and

2300 m water depth which correlate to enhanced LDX values, i.e. higher dissolution (arrows;

Fig. 8a and b: Florida Straits). In contrast, TOC and rain ratio are rather constant at the

Bahama platform down to a water depth of 3700 m, with minor peaks which mostly correlate

to the LDX values (arrow; Fig. 8a and b: Bahamas). TOC/rain ratio and LDX diverge below

this depth: TOC and rain ratio stay at the same level, whereas the aragonite dissolution rapidly

increases.

A single sample at 1040 m water depth in the Florida Straits does not fit into the trend

that was observed in the other samples (indicated by stars in Figs. 3, 4a, and 5e). It is located

on the northwestern side of Cay Sal Bank and is likely to represent a turbidite sequence. The

Page 51: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Modern carbonate preservation in the southern Florida Straits

35

mineralogical composition is characterised by nearly 100% carbonate content and

exceptionally high values of aragonite while the LMC is very low (Fig. 4a). The fine fraction

drops to 40% which is, however, not reflected by major changes in the sand subfractions

(Fig. 3). Coral fragments are prominent in the coarse fraction, causing the high value of

“other” components (Fig. 5e). Their high abundance explains the aragonite maximum

observed in the sample. Haak and Schlager (1989) found that high amounts of shallow-water

debris (i.e. coral fragments) are typical for turbidites around Great Bahama Bank.

Fig. 6: Cumulative distribution of the planktonic foraminifera assemblage. rbs = G.rubescens; tnl = G. tenellus; rbr = G. ruber; glt = G. glutinata; cal = G. calida; aequ = G. aequi-lateralis; sac = G. sacculifer; uni = O. universa;cgb = G. conglobatus; dtr = N. dutertrei; men = G. menardii; obl = P. obliquiloculata; tum = G.tumida; deh = S. dehiscens; oth = other plank-tonic foraminifera. These species are ordered in relation to their resistance to carbonate dissolution from least resistant (G. rubescens) on the left side to most resistant (S. dehiscens) on the right side (according to Berger et al., 1982). The light grey area represents slightly resistant and non-resistant species, whereas the dark grey area represents relatively resistant species.

4. Discussion

The main focus of this study was to analyse carbonate preservation in surface

sediments from the Florida Straits (located above the chemical lysocline) and to compare the

results with the preservation state of sediments of the Bahama region, an area which is

supersaturated with respect to calcium carbonate.

Standard analyses showed a high amount of fine fraction in our samples from the

Florida Straits (Fig. 3a). This could be a sign for dissolution, as fragments of dissolved

particles increase the volume of finer sediment (Berger et al., 1982; Thunell, 1982; Le and

Shackleton, 1992; Franz and Tiedemann, 2002). However, the constancy of the grain-size

values within the entire water depth range suggests that the fine fraction signal is largely

caused by the input of fine-grained material which is characteristic for periplatform sediments

(Neumann and Land, 1975; Boardman and Neumann, 1984; Wilber et al., 1990; Rendle et al.,

2000; Roth and Reijmer, 2004).

The strong decrease of calcium carbonate with increasing water depth (Fig. 4a) might

be the result of carbonate dissolution, increasing distance to shallow-water carbonate-

Page 52: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part II

36

producing regions, and/or dilution by non-carbonate minerals. Aragonite is the dominant

carbonate phase (60–80% of carbonate). It decreases constantly with increasing water depth.

The aragonite dissolution index in contrast shows a highly variable trend (LDX; Fig. 8b:

Florida Straits). This argues against dissolution as the cause of reduced carbonate content. In

addition to the decrease in aragonite, HMC shows a decrease and LMC shows an increase.

HMC is produced by shallow-water organisms on the top of carbonate shelves and platforms

(Heath and Mullins, 1984; Droxler et al., 1988b; Glaser and Droxler, 1991; Andresen, 2000;

Rendle et al., 2000). LMC, in contrast, predominantly represents a pelagic signal (Droxler and

Schlager, 1985; Reijmer et al., 1988; Glaser and Droxler, 1991; Schlager et al., 1994; Haddad

and Droxler, 1996). The decrease in neritic carbonate input (aragonite and HMC) would lead

to a relative enrichment of the LMC signal (Rendle, 2000).

Fig. 7: Determination of carbonate dissolution for surface samples from the Florida Straits. a) Aragonite Fragmentation Index: ratio of whole pteropod plus heteropod tests to fragments; b) Resistance Index (single comp.): ratio of the resistant planktonic foraminifera species P. obliquiloculata to the less-resistant G. ruber; c)Enhanced Resistance Index (multi comp.): ratio of three resistant species (G. crassaformis, G. truncatulinoides, N. dutertrei) to three less-resistant planktonic foraminifera species (G. ruber, G. sacculifer, O. universa); d)Fragmentation Index: ratio of whole planktonic foraminifera tests to fragments e) Benthic Foraminifera Index: ratio of benthic to planktonic foraminifera. Arrows show the direction of increasing dissolution. Note the different scale in each figure.

Dilution by non-carbonate minerals due to terrigenous input might have a minor

influence. Eberli et al. (1997) found small amounts of quartz and clays in periplatform

sediments on the Florida Straits margin of the Great Bahama Bank that are thought to derive

from Cuba and Hispanola to the south. Our sediments contain clays and quartz which were

most likely brought into the area by similar current processes. Although dilution may play a

role, the most convincing reason for the calcium carbonate decrease in the Florida Straits is

the increasing distance to the shallow carbonate factories.

Page 53: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Modern carbonate preservation in the southern Florida Straits

37

To further determine the preservation state of the surface sediments of the Florida

Straits, the faunal assemblage and their dissolution proxies were considered. Applying the

interpretations from studies by Berger (1973), Thompson and Saito (1974), Thunell (1976),

Peterson and Prell (1985), and Boltovskoy and Totah (1992), we can conclude that the high

amount of slightly resistant and non-resistant planktonic foraminifera and their constant

distribution over the entire depth interval studied (800–2400 m; Fig. 6), together with the low

values of calcite dissolution indices (Fig. 7b–e), reveal good to very good calcite preservation.

However, the water depth level between 800 m and 1100 m is characterised by minor

dissolution (Fig. 7c–e) which is corroborated by a slight shift to more resistant planktonic

foraminifera (Fig. 6). Because the indices values are entirely below the threshold to

significant dissolution, supralysoclinal dissolution of calcite particles within the surface

sediment is still negligible in the Florida Straits. Therefore, we will consider the more

sensitive carbonate mineral aragonite.

The L. inflata Dissolution Index (LDX) was applied to surface sediments in the

Bahama region, where existing hydrographic data allow us to test its usefulness as a proxy for

aragonite preservation in an area, where calcite is well preserved. The LDX showed very

good preservation in surface sediments of inter-platform channels (Providence Channel,

Exuma Sound, Crooked Island Passage) above 3700 m water depth (Fig. 8b: Bahamas). The

deeper part of our sample set between 3700 and 4800 m shows the onset of aragonite

dissolution. These results are in accordance with the aragonite saturation data of GEOSECS

station 31 in the western North Atlantic (Haddad and Droxler, 1996; Fig. 8c: Bahamas).

Droxler et al. (1988b) state the upper limit of aragonite undersaturation in 3700 m water

depth. The clear correlation of LDX results with the hydrographic data support the validity of

the method.

In the Florida Straits, LDX indicated supralysoclinal dissolution at ~800–1000 m and

below 1500 m water depth (Fig. 8b: Florida Straits). When considering the spatial distribution

of the dissolution pattern, our observations showed that all samples containing dissolved

aragonitic particles are located on the northern side of the southern Florida Straits. The heavy

fragmentation of pteropod tests (AFX, Fig. 7a) indicates dissolution over the entire depth

range. However, the diverging trend of LDX and AFX, as well as the constancy of the AFX

values, suggest that aragonitic fragments are largely produced during settling within the depth

range of the Florida Current (down to 800 m; Wust, 1924, Wüst, 1964; Lynch-Stieglitz et al.,

1999) or by mechanical reworking during sedimentation. Although negligible, we cannot

completely rule out sample preparation as cause for a further breakage of pteropod tests.

Page 54: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part II

38

Fig. 8: Comparison of aragonite dissolution with the input of organic material and water mass properties. (a) TOC and rain ratio from the Florida Straits and the Bahamas. TOC is shown in solid lines and the rain ratio in dashed lines. (b) LDX from the Florida Straits and the Bahamas; the dashed line represents the threshold to significant dissolution. Crosses (x) stand for LDX failure due to a lack of pteropods. (c) Aragonite saturation state in the water column as observed by Haddad and Droxler (1996) at Nicaragua Rise and the Bahamas. In the Florida Straits, LDX and TOC/rain ratio correlate perfectly, whereas the comparison of saturation state and LDX displays a non-accordant section in 1400–2200 m water depth. In contrast, in the Bahama region, the saturation state and the dissolution pattern is in perfect accordance, whereas the TOC/rain ratio values display a non-correlation with the LDX below 3700 m. Here dissolution suddenly increases, whereas TOC/rain ratio values remain low.

One reason for the different aragonite dissolution patterns in the Florida Straits and

Bahamas might be the balance of carbonate input and supply of organic material. Microbial

oxidation of organic matter has been widely discussed as a possible mechanism for carbonate

dissolution above the chemical lysocline (Emerson and Bender, 1981; Emerson et al., 1985;

Archer et al., 1989b; Berelson et al., 1990; Jahnke et al., 1994, 1997; Hales and Emerson,

1996, 1997; Martin and Sayles, 1996; Milliman et al., 1999; Adler et al., 2001;Wenzhöfer et

al., 2001; Schulte and Bard, 2003). Degradation of organic matter causes oxygen depletion

and release of metabolic CO2. The carbon dioxide reacts with dissolved carbonate ion to form

bicarbonate. Consumption of CO32- by this reaction requires a replenishment of this ion by

either diffusion from the overlying waters or dissolution of calcium carbonate (Emerson and

Bender, 1981). Model results show the trend for greater carbonate dissolution with an

Page 55: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Modern carbonate preservation in the southern Florida Straits

39

increasing ratio of organic carbon to calcium carbonate reaching the sediment (Emerson and

Bender, 1981).

The rain ratio is higher in the Florida Straits samples than in those around the Bahama

platform (Fig. 8a) due to a lower carbonate content (Fig. 4a) and a higher value of TOC. The

source of organic carbon in the Florida Straits samples is not clear. Current-deduced input of

organic material is negligible: Brooks et al. (2003) found fairly low TOC values of mostly

less than 2% in the surface sediments on the western Florida Shelf. Because the prevailing

winds in this region come from easterly directions (Hine et al., 1981) and the Bahama

platform is starved with respect to terrigenous sediment (Rendle and Reijmer, 2002), eolian

input would be insignificant. We suppose that organic material is brought into the surface

sediments by pelagic influx. Studies on recent primary production in the upper ocean by

Antoine et al. (1996) showed that the productivity is continuously increasing from the western

Florida Shelf through the Florida Straits towards the Bahama platform. Nevertheless, an

increased productivity is observed during intensified Loop Current activity in the eastern Gulf

of Mexico (Gardulski et al., 1986). This might lead to higher TOC values in the Florida

Straits than those which are observed in our samples around the Bahama platform.

The influence of Antarctic Intermediate Water (AAIW) may also play an important

role concerning the observed dissolution patterns in the Florida Straits. Schmuker and

Schiebel (2002) showed that calcite particles are well preserved in the central and eastern

Caribbean Sea within the level of AAIW. Nonetheless, AAIW is corrosive enough to dissolve

the less resistant aragonite particles (Haddad and Droxler, 1996). The upper range of

aragonite dissolution in the Florida Straits matches a level of enhanced aragonite dissolution,

found by Haddad and Droxler (1996) at the Nicaragua Rise ~1000 km further upstream

(arrows; Fig. 8c: Nicaragua Rise). They interpreted this aragonite undersaturation level (800–

1000 m water depth) to signal the presence of AAIW. The aragonite dissolution we observed

in the Florida Straits corroborates the evidence for a northern extension of AAIW found by

hydrographic studies (Mooers and Maul, 1998; Nürnberg et al., 2003).

For the Bahama platform, temperature-salinity data from the Sargasso Sea and the

Florida Straits (Slowey and Curry, 1995) indicate that AAIW input from the Antillean Current

into the Bahama channels is minimal (<5%). This matches the good preservation of calcite

and aragonite components in the surface sediments located around the Bahamas.

Preservation of carbonate around the Bahamas is mainly controlled by the

hydrography. In the Florida Straits, however, the aragonite dissolution levels do not fully

match the aragonite undersaturation/saturation levels which are observed at the Nicaragua

Page 56: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part II

40

Rise (Haddad and Droxler, 1996, Fig. 8c). In this region, it is probably a combination of

hydrographic influences and the effect of organic matter degradation that controls carbonate

preservation and causes supralysoclinal dissolution.

5. Conclusions

(1) Supralysoclinal aragonite dissolution is restricted to the northern rim of the Florida

Straits and was observed at two water depth levels; at 800–1000 m and below 1500 m. Our

observations suggest that the dissolution is due to degradation of organic material. The

presence of Antarctic Intermediate Water (AAIW) may be a contributing factor for the

significant aragonite dissolution in 800–1000 m water depth. No supralysoclinal dissolution

was observed in the surface sediments of the Bahama region. Aragonite particles are well

preserved down to the aragonite lysocline at 3700 m water depth.

(2) The water masses within the Florida Current are not corrosive enough to induce

calcite dissolution as indicated by the very good preservation of planktonic foraminifera. The

L. inflata Dissolution Index might be an adequate proxy to reconstruct paleo-water mass

conditions by determination of aragonite dissolution in an area which is highly saturated with

respect to calcium carbonate. This is corroborated by the fact that our LDX analyses indicate

well-preserved aragonite components down to 3700 m in the surface sediments of the Bahama

channels, where the inflow of AAIW is minimal.

Acknowledgements

We acknowledge James Broda from the Woods Hole Oceanographic Institute

(WHOI), Larry Peterson from Rosenstiel School of Marine and Atmospheric Sciences

(RSMAS), and Steven Carey from the University of Rhode Island (URI) for providing sample

material. NSF grant OCE-0002226 provided funding for the curation of marine geological

samples at URI. We appreciate the help of Christoph Vogt and Renate Henning at the

University of Bremen with sample preparation and measurements. Special thanks goes to

Rüdiger Henrich for his helpful contributions and stimulating discussions. Constructive

comments were provided by Jens Holtvoeth and Stephan Steinke. Many thanks go to Joachim

Schönfeld, Antoon Kuijpers, an anonymous reviewer, and to our editor John Reijmer, who

helped to improve the quality of this manuscript. The Deutsche Forschungsgemeinschaft

supplied financial support for our studies at the Research Center Ocean Margins, Bremen.

Page 57: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Compositional variations and early diagenetic processes in Quaternary periplatform sands

41

Chapter 2: COMPOSITIONAL VARIATIONS AND EARLY DIAGENETIC PROCESSES IN QUATERNARY PERIPLATFORM SANDS: AN EXAMPLE FROM THE GREAT BAHAMA BANK Authors: Schwarz J., Steinke S., Rendle-Bühring R., Reijmer, J.J.G.

Status: submitted to Marine Geology

Abstract: Mineralogical and grain-size patterns of periplatform sediments have been widely studied and used

for the reconstruction of environmental conditions and diagenetic processes. This study focuses on the so far

little attended composition of sand-sized periplatform carbonates, from two ODP-cores from the western and

eastern margins of Great Bahama Bank. Questions focus on the connection between the sediment composition

and variations in sediment export patterns between glacial and interglacial stages, and to the diagenetic alteration

of the sediment. The methodology included qualitative and quantitative analyses of the sediment, primarily the

sand fraction, measurement of stable isotopes ( 18O, 13C) and total organic carbon, and the determination of

dissolution indices, e.g. Limacina inflata Dissolution Index and Fragmentation Index.

The sand fraction (>63 µm) consists of mostly non-neritic material, such as planktonic foraminifera,

pteropods, and diagenetically generated carbonate concretions or “nodules”. The in-situ formation of the nodules

is indicated by the low 18O and 13C stable isotope values which are in equilibrium with pore waters. The minor

amounts of platform-derived constituents in the sand fraction make it difficult to distinguish between glacial and

interglacial periods, i.e. sea-level low- and highstands. The variability of the sediment preservation, shown by

the occurrence of nodules in distinct layers of both cores, provide an insight into the early diagenetic processes

affecting periplatform sediments. As such, these cores are interesting windows into the process of cementation.

While Hole 633A reveals nodular layers throughout the studied core section, there is a lack of nodules in the

upper 25-30 meters of Hole 1006A. In Hole 633A there seems to be continuous cementation in shallow sediment

depths. However, in Hole 1006A a flush zone exists, which might intrude corrosive Antarctic Intermediate

Water into the upper 25-30 meters of the sediment column, thus hindering the formation of nodules.

Cementation occurs below the flush zone, where the alkalinity increases. Main controlling factors for early

diagenesis at the studied locations are the amount of metastable carbonate constituents, sedimentation rates, and

the carbonate saturation of pore waters and the seawater. These data, despite limitations, provide information on

the early diagenetic alteration of periplatform carbonates of the Quaternary and an insight into the intrinsic

factors controlling cementation.

Keywords: Early diagenesis; Great Bahama Bank; Quaternary; Aragonite dissolution; Carbonate concretions;

AAIW

1. Introduction

The sedimentary records of periplatform sediments have formed a focus in tropical

carbonate studies. In contrast to sediment records of platform top deposits, which can be

interrupted due to periods of exposure, periplatform oozes produce a rather continuous

sediment record. Thus, they can be employed to study how carbonate platforms respond to

Page 58: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part II

42

sea-level, climate, and oceanographic change. It is important to determine diagenetic

processes in periplatform carbonates, which are very prone to diagenesis. Otherwise proxies

used to analyse the climate development could be interpreted in a wrong way. Previous

studies reveal that diagenetic alteration provides a large isotopic overprint in periplatform

sediments (Lawrence and Herbert, 2005).

To date, research on “periplatform ooze” sensu Schlager and James (1978) of the

Holocene-Pleistocene systems has mainly focused on mineralogical studies, e.g. at Great

Bahama Bank (GBB; Droxler and Schlager, 1985; Rendle et al., 2000; Rendle-Bühring and

Reijmer, 2005), the Northern Nicaragua Rise (Schwartz, 1996; Triffleman et al., 1992), and

Pedro Bank (Glaser and Droxler, 1993; Andresen et al., 2003). This has been supplemented

by grain-size work in carbonate systems during the last decade (Rendle et al., 2000; Rendle-

Bühring and Reijmer, 2005). These studies have shown that Quaternary glacio-eustatic sea-

level fluctuations have significantly influenced the composition and distribution of sediments

both on the platform top and in the periplatform realm (e.g. Schlager and Ginsburg, 1981).

The findings showed that optimum conditions for sediment production correspond to sea-

level highstands (Kendall and Schlager, 1981), described as the Highstand Shedding Principle

(Droxler and Schlager, 1985; Schlager et al., 1994), when excess fine-grained aragonite

needles are exported from the shallow-water to the periplatform realm (Boardman and

Neumann, 1984; Boardman et al., 1986; Milliman et al., 1993; Neumann and Land, 1975;

Rendle et al., 2000; Robbins et al., 1997; Schlager, 1981). During sea-level lowstands, when

the platform is partially or fully exposed and carbonate production on the platform is low or

switched off, this sediment source is diminished. However, sedimentation continues to occur

in the periplatform realm due to input from the pelagic environment (Schlager and Camber,

1986). This sedimentation pattern has shown a pronounced cyclicity, at least on the rather

flat-topped rimmed platforms such as GBB. Here the western, accretionary margin has fine-

grained, aragonite-rich deposits typifying interglacial periods, while the glacials are coarser-

grained and low-Mg calcite-rich. The steeper, by-passing margin on the eastern side of the

GBB reveals the same mineralogical pattern with higher aragonite values during interglacials

and higher low-Mg calcite (LMC) values during glacials, however grain-size variations of

glacial and interglacial stages are similar, due to the high input of turbidites. Although the

mineralogy and grain-size of periplatform carbonates has been well documented in the

literature, little attention has been paid to the identification of the skeletal and non-skeletal

sediment constituents that give rise to the mineralogical and grain-size signatures. Thus, this

will form the focus of this paper.

Page 59: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Compositional variations and early diagenetic processes in Quaternary periplatform sands

43

Fig. 1: Map of the Great Bahama Bank (GBB) region showing the location of ODP Sites 633 and 1006. Enclosed map shows the position of the study area in the western North Atlantic, LBB = Little Bahama Bank, TOTO = Tongue of the Ocean. Arrows give major surface currents. Dashed arrows are the inter-platform currents.

To date, only a few studies have used skeletal and non-skeletal constituents in

periplatform carbonates, namely in calciturbidites, to obtain information on environmental

and depositional changes within the periplatform realm. These studies have shown that

variations in the composition are primarily linked to sea-level fluctuations (Haak and

Schlager, 1989), to processes affecting the production on the platform (Reijmer et al., 1992),

and to carbonate sediment export patterns (Andresen, 2000; Emmermann, 2000). Important

non-skeletal constituents of the coarse fraction in sediments of the Bahamas are carbonate

concretions, which were recognised and described for the first time in modern periplatform

sediments by Mullins et al. (1980a). They studied piston cores north of GBB (300-800 m

water depth) with layers of carbonate concretions within the upper few meters of core and

named these concretions “nodules”. The nodules are mainly white-coloured with a micritic

high-Mg calcite matrix and interspersed carbonate tests or fragments of pelagic origin.

Analyses of oxygen and carbon isotopes show, that the nodules have formed in equilibrium

with bottom waters, i.e. in situ (Mullins et al., 1980a). An in-situ formation by submarine

cementation in response to periods of increased bottom water current strength has been

suggested. Changes in sea-level and surface water productivity may have influenced the

pelagic sedimentation through time and therefore may have had an effect (by changing the

constitution and thus the porosity of the sediment) on the nodule formation (Mullins et al.,

Page 60: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part II

44

1980a). In addition, Mullins et al. (1985b) found planktonic foraminifera with a micritic

overgrowth, aggregate grains, and pteropod moulds in a slope area north of Little Bahama

Bank.

Early diagenesis in sediments of the Bahamas has been studied for the deeper

subsurface and cores (e.g. Dix and Mullins, 1988a,b, 1992; Droxler et al., 1988a,b; Ginsburg,

2001; Melim et al., 2001, 2004; Mullins et al., 1985a,b; Schlager and James, 1978; Westphal

et al., 1999). Mullins et al. (1985b) assumed that fluids and thermal convection were the

driving mechanism for shallow subsurface diagenesis in periplatform carbonates. Another

important process in lithification of periplatform carbonates is early marine-burial diagenesis

(Hendry et al., 1996; Melim et al., 1995). Diagenetic processes in periplatform ooze generally

include the dissolution of metastable carbonates, i.e. aragonite and high-Mg calcite (HMC),

and the recrystallization of LMC (Bathurst, 1971; Land et al., 1967; Mullins et al., 1985b).

The objective of this study is to document and describe the composition of off-bank,

periplatform sands (>63 µm), covering the last 1.5 Ma, from the western and eastern margins

of GBB recovered during Ocean Drilling Program (ODP) Leg 166 (Site 1006) and Leg 101

(Site 633). Compositional data of the sand fraction for both sites will provide a unique

opportunity to investigate the compositional variability of different settings, namely

accretionary and erosional margin systems, in the same carbonate environment: (1) Does the

composition of the coarse fraction reciprocate variations in sediment export patterns between

periods of relative sea-level highstands (interglacials) and lowstands (glacials) as revealed by

mineralogical data by Droxler et al. (1988a) and Rendle et al. (2000) for the same sites? A

further question of this study concerns the development of diagenetically altered sediments:

(2) What is the preservation state of the sediments? In context with information on interstitial

waters, organic matter degradation, and the saturation state of the bottom waters, (3) what are

the conditions and the most important parameters controlling early diagenesis?

2. Material and working area

Samples used in this study were obtained from the western (ODP Leg 166, Site 1006)

and eastern (ODP Leg 101, Site 633) margins of GBB (Fig. 1). Site 1006 (24° 23.98’ N; 79°

27.54’ W) is located in a water depth of 658 m in the northern portion of the Santaren

Channel approximately 30 km from the western platform edge of GBB (Fig. 1). The lithology

of the Pleistocene-Holocene deposits in Hole 1006A shows the sediment to consist of largely

unlithified, bioturbated nannofossil ooze with sand- and silt-sized foraminifera and aragonite

needles and reflects a mix of pelagic and bank-derived carbonates (Eberli et al., 1997). The

Page 61: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Compositional variations and early diagenetic processes in Quaternary periplatform sands

45

age model for Hole 1006A is based on oxygen isotope stratigraphy (Kroon et al. 2000a),

which was correlated to the stable oxygen record from the western Pacific Site 806 (Berger et

al., 1993) and aragonite stratigraphy (Rendle et al., 2000). The chronostratigraphic

interpretation of Hole 1006A (Kroon et al., 2000a; Rendle et al., 2000) was confined by U-Th

dating (Henderson et al., 2000) for marine isotope stages (MIS) 1, 5, 9, and 11 and by

calcareous nannofossil biostratigraphy of Sato (unpubl. data in Rendle, 2000). The stable

oxygen isotope record and U-Th dating of Hole 1006A reveals that sediments of MIS 7 are

missing. Site 1006 is located on the periphery of the modern day Florida Current – the ‘source

area of the Gulf Stream’ (Kroon et al., 2000a). The water masses delivered to the western side

of GBB through the Old Bahama Channel and the Santaren Channel from the southeast

originate from the part of the North Atlantic subtropical gyre that flows northwestward

passing the Lesser Antilles (Atkinson et al., 1995; Leaman et al., 1995).

Site 633 (23° 41.31’ N; 75° 37.41’ W) was drilled at the toe-of-slope in the southern part of

the Exuma Sound (water depth: 1681 mbsl), a closed seaway (Mullins and Neumann, 1979a)

cut into the southeastern margin of GBB. It is surrounded on three sides by steep slopes. The

sedimentary succession is defined as a periplatform ooze sequence with intercalated

calcareous turbidite layers (Austin et al., 1986). They occur more frequently during

interglacial stages (Droxler et al., 1988a), a phenomenon described as “highstand bundling”

(Droxler and Schlager, 1985). The stratigraphic framework of Site 633 was established using

calcareous nannofossil biostratigraphy, magnetostratigraphy, and stable oxygen isotopes,

which better constrained the age model (Droxler et al., 1988a). Water masses in the Exuma

Sound consist of surface and intermediate waters originating from the western North Atlantic.

They bypass the Greater Antillean Islands and flow north along the eastern side of the

Bahamas as the Antillean Current (Gunn and Watts, 1982; Lee et al., 1990, 1996; Neumann

and Pierson, 1966). The upper and lower North Atlantic Deep Water (NADW) lies below the

Antillean Current starting at ~1200 mbsl (Bainbridge, 1981).

3. Methods

3.1. Qualitative and quantitative analyses of the sediment

To document the compositional variability of skeletal and non-skeletal constituents of

the coarse fraction in Quaternary periplatform oozes over the last 1.5 Ma, a total of 106 and

177 samples from Holes 1006A and 633A were analysed, respectively. Sarnthein (1971) and

Piller and Mansour (1990) have shown that a visual inspection of certain grain-size fractions

of the coarse fraction (>63 µm) forms a useful tool to determine the composition of the

Page 62: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part II

46

sediment and any temporal and spatial variability. Samples were therefore dried, washed over

a 63-µm sieve and sieved into sub-fractions. The fraction 250-500 µm was split with an Otto

microsplitter until at least 300 grains were left for counting, which guarantees a satisfactory

statistical accuracy (van der Plas and Tobi, 1965). The 250-500 µm-fraction has been

suggested to be the most representative for the >63 µm fraction (Wolf and Thiede, 1991). The

identification of components within the 250-500 µm fraction is mainly based on studies by

Sarnthein (1971), Milliman (1974), Piller and Mansour (1990) and Piller (1994). The

taxonomy of the planktonic foraminifera follows that of Parker (1962), Bé (1977), and

Kennett and Srinivasan (1983). The identification of the benthic foraminiferal fauna is based

on studies by Barker (1960), Streeter (1970), Loeblich and Tappan (1988), and Hayward et al.

(1999). Constituents are given as relative abundances, expressed as a percentage of the

number of total components.

For a comparison of the carbonate concretions (i.e. nodules) matrix with the

surrounding sediment, the fine fraction (<63 µm) of one representative sample (containing

nodules) from Hole 1006A was qualitatively examined for its composition with a Zeiss DMS

940A scanning electron microscope (SEM). Approx. 20 ml of the fine fraction were wet-

splitted using an electrical rotary sample divider. The suspension was then filtered onto

polycarbonate membrane filters (Schleicher and Schuell™ 50 mm diameter, 0.4 µm pore size)

using a vacuum pump. After storage in an oven at 40° C for 24 hours, a small piece of the

filter (approx. 0.25 cm2) was cut out, mounted on an aluminium stub, and sputtered with

gold/palladium prior to scanning.

In order to investigate the nodules’ internal structure, bulk samples that contained high

amounts of nodules were impregnated with epoxy, and thin sections were prepared.

Furthermore, the nodules of six nodule-bearing samples (1006A: 13.5 mbsf/MIS 9, 52.5

mbsf/MIS 38, 59 mbsf/MIS 42; 633A: 22 mbsf, 27 mbsf, 35 mbsf) were examined with the

SEM; the nodules were gently cleaned in an ultrasonic bath for a few seconds to remove

particles that had adhered to the nodule surfaces. After that, the nodules were glued on an

aluminium stub and sputtered with gold/palladium.

___________________________________________________________________________Plate 1: Facies types and the external and internal structure of nodules. A. Sands with little diagenetic overprint, containing a high amount of planktonic foraminifera test, e.g. G. sacculifer and G. ruber (pink), and pteropod tests (Sample 1H1-15-17 cm; 0.15 mbsf; 250-500 µm). B. Diagenetically altered, nodule-rich sands (Sample 2H5-55-57 cm; 13.65 mbsf; 250-500 µm). C. Thin section photograph of sample 2H5-55-57 cm (13.65 mbsf; 250-500 µm), showing numerous irregular nodules with interspersed planktonic foraminifera in a micritic matrix. D. Typical nodule of sample 2H5-55-57 cm (13.65 mbsf; 250-500 µm). E.-H. Scanning electron microscope photomicrographs of nodules from Site 1006. E. and F. illustrate typical components making up the matrix of the nodules. The matrix represents a mixture of nannofossils, nannofossil fragments, less aragonite needles and solitary low-Mg calcite crystals. G. and H.: Clusters of rhombic and prismatic low-Mg calcite crystals within planktonic foraminifera shells.

Page 63: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Compositional variations and early diagenetic processes in Quaternary periplatform sands

47

Page 64: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part II

48

3.2. Oxygen and carbon isotopes

To investigate the origin of the nodules, oxygen and carbon isotope measurements

were carried out on the nodules´ matrix. The nodules of 33 samples (13 of Hole 1006A, 20 of

Hole 633A) were carefully crushed under a binocular microscope to remove whole

foraminifera tests and larger calcareous fragments, which may falsify the signal. The

remaining matrix material was analysed using a Finnigan MAT 251 mass spectrometer with

an automated carbonate preparation device at the Department of Geosciences (University of

Bremen). Isotopic values are reported as per mil (‰) deviations from the PDB standard. The

external standard errors of the stable oxygen and carbon isotope analyses are < 0.08‰ and

<0.06‰, respectively.

3.3. Dissolution Indices and Total Organic Carbon (TOC)

The preservation state of metastable carbonates in periplatform sediments is helpful to

detect early diagenetic processes. To determine the preservation of the main aragonite

particles in the sand fraction, we used the Limacina inflata Dissolution Index (LDX). This is a

useful proxy to determine aragonite dissolution in areas where the carbonate saturation is very

high (Schwarz and Rendle-Bühring, 2005). At least ten adult tests of the pteropod species

Limacina inflata were picked from the >500 µm fraction of each sample of Hole 633A with a

sufficient number of tests and classified using a binocular microscope after the six

preservation stages developed by Gerhardt and Henrich (2001). The preservation stages range

from transparent (stage 0; very well preserved) to opaque-white/totally lustreless/perforated

(stage 5; strongly dissolved). Stage three is established as the threshold to significant

dissolution. In Hole 1006A only four samples revealed a sufficient number of Limacina

inflata. We could not, therefore, establish a representative record over the entire studied core

interval of Hole 1006A.

Page 65: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Compositional variations and early diagenetic processes in Quaternary periplatform sands

49

Another proxy for the determination of the preservation, which was feasible in both

cores, is the breakup of whole carbonate tests due to dissolution. Results of the census counts

of the 250-500 µm fraction were used to calculate the ratios of fragments to whole tests of (1)

planktonic foraminifera (Fragmentation Index/FI; Bé et al., 1975; Berger, 1970; Dittert et al.,

1999; Le and Shackleton, 1992; Peterson and Prell, 1985; Thunell, 1976) and (2) pteropods

(Aragonite Fragmentation Index/AFX; Schwarz and Rendle-Bühring, 2005):

FI = F/(W+F) (1)

where W is the number of whole tests of planktonic foraminifera, and F the number of

fragments, and

AFX = F/(P+F) (2)

Plate 2: A.-C. Scanning electronmicroscope photomicrographs ofnodules in samples 2H4-15-17 cm (12.75mbsf; MIS 9) and 2H5-55-57 cm (13.45mbsf; MIS 10). These brownish-greynodules are composed of biogeniccomponents and debris, e.g. coral andcoralline algae fragments and benthicforaminifera, with interspersed aragoniticneedles, nannofossils and biogenicfragments.

Page 66: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part II

50

where P is the number of whole tests of pteropods and F the number of fragments. The higher

the ratio of AFX and FI, the stronger the dissolution has been. In the case of the FI, the

threshold to significant dissolution is 0.6.

Organic matter degradation might be the trigger for supralysoclinal dissolution, thus

leading to the formation of cements during early diagenesis. Therefore, we measured the total

organic carbon (TOC) contents of all samples of Hole 633A, and of the samples within the

core interval of Hole 1006A containing diagenetic products (nodules). A small portion of bulk

sediment was dried and ground with an achate mortar. Approx. 0.05 g of ground material was

treated with hydrochlorid acid to remove the anorganic carbon. The remaining sample was

then measured, using a LECO CS-200 elemental analyzer with a relative error of 1%.

4. Results

4.1. Composition and temporal variations

4.1.1. Santaren Channel (Site 1006; western margin)

The 250-500 µm fraction mainly consists of planktonic foraminifera (<80% whole

individuals) and their fragments (<20%), pteropods (<5% whole individuals) and their

fragments (<50%), and carbonate concretions (<90%; Fig. 2). These three groups constitute

80-100% of the total components (Plate 1, A and B). Three samples from MIS 8 and 9 are

exceptions, where undefined 'skeletal' grains (shallow-water platform derived coral and

coralline algae fragments), benthic foraminifera, and a second kind of carbonate concretion

(see below) make up half of the sediment.

The planktonic foraminiferal assemblage is dominated by Globigerinoides sacculifer (both

sacculifer sacculifer and sacculifer trilobus), Globigerinoides ruber (white and pink),

Orbulina universa, Globorotalia menardii, Neogloboquadrina dutertrei and Pulleniatina

obliquiloculata. This assemblage indicates tropical to subtropical conditions throughout the

records. Pteropods (Gastropoda suborder Eutheocostomata) show a variety of different

species: mainly spirally coiled forms of the genus Limacina inflata, Limacina trochiformis

and Limacina bulimoides and uncoiled forms from the family Cavoliniadae: Creseis virgula,

Creseis acicula and Styliola subula. Highest relative abundances of pteropods and their

fragments occurred during the Middle-Late Pleistocene and Holocene whereas they are nearly

absent during most of the Early Pleistocene (below 40 mbsf; Fig. 2).

The third important group of components are the carbonate concretions (Plate 1, C and

D). According to a previous study by Mullins et al. (1980a), we adopted the term ‘nodules’.

These nodules are generally irregular, ellipsoidal to more or less rounded in shape and include

Page 67: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Compositional variations and early diagenetic processes in Quaternary periplatform sands

51

various planktonic foraminifera, mainly globigerinoid forms. Their colour ranges from white

to light grey. The matrix of the nodules is primarily composed of coccolithophorids and their

fragments, biogenic debris, rare aragonitic needles and solitary rhombic and prismatic LMC

crystals (Plate 1, E and F). Clusters of rhombic and prismatic calcite crystals occur within

planktonic foraminifera shells (Plate 1, G and H). The examination of the fine fraction

(<63 µm) reveals a similar composition to that observed in the nodules for the same samples:

dominantly biogenic debris, coccolithophorids, rhombic and prismatic calcite crystals, and in

lesser amounts aragonitic algae needles. Within the samples containing micritic nodules there

are numerous planktonic foraminifera (<25%; Fig. 2), covered by a thin exterior overgrowth,

which most probably represent the initial state of nodule formation.

The few cement crystals cannot be the only binding material of the nodules. We assume

that coccolithophorids and other fragments link together mechanically to encrust foraminifera

tests and fragments. After this initial stage, more fine fraction material is linked mechanically

to these aggregates, maybe with some support of organic material, to build larger nodules. As

their pore space is not entirely filled with cement, the nodules can easily be crushed with a

needle. However, they are stable enough to endure the process of sedimentation, and can-not

be mechanically destroyed by e.g. wet- or dry-sieving. Nodules are mainly present during

glacial periods, and in lesser amounts during interglacial periods, of the Early Pleistocene to

lower Middle Pleistocene (below 30 mbsf; Fig. 2). Thereafter, nodules are only present in

MIS 10 deposits.

Another type of carbonate concretion occurs exclusively in MIS 9 (12.75 mbsf and

13.45 mbsf). These brownish-grey concretions are composed of biogenic components and

debris, e.g. coral and coralline algae fragments and benthic foraminifera. The matrix consists

of aragonitic needles, coccolithophorids and biogenic fragments (Plate 2). These concretions

are associated with a high amount (up to 31%) of undefined 'skeletal' grains that mainly

represent shallow-water platform derived coral and coralline algae fragments. Due to their

composition and the accompanied neritic constituents in these samples, this second kind of

carbonate concretion is interpreted to be the product of early lithification on the upper slope or

to represent fecal pellets produced in the shallow water realm.

Other components (“Others” in Fig. 2) are benthic foraminifera, bivalve and gastropod

shells, ostracods, echinoderms, heteropods and undefined 'skeletal' grains. The benthic

foraminiferal fauna (<18%) mainly contains specimens of the orders Miliolida (e.g.

Spiroloculina, Quinqueloculina, Pyrgo, Milionella), and to a lesser extent agglutinated taxa of

the order Textulariida (Textularia, Clavulina) and calcareous Rotaliida (e.g. Uvigerina,

Page 68: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part II

52

Cibicides, Cymballoporetta). Highest abundances of benthic foraminifera occur in MIS 9

(12.75 mbsf and 13.45 mbsf). The group undefined 'skeletal' grains (<30%) includes all

skeletal, biogenic components representing debris of corals and other shallow-water

constituents such as broken and disaggregated algaes. Undefined 'skeletal' grains are mainly

present in MIS 9, most likely representing material from the platform top. The input of neritic

material at 13.45 mbsf is corroborated by the occurrence of the large symbiont-bearing

benthic foraminifera Amphistegina sp. that inhabits the shallow-water realm.

Fig. 2: Oxygen isotope data of G. ruber, relative percentages of fine-fraction aragonite (Rendle et al., 2000), and the results of census counts of the 250-500 µm fraction of Hole 1006A: Relative abundances, expressed as the percentage of the total constituents, of planktonic foraminifera and their fragments (latter dashed), whole pteropods and their fragments (latter dashed), nodules, planktonic foraminifera covered by a thin micritic overgrowth (dashed), benthic foraminifera (dashed), and “others” comprising e.g. bivalve and gastropod shells, ostracods, echinoderms and unidentified skeletal grains. The stratigraphy is based on Rendle et al. (2000), Kroon et al. (2000a), and Henderson et al. (2000). MIS = Marine Isotope Stage. Grey bars indicate glacial stages.

4.1.2. Exuma Sound (Site 633, eastern margin)

Similar to Site 1006 on the western margin, the coarse fraction of Site 633 is dominated

by planktonic foraminifera (<80%) and their fragments (<35%), pteropods (<5% whole

individuals) and their fragments (<70%), and nodules (<95%; Fig. 3). The three groups

together constitute 66-100% of the total sand-sized components.

The planktonic foraminifera and pteropod assemblages contain the same dominant

species types as observed in Hole 1006A (see chapter 4.1.1.). In good agreement to Site 1006,

highest abundances of pteropods and their fragments occur during the Middle to Late

Pleistocene and Holocene period, whereas during the Early Pleistocene period, pteropods are

scarce (below 23 mbsf).

Page 69: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Compositional variations and early diagenetic processes in Quaternary periplatform sands

53

Nodules appear as white to light grey nodules which are also dominant in Hole 1006A.

The second type of carbonate concretions observed in Hole 1006A has not been found in

633A. In contrast to Site 1006, nodules are abundant throughout the whole time period

studied, representing up to 90% of the total sand fraction in Hole 633A. The overall

abundance trend of the nodules is characterized by a general downcore increase.

Fig. 3: Oxygen isotope data of G. ruber, relative percentages of fine-fraction aragonite (Droxler et al., 1988a), and the results of census counts of the 250-500 µm fraction of Hole 633A: Relative abundances, expressed as the percentage of the total constituents, of planktonic foraminifera and their fragments (latter dashed), pteropods and their fragments (latter dashed), nodules, coral fragments (dashed), and “others” comprising e.g. bivalve and gastropod shells, ostracods, echinoderms and unidentified skeletal grains. The stratigraphy is based on Droxler et al. (1988b). MIS = Marine Isotope Stage. Grey bars indicate glacial stages.

Other components (2-15%) include benthic foraminifera, bivalve and gastropod shells,

ostracods, echinoderms, heteropods, and undefined 'skeletal' grains. The supply of neritic

material to Site 633 is manifested in coral debris (undefined ‘skeletal’ grains) ranging

between 3% and 27% (Fig. 3). Higher abundances of coral fragments are connected to

turbidite layers found by Droxler et al. (1988a).

4.2 Oxygen and Carbon Isotopes

Oxygen and carbon isotope values of the nodules’ matrix material are shown in Fig. 4.

The 18O values range from 0.9‰ to 2.0‰ at Site 1006 and from –0.7‰ to 2.8‰ at

Site 633. The 13C values range from 1.6‰ to 2.2‰ at Site 1006 and from 1.5‰ to 3.1‰ at

Site 633.

Page 70: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part II

54

Fig. 4: The comparison of oxygen and carbon isotopes of the micritic matrix of nodules of Holes 633A and 1006A with literature data, suggesting an in-situ formation in equilibrium with pore waters; for details see Chapter 5.2; TOTO = Tongue of the Ocean; NWPC = North-western Providence Channel [re-drawn from Mullins et al., 1980a].

4.3. Dissolution Indices and Total Organic Carbon (TOC)

Figure 5a-g shows the results of the observed and calculated preservation state, as well

as the amount of organic carbon, of both cores.

At Hole 1006A the LDX could not be applied due to the low numbers of Limacina

inflata in the samples. The low values of LDX of the samples from Hole 633A with a

sufficient number of whole Limacina inflata tests show, that the sediment is well to very well

preserved to a depth of about 20 mbsf (Fig. 5a). Limacina inflata tests are very scarce in

8-9.5 mbsf (MIS 8-10), 10-12 mbsf (MIS 13/14), 17-18 mbsf (MIS 20-21), and below 20

mbsf of Hole 633A. This makes it difficult to define the state of preservation during these

time periods. A trend shows very good preservation at the core top, a decrease in preservation

downcore to maximum values of 4.2 during MIS 11-19, and back to very good preservation in

MIS 23. Nearly all samples have values of less than three, which is the threshold to significant

dissolution. Two exceptions occur in MIS 15 and 16 with preservation values of 4.2 and 3.5,

respectively.

The ratio of pteropod fragments to whole pteropod tests (AFX) in Hole 1006A is

greater than 0.8 throughout the studied interval, indicating an overall high degree of

dissolution (Fig. 5e; the exception in MIS 28 is statistically not relevant, due to the small

number of tests). In Hole 633A the AFX displays values of more than 0.5 down to 36 mbsf

(Fig. 5b; the very low value at 17 mbsf (MIS 21) is statistically not relevant due to the small

number of pteropods and fragments in the counted sample, indicating that aragonitic particles

in the sand fraction are heavily dissolved). The AFX value is directly proportional to the rate

of aragonite dissolution. The AFX record shows the same pattern as the LDX record in the

Page 71: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Compositional variations and early diagenetic processes in Quaternary periplatform sands

55

upper part of the core. Below 20 mbsf, the lack of pteropods corresponds with AFX values

greater than 0.8. The fragmentation of the planktonic foraminifera as the main calcitic

component of the sand fraction (i.e. Fragmentation Index) reveals values between 0 and 0.4 in

the studied sections at both Sites (Fig. 5c, 5f), thus remaining below the threshold to

significant dissolution.

Hole 1006A reveals maximum values of 0.7% (Fig. 5g), appearing between 32 and

35 mbsf (MIS 25-27), and at 56 mbsf (MIS 40). Between 56 and 63 mbsf (MIS 41-45) there is

a plateau with minimum values of 0.05%. The remaining samples oscillate regularly between

0.05 and 0.3%, with lowest values in glacial periods. TOC contents of Hole 633A are slightly

lower than in Hole 1006A, ranging between 0% and 0.5% (Fig. 5d). The highest values occur

at approx. 4 mbsf. Between 2 mbsf and 7 mbsf and at 30 mbsf the TOC content reaches

values of up to 0.3%. The remaining samples range between 0.05% and 0.2% TOC.

5. Discussion

5.1. Variations in the composition

Periplatform ooze of Pleistocene to Holocene tropical carbonate systems can be

subdivided into highstand (interglacial) and lowstand (glacial) deposits based on their

mineralogical and grain-size signatures (see Chapter 1). The changes observed in the

mineralogy of such sediments have been correlated to variations in the production and export

of aragonite-rich muds from the platform top (Boardman and Neumann, 1984; Heath and

Mullins, 1984; Hine et al., 1981; Mullins et al., 1984; Neumann and Land, 1975; Roth and

Reijmer, 2004; Wilber et al., 1990), while fluctuations in the grain-size pattern are

additionally controlled by mass transport processes such as turbidity currents of the type of

marginal settings (accretionary-erosional; Rendle-Bühring and Reijmer, 2005). Furthermore,

research has shown that these cyclic variations in mineralogy and grain size correlate to

Quaternary orbitally forced, third-order, glacio-eustatic sea-level fluctuations (Droxler et al.,

1983; Kievman, 1998; Kroon et al., 2000a; Vail et al., 1991). However, our results show that

no clear distinction can be made between highstand and lowstand deposits when considering

compositional variability within the sand (>63 µm) fraction of Pleistocene to Holocene

sediments at Sites 1006 (western margin) and 633 (eastern margin). This is in contrast to the

findings of Reuning et al. (2002), who demonstrated that cyclic sedimentation in the Miocene

section of ODP Site 1003 shows compositional variations between high- and lowstand

deposition. Our results show that it is difficult to distinguish between glacial and interglacial

deposits in these immature sediments without knowing the mineralogy (Fig. 2, 3). Presuming

Page 72: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part II

56

that, in an advanced stage of diagenesis, the fine-fraction aragonite was totally recrystallised

to calcite, it would be almost impossible to distinguish between high- and lowstand deposits

in thin-section samples of Hole 633A, where moreover the grain sizes are similar in glacial

and interglacial stages. This would lead to a false conclusion, i.e. that these sediments had

primarily no differences.

Previous studies, e.g. by Mullins et al. (1980a,b), on carbonate sediment drift sands off

the NW corners of LBB and GBB have shown that these sediments consist of a mixture of

pelagic constituents (submarine-cemented intraclasts, planktonic foraminifera, and pteropods)

and shallow platform material such as Halimeda, peneropolid foraminifera, fragments of

coralline algae, ooids, and micritized mollusc debris. The coarse fraction samples of 633A

and 1006A, however, are dominated by constituents of the pelagic realm, namely planktonic

foraminifera and pteropods. An exception is the MIS 9 samples of Hole 1006A that contain

~50% neritic material such as coral and coralline algae fragments, ‘undefined’ skeletal grains,

benthic foraminifera indicative for shallow water realms and calcareous brownish-grey

nodules. Due to their composition and accompanied constituents, these brownish-grey

nodules are interpreted to be the product of early lithification in the shallow water realm or to

represent fecal pellets which are transported to the periplatform realm via mass transport. The

overall higher abundance of neritic material at Site 633 compared to that observed at Site

1006, manifested in higher relative abundances of corals and coralline algae fragments (Fig.

3), is associated with the high number of turbidites at Hole 633A due to its close proximity to

the slope (Droxler et al., 1988a).

The most striking finding in the composition of the periplatform oozes at Sites 633 and 1006

is the distinct occurrence of layers rich in non-skeletal calcareous nodules in certain intervals

throughout the Early Pleistocene to Holocene period. According to Middleton and Hampton

(1973) and Mullins (1978), such nodular layers might be the product of reworking and

resedimentation processes of material from the platform rim and/or platform top, possibly

supplied by debris flows and turbidity currents. Previous studies have shown that in carbonate

platform environments, off-bank transport such as turbidity currents predominantly occurs

during interglacial sea-level highstands, a phenomenon described as “highstand bundling”

(Andresen et al., 2003), and that such processes are less active during the glacial lowstands in

sea level (Andresen et al., 2003; Droxler and Schlager, 1985; Mullins, 1983). However, at

Site 1006, generally higher abundances of nodules have been found in glacial stages, which

are periods of less turbidity current activity. Another aspect, that could exclude the idea that

the nodules were produced elsewhere and brought to the periplatform realm via turbidity

Page 73: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Compositional variations and early diagenetic processes in Quaternary periplatform sands

57

currents, is the lack of other coarse material indicative for the neritic realm in the nodule-rich

layers. Moreover, based on our thin sections and SEM studies, no neritic material is

interspersed into the nodules. It is improbable that the nodules have formed in the shallow

water realm, and have been erosioned and transported to the slope and basin via turbidity

currents. We therefore conclude, that nodules have formed in situ.

Lithification preferentially occurs in areas with slow sedimentation rates

(Alexandersson, 1972; Ginsburg and Schroeder, 1973; Milliman, 1966; Shinn, 1969). The

lower sedimentation rates in the Exuma Sound might be one important factor for the higher

average amount of nodules at Site 633. Here an average sedimentation rate of 2.3 cm/ky

during the last 1.6 Ma has been calculated (Droxler et al., 1988b). The reason for lower

sedimentation rates of Site 633 is the easterly wind regime in the Bahama region, that brings

suspended sediment from the platform-top to the leeward side of GBB (Rendle-Bühring and

Reijmer, 2005). Therefore, starved of sediment, the windward margin is typified by an

erosional slope. The Site 633 is located within a by-passing area. In contrast, the lower nodule

abundance at Site 1006 on the leeward margin could be a reflection of the higher

sedimentation rates. The average sedimentation rate (calculated for the last 1.4 Ma) for glacial

stages is 4.8 cm/ky, for interglacial stages 6.0 cm/ky (Rendle and Reijmer, 2002). The higher

sedimentation rates during interglacials is due to the flooding of the platform and thus the

transport of excess fine material such as aragonite needles to the slopes and shallower basins

(Boardman and Neumann, 1984; Boardman et al., 1986; Milliman et al., 1993; Neumann and

Land, 1975; Rendle et al., 2000; Robbins et al., 1997; Schlager 1981; Schlager and Camber,

1986; Schlager and Ginsburg, 1981). Thus Site 1006 is located within an accretionary area

(Schlager and Ginsburg, 1981), as it is situated on a shallow slope, covered with drift

sediments (Anselmetti et al., 2000).

Rather heavy oxygen isotope values of 1-3 ‰, measured in our nodules´ matrix, support

the idea of an in-situ formation in equilibrium with bottom and/or pore waters. The values are

lighter than almost all literature data from nodules and hardgrounds in the Northwestern

Providence Channel (Mullins et al., 1980a; Fig. 4). This indicates warmer or less saline

bottom waters, or a formation in greater sediment depths, where temperatures are higher. A

formation in equilibrium with bottom waters is unlikely, as the 18O-values of Hole 633A are

not higher than those observed at Site 1006, although the bottom waters are colder at this

location, i.e. 8° C at Site 633 versus 10° C at Site 1006. Great sediment depths are also

unlikely, as the 18O-values of our nodules match with bulk 18O-values measured by

Reuning et al. (2005) for diagenetic calcite from Hole 1006A in depths of 0-50 mbsf.

Page 74: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part II

58

Fig. 5: Dissolution Indices and total organic carbon (TOC) content of Holes 633A (a-d) and 1006A (e-g).a) Limacina inflata Dissolution Index (LDX), the dashed line represents the threshold value to significant dissolution; b) and e) Aragonite Fragmentation Index (AFX); c) and f) Fragmentation Index (FI); d) and g) TOC value. MIS = Marine Isotope Stage. Grey bars indicate glacial stages.

The carbon isotopes in our nodules show values of 1.5-3 ‰, approx. 0.5 ‰ lighter to

those measured in bulk sediments from Tongue of the Ocean (Schlager and James, 1978) and

the northwestern Providence Channel (Mullins et al., 1980a), thus corroborating the theory for

in-situ formation. Furthermore, our oxygen and carbon isotope values correspond with the

Page 75: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Compositional variations and early diagenetic processes in Quaternary periplatform sands

59

diagenetic facies of the “shallow-burial periplatform realm”, proposed by Dix and Mullins

(1992). However, the matrix material of the nodules consists of a large amount of

coccolithophorids. Thus, it is possible that the oxygen and carbon isotopic data may reflect

the isotopic composition of the coccolithophorid carbonate rather than the isotopic

composition of the LMC cements. Nevertheless, as a transport from the platform top is

improbable (see chapter 5.1.) and the isotope values show the expected values for an in-situ

formation in equilibrium with pore waters, we suggest an in-situ formation of nodules in

sediment depths of less than 50 mbsf.

Fig. 6: TOC of 633A plotted against the amount of nodules in corresponding samples. Average TOC values of 0.1% were measured over the whole range of nodule abundances, with slightly higher TOC values towards less amounts of nodules. No distinct trend is visible. However, highest TOC values correspond to low nodule amounts of less than 40%, while highest nodule amounts correspond with TOC values lower than 0.1%.

This assumption corresponds to the previous suggestion of Mullins et al. (1980a), that

these nodules have formed in situ by differential submarine cementation of deep-water

carbonate sediment, or during early marine-burial diagenesis (Malone et al., 1990; 2001;

Mullins et al., 1980a, 1985b). The alteration principally involves the selective dissolution of

aragonite and HMC and reprecipitation of LMC (e.g. Mullins et al., 1985b). In both Holes

633A and 1006A, high relative abundances of nodules are paralleled by low values or the

absence of pteropods in the sand fraction, which would suggest their dissolution and partial

recrystallization as calcite cements. The fine fraction aragonite, containing mainly coralline

and algae needles, shows no such correlation with the nodules record (Fig. 2, 3), indicating

that the fine-fraction aragonite rather shows the variability of production than the degree of

dissolution. The AFX confirms that aragonite has been heavily dissolved in the sand fraction

Page 76: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part II

60

of the Early Pleistocene of both Sites, a time interval, where nodules are most abundant. In

contrast, the FI, which reveals the dissolution of the dominant low-Mg calcite components in

the sand fraction (e.g. Berger, 1970), shows no or little dissolution in all samples of both

locations. LDX and AFX increase with an increasing amount of nodules, suggesting an

important influence of the dissolution of aragonite on the formation of nodules (Fig. 5a,b,e). It

seems, that the more aragonite is dissolved and thus carbonate ions are added to the pore

fluids, the more calcite cements are precipitated, i.e. nodules are produced. Further support for

the dissolution of metastable carbonate phases in the Early Pleistocene sediments comes from

mineralogical analyses of the fine fraction (<63 µm; Rendle et al., 2000): below ~35 mbsf at

Site 1006, where highest abundances of nodules occur, HMC is absent. In Hole 633A the

sediment constituents composed of HMC seem to be mostly dissolved, as the HMC record

shows minor values of less than 15% and is totally absent below 6 mbsf.

Aragonite and HMC dissolution could have been favoured by the degradation of

organic matter. The microbial oxidation of organic matter may lead to supralysoclinal

dissolution of carbonate (Emerson and Bender, 1981; Emerson et al., 1985; Hales and

Emerson, 1996, 1997; Jahnke et al., 1994, 1997; Milliman et al., 1999; Schulte and Bard,

2003). However, supralysoclinal dissolution at the sediment-water interface is unlikely for

modern sediments at the margins of the GBB (Schwarz and Rendle-Bühring, 2005), due to a

rather deep aragonite lysocline at 3700 to 4500 m water depth (Droxler et al., 1988a) in

connection with low input of TOC. The core locations have during the Pleistocene and

Holocene always been above the aragonite lysocline. Therefore, we conclude that a formation

of nodules at the sediment-water interface can be excluded, suggesting a nodule formation

within the sediment. A high organic carbon content leads to an increased sulphate reduction,

and thus to a lower pH in the interstitial waters, therefore initiating the dissolution of

aragonite (Canfield and Raiswell, 1991; Reuning et al., 2006). In both of our cores, highest

relative abundances of nodules correspond to low TOC values (Fig. 5 d, g and 6). Organic

matter seems to be reduced due to enhanced degradation, thus producing layers with increased

nodule abundances. Initial values can hardly be determined due to diagenetic overprint;

nevertheless, as TOC value in layers which are barely influenced by diagenesis are less than

0.5%, we assume that initial values have probably been less than or around 0.5% in all

samples.

Page 77: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Compositional variations and early diagenetic processes in Quaternary periplatform sands

61

5.3. Early diagenetic processes

The sediments we studied seem to be influenced by early marine diagenesis, which are

driven by seawater-derived pore waters being washed through the sediment. At Site 633,

aragonite dissolution in the sand fraction and the formation of nodules increase with

increasing core depth. Aragonite dissolution results in an increase of strontium (Sr2+) in the

pore water (Dix and Mullins 1988b; Malone et al., 1990). Accordingly, the Sr2+ record

steadily increases with increasing core depth (Swart and Guzikowski, 1988; Fig. 7a).

Recrystallization of calcite cements occurs as result of the flux of highly saturated bottom

waters through the sediment. Dix and Mullins (1988a) propose a two stage concept of

shallow-burial diagenesis in a core, located in the Exuma Sound; the first stage is extensive,

rapid diagenesis in the upper few meters due to marine-derived pore fluids; the second stage is

characterized by a decreased diagenetic rate, smoothing the initial diagenetic overprinting. A

similar situation might exist in Hole 633A, also located in the Exuma Sound, albeit 1000 m

deeper. The early diagenesis would be responsible for the short-time oscillations of nodules.

The overall increase of nodules with increasing core depth might be due to a second stage

diagenesis.

The samples of Hole 1006A show a similar aragonite-dissolution pattern as in Hole

633A. Nodular layers, however, appear only in the lower part of the studied core interval: the

most shallow nodular layers occur in 30 mbsf (MIS 22), except of one single layer at 13,5

mbsf (MIS 10). The constantly low Sr2+-values down to 25 mbsf in Hole 1006A (Fig. 7b;

Kramer et al., 2000) supports the idea of the transport of strontium out of the pore waters after

the dissolution of aragonitic particles. Between the surface and 25 mbsf there are steadily low

values in various interstitial water records (Kramer et al., 2000). The authors suggest that the

upper 25 m of the sediment at this location are a so-called flush zone, where pore-water is

mixed with marine bottom waters. We assume that this mixing is responsible for the transport

of Sr2+ out of the sediment.

The more water is washed through the sediment, the more cements are built. This is in

contrast to the scarce cements in the upper part of Hole 1006A, which is characterized by the

flush zone. This may be explained by an undersaturation of the bottom waters, caused by the

corrosive Antarctic Intermediate Water (AAIW). Site 633 is located within North Atlantic

Deep Water (NADW), which is oversaturated with respect to carbonate. In contrast, the

bottom waters at Site 1006 are today within the level of AAIW, which flows from the

Carribean Sea through the Florida Straits to the western margin of the Great Bahama Bank

(Mooers and Maul, 1998), before it gets fully mixed with surrounding water masses: previous

Page 78: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part II

62

studies with surface samples have shown, that the AAIW is a plausible reason for the

dissolution of aragonite in water depths of 800-1000 m in the Florida Straits (Schwarz and

Rendle-Bühring, 2005).

Fig. 7: Comparison of the amount of nodules with the Sr2+-gradients of Holes 1006A (Kramer et al., 2000) and 633A (Swart and Guzikowski, 1988). The dashed line in the nodules record of Hole 633A shows the average values.

In the present state, the sediment at Site 1006 moves through 25-30 m of sediment

influenced by the flush zone, where the AAIW prevents the formation of cements, i.e.

nodules. In a depth of 25-30 mbsf, below the flush zone, where the alkalinity in the pore

waters is increased (Kramer et al., 2000), cementation occurs. If the depth of the flush zone

changes, the cementation depth will also change. The following scenario might be responsible

for the singular layer of nodules in 10-15 mbsf: The Florida Current diminishes in strength,

therefore the AAIW percolates into shallower depths of the sediment, in this case less than

10 mbsf. In 10-15 mbsf, the alkalinity increases and cementation occurs. In a subsequent

deepening of the flush zone to the present depth of 25-30 mbsf, the nodules will not be

dissolved due to their calcite cements. The depth of the singular nodule layer does not tell the

exact age of the diminution of the flush zone. The isotope values do not help to clarify this

problem either as the temperature of the pore waters are constant through the upper 30 mbsf at

Site 1006. However, the age is restricted to a time period younger than MIS 9, where the

nodules occur. A diminution of the Florida Current most probably occurred during a glacial

stage, when sea level was low and the Florida Current moved west to the deeper part of the

Florida Straits.

Page 79: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Compositional variations and early diagenetic processes in Quaternary periplatform sands

63

Our results show that the upper 30 mbsf of Site 1006 are characterized by convection,

and probably not by a low reactivity of the sediment, as indicated by Kramer et al. (2000).

This convection prevents the development of gradients in the pore waters, and thus an

increase of the alkalinity. We assume that the flush zone was established at least since

MIS 22, where the lack of nodules begins (with varying depths, see above): already existing

calcite cements in older sediments than MIS 22 would have endured a flushing with AAIW,

whereas in younger sediments the cementation would not have started after the flushing.

6. Conclusions 1. Compositional variability in the coarse fraction does not reciprocate the glacio-

eustatic sea-level cyclicities observed in the mineralogy and grain-size data. Planktonic

foraminifera, pteropods, and nodules are the main constituents of the coarse fraction at both

locations. Planktonic foraminifera occur regularly throughout the studied core intervals,

whereas temporal variations occur in the distribution of pteropods and nodules. The

dichotomy of the pteropod occurrence (abundant in the upper part, absent in the lower part of

both cores) is interpreted to represent different preservation states due to early diagenetic

processes. Nodules are the product of diagenetic processes, i.e. the recrystallization of calcite

cements subsequent to the dissolution of aragonite. The abundance pattern of nodules is only

indirectly influenced by climate change, e.g. via variations in the sedimentation rate. While

the mineralogy of periplatform sediments reflects cyclic flooding, the composition of the sand

fraction is mainly controlled by diagenesis, and only indirectly by climate change. Therefore,

it is impossible to clearly distinguish between glacial and interglacial sediments by census

counting of the sand fraction.

2. The preservation state of the periplatform ooze is variable as indicated by the

nodules. These irregular, light nodules, which include various planktonic foraminifera,

coccolithophorids, biogenic debris, rare aragonitic needles, and solitary low-Mg calcite

crystals, can constitute up to nearly 100% of the sand fraction. Carbon and oxygen isotope

analyses have shown that the nodules have formed in situ, within the sediment. We suggest

that the dissolution of aragonite and the subsequent recrystallization of calcite cements, i.e.

the formation of nodules, are early marine diagenetic processes. The overall higher amounts

of nodules at Site 633 seem to be due to lower sedimentation rates on the erosional margin in

the Exuma Sound. The generally lower amounts of nodules at Site 1006 on the western

margin of Great Bahama Bank could be affected by the high sedimentation rates at this

accretionary margin. The nodules occur during the whole time period studied at Site 633 with

Page 80: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part II

64

increasing amounts downcore. This increase might be due to secondary diagenesis. Site 1006

reveals highest nodule amounts in glacial periods during the Early Pleistocene, whereas the

Middle and Late Pleistocene and Holocene mainly shows a lack of nodules. This lack of

nodules in the upper part of Hole 1006A is probably due to the flushing of corrosive AAIW

through the upper 25-30 mbsf. This convection prevents an increase in alkalinity and thus

hinders the formation of cements and therefore the nodules.

3. The conditions and parameters controlling early diagenesis at Sites 633 and 1006 are

a complex interplay between the primary influx of metastable components, sediment

accumulation rates, the carbonate saturation of pore waters, and the seawater saturation.

Variability of seawater saturation can especially be observed at Site 1006, where the

occurrence of nodules depends on the influx of corrosive Antarctic Intermediate Water

(AAIW) into the sediment by convection (so-called flush zone).

7. Acknowledgements

We acknowledge Rüdiger Henrich for the use of his labs, for fruitful discussions in

our working group meetings, and especially for his help with the analyses at the scanning

electron microscope. We thank Monika Segl for the isotope analyses and appreciate the help

of Brit Kockisch for sample preparation and measurements at the Leco. Nicole Meyer and

Inka Meyer did a great job of sample preparation and picking. Special thanks go to Hildegard

Westphal for her helpful contributions and stimulating discussions. Constructive comments

were provided by Leslie Melim and Lars Reuning, which greatly improved the quality of this

manuscript. The samples were provided by the Ocean Drilling Program. This work was

supported by the Deutsche Forschungsgemeinschaft as part of the DFG Research Center

Ocean Margins of the University of Bremen.

Page 81: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Diagenetic alteration of periplatform sediments

65

Chapter 3: DIAGENETIC ALTERATION OF PERIPLATFORM SEDIMENTS:

IMPLICATIONS FOR PALAEOENVIRONMENTAL INTERPRETATIONS BASED

ON GRAIN SIZE

Authors: Schwarz J., Steinke S., Rendle-Bühring R., Reijmer J.J.G.

Status: submitted to Journal of Sedimentary Research

Abstract: A new aspect concerning the alteration of grain sizes from carbonate sediments (Holocene to late

Pliocene) due to diagenetic processes has been addressed in this study. Previous studies have shown that

numerous periplatform sediments around Great Bahama Bank (GBB) contain carbonate nodules, which have

been formed during early diagenesis. These nodules might affect the grain-size pattern in carbonate sediments.

Three cores from the western and eastern margins of GBB (ODP Holes 1006A, 632A, and 633A) were examined

using the fine-fraction amounts (<63 µm) in connection with census counts of the 250-500 µm fraction in order

to determine the linkage of the assemblage of carbonate constituents to the grain-size distribution. Carbonate

nodules were found in all three cores. A comparison of the amount of nodules with the fine-fraction amounts has

shown that initially coarser sediments facilitate the formation of nodules during early diagenesis due to higher

porosities and permeabilities, and increased fluid flow. Furthermore, the formation of nodules increases the

amount of coarse particles in this sediment. However, the differences from the resulting, secondary grain-size

pattern to the initial one vary from core to core. In some cases (Holes 1006A and 632A), the measured grain-size

pattern is similar to the assumed initial one, making grain size feasible to use as a proxy for e.g. relative changes

in sea-level and bottom-water velocities. However, changes were observed in one case (Hole 633A), where a

significant alteration in the down-core trend of the fine-fraction questions the application of grain size for

palaeoenvironmental interpretations. These findings have shown that grain size, although useful, should be used

with caution. In periplatform carbonate sediments, which are shown to have a high diagenetic potential, grain

size should only be used in conjunction with a component analysis to avoid misinterpretation of the grain-size

signal.

Keywords: Great Bahama Bank, Grain Size, Carbonates, Nodules, Neogene

1. Introduction

Grain size in general is a function of availability, transport/depositional processes, and

diagenetic changes (Boggs, 1987). Carbonate sediments around the Great Bahama Bank

(GBB) are characterized by aragonitic and calcitic skeletal constituents of organisms which

lived on top and/or on the slope of the carbonate platform or in the pelagic realm (Illing,

1954; Newell et al., 1959; Purdy, 1963a,b; Beach and Ginsburg, 1980). Therefore, the grain-

size pattern of carbonate sediments mainly depends on productivity (Schlager and James,

1978; Heath and Mullins, 1984), and changes in climate and sea-level (Rendle et al., 2000;

Rendle-Bühring and Reijmer, 2005). When taking these influences into consideration, the

initial grain-size distribution pattern of carbonate sediments can be used to estimate the flux

Page 82: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part II

66

rate of planktonic foraminifera (Lynts et al., 1973), relative changes in sea-level (Glaser and

Droxler, 1991; Trifflemann et al., 1992; Schwartz, 1996; Rendle-Bühring and Reijmer, 2005),

and bottom-current velocities (Glaser and Droxler, 1993). Grain size was also used as an

indicator for transport mechanisms of turbidites (Andresen et al., 2003), for carbonate

dissolution (Berger et al., 1982; Thunell, 1982; Le and Shackleton, 1992; Franz and

Tiedemann, 2002; Schwarz

and Rendle-Bühring, 2005),

and as an important factor

in controlling the slope

angle of carbonate

platforms (Kenter, 1990).

Based on cores

studied from the western

and eastern margins of

GBB, Rendle-Bühring and

Reijmer (2005) observed

different grain-size patterns,

dependent on the margin

type, i.e. erosional versus

accretionary. Rendle et al.

(2000) found that for ODP

Site 1006, located at the

western, accretionary

margin of GBB, a typical

glacial/interglacial grain-

size pattern exists in sediments of the Pleistocene/Holocene epoch: interglacial sediments are

finer, due to an increased input of fine, aragonite-rich sediments from the platform top. In

contrast, at ODP Sites 632 and 633, both located on the eastern, erosional margin of GBB, the

grain-size pattern for marine isotope stages (MIS) 1-21 shows that the amount of the fine

fraction (<63 µm) in interglacial sediments is similar to that observed in glacial sediments due

to the higher input by turbidity currents during interglacials (Rendle-Bühring and Reijmer,

2005).

Fig. 1: Location map for the ODP Holes 632A and 633A, used in thisstudy. Additionally, all cores around Great Bahama Bank containingnodules are shown (Mullins et al., 1980a; Schwarz et al., subm.). GBB =Great Bahama Bank, LBB = Little Bahama Bank.

Page 83: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Diagenetic alteration of periplatform sediments

67

Fig. 2: A model of possible processes involved in thesedimentological and diagenetic change of periplatformcarbonate sediments.

After sedimentation, the initial grain-size pattern of periplatform carbonates may,

however, be changed due to winnowing of the mud-sized fraction of the sediment (Mullins et

al., 1980a; Rendle et al., 2000) and/or due to diagenesis (Munnecke et al., 1997; Westphal et

al., 1999). Around Little and Great Bahama Bank (Northwestern Providence Channel, Exuma

Sound, Santaren Channel, and north of Little Bahama Bank; Fig. 1), sand-sized carbonate

concretions, agglo-merates, or cemented clasts have been found in Pliocene to Holocene

sediments, which have formed during early diagenesis (Mullins et al., 1980a; Droxler et al.,

1988a). The sedimentation model (Fig. 2) illustrates possible stages from initial to secondary

sediment characteristics due to winnowing and diagenetic alteration. After the initial input,

the sediment contains platform-derived material and pelagic organisms of different grain sizes

(Beach and Ginsburg, 1980; Millimann et al., 1993). This input is climatically controlled: sea-

level drops during glacial stages and exposure of the platform reduces the production and

export of fine material on and from

the platform (Schlager and James,

1978; Grammer et al., 1993;

Kievman, 1998). In a second stage

the sediment may be winnowed due

to bottom currents (Mullins et al.,

1980a). Fine material is eroded and

transported away, which increases

the porosity and permeability of the

remaining sediment. This is an

ideal precondition for early

diagenesis (Westphal et al., 1999).

During early diagenesis, dissolution

of metastable carbonate particles

such as high-Mg calcite and

aragonite components (e.g.

pteropods) may cause a re-fining of the sediment (Berger et al., 1982; Thunell, 1982; Le and

Shackleton, 1992). In contrast, cementation produces carbonate nodules (Mullins et al.,

1980a), which themselves might coarsen the sediment.

Page 84: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part II

68

Schwarz et al. (subm.) found nodules in Bahamian cores, which are white to light grey

and irregular, ellipsoidal to more or less rounded in shape, and include various planktonic

foraminifera. A very fine matrix (coccolithophorids, pteropod fragments, planktonic

foraminifera fragments, and aragonitic needles) is bound in the nodules around a nucleus of

sand-sized components (whole planktonic foraminifera or their fragments). Therefore, it could

be assumed that the sediment has been coarsened, i.e. the initial grain-size pattern might have

changed, due to nodule formation. On the other hand, the formation of nodules might have

been enhanced by coarser layers in the sediment: diagenesis has been shown to occur

preferentially within coarse-grained sediments due to the higher porosity (Westphal et al.,

1999). Thus the main questions considered in this paper are how the initial grain-size pattern

has been affected by early diagenesis: 1) Does coarser sediment facilitate the formation of

nodules? 2) Do the nodules, resulting from early diagenetic processes, induce a coarsening of

the sediment? 3) In what way is the validity of grain size used as a proxy for e.g. relative

changes in sea-level or bottom-water velocities influenced by the formation of nodules? The

Bahamian carbonate platform provides us with the opportunity to address these questions due

to the previously observed abundance of diagenetically produced nodules (Mullins et al.,

1980a; Schwarz et al., subm.), and to variable grain-size patterns on the different margin types

(e.g. erosional vs. accretionary; Rendle-Bühring and Reijmer, 2005). Previously published

data on the amount of fine fraction and nodules from ODP Hole 1006A and Holes 632A and

633A from the western and eastern margins of GBB, respectively, form the basis of this study

(Table 1). These pre-existing data will be extended by census counts for Holes 632A (late

Pleistocene to Holocene) and 633A (Pliocene to early Pleistocene; Table 1), and by grain-size

data for Hole 632A (MIS 22-24).

2. Samples and Methods

ODP Holes 632A and 633A were drilled in the Southern Exuma Sound at water depths

of 1996 m and 1681 m, respectively (Fig. 1). A total of 113 samples were taken, from Hole

632A, every 20 cm, extending from the Holocene to the early Pleistocene. The stratigraphic

framework is based on the aragonite cyclicity interpreted by Reijmer et al. (1988). The second

sample set, from Hole 633A (isotope and aragonite stratigraphy based on Droxler et al.,

1988a), extends an existing data set, which comprises census counts in 0-36 mbsf (Schwarz et

al., subm.), with census-count data from 36-55 mbsf (58 samples, taken every 20-40 cm). All

samples were prepared and sieved into the fractions <63 µm, 63-125 µm, 125-250 µm, 250-

500 µm, 500-1000 µm, and greater than 1000 µm. For this study, a further analysis of the

Page 85: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Diagenetic alteration of periplatform sediments

69

250-500 µm fraction was carried out. This fraction, suggested to be the most representative

sand fraction by Wolf and Thiede (1991), was subsequently divided into subfractions. At least

300 specimens per sample were counted for the following components: planktonic

foraminifera, fragments of planktonic foraminifera pteropods, fragments of pteropods,

nodules, coral fragments, and other components, including benthic foraminifera, bivalve and

gastropod shells, ostracods, echinoderms, and undefined skeletal fragments.

Grain-size analyses were carried out on 43 samples of Hole 632A (MIS 22-24). These

data allow us to compare the whole census-count record with the fine-fraction data. A sample

volume of 5 cm3 of bulk sediment was first dried at 60° C, weighed, and then wet-sieved

through a 63 µm sieve. The sand fraction (>63 µm) after drying at 60° C was weighed to

calculate the fine-fraction amount.

Table 1: Data used in this study with references and information on the relevant core, water depth, age,

and core depth.

Core Water Depth

Age Core Depth Data Reference

MIS 1-21 (0-0.86 Ma)

0-25.5 mbsf Fine-fraction amount

Rendle-Bühring and Reijmer, 2005

MIS 22-24 (0.86-0.92 Ma)

25.5-33 mbsf Fine-fraction amount

this Study

ODP Leg 101, 632A(Exuma Sound, eastern margin)

1996 m

MIS 1-24 (0-0.92 Ma)

0-33 mbsf Census counts of 250-500 µm fraction

this Study

MIS 1-21 (0-0.86 Ma)

0-17 mbsf Fine-fraction amount

Rendle-Bühring and Reijmer, 2005

MIS 22 to Early Pliocene (0.86-4.4 Ma)

17-55 mbsf Fine-fraction amount

Droxler et al., 1988a

Holocene to Early Pleistocene (0-1.6 Ma)

0-36 mbsf Amount of nodules

Schwarz et al., subm.

ODP Leg 101, 633A(Exuma Sound, eastern margin)

1681 m

Early Pleistocene to Early Pliocene (1.6-4.4 Ma)

36-55 mbsf Census counts of 250-500 µm fraction

this Study

MIS 1-45 (0-1.4 Ma) 0-65 mbsf Fine-fraction amount

Rendle et al., 2000 ODP Leg 166, 1006A(western margin)

658 m

MIS 1-45 (0-1.4 Ma) 0-65 mbsf Amount of nodules

Schwarz et al., subm.

3. Results

More than 85% of the sediment of Hole 632A consists of the following carbonate

components: planktonic foraminifera, pteropods, both their fragments, and nodules (Fig. 3).

The remaining 15% are coral fragments and other constituents, e.g. benthic foraminifera,

bivalve and gastropod shells, ostracods, and echinoderms. Whole tests of planktonic

foraminifera show values of up to 80% for the 250-500 µm fraction. The foraminifera tests

Page 86: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part II

70

are well preserved; fragments of planktonic foraminifera amount to less than 15% of the 250-

500 µm fraction. In contrast, whole pteropod tests are scarce throughout the core, whereas

pteropod fragments can make up to 80% of the 250-500 µm fraction. Nodules are scarce in

the upper 6 mbsf (MIS 1-7), but show regularly peaks of up to 40% in the lower core section.

Highest amounts of nodules occur in those intervals, where aragonitic particle abundance is

low, i.e. 8-13 mbsf (MIS 10-14) and 17-28 mbsf (MIS 16-22). Moreover, all peak abundances

in the nodules correlated to low abundances in the pteropod-fragments record. The grain-size

record of the measured interval of Hole 632A (25-33 mbsf; Fig. 3) shows fine-fraction

amounts between 30% and 90%. Lowest values correspond to high amounts of planktonic

foraminifera, nodules, and coral fragments.

Fig. 3: Results of the census counts and grain-size analysis of Hole 632A. From left to right the amounts of planktonic foraminifera and their fragments (latter dashed), pteropods and their fragments (latter dashed), nodules, coral fragments, and others, each in percentage of the 250-500 µm fraction, and the amount of fine fraction (<63 µm) are shown. The light grey area covers previously published grain-size data (Rendle-Bühring and Reijmer, 2005). The aragonite stratigraphy is taken from Reijmer et al. (1988). MIS = marine isotope stage. Dark grey bars indicate glacial stages.

From Hole 633A, the core interval from 36 to 55 mbsf (1.6-4.4 Ma) was analysed in this

study (Fig. 4). This sedimentary record is characterized by a large hiatus covering 1.6 Ma at

43 mbsf, and a distinct change in the sediment at 50 mbsf. Here, nodules dominate the

sediment, accompanied by planktonic foraminifera. These two groups together make up more

than 70% of the 250-500 µm fraction. The amount of nodules increases with increasing depth

downcore, from an average of 10% to almost 100%, while the presence of planktonic

foraminifera diminishes with increasing core depth, averaging 35% above the hiatus and 18%

between the hiatus and 50 mbsf. Fragments of planktonic foraminifera are scarce throughout

the record. Below 50 mbsf, the samples consist almost entirely of nodules. There are almost

Page 87: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Diagenetic alteration of periplatform sediments

71

no foraminifera tests or fragments visible as individual components: most of them are

incorporated in the nodules. Pteropods and their fragments, as well as coral fragments, are

rare.

Fig. 4: Results of the census counts of Hole 633A. Pre-existing records (Droxler et al., 1988a; Rendle-Bühring and Reijmer, 2005; Schwarz et al., subm.) incorporated into the data are shaded (light grey). Amounts of planktonic foraminifera and their fragments (latter dashed), pteropods and their fragments (latter dashed), nodules, coral fragments, and others, each in percentage of the 250-500 µm fraction, and the amount of fine fraction (<63 µm) are shown from left to right. The oxygen isotope stratigraphy is taken from Droxler et al. (1988a). MIS = marine isotope stage. Dark grey bars indicate glacial stages.

4. Discussion

The grain-size pattern of periplatform sands generally derives from the interplay

between pelagic and platform-derived carbonate material, and minor amounts of non-

carbonates (Beach and Ginsburg, 1980; Milliman et al., 1993). The census-count results of the

250-500 µm fraction conform to the typical description of periplatform sands, showing high

amounts of planktonic foraminifera and pteropods, minor amounts of neritic materials and

non-carbonates, and sporadic layers of coral fragments. A comparison of the coral fragment

results with the turbidite data of Reijmer et al. (1988) suggests that the coral fragments form

part of turbidite deposits. Nodules can form up to 100% of the sand-sized fraction. The cross

plots in Figure 5 indicate that no consistent trend exists between increasing sediment

coarseness and increasing nodule concentrations. In Hole 1006A only the glacial samples

show an increasing coarseness with increasing amounts of nodules (Fig. 5c; r2 = 0.42 for

glacials, and 0.26 for interglacial samples). In Hole 633A there is a general coarsening trend

of the sediment with increasing amounts of nodules (Fig. 5a; r2 = 0.55), but also a period with

Page 88: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part II

72

very fine sediment and very high amounts of nodules (Fig. 4; 44-50 mbsf). Hole 632A shows

no clear trends at all (Fig. 5e; r2 = 0.46).

4.1. Interplay of grain-size patterns and nodule formation

The best evidence for a coarsening of the sediment due to the formation of nodules is

shown in the results of Site 1006, Figure 5c/d: glacial samples above 30 mbsf (where nodules

are rare; Schwarz et al., subm.) reveal more than 60% fine fraction, while glacial samples

below 30 mbsf, with high amounts of nodules (Schwarz et al., subm.), are much coarser with

fine-fraction values down to 30% (Rendle et al., 2000). The upper 30 mbsf of the core is

characterised by a flush zone (Kramer et al., 2000; Swart, 2000), which hinders the

cementation of calcitic material, i.e. nodules (Schwarz et al., subm.). Further evidence for

sediment coarsening in response to nodule formation is the intense downcore coarsening of

Hole 633A, which is concurrent with a downcore increase in the amount of nodules (Fig. 5a,

b). The core interval between 44 and 50 mbsf, where the fine-fraction signal is, in contrast,

similar to the core top, will be discussed below. In Hole 632A, nodules have a minor

influence on the grain-size distribution (Fig. 5e, f). All the coarse layers correspond to peaks

in the nodule record, but in addition, most of the coarser layers also correspond to high

abundances of coral fragments. The main reason for coarser layers in Hole 632A might

therefore be the impact of turbidites, instead of the formation of nodules.

The linkage of nodules to turbidites in Hole 632A supports our second assumption: the

formation of nodules seems to be facilitated by coarser sediment. This assumption is also

confirmed by the record of Hole 1006A (Fig. 5A): the glacial stages, which are much coarser

than interglacial stages, reveal the highest amounts of nodules. In Hole 633A the glacial

grain-size signal is similar to the interglacial one in the upper 20 mbsf due to the influence of

turbidites (MIS 1-21; Rendle-Bühring and Reijmer, 2005). We assume, that this regular grain-

size pattern was initially true for the whole core section studied (0-55 mbsf). If the assumption

is correct, that changes in the grain size are responsible for the variability in the amounts of

nodules, we would expect a more regular abundance of nodules in Hole 633A than in Hole

1006A. Indeed, the nodule record of Hole 633A shows no individual large peaks as observed

in Hole 1006A, but a rather continuous increase with increasing core depth.

Page 89: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Diagenetic alteration of periplatform sediments

73

Fig. 5: Nodule and grain-size data of all three cores which have been discussed in this study, shown versus age and as cross plots. A) and B) Hole 633A; nodule data are taken from Schwarz et al. (subm.), and from this study. Grain-size data are from Droxler et al. (1988a), and Rendle-Bühring and Reijmer (2005). The age model was calculated with the marine isotope stage (MIS) ages by Tiedemann et al. (1994), supplemented by nannofossil biostratigraphy and magnetostratigraphy data from Droxler et al. (1988a). The R-value in the cross plot equals to 0.55. C) and D) Hole 1006A; nodule data are taken from Schwarz et al. (subm.), grain-size data from Rendle et al. (2000). The age model was calculated according to stratigraphic tie-points given by Kroon et al. (2000a), Henderson et al. (2000), and Toki (unpublished data in Rendle, 2000). The R-value in the cross plot equals to 0.42 for glacial and to 0.26 for interglacial samples. E) and F) Hole 632A; grain-size data are from Rendle-Bühring and Reijmer (2005) and from this study. The age model of Hole 632A was also calculated with MIS ages by Tiedemann et al. (1994). The R-value in the cross plot equals to 0.46.

The interval between 44 and 50 mbsf of Hole 633A (Fig. 4) reveals a composition

different to the otherwise rather regular grain-size and nodule trend, with high amounts of fine

fraction (80-90%) and high amounts of nodules (40-95%). There are two possible

explanations for this: 1) The sediment was initially finer than 80-90% fine fraction; 2) A large

portion of particles smaller than 63 µm has been supplied to the sediment during early

Page 90: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part II

74

diagenesis, i.e. by the fragmentation of carbonate particles (Berger et al., 1982; Thunell, 1982;

Le and Shackleton, 1992). The latter explanation seems more probable, but raises the

question, why would such an intensive fragmentation due to dissolution only have occurred in

this core section? The grain-size signal might reflect the results of nodule formation (i.e.

coarsening of the sediment) and fragmentation of carbonate components (i.e. refinement of

the sediment) as follows: We assume that the fine fraction averaged 80-90% throughout the

studied sequence prior to early diagenesis. This assumption is based on the fact, that most of

the fine-fraction values within the younger part of the core (0-30 mbsf) fall within this range.

Between 30 mbsf and the hiatus at 43 mbsf, the nodule formation is more intense, making the

sediment coarser. Below the hiatus there is the very fine core section with nevertheless high

amounts of nodules. We assume that more intense diagenetic processes, as a result of

dissolution, fragmented all pteropods and part of the planktonic foraminifera in the sand

fraction. This would have refined the sediment (i.e. increased the amount of <63 µm particles)

by at least the same amount that would have been taken out and bound as matrix in the

nodules. The cut in the fine-fraction record at 50 mbsf might be explained by the much more

intensive formation of nodules, totally replacing the initial coarse fraction components. A

more intensive diagenesis, leading to coarser sediments below 50 mbsf, was also stated by

Droxler et al. (1988a).

4.2. Concepts of grain-size alteration

To assess the validity of grain size as proxy for productivity or changes in climate and

sea-level, it is important to differentiate between absolute and relative changes in the grain-

size values (Fig. 6). If only the amplitude of the fine-fraction amount has been changed,

without an alteration in the overall down-core trend (absolute changes; model A in Figure 6),

grain size could still reflect primary influences, such as productivity, sea-level change, or

bottom-water current velocities. In model A the nodule signal reflects the initial grain-size

signal. Absolute changes possibly occur, when the initial grain-size pattern shows prominent

peaks, as observed for the much coarser glacial stages in Hole 1006A or for the turbidite

layers in Hole 632A. In turn, in these cases the initially, relatively coarse layers have

enhanced nodule formation. This confirms our assumption that further coarsening of the

sediment primarily occurs in core intervals where the initial grain size of the sediment was

relatively coarse.

In model B the nodules reflect the proceeding diagenetic alteration with increasing

core depth. These absolute and relative changes, inducing an alteration in the overall down-

Page 91: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Diagenetic alteration of periplatform sediments

75

core grain-size trend (model B in Figure 6), occur in cases where the initial grain-size pattern

is thought to be relatively consistent, as in Hole 633A. In this case there are no major grain-

size variations due to glacial-interglacial sea-level fluctuations or input through gravity

processes such as turbidity currents. We assume that the altered down-core trend of the fine-

fraction amount makes grain-size proxies difficult to use in this core.

Fig. 6: A cartoon of two scenarios how the formation of nodules might affect the initial grain-size pattern; the dashed lines represent a hypothetical initial fine-fraction amount after sedimentation. The full lines represent the record of the nodule amount and of the later measured fine-fraction amount, after post-depositional processes, such as nodule formation through early diagenesis, have occurred. A) In the first scenario the grain-size values change in amplitude (absolute changes), but the overall trend down-core and the position of major peaks remain the same. The nodule record also reflects the initial grain-size signal with highest amounts, where the sediment was coarser. B) Absolute and relative changes in the grain-size values alter the overall trend downcore as a result of post-depositional processes which lead to loss or overprinting of the initial grain-size pattern. The nodule record reflects the proceeding diagenetic alteration with increasing core depth.

5. Conclusions

1. The initial grain-size pattern affects the formation of nodules: Coarser layers, deposited

due to changes in the sediment export pattern of the platform during glacials or due to

increased turbidity current activity, facilitate the formation of nodules. This is possibly

due to the higher porosities and permeabilities leading to increased pore water

movement which in turn facilitate the diagenetic alteration of the sediments.

2. In turn, the formation of nodules through diagenesis induces the binding of fine material

in the nodule matrix. This leads to a further (secondary) coarsening of the sediment.

This has been shown to have occurred in all three cores. However, the differences from

the resulting, secondary grain-size pattern to the initial one vary from core to core: In

Page 92: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part II

76

one case, coarse material (>63 µm) increases over almost the entire core record (Hole

633A) with increasing amounts of nodules. In the other case, the two other cores (Holes

632A and 1006A) are characterized by single peaks of coarse sediment which contain

high amounts of nodules.

3. The fine-fraction amount of Hole 1006A and Hole 632A is interpreted to be similar to

the initial one, making grain size feasible to be used as a proxy for Neogene

palaeoceanographic changes. In contrast, Hole 633A experienced significant changes in

the overall grain size of the sediment down-core, which makes it less reliable as a proxy

for e.g. relative changes in sea-level or bottom-water current velocities. Our results

show the complexity of diagenesis and its influence, even in cases where the sediment

types are very similar and located close to one another. If diagenetically overprinted

grain-size patterns are misleadingly interpreted as initial ones, bottom current velocities

may be overestimated, dissolution and transport mechanisms incorrectly determined,

and slope angles uncorrectly calculated. To avoid misinterpretation of the grain-size

pattern which may have been affected by post-depositional diagenetic processes, grain

size must be used with caution and in conjunction with a component analysis.

6. Acknowledgements

Special thanks go to Hildegard Westphal for her stimulating discussions. We thank

Inka Meyer for the sample preparation and picking. André Droxler kindly provided the Site

633 samples. Other samples were provided by the Ocean Drilling Program. This work was

supported by the Deutsche Forschungsgemeinschaft as part of the DFG Research Center

Ocean Margins of the University of Bremen.

Page 93: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

77

Part III

Summary

Page 94: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part III

78

1. Conclusions

This study focused on two main aspects of carbonate alteration: 1) the occurrence of

aragonite dissolution above the chemical lysocline in surface samples from the Florida Straits

and around Great Bahama Bank (GBB), and 2) the spatial and temporal distribution of

diagenetically produced carbonate concretions in Pliocene to Holocene sediments from the

western margin of GBB and the Exuma Sound. This includes the conditions of their

formation, and their interplay with the grain-size distribution of the surrounding sediment.

1.1. Supralysoclinal dissolution of aragonite

The preservation state of aragonitic pteropods was tested in surface samples from the

Florida Straits and the Northwestern and Northeastern Providence Channel (north of

GBB) in order to examine the presence of supralysoclinal dissolution. Within the

Florida Straits, supralysoclinal aragonite dissolution was observed at two water

depths; at 800-1000 m and below 1500 m, but only in samples from the northern rim.

No supralysoclinal dissolution was observed in the surface sediments of the Bahama

region. Here, the aragonite particles were well preserved down to the aragonite

lysocline at 3700 m water depth.

The reason for supralysoclinal dissolution might be the degradation of organic

material: highest values of total organic carbon have been observed with coevally

highest rain ratios at the water depths, where the pteropod preservation state suggest

dissolution. Another contributing factor may be Antarctic Intermediate Water

(AAIW), which by previous hydrographic studies has been suggested to extend into

the Straits of Florida. In contrast, it is assumed that in the area around GBB, the

bottom water masses are highly saturated with respect to calcite and aragonite at least

down to 3700 m water depth, and that there is no inflow of AAIW into the intra-

platform channels from the open Atlantic.

The recently developed Limacina inflata Dissolution Index (LDX) is a feasible proxy

for the examination of differences in carbonate preservation due to the varying

influences of different water masses. It might therefore be an adequate proxy to

reconstruct palaeo-water mass conditions in areas which are highly saturated with

respect to calcium carbonate.

Page 95: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Conclusions and Outlook

79

1.2. Spatial and temporal distribution of nodules (diagenetic products)

Census counts of the 250-500 µm fraction of Pliocene to Holocene carbonate

sediments from the western margin of GBB (Ocean Drilling Program [ODP] Site

1006) and Exuma Sound (ODP Sites 632 and 633) revealed variable abundances of

carbonate concretions. These irregular, light coloured concretions (termed as

“nodules”), which include various planktonic foraminifera, coccolithophorids,

biogenic debris, rare aragonitic needles, and solitary low-Mg calcite crystals, can form

a major part of the sand fraction.

Planktonic foraminifera, pteropods, and nodules are the main constituents of the 250-

500 µm fraction in both sites. Planktonic foraminifera occur regularly throughout the

core, whereas temporal variations occur in the distribution of pteropods and nodules:

pteropods, including pteropod fragments, are abundant in the recent sediments at the

core top and diminish with increasing core depth to become almost totally absent in

sediments older than Middle Pleistocene at Sites 1006 and 633. This decline of

aragonitic sand-sized particles is attributed to early diagenetic processes in

periplatform carbonate sediments, i.e. fragmentation and dissolution of metastable

CaCO3 components such as aragonite. At Site 632, pteropod fragments are also

abundant in early Pleistocene sediments, which might be the result of less intensive

dissolution processes in this core.

Based on the mineralogy of periplatform sediments, the highstand shedding principle

of carbonate sedimentation in response to climate change has been defined: The

mineralogy of the mud fraction clearly reflects the cyclic flooding of the platform in

response to sea-level high- and low-stands. In contrast, the composition of the sand

fraction, including the abundance pattern of nodules, is only indirectly affected by

climate change, e.g. via variations in the sedimentation rate or in grain size, whereas

diagenesis is a more important controlling factor. Therefore, it is impossible to clearly

distinguish between glacial and interglacial sediments by census counts of the sand

fraction.

1.3. Formation conditions of nodules

Nodules are associated with low amounts of aragonitic, sand-sized particles. The

obvious conclusion is that nodules are built where the dissolution of aragonite releases

carbonate ions into the pore waters, which could subsequently be recrystallized to

calcite cements to form the nodules. However, scanning electron microscope pictures

Page 96: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part III

80

of the nodules´ interior structure revealed only minuscule cement crystals, and no

pore-filling cement clusters. Therefore the few cement crystals cannot be the only

binding material of the nodules. It is assumed that coccolithophorids and other

fragments link together mechanically to encrust foraminifera tests and fragments.

After this initial stage, more fine fraction material is linked mechanically to these

aggregates, maybe with some support by organic material, to build larger nodules.

Carbon and oxygen isotope analyses have shown that the nodules have formed in situ,

within the sediment, suggesting that the dissolution of aragonite and the formation of

nodules are processes of shallow marine-burial diagenesis. The higher amounts of

nodules at Site 633 than at Sites 1006 seem to be due to lower sedimentation rates on

the erosional margin in the Exuma Sound. Site 1006 is located on GBB´s relatively

flat, western accretionary margin. The steady increase in nodules with increasing core

depth at Site 633, which has not been observed in the other two cores, might be due to

a second stage diagenesis.

Site 1006 lacks nodules in sediments from Middle Pleistocene to Holocene. This lack

of nodules in the upper part (above 30 mbsf) of the core could be due to the flushing

of corrosive waters derived from e.g. AAIW through the upper 25-30 mbsf (so-called

flush zone). This convection prevents an increase in alkalinity and thus hinders the

formation of cements and the formation of nodules.

The results of this thesis show that the parameters controlling early diagenesis at Sites

632, 633 and 1006 are the primary influx of metastable components, sediment

accumulation rates, the carbonate saturation of pore waters, and the seawater

saturation.

1.4. Interplay of the grain-size distribution and the formation of nodules

The abundance pattern of nodules is not consistent in each of the three studied cores

(ODP Sites 632, 633, and 1006). It is dependent on the grain-size distribution which

also differs from core to core. On the other hand, the formation of significant amounts

of nodules may affect the grain-size due to the bounding of fine material (<63 µm)

into sand-sized nodules (>63 µm). Both assumptions have been confirmed by the

results of this study: Coarser layers deposited due to changes in the sediment export

pattern of the platform during glacials or due to increased turbidity current activity,

facilitate the formation of nodules. This is possibly due to the higher porosities and

permeabilities leading to increased pore water movement which in turn increases the

Page 97: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Conclusions and Outlook

81

diagenetic potential of a sediment. In turn, a further coarsening of the sediment by the

formation of nodules has been shown to have occurred in all three cores. The results

have led to a model which might asses the validity of using grain size as a proxy for

any changes of the palaeoenvironment. Two different cases have been observed in the

cores and form the basis of the model. One case occurs, when the hypothetical initial

(i.e. pre-nodule-formation) grain-size pattern shows intermittent prominent peaks, as

observed for the much coarser glacial stages at Site 1006 or for the turbidite layers at

Site 632. Enhanced nodule formation occurred in these relatively coarse layers; the

nodule signal therefore reflects the trend of the initial grain-size pattern. In the second

case, where the initial grain-size pattern is rather consistent, as at Site 632, the nodules

reflect the proceeding diagenetic alteration with increasing core depth, inducing an

alteration in the overall down-core grain-size trend.

These findings show the complexity of diagenesis and its influence on periplatform

sediments, even in cases where the sediment types are very similar and located close

to one another. If diagenetically overprinted grain-size patterns are interpreted as

initial ones, bottom current velocities may be overestimated, dissolution and transport

mechanisms incorrectly determined, and slope angles incorrectly calculated. In

sediments with a high diagenetic potential, such as periplatform carbonates, grain size

should only be used in conjunction with a component analysis to avoid

misinterpretation.

2. Outlook

Further studies on nodules are important because nodules form a considerable voume

of periplatform carbonates. Nodules form a “window” to look into the process of lithification.

Further studies of spatial distribution of nodules would gain more information about the

conditions of nodule formation. Do they also occur on other carbonate platform systems, e.g.

rimmed platforms, ramps, or mixed siliciclastic-carbonate platform systems? Is there a

distinct water-depth window, where they occur? It is now known that the formation of

nodules is controlled by the grain-size distribution of the surrounding sediment. Little is

known, however, about the exact mechanism of the diagenetic processes that form them.

Therefore, it is necessary to understand how much and which type of cement is being built,

which mineralogy the cement has (high- or low-Mg calcite), and how the pore water

chemistry changed before and during the formation of the nodules. This study presents some

ideas and assumptions, but could not fully answer these questions. Another important

Page 98: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part III

82

question is in which way palaeoceanographic and palaeoclimatic changes such as sea-level

change, glacial-interglacial cyclicity, the change from 40-ky cycles to 100-ky cycles (the so-

called Mid-Pleistocene Revolution, occurring at 900 ky BP), changes in the velocity of

bottom waters, and changes in the productivity, did directly or indirectly influence the

formation of the nodules. In other words, does the nodule record reflect current changes in the

ocean and atmosphere, or changes within the sediment column (pore water chemistry,

alkalinity, etc.), or both? A spectral analysis of the nodule record of Site 633 might give

answers to this question. However, a higher resolution of census counts and an exact

stratigraphy are necessary in order to perform a spectral analysis.

Lantzsch et al. (in press) found similar carbonate concretions as Mullins et al. (1980a)

in sediments north of Little Bahama Bank. They mostly occur at the transitions from glacial to

interglacial stages and vice versa, and are, in contrast to the nodules observed in this study,

interpreted to be the result of redeposition events during changes in sea level. There might be

different transport systems or even different early diagenetic processes present in the two

regions. Another interesting topic is the temporal distribution of nodules in older sediments

than those that have been examined in this study. Does the occurrence of nodules steadily

extend into older sediments or are there, in contrast, older core intervals without nodules?

This information could be important for the understanding of the transition of early, shallow-

burial diagenetic processes, in this case the nodule formation, to late, deep-burial diagenetic

processes.

Page 99: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

83

Part IV

References

Page 100: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part IV

84

Adler, M., Hensen, C., Wenzhöfer, F., Pfeifer, K., Schulz, H.D., 2001. Modeling of calcite dissolution by oxic respiration in supralysoclinal deep-sea sediments. Mar. Geol., 177, 167-189.

Alexandersson, T., 1972. Intragranular growth of marine aragonite and Mg-calcite: evidence of precipitation from supersaturated seawater. J. Sediment. Petrol., 42, 441-460.

Andresen, N., 2000. Sediment composition of pleriplatform sediments and calciturbidites around Pedro Bank, southwestern Caribbean Sea. Unpublished Ph.D. Thesis, Christian-Albrechts-University, Kiel, Germany, 161 pp.

Andresen, N., Reijmer, J.J.G., Droxler, A.W., 2003. Timing and distribution of calciturbidites around a deeply submerged carbonate platform in a seismically active setting (Pedro Bank, Northern Nicaragua Rise, Caribbean Sea). Int. J. Earth Sci., 92, 573-592.

Anselmetti, F.S., Eberli, G.P., Ding, Z.O., 2000. From the Great Bahama Bank into the Straits of Florida: A margin architecture controlled by sea level fluctuations and ocean currents. GSA Bull., 112 (6),829-844.

Antoine, D., André, J.-M., Morel, A., 1996. Oceanic primary production, 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Global Biogeochem. Cy., 10 (1), 57-69.

Archer, D., Emerson, S., Smith, C.R., 1989a. Dissolution of calcite in deep-sea sediments: pH and O2

microelectrone results. Geochim. Cosmochim. Acta, 53, 2831. Archer, D., Emerson, S., Smith, C.R., 1989b. Direct measurement of the diffusive sublayer at the deep sea floor

using oxygen microelectrodes. Nature, 340, 623-626. Arrhenius, G., 1952. Sediment cores from the east Pacific. Reports Swedish Deep-Sea Expeditions 1947-1948, 5,

1-228.Atkinson, L.P., Berger, T., Hamilton, P., Waddell, E., Leaman, K., Lee, T.N., 1995. Current meter observations

in the Old Bahama Channel. J. Geophys. Res., 100 (C5), 8555-8560. Austin, Jr., J.A., Schlager, W., Comet, P.A., et al., 1986. Proc. ODP, Initial Rep., 101, College Station, Texas,

556 pp. Bainbridge, A., 1981. Hydrographic data 1972-1973. In the collection: GEOSECS Atlantic expedition. Natl. Sci.

Found. Washington, DC, United States. 121 pp. Barker, R.W., 1960. Taxonomic notes on the species Fig.d by H.B. Brady in his report on the foraminifera

dredged by H.M.S. Challenger during the years 1873-1876. SEPM Spec. Pub. No. 9, 238 pp. Bathurst, R.G.C., 1971. Carbonate sediments and their diagenesis. Dev. Sediment. 12, Elsevier, Amsterdam,

620 pp. Bé, A.W.H., 1977. An ecological, zoogeographic and taxonomic review of recent planktonic foraminifera, in:

Ramsay, A.T.S. (Ed.), Oceanic Micropaleontology. Academic Press, San Diego, pp. 1-100. Bé, A.W.H., Morse, J.W., Harrison, S.M., 1975. Progressive dissolution and ultrastructural breakdown of

planktic foraminifera, in: Berger, W.H. (Ed.), Dissolution of Deep-Sea Carbonates. Cushman Found., Spec. Publ. No. 13, Allen Press, Kansas, pp. 27-55.

Beach, D.K., 1982. Depositional and diagenetic history of Pliocene-Pleistocene carbonates of northwestern Great Bahama Bank: Evolution of a carbonate platform. Unpubl. PhD thesis, University of Miami, Florida, 447 pp.

Beach, D.K., Ginsburg, R.N., 1980. Facies succession, Plio-Pleistocene carbonate, northwestern Great Bahama Bank. AAPG Bull., 64, 1634-1642.

Berelson, W.M., Hammond, D.E., Cutter, G.A., 1990. In situ measurements of calcium carbonate dissolution rates in deep-sea sediments. Geochim. Cosmochim. Acta, 54, 3013-3020.

Berger, W.H., 1968. Planktonic foraminifera: selective solution and paleoclimatic interpretation. Deep-Sea Res., 15, 31-43.

Berger, W.H., 1970. Planktonic foraminifera: selective solution and the lysocline. Mar. Geol., 8, 111-138. Berger, W.H., 1973. Deep-sea carbonates: Pleistocene dissolution cycles. J. Foramin. Res., 3(4), 187-195. Berger, W.H., 1975. Deep-sea carbonates: dissolution profiles from foraminiferal preservation. In: Sliter, W.V.,

Bé, A.W.H., Berger, W.H. (Eds.), Dissolution of Deep-Sea Carbonate. Cushman Found. Foraminiferal Res., Spec. Publ. No. 13, 82-86.

Berger, W.H., 1978. Deep-sea carbonate: pteropod distribution and the aragonite compensation depth. Deep-Sea Res., 25, 447-452.

Berger, W.H., Keir, R.S., 1984. Glacial-Holocene changes in atmospheric CO2 and the deep-sea record, in: Hansen, J.E., Takahashi, T. (Eds.), Climate processes and climate sensitivity. Geophys. Monograph, 29, 337-351.

Berger, W.H., Bonneau, M.-C., Parker, F.L., 1982. Foraminifera on the deep-sea floor: lysocline and dissolution rate. Oceanol. Acta, 5 (2), 249-258.

Berger, W.H., Bickert, T., Schmidt, H., Wefer, G., Yasuda, M., 1993. Quaternary oxygen isotope record of pelagic foraminifers: Site 805, Ontong Java Plateau, in: Berger, W.H., Kroenke, L.W., Mayer, L.A., et al. (Eds.), Proc. ODP, Sci. Results, 130, College Station, Texas, pp. 363-379.

Berner, R., 1977. Sedimentation and dissolution of pteropods in the ocean, in: Andersen, N.R., Malahoff, A. (Eds.), The fate of fossil fuel CO2 in the oceans. Plenum Press, New York, London, pp. 243-260.

Page 101: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

References

85

Berner, R.A., Berner, E.K., Keir, R.S., 1976. Aragonite dissolution on the Bermuda Pedestal: its depth and geochemical significance. Earth Planet. Sci. Lett., 30, 169-178.

Biscaye, P.E., Kolla, V., Turekian, K.K., 1976. Distribution of calcium carbonate in surface sediments of the Atlantic Ocean. J. Geophs. Res., 81, 2595-2603.

Boardman, M.R., 1978. Holocene deposition in Northwest Providence Channel, Bahamas: A geochemical approach. Ph.D. thesis, Univ. North Carolina, Chapel Hill, 155 pp.

Boardman, M.R., Neumann, A.C., 1984. Sources of periplatform carbonates: Northwest Providence Channel, Bahamas. J. Sediment. Petrol., 54 (4), 1110-1123.

Boardman, M.R., Neumann, A.C., Baker, P.A., Dulin, L.A., Kenter, R.J., Hunter, G.E., Kiefer, K.B., 1986. Banktop responses to Quaternary fluctuations in sea level recorded in periplatform sediments. Geology, 14, 28-31.

Boggs, S., Jr., 1987. Principles of Sedimentology and Stratigraphy, Merrill Publ. Co., Columbus, Ohio. 784 pp. Boltovskoy, E., Totah, V.I., 1992. Preservation and preservation potential of some foraminiferal species. J.

Foramin. Res., 22 (3), 267-273. Broecker, W.S., 1971. A kinetic model for the chemical composition of sea water. Quat. Res., 1, 188-207. Broecker, W.S., Peng, T.-H., 1982. Tracers in the Sea, Lamont-Doherty Geol. Observatory, Palisades, N.Y.,

690 pp. Broecker, W.S., Takahashi, T., 1966. Calcium carbonate precipitation on the Bahama Banks. J. Geophys. Res.,

1, 1575-1602.Broecker, W.S., Takahashi, T., 1978. The relationship between lysocline depth and in situ carbonate ion

concentration. Deep-Sea Res., 25, 65-95. Brooks, G.R., Doyle, L.J., Davis, R.A., DeWitt, N.T., Suthard, B.C., 2003. Patterns and controls of surface

sediment distribution: west-central Florida inner shelf. Mar. Geol., 200, 307-324. Brunner, C.A., 1986. Deposition of a muddy sediment drift in the Southern Straits of Florida during the late

Quaternary. Mar. Geol., 69, 235-249. Byrne, R.H., Acker, J.G., Betzer, P.R., Feely, R.A., Cates, M.H., 1984. Water column dissolution of aragonite in

the Pacific Ocean. Nature, 312, 321-326. Caldeira, K., Wickett, M.E., 2003. Anthropogenic carbon and ocean pH. Nature, 425, 365. Canfield, D.E., Raiswell, R., 1991. Carbonate precipitation and dissolution – Its relevance to fossil preservation,

in: Allison, P.A., Briggs, D.E.G. (Eds.), Taphonomy: Releasing the data locked in the fossil record, topics in geobiology, 9, Plenum Press, New York, pp. 411-453.

Chave, K.E., Schmalz, R.F., 1966. Carbonate-seawater interactions. Geochim. Cosmochim. Acta, 30, 123-140. Chave, K.E., Deffeyes, K.S., Weyl, P.K., Garrels, R.M., Thompson, M.E., 1962. Observations on the solubility

of skeletal carbonates in aqueous solution. Science, 137, 33-34. Cloud, P.E., Jr., 1962. Environment of calcium carbonate deposition west of Andros Island, Bahamas, U.S. Geol.

Survey, Prof. Paper, 350, 138 pp. Crevello, P.D., Schlager, W., 1980. Carbonate debris sheets and turbidites, Exuma Sound, Bahamas. J.

Sediment.. Petrol., 50, 1121-1148. Dittert, N., Baumann, K.-H., Bickert, T., Henrich, R., Huber, R., Kinkel, H., Meggers, H., 1999. Carbonate

dissolution in the deep-sea: methods, quantification and paleoceanographic application, in: Fischer, G., and Wefer, G. (Eds.), Use of Proxies in Paleoceanography: Examples from the South Atlantic. Springer-Verlag, Berlin, pp. 255-284.

Dix, G.R., Mullins, H.T., 1988a. A regional perspective of shallow-burial diagenesis of deep-water periplatform carbonates from the northern Bahamas, in: Austin, J.A., Jr., Schlager, W. (Eds.), Proc. ODP, Sci. Results, 101, College Station, Texas, pp. 279-302.

Dix, G.R., Mullins, H.T., 1988b. Rapid burial diagenesis of deep-water carbonates: Exuma Sound, Bahamas. Geology, 16, 680-683.

Dix, G.R., Mullins, H.T., 1992. Shallow-burial diagenesis of deep-water carbonates, northern Bahamas. Results from deep-ocean drilling transects. GSA Bull., 104, 303-315.

Droxler, A.W., Schlager, W., 1985. Glacial versus interglacial sedimentation rates and turbidite frequency in the Bahamas. Geology, 13, 799-802.

Droxler, A.W., Schlager, W., Whallon, C.C., 1983. Quaternary aragonite cycles and oxygen-isotope record in Bahamian carbonate ooze. Geology, 11, 235-239.

Droxler, A.W, Bruce, C.H., Sager, W.E., Hawkins, D.H., 1988a. Pliocene-Pleistocene variations in aragonite content and planktonic oxygen-isotope record in Bahamian periplatform ooze, Hole 633A, in: Austin, J.A., Schlager, W., et al. (Eds.), Proc. ODP, Sci. Results, 101, College Station, Texas, pp. 221- 244.

Droxler, A.W., Morse, J.W., Kornicker, W.A., 1988b. Controls on carbonate mineral accumulation in Bahamian basins and adjacent Atlantic Ocean sediments. J. Sediment. Petrol., 58 (1), 120-130.

Droxler, A.W., Morse, J.W., Glaser, K.S., Haddad, G.A., Baker, P.A., 1991. Surface sediment carbonate mineralogy and water column chemistry: Nicaragua Rise versus the Bahamas. Mar. Geol., 100, 277-289.

Page 102: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part IV

86

Eberli, G.P., 2000. The record of Neogene sea-level changes in the prograding carbonates along the Bahamas Transect; Leg 166 synthesis, in: Swart, P.K., Eberli, G.P., Malone, M.J., et al. (Eds.), Proc. ODP, Sci. Results 166, College Station, Texas, pp. 167-177.

Eberli, G.P., Ginsburg, R.N., 1989. Cenozoic progradation of Northwestern Great Bahama Bank, a record of lateral platform growth and sea-level fluctuations. SEPM Spec. Publ. No. 44, 339-351.

Eberli, G.P., Swart, P.K., Malone, M.J., et al., 1997. Proc. ODP, Initial Rep., 166, College Station, Texas, 846 pp.

Emerson, S., Bender, M., 1981. Carbon fluxes at the sediment-water interface of the deep-sea: calcium carbonate preservation. J. Mar. Res., 39, 139-162.

Emerson, S., Fischer, K., Reimers, C., Heggie, D., 1985. Organic carbon dynamics and preservation in deep-sea sediments. Deep-Sea Res. Part A: Oceanogr. Res. Papers, 32 (1), 1-21.

Emmermann, P., 2000. Mineralogy, geochemistry and microfacies of Late Quaternary periplatform sediments: Carbonate export cycles and secondary processes – Sanganeb Atoll and Abington Reef, Sudan, Central Red Sea. Unpublished Ph.D. thesis, Christian-Albrechts-University, Kiel, Germany, 253 pp.

Fisher, A.G., Garrison, R.E., 1967. Carbonate lithification on the sea floor. J. Geol. Soc., 75, 488-496. Franz, S.O., Tiedemann, R., 2002. Depositional changes along the Blake-Bahama Outer Ridge deep water

transect during marine isotope stages 8 to 10 – links to the Deep Western Boundary Current. Mar. Geol., 189, 107-122.

Fratantoni, D.M., 2001. North Atlantic surface circulation during the 1990´s compared with satellite-trackeddrifters. J. Geophys. Res., 106 (C10), 22067-22093.

Freeman-Lynde, R.P., Chayes, D.N., Chezar, H., Miller, E.L., Rawson, M., Ryan, W.B.F., Cita, M.B., Jadoul, F., 1979. Defacement of the Bahama escarpment. EOS Trans. (Abstr.), 60, 286.

Freeman-Lynde, R.P., Whitley, K.F., Lohmann, K.C., 1986. Deep-marine origin of equant spar cements in Bahama Escarpment limestones. J. Sediment. Petrol., 56, 799-811.

Gardulski, A.F., Mullins, H.T., Oldfield, B., Applegate, Joe., Wise, S.W., Jr., 1986. Carbonate mineral cycles in ramp slope sediment: eastern Gulf of Mexico. Paleoceanography, 1 (4), 555-565.

Garrison, R.E., 1981. Diagenesis of oceanic carbonate sediments: A review of the DSDP perspective. SEPM Spec. Publ. No. 32, 181-207.

Gerhardt, S., Henrich, R., 2001. Shell preservation of Limacina inflata (Pteropoda) in surface sediments from the Central and South Atlantic Ocean: a new proxy to determine the aragonite saturation state of water masses. Deep-Sea Res. I, 48, 2051-2071.

Gieskes, J.M., 1974. The alkalinity-total carbon dioxide system in seawater, in: Goldberg, E.D. (Ed.), The Sea, 5, New York, Wiley, pp. 123-151.

Ginsburg, R.N., 2001. Subsurface geology of a prograding carbonate platform margin, Great Bahama Bank; results of the Bahamas Drilling Project, Spec. Publ. – Soc. Sediment. Geol., 70, 265 pp.

Ginsburg, R.N., Schroeder, J.H., 1973. Growth and submarine fossilization of algal cup reefs, Bermuda. Sedimentology, 20 (4), 575-614.

Glaser, K.S., Droxler, A.W., 1991. High production and highstand shedding from deeply submerged carbonate banks, Northern Nicaragua Rise. J. Sediment. Petrol., 61 (1), 128-142.

Glaser, K.S., Droxler, A.W., 1993. Controls and development of the Late Quaternary periplatform carbonate stratigraphy in Walton Basin (northwestern Nicaragua Rise, Caribbean Sea). Palaeoceanography, 8 (2), 243-274.

Gordon, A.L., 1967. Circulation of the Caribbean Sea. J. Geophys. Res., 72 (24), 6207-6223. Grammer, G.M., Ginsburg, R.N., Harris, P.M., 1993. Timing of deposition, diagnesis, and failure of steep

carbonate slopes in response to a high-amplitude/high-frequency fluctuation in sea-level, Tongue of the Ocean, Bahamas. AAPG Memoir, 57, 107-131.

Gunn, J.T., Watts, D.R., 1982. On the currents and water masses north of the Antilles/Bahamas arc. J. Mar. Res., 40 (1), 1-18.

Haak, A.B., Schlager, W., 1989. Compositional variations in calciturbidites due to sea-level fluctuations, late Quaternary, Bahamas. Geol. Rundsch., 78 (2), 476-486.

Haddad, G.A., Droxler, A.W., 1996. Metastable CaCO3 dissolution at intermediate water depths of the Caribbean and western North Atlantic: Implications for intermediate water circulation during the past 200,000 years. Palaeoceanography, 11 (6), 701-716.

Hales, B., Emerson, S., 1996. Calcite dissolution in sediments of the Ontong-Java Plateau: in situ measurements of pore water O2 and pH. Global Biogeochem. Cy., 10 (3), 527-541.

Hales, B., Emerson, S., 1997. Calcite dissolution in sediments of the Ceara Rise: in situ measurements of porewater O2, pH, and CO2(aq). Geochim. Cosmochim. Acta, 61 (3), 501-514.

Hales, B., Emerson, S., Archer, D., 1994. Respiration and dissolution in the sediments of the western North Atlantic: estimates from models of in situ microelectrode measurements of porewater oxygen and pH. Deep-Sea Res., 41, 695-719.

Hallock, P., Schlager, W., 1986. Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios, 1, 389-398.

Page 103: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

References

87

Hayward, B.W., Grenfell, H.R., Reid, C.M., Hayward, K.A., 1999. Recent New Zealand shallow-water benthic foraminifera: Taxonomy, ecologic distribution, biogeography, and use in paleoenvironmental assessment. Inst. Geol. Nucl. Sci. Monogr., 21, 258 pp.

Heath, K.C., Mullins, H.T., 1984. Open-ocean, off-bank transport of fine-grained carbonate sediment in the Northern Bahamas, in: Stow, D.A.B., Piper, D.J.W. (Eds.), Fine-grained sediments: Deep water processes and facies. Blackwell Scientific Publications, London, pp. 199-208.

Hemleben, C., Spindler, M., Anderson, O.R., 1989. Modern planktonic foraminifera. Springer, New York, 363 pp.

Henderson, G.M., Rendle, R.H., Slowey, N.C., Reijmer J.J.G., 2000. U-Th dating and diagenesis of Pleistocene highstand sediments from the Bahamas slope, in: Eberli, G.P., Swart, P.K., Malone, M.J. et al. (Eds.), Proc. ODP, Sci. Results, 166, College Station, Texas, pp. 23-31.

Hendry, J.P., Trewin, N.H., Fallick, A.E., 1996. Low-Mg calcite marine cement in Cretaceous turbidites: origin, spatial distribution and relationship to sea-water chemistry. Sedimentology, 43, 877-900.

Hine, A.C., Neumann, A.C., 1977. Shallow carbonate-bank-margin growth and structure, Little Bahama Bank, Bahamas. AAPG Bulletin, 61 (3), 376-406.

Hine, A.C., Wilber, R.J., Neumann, A.C., 1981. Carbonate sand bodies along contrasting shallow bank margins facing open seaways in Northern Bahamas. AAPG Bull., 65 (2), 261-290.

Honjo, S., Erez, J., 1978. Dissolution rates of calcium carbonate in the deep ocean; an in-situ experiment in the North Atlantic Ocean. Earth Planet. Sci. Lett., 40, 287-300.

Huh, O.K., Wiseman, Jr., W.J., Rouse, Jr., L.J., 1981. Intrusion of Loop Current waters onto the West Florida continental shelf. J. Geophys. Res., 86 (C5), 4186-4192.

Illing, L.V., 1954. Bahaman calcareous sands. AAPG Bulletin, 38, (1), 1-95. Jahnke, R.A., Craven, D.B., Gaillard, J.-F., 1994. The influence of organic matter diagenesis on CaCO3

dissolution at the deep-sea floor. Geochim. Cosmochim. Acta, 58 (13), 2799-2809. Jahnke, R.A., Craven, D.B., McCorkle, D.C., Reimers, C.E., 1997. CaCO3 dissolution in California continental

margin sediments: The influence of organic matter remineralization. Geochim. Cosmochim. Acta, 61 (17), 3587-3604.

James, N.P., Choquette, P.W., 1983. Diagenesis – 6. The sea floor diagenetic environment. Geosci. Can., 10, 162-180.

Jenkyns, H.C., 1986. Pelagic environments, in: Reading, H.G. (Ed.), Sedimentary Environments and Facies, Blackwells, Oxford, pp. 343-397.

Johns, W.E., Townsend, T.L., Fratantoni, D.M., Wilson, W.D., 2002. On the Atlantic inflow to the Caribbean Sea. Deep-Sea Res. I, 49, 211-243.

Keir, R.S., 1980. The dissolution kinetics of biogenic calcium carbonates in seawater. Geochim. Cosmochim. Acta, 44, 241-252.

Keir, R.S., 1982. Dissolution of calcite in the deep sea: Theoretical prediction for the case of uniform size particles settling into a well mixed sediment. Amer. J. Sci., 282, 193-236.

Kendall, C.G.St.C., Schlager, W., 1981. Carbonates and relative changes in sea-level, in: Cita, M.B., Ryan, W.B.F. (Eds.), Carbonate Platforms of the Passive-type Continental Margins, Present and Past. Mar. Geol., 44, 181-212.

Kennett, J.P., Srinivasan, M.S., 1983. Neogene Planktonic Foraminifera. A phylogenetic atlas, Hutchinson Ross Publ. Co., Stroudsburg, Pennsylvania, 280 pp.

Kenter, J.A.M., 1990. Carbonate platform flanks: slope angle and sediment fabric. Sedimentology, 37, 777-794. Kier, J.S., Pilkey, O.H., 1971. The influence of sea-level changes on sediment carbonate mineralogy, Tongue of

the Ocean, Bahamas. Mar. Geol., 11, 189-200. Kievman, C.M., 1998. Match between late Pleistocene Great Bahama Bank and deep-sea oxygen isotope records

of sea level. Geology, 26 (7), 635-638. Kimoto, K., Takaoka, H., Oda, M., Ikehara, M., Matsuoka, H., Okada, M., Oba, T., Taira, A., 2003. Carbonate

dissolution and planktonic foraminiferal assemblages observed in three piston cores collected above the lysocline in the western equatorial Pacific. Mar. Micropaleontol., 47, 227-251.

Kleypas, J.A., Buddemeier, R.W., Archer, D., Gattuso, J.-P., Langdon, C., Opdyke, B.N., 1999. Geochemical consequences of increased carbon dioxide on coral reefs. Science, 284, 118-120.

Kolbert, E., 2006. The darkening sea. The New Yorker, 20.11.2006. Kramer, P.A., Swart, P.K., De Carlo, E.H., Schovsbo, N.H., 2000. Overview of interstitial fluid and sediment

geochemistry, Sites 1003-1007 (Bahamas transect), in: Swart, P.K., Eberli, G.P., et al. (Eds.), Proc. ODP, Sci. Results, 166, College Station, Texas, pp. 179-195.

Kroon, D., Reijmer, J.J.G., Rendle, R.H., 2000a. Mid-late Quaternary variations in the oxygen isotope signature of Globigerinoides ruber in the subtropical Atlantic on the leeward side of Great Bahama Bank, in: Eberli, G.F., Swart, P.K., Malone, M.J., et al. (Eds.), Proc. ODP, Sci. Results, 166, College Station, Texas, pp. 13-22.

Kroon, D., Williams, T., Pirmez, C., Spezzaferri, S., Sato, T., Wright, J.D., 2000b. Coupled early Pliocene-middle Miocene bio-cyclostratigraphy of Site 1006 reveals orbitally induced cyclicity patterns of Great

Page 104: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part IV

88

Bahama Bank carbonate production, in: Swart, P.K., Eberli, G.P., Malone, M.J. (Eds.), Proc. ODP, Sci. Results, 166, College Station, Texas, pp. 155-166.

Ku, T.-L., Oba, T., 1978. A method for quantitative evaluation of carbonate dissolution in deep-sea sediments and its application to paleoceanographic reconstruction. Quat. Res., 10, 112-129.

Land, L.S., Mackenzie, F.T., Gould, S.J., 1967. Pleistocene history of Bermuda. GSA Bull., 78, 993-1006. Lantzsch, H., Roth, S., Reijmer, J.J.G. Sea-level related resedimentation processes on the northern slope of Little

Bahama Bank (Middle-Late Pleistocene to Holocene). Sedimentology, in press. Lawrence, K.T., Herbert, T.D., 2005. Late Quaternary sea-surface temperatures in the western Coral Sea:

Implications for the growth of the Australian Great Barrier Reef. Geology, 33, 677-680. Le, J., Shackleton, N.J., 1992. Carbonate dissolution fluctuations in the Western Equatorial Pacific during the

late Quaternary. Paleoceanography, 7 (1), 21-42. Leaman, K.D., Vertes, P.S., Atkinson, L.P., Lee, T.N., Hamilton, P., Waddell, E., 1995. Transport, potential

vorticity, and current/temperature structure across Northwest Providence and Santaren Channels and the Florida Current off Cay Sal Bank. J. Geophys. Res., 100 (C5), 8561-8569.

Lee, T.N., Johns, W., Schott, F., Zantopp, R., 1990. Western Boundary Current structure and variability east of Abaco, Bahamas, at 26.5°N. J. Phys. Oceanogr., 20, 446-466.

Lee, T.N., Johns, W.E., Zantopp, R.J., Fillenbaum, E.R., 1996. Moored observations of Western Boundary Current variability and thermohaline circulation at 26.5°N in the subtropical North Atlantic. J. Phys. Oceanogr., 26, 962-983.

Li, Y.-H., Takahashi, T., Broecker, W.S., 1969. Degree of saturation of CaCO3 in the oceans. J. Geophys. Res., 23, 5507-5525.

Loeblich, A.R., Tappan, H., 1988. Foraminiferal genera and their classification, Van Nostrand Reinhold Co., New York, 1182 pp.

Lynch-Stieglitz, J., Curry, W.B., Slowey, N., 1999. A geostrophic transport for the Florida Current from the oxygen isotope composition of benthic foraminifera. Palaeoceanography, 14 (3), 360-373.

Lynts, G.W., Judd, J.B., Stehman, C.F., 1973. Late Pleistocene history of Tongue of the Ocean, Bahamas. GSA Bull., 84, 2665-2684.

Malone, M.J., Baker, P.A., Burns, S.J., Swart, P.K., 1990. Geochemistry of periplatform carbonate sediments, Leg 115, Site 716 (Maldives Archipelago, Indian Ocean), in: Duncan, D.S., Backman, J., Peterson, L.C. (Eds.), Proc. ODP, Sci. Results, 115, College Station, Texas, pp. 647-659.

Malone, M.J., Slowey, N.C., Henderson, G.M., 2001. Early diagenesis of shallow-water periplatform carbonate sediments, leeward margin, Great Bahama Bank (Ocean Drilling Program Leg 166). GSA Bull., 113 (7), 881-894.

Martin, W.R., Sayles, F.L., 1996. CaCO3 dissolution in sediments of the Ceara Rise, western equatorial Atlantic. Geochim. Cosmochim. Acta, 60 (2), 243-263.

Martin, J.H., Fitzwater, S.E., Gordon, R.M., Hunter, C.N., Tanner, S.J., 1993. Iron, primary production and carbon-nitrogen flux studies during the JGOFS North Atlantic Bloom Experiment. Deep-Sea Res. II, 40, 115-134.

Maul, G.A., 1977. The annual cycle of the Gulf Loop Current, Part I: Observations during a one-year time series. J. Mar. Res., 35 (1), 29-47.

McNeill, D., Ginsburg, R.N., Chang, S.-B.R., Kirschvink, J.L., 1988. Magnetostratigraphic dating of shallow-water carbonates from San Salvador, Bahamas. Geology, 16, 8-12.

Melim, L.A., Swart, P.K., Maliva, R.G., 1995. Meteoric like fabrics forming in marine waters: Implications for the use of petrography to identify diagenetic environments. Geology, 23, 755-758.

Melim, L.A., Swart, P.K., Maliva, R.G., 2001. Meteoric and marine burial diagenesis in the subsurface of the Great Bahama Bank, in: Ginsburg, R.N. (Ed.), Subsurface Geology of a Prograding Carbonate Platform Margin, Great Bahama Bank. SEPM Spec. Publ. No. 70, 137-162.

Melim, L.A., Westphal, H., Swart, P.K., Eberli, G.P., Munnecke, A., 2002. Questioning carbonate diagenetic paradigms: evidence from the Neogene of the Bahamas. Mar. Geol., 185, 27-53.

Melim, L.A., Swart, P.K., Eberli, G.P., 2004. Mixing-zone diagenesis in the subsurface of Florida and the Bahamas. J. Sediment. Res., 74 (6), 904-913.

Middleton, G.V., Hampton, M.A., 1973. Sediment gravity flows: mechanics of flow and deposition, in: Middleton, G.V., Bouma, A.H. (Eds.), Turbidites and Deep-Water Sedimentation. SEPM PAc. Sec. Short Course Notes, Los Angeles, Calif., pp. 1-38.

Milliman, J.D., 1966. Submarine lithification of carbonate sediments. Science, 153, 994-997. Milliman, J.D., 1974. Marine Carbonates (Part I). Springer-Verlag, Heidelberg, 375 pp.Milliman, J.D., 1977. Dissolution of calcium carbonate in the Sargasso Sea (Northwest Atlantic), in: Andersen,

N.R., Malahoff, A. (Eds.), The fate of fossil fuel CO2 in the oceans. Plenum Press, New York, London, pp. 641-653.

Milliman, J.D., 1993. Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Glob. Biogeochem. Cy., 7, 927-957.

Page 105: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

References

89

Milliman, J.D., Droxler, A.W., 1996. Neritic and pelagic carbonate sedimentation in the marine environment: ignorance is not bliss. Geol. Rundsch., 85, 496-504.

Milliman, J.D., Muller, J., 1977. Characteristics and genesis of shallow-water and deep-water limestones, in: Anderson, N.R., Malahoff, A. (Eds.), The fate of fossil fuel CO2 in the oceans. New York, Plenum Press, pp. 655-673.

Milliman, J.D., Syvitzki, J.P.M., 1992. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol., 100, 525-544.

Milliman, J.D., Freile, D., Steinen, R.P., Wilber, R.J., 1993. Great Bahama Bank aragonitic muds: mostly inorganically precipitated, mostly exported. J. Sediment. Petrol., 63 (4), 589-595.

Milliman, J.D., Troy, P.J., Balch, W.M., Adams, A.K., Li, Y.-H., Mackenzie, F.T., 1999. Biologically mediated dissolution of calcium carbonate above the chemical lysocline? Deep-Sea Res. I, 46, 1653-1669.

Molinari, R.L., Morrison, J., 1988. The separation of the Yucatan Current from the Campeche Bank and the intrusion of the Loop Current into the Gulf of Mexico. J. Geophys. Res., 93 (C9), 10645-10654.

Mooers, C.N.K., Maul, G.A., 1998. Intra-Americas sea circulation, in: Robinson, A.R., Brink, K.H. (Eds.), The Sea. Wiley, New York, pp. 183-208.

Morse, J.W., 1974. Dissolution kinetics of calcium carbonate in sea water: I. Effects of natural inhibitors and the position of the chemical lysocline. Am. J. Sci., 274, 638-647.

Morse, J.W., Berner, R.A., 1972. Dissolution kinetics of calcium carbonate in sea water: II. A kinetic origin for the lysocline. Am. J. Sci., 272, 840-851.

Morse, J.W., Mucci, A., Millero, F.J., 1980. The solubility of calcite and aragonite in seawater of 35‰ salinity at 25° C and atmospheric pressure. Geochim. Cosmochim. Acta, 44, 85-94.

Mullins, H.T., 1978. Deep carbonate bank margin structure and sedimentation in the northern Bahamas. PhD Thesis, Chapel Hill, Univ. of North Carolina, 166 pp.

Mullins, H.T., 1983. Comment on eustatic control of turbidites and winnowed turbidites. Geology, 11, 57-58. Mullins, H.T., Neumann, A.C., 1979a. Geology of the Miami terrace and its paleo-oceanographic implications.

Mar. Geol., 30, 205-232. Mullins, H.T., Neumann, A.C., 1979b. Deep carbonate bank margin structure and sedimentation in the northern

Bahamas, in: Doyle, L., Pilkey, O.H. (Eds.), Geology of Continental Slopes. Soc. Econ. Paleontologists Mineralogists Spec. Pub. No. 27, 165-192.

Mullins, H.T., Neumann, A.C., Wilber, R.J., Boardman, M.R., 1980a. Nodular carbonate sediment on Bahamian slopes: Possible precursors to nodular limestones. J. Sediment. Petrol., 50, 117-131.

Mullins, H.T., Neumann, A.C., Wilber, R.J., Hine, A.C., Chinburg, S.J., 1980b. Carbonate Sediment Drifts in Northern Straits of Florida. AAPG Bull., 64 (10), 1701-1717.

Mullins, H.T., Heath, K.C., van Buren, H.M., Newton, C.R., 1984. Anatomy of a modern open-ocean carbonate slope: northern Little Bahama Bank. Sedimentology, 31, 141-168.

Mullins, H.T., Land, L.S., Wise, W.W.J., Siegel, D.I., Masters, P.M., Hinchey, E.J., Price, K.R., 1985a. Authigenic dolomite in Bahamian periplatform slope sediment. Geology, 13, 292-295.

Mullins, H.T., Wise, S.W., Jr., Gardulski, A.F., Hinchey, E.J., Masters, P.M., Siegel, D.I., 1985b. Shallow subsurface diagenesis of Pleistocene periplatform ooze: northern Bahamas. Sedimentology, 32, 473-494.

Munnecke, A., Westphal, H., Reijmer, J.J.G., Samtleben, C., 1997. Microspar development during early marine burial diagenesis: A comparison of Pliocene carbonates from the Bahamas with Silurian limestones from Gotland (Sweden). Sedimentology, 44, 977-990.

Neumann, A.C., Land, L.S., 1975. Lime mud deposition and calcareous algae in the Bight of Abaco, Bahamas: a budget. J. Sediment. Petrol., 45 (4), 763-786.

Neumann, G., Pierson, W.J., Jr., 1966. Principles of physical oceanography. Prentice-Hall, Englewood Cliffs, 545 pp.

Newell, N.D., Imbrie, J., Purdy, E.G., Thurber, D.L., 1959. Organism communities and bottom facies, Great Bahama Bank. American Museum of Natural History Bulletin, 117, 177-228.

Nürnberg, D., Schönfeld, J., Dullo, W.-C., Rühlemann, C., 2003. RV SONNE Cruise Report SO164, RASTA: Rapid climatic changes in the western tropical Atlantic - assessment of the biogeneous and sedimentary record, Balboa-Balboa, May 22-June 28, 2002. GEOMAR Report, GEOMAR Research Center for Marine Geosciences, Christian-Albrechts-University, Kiel, Germany, 26 pp.

Ochoa, J., Sheinbaum, J., Badan, A., Candela, J., Wilson, D., 2001. Geostrophy via potential vorticity inversion in the Yucatan Channel. J. Mar. Res., 59, 725-747.

Parker, F.L., 1962. Planktonic foraminifera species in Pacific sediments. Micropaleonotology, 8, 219-254. Parker, F.L., Berger, W.H., 1971. Faunal and solution patterns of planktonic foraminifera in surface sediments of

the South Pacific. Deep-Sea Res., 18, 73-107. Peterson, L.C., Prell, W.L., 1985. Carbonate dissolution in recent sediments of the Eastern Equatorial Indian

Ocean: Preservation patterns and carbonate loss above the lysocline. Mar. Geol., 64, 259-290. Petschick, R., 2001. MacDiff software v. 4.2.5. Available from the World Wide Web:

http://servermac.geologie.uni-frankfurt.de/Staff/Homepages/Petschick/RainerE.html.

Page 106: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part IV

90

Pilkey, O.H., Rucker, J., 1966. Mineralogy of Tongue of the Ocean sediments. J. Mar. Res., 24, 276-285. Piller, W.E., 1994. The Northern Bay of Safaga (Red Sea, Egypt); an actuopalaeontological approach; IV, Thin

section analysis. Beitr. Paläontol. Österr., 18, 1 – 73. Piller, W.E., Mansour, A.M., 1990. The northern Bay of Safaga (Red Sea Egypt); an actuopalaeontological

approach; II, Sediment analysis and sedimentary facies. Beitr. Paläontol. Österr., 16, 1-102. Purdy, E.G., 1963a. Recent calcium carbonate facies of the Great Bahama Bank; Part 1, Petrography and

reaction groups. J. Geol., 71 (3), 334-355. Purdy, E.G., 1963b. Recent calcium carbonate facies of the Great Bahama Bank; Part 2, Sedimentary facies. J.

Geol., 71 (4), 472-497. Pytkowicz, R.M., 1968. The carbon dioxide – carbonate system at high pressures in the oceans. Oceanogr. Mar.

Biol. Ann. Rev., 6, 83. Pytkowicz, R.M., 1970. On the carbonate compensation depth in the Pacific Ocean. Geochim. Cosmochim. Acta,

34 (7), 836-839. Reijmer, J.J.G., Schlager, W., Droxler, A.W., 1988. Site 632: Pliocene-Pleistocene sedimentation cycles in a

Bahamian basin, in: Austin, J.A., Jr., Schlager, W., et al. (Eds.), Proc. ODP, Sci. Results, 101, pp. 213-220.

Reijmer, J.J.G., Schlager, W., Bosscher, H., Beets, C.J., McNeill, D.F., 1992. Pliocene/Pleistocene platform facies transition recorded in calciturbidites (Exuma Sound, Bahamas). Sediment. Geol., 78, 171-179.

Rendle, R.H., 2000. Quaternary development and sedimentology of the western, leeward margin of Great Bahama Bank (ODP Leg 166). Unpublished Ph.D. Thesis, Christian-Albrechts-University, Kiel, Germany, 182 pp.

Rendle, R.H., Reijmer, J.J.G., 2002. Quaternary slope development of the western, leeward margin of the Great Bahama Bank. Mar. Geol., 185 (1-2), 143-164.

Rendle, R.H., Reijmer, J.J.G., Kroon, D., Henderson, G.M., 2000. Mineralogy and sedimentology of the Pleistocene to Holocene on the leeward margin of Great Bahama Bank, in: Swart, P.K., Eberli, G.P., Malone, M.J., Sarg, J.F. (Eds.), Proc. ODP, Sci. Results, 166, pp. 61-76.

Rendle-Bühring, R., Reijmer, J.J.G., 2005. Controls on grain-size patterns in periplatform carbonates: Marginal setting versus glacio-eustacy. Sediment. Geol., 175, 99-113.

Reuning, L., Reijmer, J.J.G., Betzler, C., 2002. Sedimentation cycles on the slope of a Miocene carbonate ramp system (Bahamas, ODP Leg 166). Mar. Geol., 185 (1-2), 121-142.

Reuning, L., Reijmer, J.J.G., Betzler, C., Swart, P., Bauch, T., 2005. The use of paleoceanographic proxies in carbonate periplatform settings – opportunities and pitfalls. Sediment. Geol., 175, 131-152.

Reuning, L., Reijmer, J.J.G., Mattioli, E., 2006. Aragonite cycles: diagenesis caught in the act. Sedimentology, 53, 849-866.

Revelle, R., 1934. Physico-chemical factors affecting the solubility of calcium carbonate in sea water. J. Sediment. Petrol., 4, 103-110.

Richardson, W.S., Schmitz, W.J., Jr., Niiler, P.P., 1969. The velocity structure of the Florida Current from the Straits of Florida to Cape Fear. Deep-Sea Res., 16, 225-231.

Robbins, L.L., Tao, Y., Evans, C.A., 1997. Temporal and spatial distribution of whitings on Great Bahama Bank and a new lime mud budget. Geology, 25 (10), 947-950.

Roth, S., Reijmer, J.J.G., 2004. Holocene Atlantic climate variations deduced from carbonate periplatform sediments (leeward margin, Great Bahama Bank). Palaeoceanography, 19 (1), PA1003, doi: 10.1029/2003PA000885.

Saller, A.H., 1984. Petrological and geochemical constraints on the origin of subsurface dolomite, Enewetak Atoll: an example of dolomitization by normal seawater. Geology, 12, 217-220.

Saller, A.H., 1986. Radiaxial calcite in lower Miocene strata, subsurface Enewetak Atoll. J. Sediment. Petrol., 56, 743-762.

Sarnthein, M., 1971. Oberflächensedimente im Persischen Golf und Golf von Oman. II. Quantitative Komponentenanalyse der Grobfraktion. Meteor Forsch.-Ergeb., C5, 113 pp.

Sayles, F.L., 1981. The composition and diagenesis of interstitial solutions – II. Fluxes and diagenesis at the water-sediment interface in the high latitude North and South Atlantic. Geochim. Cosmochim. Acta, 45, 1061-1086.

Schlager, W., 1981. The paradox of drowned reefs and carbonate platforms. GSA Bull., 92, 197-211. Schlager, W., Camber, O., 1986. Submarine slope angles, drowning unconformities and self-erosion of limestone

escarpments. Geology, 14, 762-765. Schlager, W., Chermak, A., 1979. Sediment facies of platform-basin transition, Tongue of the Ocean, Bahamas,

in: Doyle, L., Pilkey, O.H. (Eds.), Geology of Continental Slopes: SEPM Spec. Pub. No. 27, 193-208. Schlager, W., Ginsburg, R.N., 1981. Bahama carbonate platforms - The deep and the past. Mar. Geol., 44, 1-24. Schlager, W., James, N.P., 1978. Low-magnesian calcite limestones forming at the deep-sea floor, Tongue of the

Ocean, Bahamas. Sedimentology, 25, 675-702. Schlager, W., Buffler, R.T., et al., 1984. Deep-Sea Drilling Project, Leg 77, Southeastern Gulf of Mexico. GSA

Bull., 95 (2), 226-236.

Page 107: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

References

91

Schlager, W., Reijmer, J.J.G., Droxler, A.W., 1994. Highstand shedding of carbonate platforms. J. Sediment. Res., B64, 270-281.

Schlanger, S.O., Douglas, R.G., 1974. The pelagic ooze-chalk-limestones transition and its implications for marine stratigraphy, in: Hsü, K.J., Jenkyns, H.C. (Eds.), Pelagic sediments on land and under the sea. Int. Assoc. Sediment. Spec. Publ., 1, 117-148.

Schmitz, W.J., Richardson, W.S., 1991. On the sources of the Florida Current. Deep-Sea Res., 38, 379-409. Schmuker, B., Schiebel, R., 2002. Planktic foraminifers and hydrography of the eastern and northern Caribbean

Sea. Mar. Micropaleontol., 46, 387-403. Scholle, P.A., Arthur, M.A., Ekdale, A.A., 1983. Pelagic environments, in: Scholle, P.A., Bebout, D.G., Moore,

C.H. (Eds.), Carbonate depositional environments, Mem. Am. Ass. Petrol. Geol., 33, 620-691. Schulte, S., Bard, E., 2003. Past changes in biologically mediated dissolution of calcite above the chemical

lysocline recorded in Indian Ocean sediments. Quaternary Sci. Rev., 22, 1757-1770. Schwartz, J.P., 1996. Late Quaternary periplatform sediments and paleoenvironmental analysis of Pedro

Channel, Northeastern Nicaragua Rise, Caribbean Sea. Unpublished M.A. thesis, Rice University, Houston, Texas, 206 pp.

Schwarz, J., Rendle-Bühring, R., 2005. Controls on modern carbonate preservation in the southern Florida Straits. Sediment. Geol., 175, 153-167.

Sheinbaum, J., Candela, J., Badan, A., Ochoa, J., 2002. Flow structure and transport in the Yucatan Channel. Geophys. Res. Lett., 29 (3), doi: 10.1029/2001GL013990.

Shinn, E. A., 1969. Submarine lithification of Holocene carbonate sediments in the Persian Gulf. Sedimentology, 12, 109-144.

Slowey, N.C., Curry, W.B., 1995. Glacial-interglacial differences in circulation and carbon cycling within the upper western North Atlantic. Palaeoceanography, 10 (4), 715-732.

Smith, C.L., 1940. The Great Bahama Bank. I. General hydrographical and chemical features. J. Mar. Res., 3, 147-170.

Stalcup, M.C., Metcalf, W.G., 1972. Current measurements in the passages of the Lesser Antilles. J. Geophys. Res., 77, 1032-1049.

Streeter, S.S., 1970. Foraminiferal distribution in the sediments of the Great Bahama Bank. University Microfilms Limited (A Xerox Company), Ann Arbor, Michigan, U.S.A.

Supko, P.R., 1963. A quantitative X-ray diffraction method for the mineralogical analysis of carbonate sediments from Tongue of the Ocean. M.S. thesis, Univ. of Miami, Coral Gables, Florida, 158 pp.

Swart, P.K., 2000. The oxygen isotopic composition of interstitial waters; evidence for fluid flow and recrystallization in the margin of the Great Bahama Bank, in: Swart, P.K., Eberli, G.P., Malone, M.J., et al. (Eds.), Proc. ODP, Sci. Results, 166, College Station, Texas, pp. 91-98.

Swart, P.K., Guzikowski, M., 1988. Interstitial-water chemistry and diagenesis of periplatform sediments from the Bahamas, ODP Leg 101, in: Austin, J.A., Jr., Schlager, W. (Eds.), Proc. ODP, Sci. Results, 101, College Station, Texas, pp. 363-380.

Swart, P.K., Isern, A.R., Elderfield, H., McKenzie, J.A., 1993. A summary of interstitial-water geochemistry of Leg 133, in: McKenzie, J.A., Davies, P.J., Palmer-Julson, A., et al. (Eds.), Proc. ODP, Sci. Results, 133, College Station, Texas, pp. 705-721.

Thompson, P.R., Saito, T., 1974. Pacific Pleistocene sediments: Planktonic foraminifera dissolution cycles and geochronology. Geology, 2, 333-335.

Thunell, R.C., 1976. Optimum indices of calcium carbonate dissolution in deep-sea sediments. Geology, 4, 525-528.

Thunell, R.C., 1982. Carbonate dissolution and abyssal hydrography in the Atlantic Ocean. Mar. Geol., 47 (3-4), 165-180.

Tiedemann, R., Sarnthein, M., Shackleton, N.J., 1994. Astronomic timescale for the Pliocene Atlantic 18O and dust flux records of Ocean Drilling Program Site 659. Palaeoceanography, 9 (4), 619-638.

Trifflemann, N.J., Hallock, P., Hine, A.C., 1992. Morphology, sediments, and depositional environments of a small carbonate platform: Serranilla Bank, Nicaragua Rise, southwest Caribbean Sea. J. Sediment. Res., 62, 591-606.

Troy, P.J., Li, Y.-H., Mackenzie, F.T., 1997. Changes in surface morphology of calcite exposed to the oceanic water column. Aquat. Geochem., 3, 1-20.

Tucker, M.E., Wright, V.P., 1990. Carbonate Sedimentology. Blackwell Science, Oxford, 482 pp. Vail, P.R., Audemard, F., Bowman, S.A., Eisner, P.N., Perez-Cruz, C., 1991. The stratigraphic signatures of

tectonics, eustasy and sedimentology, in: Einsele, G., Ricken, W., Seilacher, A. (Eds.), Cycles and events in stratigraphy. Springer, Berlin, Heidelberg, pp. 617-659.

van der Plas, L., Tobi, A.C., 1965. A chart for judging the reliability of point counting results. Am. J. Sci., 263 (1), 87-90.

Vecsei, A., 2003. Systematic yet enigmatic depth distribution of the world´s modern warm-water carbonate platforms: the ´depth window´. Terra Nova, 15 (3), 170-175.

Page 108: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part IV

92

Volat, J.-L., Pastouret, L., Vergnaud-Grazzini, C., 1980. Dissolution and carbonate fluctuations in Pleistocene deep-sea cores: a review. Mar. Geol., 34, 1-28.

Volbers, A.N.A., Henrich, R., 2002. Late quaternary variations in calcium carbonate preservation of deep-sea sediments in the northern Cape Basin: results from a multiproxy approach. Mar. Geol., 180 (1-4), 203-220.

Vukovich, F.M., Crissman, B.W., Bushnell, M., King, W.J., 1979. Some aspects of the oceanography of the Gulf of Mexico using satellite and in situ data. J. Geophys. Res., 84 (C12), 7749-7768.

Wennekens, M.P., 1959. Water mass properties of the Straits of Florida and related waters. Bull. Mar. Sci. Gulf and Caribbean, 9 (1), 1-52.

Wenzhöfer, F., Adler, M., Kohls, O., Hensen, C., Strotmann, B., Boehme, S., Schulz, H.D., 2001. Calcite dissolution driven by benthic mineralization in the deep-sea: In situ measurements of Ca2+, pH, pCO2

and O2. Geochim. Cosmochim. Acta, 65 (16), 2677-2690. Westphal, H., Reijmer, J.J.G., Head, M.J., 1999. Input and diagenesis of a carbonate slope (Bahamas): response

to morphology evolution and sea level fluctuations, in: Harris, P.M., Saller, A.H., Simo, T., Handford, R. (Eds.), Advances in carbonate sequence stratigraphy - Application to reservoirs, outcrops, and models. SEPM Spec. Publ. No. 63, 247-274.

Wilber, R.J., Neumann, A.C., 1993. Effects of submarine cementation on microfabrics and physical properties of carbonate slope deposits, Northern Bahamas, in: Rezak, R., Lavoie, D.L. (Eds.), Carbonate microfabrics, New York, Springer Verlag, pp. 79-94.

Wilber, R.J., Milliman, J.D., Halley, R.B., 1990. Accumulation of bank-top sediment on the western slope of Great Bahama Bank: Rapid progradation of a carbonate megabank. Geology, 18, 970-974.

Wilson, P.A., Roberts, H.H., 1992. Carbonate-periplatform sedimentation by density flows: A mechanism for rapid off-bank and vertical transport of shallow-water fines. Geology, 20, 713-716.

Wiseman, W.J., Jr., Dinnel, S.P., 1988. Shelf currents near the mouth of the Mississippi River. J. Phys. Oceanogr., 18, 1287-1291.

Wolf, T.C.W., Thiede, J., 1991. History of terrigenous sedimentation during the past 10 Ma in the North Atlantic (ODP Legs 104 and 105 and DSDP Leg 81). Mar. Geol., 101, 83-105.

Wüst, G., 1924. Florida und Antillenstrom: Eine hydrodynamische Untersuchung. Geographischnaturwiss.Reihe, 12, 1-48.

Wüst, G., 1964. Stratification and circulation of the Antillean-Caribbean Basins, Part I, spreading and mixing of the water types with an oceanographic atlas. Columbia Univ. Press, New York, 202 pp.

Page 109: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

93

Part V

Appendix

Page 110: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Part V

94

1. Samples 2. Data

2.1. Grain Size 2.2. Leco 2.3. XRD 2.4. Census Counts (main component groups) 2.5. Detailed census counts (foraminifera assemblage) 2.6. LDX (Limacina inflata Dissolution Index) 2.7. Stable Isotopes

Abbreviations used in the Apppendix:

Arag Aragonite b.d. bulk density BC Box core BCR Bremen Core Repository bf benthic foraminifera d.w. dry weight ECR East Coast Repository encr. encrusted fragm. Fragments foram. foraminifera GGC Giant gravity core HMC High-Mg calcite LDX Limacina inflata Dissolution Index LMC Low-Mg calcite n.d. not defined Nr. Number ODP Ocean Drilling Program P Pteropods PC Piston core pf planktonic foraminifera plankt. planktonic RSMAS Rosenstiel School of Marine and Atmospheric Science Sed. Sediment URI University of Rhode Island w.w. wet weight WHOI Woods Hole Oceanographic Institution

Page 111: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Appendix 1

Samples

Page 112: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Sample Set 1 - Gillies/Trident

Nr. SampleCore depth

[cm]Longitude Latitude Water depth [m] Repository Core type Ship/Cruise Date

1 GS-7603-10 0-2,5 -80,84 24,12 890 URI piston core Gillies 1976

2 GS-7603-11 0-2,5 -81,14 24,13 905 URI piston core Gillies 1976

3 GS-7603-12 0-2,5 -82,43 23,59 845 URI piston core Gillies 1976

4 GS-7603-13 0-2,5 -82,46 23,67 1600 URI piston core Gillies 1976

5 GS-7603-14 0-2,5 -82,96 24,55 920 URI piston core Gillies 1976

6 GS-7603-7 0-2,5 -81,94 23,45 1620 URI piston core Gillies 1976

7 GS-7603-8 0-2,5 -81,88 23,75 1550 URI piston core Gillies 1976

8 GS-7603-9 0-2,5 -80,56 24,18 1040 URI piston core Gillies 1976

9 TR-149-31 0-2,5 -83,99 23,57 2325 URI piston core Trident 1974

10 TR-149-32 0-2,5 -83,20 23,56 1800 URI piston core Trident 1974

11 TR-149-34 0-2,5 -81,20 23,63 1450 URI piston core Trident 1974

12 TR-149-35 0-2,5 -81,30 23,46 1310 URI piston core Trident 1974

13 TR-149-36 0-2,5 -80,82 23,66 1182 URI piston core Trident 1974

14 TR-149-37 0-2,5 -80,59 23,94 1080 URI piston core Trident 1974

15 TR-149-38a 1-2,5 -81,16 24,12 875 URI piston core Trident 1974

16 TR-149-38b 0-2,5 -81,16 24,12 875 URI piston core Trident 1974

Sample Set 2 - Oceanus

Nr. SampleCore depth

[cm]Longitude Latitude Water depth [m] Repository Core type Ship/Cruise Date

1a 0006JPC 10-12 -77,64 26,17 698 WHOI piston Oceanus 205-02 1988

1b 0006JPC 12-13 -77,64 26,17 698 WHOI piston Oceanus 205-02 1989

2a 0012GGC 4-6 -77,71 26,17 1151 WHOI gravity Oceanus 205-02 1988

2b 0012GGC 6-8 -77,71 26,17 1151 WHOI gravity Oceanus 205-02 1989

3a 0024GGC 4-6 -77,70 26,19 1043 WHOI gravity Oceanus 205-02 1988

3b 0024GGC 6-8 -77,70 26,19 1043 WHOI gravity Oceanus 205-02 1988

4a 0028GGC 0-2 -77,71 26,18 1143 WHOI gravity Oceanus 205-02 1988

4b 0028GGC 2-4 -77,71 26,18 1143 WHOI gravity Oceanus 205-02 1988

5 0031GGC 5-7 -77,65 26,18 693 WHOI gravity Oceanus 205-02 1988

6 0033GGC 8-10 -77,69 26,22 783 WHOI gravity Oceanus 205-02 1988

7a 0035GGC 2-4 -77,70 25,23 991 WHOI gravity Oceanus 205-02 1988

7b 0035GGC 4-6 -77,70 25,23 991 WHOI gravity Oceanus 205-02 1988

8a 0038GGC 0-2 -77,66 26,22 562 WHOI gravity Oceanus 205-02 1988

8b 0038GGC 2-4 -77,66 26,22 562 WHOI gravity Oceanus 205-02 1988

9 0041GGC 1-3 -77,67 26,23 599 WHOI gravity Oceanus 205-02 1988

10a 0043GGC 0-2 -77,68 26,25 479 WHOI gravity Oceanus 205-02 1988

10b 0043GGC 2-4 -77,68 26,25 479 WHOI gravity Oceanus 205-02 1988

11a 0046PC 9-11 -77,70 26,26 578 WHOI piston Oceanus 205-02 1988

11b 0046PC 11-13 -77,70 26,26 578 WHOI piston Oceanus 205-02 1988

12a 0048BC 2-4 -77,68 26,24 595 WHOI box Oceanus 205-02 1988

12b 0048BC 4-5 -77,68 26,24 595 WHOI box Oceanus 205-02 1988

13a 0050BC 1-3 -77,70 26,23 817 WHOI box Oceanus 205-02 1988

13b 0050BC 3-4 -77,70 26,23 817 WHOI box Oceanus 205-02 1988

14 0051BC 2-4 -77,70 26,23 830 WHOI box Oceanus 205-02 1988

15a 0052BC 2-4 -77,69 26,24 668 WHOI box Oceanus 205-02 1988

15b 0052BC 4-5 -77,69 26,24 668 WHOI box Oceanus 205-02 1988

16a 0053BC 1-3 -77,71 26,19 1038 WHOI box Oceanus 205-02 1988

16b 0053BC 3-4 -77,71 26,19 1038 WHOI box Oceanus 205-02 1988

17 0054BC 0-2 -77,71 26,20 1043 WHOI box Oceanus 205-02 1988

18 0055BC 2-4 -77,71 26,17 1140 WHOI box Oceanus 205-02 1988

19 0069BC 0-2 -77,69 26,23 735 WHOI box Oceanus 205-02 1988

20 0070BC 0-2 -77,70 26,22 876 WHOI box Oceanus 205-02 1988

21 0072BC 2-4 -77,71 26,23 908 WHOI box Oceanus 205-02 1988

22 0075GGC 11-13 -77,67 26,23 545 WHOI gravity Oceanus 205-02 1988

Page 113: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr. SampleCore depth

[cm]Longitude Latitude Water depth [m] Repository Core type Ship/Cruise Date

23a 0096GGC 4-6 -77,85 25,93 1172 WHOI gravity Oceanus 205-02 1988

23b 0096GGC 6-7 -77,85 25,93 1172 WHOI gravity Oceanus 205-02 1988

24 0097JPC 4-6 -77,85 25,94 1183 WHOI piston Oceanus 205-02 1988

25a 0098GGC 9-11 -78,02 25,98 879 WHOI gravity Oceanus 205-02 1988

25b 0098GGC 11-13 -78,02 25,98 879 WHOI gravity Oceanus 205-02 1988

26a 0099JPC 8-10 -78,02 25,98 912 WHOI piston Oceanus 205-02 1988

26b 0099JPC 10-12 -78,02 25,98 912 WHOI piston Oceanus 205-02 1988

27 0100GGC 5-7 -78,03 26,06 1057 WHOI gravity Oceanus 205-02 1988

28 0101JPC 0-2 -78,02 26,06 1076 WHOI piston Oceanus 205-02 1988

29 0103GGC 7-9 -78,06 26,07 965 WHOI gravity Oceanus 205-02 1988

30 0106GGC 5-7 -78,18 25,98 654 WHOI gravity Oceanus 205-02 1988

31a 0107JPC 0-2 -78,18 25,98 679 WHOI piston Oceanus 205-02 1988

31b 0107JPC 2-4 -78,18 25,98 679 WHOI piston Oceanus 205-02 1988

32 0108GGC 5-7 -78,18 25,98 743 WHOI gravity Oceanus 205-02 1988

33 0110GGC 0-2 -78,25 25,95 537 WHOI gravity Oceanus 205-02 1988

34a 0111GGC 0-2 -78,12 25,92 516 WHOI gravity Oceanus 205-02 1988

34b 0111GGC 2-4 -78,12 25,92 516 WHOI gravity Oceanus 205-02 1988

35 0140GGC 0-2 -77,70 26,20 964 WHOI gravity Oceanus 205-02 1988

36 0141JPC 6-8 -77,68 26,20 958 WHOI piston Oceanus 205-02 1988

37 0142JPC 0-2 -77,70 26,20 955 WHOI piston Oceanus 205-02 1988

38a 0143GGC 0-2 -77,71 26,23 805 WHOI gravity Oceanus 205-02 1988

38b 0143GGC 2-4 -77,71 26,23 805 WHOI gravity Oceanus 205-02 1988

39a 0145GGC 0-2 -77,66 26,22 539 WHOI gravity Oceanus 205-02 1988

39b 0145GGC 2-4 -77,66 26,22 539 WHOI gravity Oceanus 205-02 1988

40 0148GGC 3-5 -77,67 26,26 434 WHOI gravity Oceanus 205-02 1988

41 0151GCG 2-4 -77,67 26,23 587 WHOI gravity Oceanus 205-02 1988

42a 0153GGC 2-4 -77,71 26,20 1039 WHOI gravity Oceanus 205-02 1988

42b 0153GGC 4-5 -77,71 26,20 1039 WHOI gravity Oceanus 205-02 1988

Sample Set 3 - Leg 166 Surface Samples

Nr. SampleCore depth

[cm]Longitude Latitude Water depth [m] Repository Core type Ship/Cruise Date

1 1003A 0-3 -79,26 24,54 481 ODP Bremen drill Joides Leg 166 1996

2 1003B 0-3 -79,26 24,54 483 ODP Bremen drill Joides Leg 166 1996

3 1004A 0-3 -79,24 24,55 419 ODP Bremen drill Joides Leg 166 1996

4 1005A 0-4 -79,23 24,56 351 ODP Bremen drill Joides Leg 166 1996

5 1005B 0-3 -79,23 24,56 352 ODP Bremen drill Joides Leg 166 1996

6 1006A 0-4 -79,45 24,39 658 ODP Bremen drill Joides Leg 166 1996

7 1006B 0-3 -79,45 24,39 658 ODP Bremen drill Joides Leg 166 1996

8 1006C 0-3 -79,45 24,39 658 ODP Bremen drill Joides Leg 166 1996

9 1006D 0-3 -79,45 24,39 657 ODP Bremen drill Joides Leg 166 1996

10 1007A 0-3 -79,32 24,50 650 ODP Bremen drill Joides Leg 166 1996

11 1007B 0-4 -79,32 24,50 647 ODP Bremen drill Joides Leg 166 1996

Page 114: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Sample Set 4 - Leg 101 Surface Samples

Nr. SampleCore depth

[cm]Longitude Latitude Water depth [m] Repository Core type Ship/Cruise Date

1 626A 3-8 -79,54 25,60 847 ODP Lamont drill Joides Leg 101 1985

2 627A 0-8 -78,29 27,63 1030 ODP Lamont drill Joides Leg 101 1985

3 627B 1-9.5 -78,29 27,63 1025 ODP Lamont drill Joides Leg 101 1985

4 628A 2-9 -78,31 27,53 966 ODP Lamont drill Joides Leg 101 1985

5 629A 1-10 -78,36 27,40 553 ODP Lamont drill Joides Leg 101 1985

6 630A 5-10 -78,34 27,44 807 ODP Lamont drill Joides Leg 101 1985

7 630B 3-10 -78,34 27,44 807 ODP Lamont drill Joides Leg 101 1985

8 631A 2-10 -75,74 23,58 1081 ODP Lamont drill Joides Leg 101 1985

9 632A 1-10 -75,43 23,84 1996 ODP Lamont drill Joides Leg 101 1985

10 633A 2-9.5 -75,62 23,68 1681 ODP Lamont drill Joides Leg 101 1985

11 634A 1-10 -77,31 25,38 2835 ODP Lamont drill Joides Leg 101 1985

12 635A 1-10 -77,33 25,41 3448 ODP Lamont drill Joides Leg 101 1985

13 635B 1-10 -77,33 25,41 3470 ODP Lamont drill Joides Leg 101 1985

Sample Set 5 - Pilsbury

Nr. SampleCore depth

[cm]Longitude Latitude Water depth [m] Repository Core type Ship/Cruise Date

1 P6401-4 0-4 -77,353 25,62 3323 RSMAS gravity Pilsbury 1964

2 P6401-5 0-4.5 -77,28 25,40 3501 RSMAS gravity Pilsbury 1964

3 P6408-23 0-4 -74,317 24,05 3766 RSMAS piston Pilsbury 1964

4 P6408-24 0-4 -75,5 24,72 3204 RSMAS gravity Pilsbury 1964

5 P6804, 005 0-5.5 -75,08 23,59 2542 RSMAS gravity Pilsbury 1968

6 P6804, 006 0-4.5 -75,42 23,92 2017 RSMAS gravity Pilsbury 1968

7 P6804, 007 0-4.5 -75,99 23,83 1678 RSMAS gravity Pilsbury 1968

8 P6804, 008 0-5.5 -76,00 24,12 1813 RSMAS gravity Pilsbury 1968

9 P6804, 009 0-4 -76,03 24,47 1630 RSMAS gravity Pilsbury 1968

10 P6804-12 0-4 -77,228 25,64 1707 RSMAS gravity Pilsbury 1968

11 P6807, 030 0-5 -76,29 24,41 1624 RSMAS gravity Pilsbury 1968

12 P6807, 031 0-4.5 -76,29 24,42 1717 RSMAS gravity Pilsbury 1968

13 P6807, 032 0-3 -76,29 24,41 1524 RSMAS gravity Pilsbury 1968

14 P6807, 033 0-3 -76,30 24,40 1719 RSMAS gravity Pilsbury 1965

15 P6807, 034 0-4 -76,31 24,41 1745 RSMAS gravity Pilsbury 1965

16 P6807, 035 0-3.5 -76,28 24,41 1715 RSMAS gravity Pilsbury 1965

17 P7008-1 0-4 -76,018 25,78 4790 RSMAS gravity Pilsbury 1970

18 P7008-2 0-3.5 -76,102 25,78 4796 RSMAS piston Pilsbury 1970

19 P7102, 004 0-4 -76,39 24,76 1429 RSMAS gravity Pilsbury 1971

20 P7102, 005 0-3.5 -76,51 24,63 1624 RSMAS gravity Pilsbury 1971

21 P7102, 006 0-4.5 -76,55 24,60 1578 RSMAS gravity Pilsbury 1971

22 P7102, 007 0-3 -76,29 24,21 1716 RSMAS gravity Pilsbury 1971

23 P7102, 008 0-2.5 -76,17 24,27 1774 RSMAS gravity Pilsbury 1971

24 P7102, 009 0-2.5 -75,98 24,39 1688 RSMAS gravity Pilsbury 1971

25 P7102, 012 0-2.5 -76,87 23,80 1328 RSMAS gravity Pilsbury 1971

26 P7102, 013 0-4 -76,72 23,68 1275 RSMAS gravity Pilsbury 1971

27 P7102, 014 0-3.5 -76,85 23,69 1331 RSMAS gravity Pilsbury 1971

28 P7102, 015 0-4 -76,87 23,53 1310 RSMAS gravity Pilsbury 1971

29 P7102, 030 0-2.5 -75,86 23,70 1505 RSMAS piston Pilsbury 1971

30 P7102, 031 0-3 -75,72 23,80 1859 RSMAS piston Pilsbury 1971

31 P7102, 032 0-3.5 -75,54 23,93 2096 RSMAS piston Pilsbury 1971

32 P7102, 033 0-3 -75,26 24,04 1654 RSMAS gravity Pilsbury 1971

33 P7102, 034 0-5 -75,07 22,66 2560 RSMAS gravity Pilsbury 1971

34 P7102, 035 0-3 -75,31 22,86 2434 RSMAS gravity Pilsbury 1971

35 P7102, 036 0-3 -75,58 22,73 2269 RSMAS piston Pilsbury 1971

36 P7102, 037 0-3 -75,44 22,39 2499 RSMAS piston Pilsbury 1971

Page 115: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr. SampleCore depth

[cm]Longitude Latitude Water depth [m] Repository Core type Ship/Cruise Date

37 P7102, 038 0-3 -75,12 22,51 2508 RSMAS gravity Pilsbury 1971

38 P7102-41 0-3 -75,888 24,94 3834 RSMAS gravity Pilsbury 1971

Sample Set 6/9 - Site 1006

Core Longitude Latitude Water depth [m] Repository Core type Ship/Cruise Date

1006A -79,46 24,40 658 BCR drill ODP Leg 166 1996

Sample Set 7 - Site 632

Core Longitude Latitude Water depth [m] Repository Core type Ship/Cruise Date

632A -76,44 23,84 1996 ECR drill ODP Leg 101 1985

Sample Set 8 - Site 633

Core Longitude Latitude Water depth [m] Repository Core type Ship/Cruise Date

633A -75,62 23,68 1681 ECR drill ODP Leg 101 1985

20/54

227

488

Amount of

samples

Amount of

samples

Amount of

samples

Page 116: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama
Page 117: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Appendix 2.1.

Grain Size

Page 118: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Sample Set 1 - Gillies/Trident

Nr. Sample w.w. [g] d.w. [g] b.d. [g] d.w. [%] d.w. [%] 63-125 125-250 250-500 500-1000 > 1000

< 63 µm > 63 µm µm [%] µm [%] µm [%] µm [%] µm [%]

1 GS-7603-7 9,30 5,45 3,84 86,77 13,23 27,71 24,03 24,62 16,41 7,232 GS-7603-8 6,39 4,01 2,37 84,20 15,80 18,69 20,75 33,85 21,27 5,443 GS-7603-9 6,29 4,05 2,24 37,16 62,84 29,81 29,51 26,87 12,93 0,884 GS-7603-10 6,40 4,28 2,12 83,90 16,10 29,79 23,58 30,42 14,16 2,055 GS-7603-11 6,40 5,87 0,54 79,26 20,74 21,87 23,44 38,18 14,78 1,736 GS-7603-12 9,11 6,55 2,56 85,38 14,62 30,33 23,92 30,36 12,91 2,487 GS-7603-13 6,26 4,60 1,66 81,66 18,34 19,47 18,98 28,53 20,02 13,008 GS-7603-14 9,05 7,60 1,45 90,27 9,73 39,42 21,28 21,21 12,82 5,279 TR-149-31 6,25 3,58 2,67 86,35 13,65 23,29 20,84 33,67 19,84 2,36

10 TR-149-32 7,00 4,39 2,61 84,73 15,27 19,57 21,43 35,38 19,81 3,8111 TR-149-34 10,98 8,02 2,95 86,18 13,82 23,75 20,78 31,81 20,77 2,8912 TR-149-35 16,08 13,67 2,41 84,77 15,23 32,19 24,21 27,03 14,39 2,1813 TR-149-36 9,13 5,99 3,14 84,44 15,56 24,38 22,92 31,22 17,11 4,3714 TR-149-37 6,10 4,58 1,52 82,35 17,65 37,55 23,99 26,39 11,30 0,7715 TR-149-38a 7,90 8,89 -0,99 81,77 18,23 22,50 22,04 37,46 16,58 1,4216 TR-149-38b 9,64 6,00 3,64 73,63 26,37 20,97 20,74 41,71 15,58 0,99

Page 119: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Appendix 2.2.

Carbonate and total organic carbon contents (Leco)

Page 120: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Sample Set 1 - Gillies/Trident

Nr. Sample Ctotal Corg. Canorg. CaCO3 Ctotal Corg. Canorg. CaCO3

1 GS-7603-7 10,45 0,33 10,12 84,28 10,46 0,41 10,05 83,762 GS-7603-8 10,93 1,15 9,78 81,44 10,64 0,43 10,21 85,053 GS-7603-9 11,86 0,33 11,53 96,04 11,84 0,16 11,68 97,274 GS-7603-10 11,19 0,82 10,37 86,41 10,98 0,44 10,54 87,765 GS-7603-11 11,88 1,56 10,33 86,01 10,92 0,47 10,45 87,046 GS-7603-12 11,46 1,26 10,20 84,99 11,20 0,67 10,53 87,747 GS-7603-13 10,83 1,11 9,72 80,98 10,63 0,50 10,13 84,408 GS-7603-14 12,57 1,76 10,81 90,06 11,42 0,69 10,73 89,369 TR149-31 9,63 0,97 8,66 72,14 9,05 0,45 8,60 71,60

10 TR149-32 10,38 0,54 9,84 81,94 10,35 0,47 9,88 82,2811 TR149-34 10,55 0,63 9,92 82,60 10,67 0,48 10,19 84,9112 TR149-35 10,39 0,40 9,99 83,19 10,53 0,34 10,19 84,8713 TR149-36 10,42 0,45 9,97 83,01 10,61 0,38 10,23 85,2014 TR149-37 10,85 0,58 10,27 85,57 10,86 0,38 10,48 87,2615 TR149-38b 11,19 1,01 10,18 84,81 10,99 0,47 10,52 87,67

Sample Set 2 - Oceanus

Nr. Sample Ctotal Corg. Canorg. CaCO3 Ctotal Corg. Canorg. CaCO3

1a 0006JPC 12,15 0,16 11,99 99,87 12,33 0,19 12,14 101,132a 0012GGC 11,97 0,26 11,71 97,52 12,18 0,20 11,98 99,813b 0024GGC 12,09 0,23 11,86 98,78 12,21 0,22 11,99 99,864b 0028GGC 12,13 0,27 11,86 98,78 12,30 0,38 11,92 99,325 0031GGC 12,31 0,29 12,02 100,10 12,37 0,23 12,14 101,106 0033GGC 12,21 0,27 11,94 99,48 12,31 0,20 12,11 100,86

7b 0035GGC 12,07 0,23 11,84 98,61 12,22 0,18 12,04 100,298b 0038GGC 12,16 0,27 11,89 99,01 12,39 0,20 12,19 101,539 0041GGC 12,14 0,29 11,85 98,67 12,31 0,23 12,08 100,66

10b 0043GGC 12,20 0,21 11,99 99,87 12,41 0,22 12,19 101,5211b 0046PC 12,30 0,08 12,22 101,78 12,36 0,10 12,26 102,0912b 0048BC 12,17 0,22 11,95 99,55 12,28 0,20 12,08 100,6313b 0050BC 12,24 0,27 11,97 99,74 12,27 0,22 12,05 100,3614 0051BC 12,02 0,22 11,80 98,28 12,30 0,18 12,12 100,9615a 0052BC 12,21 0,28 11,93 99,36 12,46 0,23 12,23 101,9116a 0053BC 12,10 0,21 11,89 99,02 12,27 0,21 12,06 100,4817 0054BC 11,95 0,26 11,69 97,38 12,22 0,23 11,99 99,9018 0055BC 11,96 0,24 11,72 97,65 12,27 0,38 11,89 99,0119 0069BC 12,10 0,22 11,88 98,93 12,30 0,20 12,10 100,8020 0070BC 11,87 0,23 11,64 96,93 12,30 0,22 12,08 100,6321 0072BC 11,98 0,29 11,69 97,39 12,33 0,23 12,10 100,7622 0075GGC 12,38 0,28 12,10 100,79 12,52 0,28 12,24 101,9623a 0096GGC 12,11 0,32 11,79 98,24 12,53 0,30 12,23 101,8424 0097JPC 12,31 0,38 11,93 99,36 12,57 0,37 12,20 101,64

25b 0098GGC 11,99 0,35 11,64 96,99 12,38 0,29 12,09 100,7126b 0099JPC 12,16 0,11 12,05 100,41 12,35 0,12 12,23 101,9127 0100GGC 11,86 0,33 11,53 96,03 12,18 0,31 11,87 98,9028 0101JPC 11,84 0,19 11,65 97,08 12,21 0,16 12,05 100,3529 0103GGC 12,24 0,29 11,95 99,50 12,27 0,29 11,98 99,7530 0106GGC 11,89 0,26 11,63 96,85 12,16 0,22 11,94 99,43

31b 0107JPC 11,93 0,18 11,75 97,89 12,29 0,20 12,09 100,6732 0108GGC 12,00 0,30 11,70 97,44 12,20 0,29 11,91 99,2233 0110GGC 11,92 0,23 11,69 97,37 12,36 0,23 12,13 101,00

34b 0111GGC 11,93 0,26 11,67 97,20 12,56 0,22 12,34 102,7735b 0140GGC 11,99 0,20 11,79 98,17 12,21 0,19 12,02 100,0936 0141JPC 11,96 0,27 11,69 97,41 12,38 0,18 12,20 101,6437 0142JPC 12,02 0,24 11,78 98,15 12,37 0,18 12,19 101,52

38b 0143GGC 11,96 0,22 11,74 97,77 12,46 0,22 12,24 101,9339b 0145GGC 12,04 0,23 11,81 98,39 12,24 0,22 12,02 100,0940 0148GGC 12,31 0,33 11,98 99,78 12,40 0,29 12,11 100,9141 0151GCG 12,16 0,29 11,87 98,91 12,29 0,21 12,08 100,5942a 0153GGC 12,03 0,28 11,75 97,85 12,06 0,20 11,86 98,82

Bulk sediment Fine fraction < 63 µm

Bulk sediment Fine fraction < 63 µm

Page 121: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Sample Set 3 - Leg 166 Surface Samples

Nr. Sample Ctotal Corg. Canorg. CaCO3 Ctotal Corg. Canorg. CaCO3

1 1003A 12,28 0,64 11,64 96,99 12,93 0,81 12,12 101,002 1003B 12,15 0,56 11,59 96,52 12,95 0,77 12,18 101,503 1004A 12,41 0,57 11,84 98,66 12,96 0,74 12,22 101,824 1005A 12,41 0,41 12,00 99,95 13,09 0,76 12,33 102,695 1005B 12,45 0,71 11,74 97,79 13,12 0,66 12,46 103,796 1006A 11,98 0,51 11,47 95,50 12,18 0,56 11,62 96,807 1006B 11,71 0,46 11,25 93,67 12,24 0,51 11,73 97,738 1006C 11,74 0,42 11,32 94,33 12,22 0,48 11,74 97,789 1006D 11,74 0,45 11,29 94,04 12,21 0,54 11,67 97,20

10 1007A 12,16 0,42 11,74 97,83 12,56 0,45 12,11 100,8411 1007B 12,20 0,39 11,81 98,41 12,84 0,49 12,35 102,84

Sample Set 4 - Leg 101 Surface Samples

Nr. Sample Ctotal Corg. Canorg. CaCO3 Ctotal Corg. Canorg. CaCO3

1 626A 11,80 0,14 11,66 97,142 627A 11,76 0,09 11,67 97,24 11,49 0,16 11,33 94,393 627B 11,69 0,06 11,63 96,84 11,63 0,15 11,48 95,634 628A 11,69 0,10 11,59 96,57 11,79 0,19 11,60 96,655 629A 12,29 0,18 12,11 100,89 12,53 0,24 12,29 102,346 630A 11,96 0,20 11,76 97,97 12,34 0,23 12,11 100,897 630B 12,06 0,23 11,83 98,51 12,33 0,23 12,10 100,828 631A 11,89 0,15 11,74 97,81 12,12 0,17 11,95 99,579 632A 12,14 0,15 11,99 99,85 12,27 0,21 12,06 100,49

10 633A 12,02 0,19 11,83 98,52 12,17 0,22 11,95 99,5211 634A 11,56 0,26 11,30 94,09 11,78 0,31 11,47 95,5112 635A 11,97 0,09 11,88 98,97 12,11 0,17 11,94 99,4213 635B 11,22 0,30 10,92 90,98 11,42 0,36 11,06 92,13

Sample Set 5 - Pilsbury

Nr. Sample Ctotal Corg. Canorg. CaCO3 Ctotal Corg. Canorg. CaCO3

1 P6401-4 12,05 0,18 11,87 98,86 12,00 0,22 11,78 98,112 P6401-5 11,76 0,29 11,47 95,51 11,70 0,34 11,36 94,653 P6408-23 10,97 0,27 10,70 89,17 10,70 0,31 10,39 86,594 P6408-24 10,49 0,22 10,27 85,56 10,20 0,23 9,97 83,055 P6804, 005 11,66 0,32 11,34 94,44 11,60 0,31 11,29 94,056 P6804, 006 11,84 0,29 11,55 96,20 11,80 0,29 11,51 95,857 P6804, 007 11,80 0,22 11,58 96,46 11,90 0,32 11,58 96,488 P6804, 008 11,80 0,47 11,33 94,40 11,90 0,32 11,58 96,499 P6804, 009 11,61 0,31 11,30 94,17 12,00 0,29 11,71 97,51

10 P6804-12 12,02 0,36 11,66 97,15 11,90 0,30 11,61 96,6711 P6807, 030 12,26 0,48 11,78 98,10 12,00 0,44 11,56 96,3312 P6807, 031 11,92 0,32 11,60 96,61 12,00 0,31 11,69 97,3613 P6807, 032 12,11 0,38 11,73 97,72 11,90 0,32 11,58 96,4414 P6807, 033 11,68 0,27 11,41 95,03 12,00 0,34 11,66 97,0915 P6807, 034 12,05 0,24 11,81 98,36 12,00 0,29 11,71 97,5716 P6807, 035 12,08 0,23 11,85 98,70 11,80 0,28 11,52 95,9317 P7008-1 10,40 0,17 10,23 85,23 9,34 0,23 9,11 75,8818 P7008-2 9,39 0,25 9,14 76,11 9,18 0,30 8,88 74,0119 P7102, 004 11,95 0,20 11,75 97,87 12,10 0,30 11,80 98,3120 P7102, 005 11,85 0,26 11,59 96,51 12,10 0,31 11,79 98,2221 P7102, 006 11,78 0,26 11,52 95,94 12,20 0,40 11,80 98,3122 P7102, 007 11,83 0,23 11,60 96,64 12,10 0,37 11,73 97,7423 P7102, 008 11,72 0,21 11,51 95,89 11,80 0,29 11,51 95,8724 P7102, 009 11,38 0,16 11,22 93,43 11,80 0,25 11,55 96,2225 P7102, 012 11,86 0,35 11,51 95,87 12,30 0,56 11,74 97,7726 P7102, 013 11,88 0,56 11,32 94,25 12,40 0,41 11,99 99,9127 P7102, 014 11,95 0,35 11,60 96,59 12,30 0,54 11,76 97,9928 P7102, 015 12,25 0,60 11,65 97,08 12,70 0,81 11,89 99,0729 P7102, 030 11,95 0,14 11,81 98,42 12,30 0,27 12,03 100,1830 P7102, 031 11,64 0,24 11,40 94,93 11,90 0,29 11,61 96,7531 P7102, 032 11,71 0,14 11,57 96,41 12,00 0,19 11,81 98,3532 P7102, 033 11,86 0,16 11,70 97,43 11,70 0,17 11,53 96,0633 P7102, 034 11,55 0,27 11,28 93,97 11,70 0,27 11,43 95,2534 P7102, 035 11,19 0,16 11,03 91,85 11,50 0,22 11,28 93,9735 P7102, 036 11,43 0,30 11,13 92,73 11,40 0,30 11,10 92,4436 P7102, 037 11,46 0,27 11,19 93,18 11,50 0,28 11,22 93,4737 P7102, 038 11,16 0,24 10,92 90,95 11,30 0,30 11,00 91,6538 P7102-41 9,58 0,44 9,15 76,18 9,18 0,38 8,80 73,27

Bulk sediment Fine fraction < 63 µm

Bulk sediment Fine fraction < 63 µm

Bulk sediment Fine fraction < 63 µm

Page 122: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Sample Set 8 - Site 633

1 1H01 005-007 5 0,22 54 1H04 085-087 545 0,15

2 1H01 015-017 15 0,17 55 1H04 095-097 555 0,09

3 1H01 025-027 25 0,14 56 1H04 105-107 567 0,10

4 1H01 035-037 35 0,13 57 1H04 117-119 575 0,13

5 1H01 045-047 45 0,13 58 1H04 125-127 585 0,20

6 1H01 055-057 55 0,12 59 1H04 135-137 595 0,22

7 1H01 065-067 65 0,13 60 1H04 145-147 605 0,10

8 1H01 075-077 75 0,12 61 1H05 005-007 615 0,10

9 1H01 085-087 85 0,15 62 1H05 015-017 625 0,11

10 1H01 095-097 95 0,12 63 1H05 025-027 645 0,12

11 1H01 105-107 105 0,11 64 1H05 035-037 655 0,13

12 1H01 112-114 115 0,10 65 1H05 045-047 665 0,11

13 1H01 125-127 125 0,10 66 1H05 055-057 675 0,09

14 1H01 135-137 135 0,10 67 1H05 065-067 685 0,07

15 1H01 145-147 145 0,11 68 1H05 075-077 695 0,07

16 1H02 005-007 155 0,11 69 1H05 085-087 705 0,07

17 1H02 015-017 165 0,14 70 1H05 095-097 717 0,08

18 1H02 025-027 175 0,12 71 1H05 105-107 725 0,07

19 1H02 035-037 185 0,11 72 1H05 117-119 735 0,06

20 1H02 045-047 195 0,13 73 1H05 125-127 755 0,07

21 1H02 055-057 205 0,12 74 1H05 135-137 765 0,07

22 1H02 065-067 215 0,11 75 1H06 005-007 775 0,06

23 1H02 075-077 225 0,12 76 1H06 015-017 785 0,07

24 1H02 085-087 235 0,15 77 1H06 025-027 795 0,08

25 1H02 095-097 245 0,12 78 1H06 035-037 805 0,14

26 1H02 105-107 255 0,26 79 1H06 045-047 815 0,08

27 1H02 117-118 265 0,15 80 1H06 055-057 825 0,09

28 1H02 125-127 275 0,15 81 1H06 065-067 835 0,11

29 1H02 135-137 285 0,16 82 1H06 075-077 845 0,05

30 1H02 145-147 295 0,16 83 1H06 085-087 855 0,07

31 1H03 005-007 305 0,22 84 1H06 095-097 865 0,08

32 1H03 015-017 313 0,11 85 2H01 005-007 875 0,10

33 1H03 025-027 335 0,14 86 2H01 015-017 885 0,09

34 1H03 035-037 345 0,43 87 2H01 025-027 895 0,09

35 1H03 045-047 355 0,30 88 2H01 035-037 905 0,06

36 1H03 055-057 365 0,28 89 2H01 045-047 915 0,06

37 1H03 065-067 375 0,28 90 2H01 055-057 925 0,07

38 1H03 075-077 385 0,27 91 2H01 065-067 935 0,08

39 1H03 085-087 395 0,29 92 2H01 075-077 945 0,08

40 1H03 095-097 405 0,13 93 2H01 085-087 955 0,09

41 1H03 105-107 417 0,11 94 2H01 095-097 965 0,10

42 1H03 117-119 425 0,10 95 2H01 105-107 975 0,09

43 1H03 125-127 435 0,11 96 2H01 115-117 985 0,07

44 1H03 135-137 445 0,11 97 2H01 125-127 995 0,09

45 1H03 145-147 455 0,28 98 2H01 135-137 1005 0,08

46 1H04 005-007 465 0,11 99 2H01 145-147 1015 0,13

47 1H04 015-017 475 0,11 100 2H02 005-007 1025 0,13

48 1H04 025-027 485 0,08 101 2H02 015-017 1035 0,11

49 1H04 035-037 495 0,10 102 2H02 025-027 1045 0,16

50 1H04 045-047 505 0,01 103 2H02 035-037 1055 0,16

51 1H04 055-057 515 0,10 104 2H02 045-047 1065 0,09

52 1H04 065-067 525 0,23 105 2H02 055-057 1072 0,10

53 1H04 075-077 535 0,13 106 2H02 065-067 1085 0,07

Core depth

[cm]

Bulk sediment

Corg

Nr. Sample Nr. SampleCore depth

[cm]

Bulk sediment

Corg

Page 123: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

107 2H02 075-077 1095 0,08 161 2H06 025-027 1645 0,06

108 2H02 085-087 1105 0,07 162 2H06 035-037 1655 0,07

109 2H02 095-097 1115 0,08 163 2H06 045-047 1665 0,06

110 2H02 105-107 1125 0,07 164 2H06 053-057 1673 0,09

111 2H02 115-117 1135 0,07 165 2H06 065-067 1685 0,07

112 2H02 125-127 1145 0,10 166 2H06 075-077 1695 0,07

113 2H02 135-137 1155 0,09 167 2H06 085-087 1705 0,07

114 2H02 145-147 1165 0,06 168 2H06 095-097 1715 0,05

115 2H03 005-007 1175 0,10 169 2H06 105-107 1725 0,09

116 2H03 015-017 1185 0,11 169a 2H06 115-117 1735 0,09

117 2H03 025-027 1193 0,08 170 2H06 125-127 1745 0,11

118 2H03 035-037 1205 0,08 171 3H01 004-005 1764 0,07

119 2H03 045-047 1215 0,08 172 3H01 016-017 1776 0,10

120 2H03 055-057 1223 0,08 173 3H01 024-025 1784 0,10

121 2H03 065-067 1235 0,12 174 3H01 034-035 1794 0,09

122 2H03 075-077 1245 0,09 175 3H01 044-045 1804 0,07

123 2H03 085-087 1255 0,08 176 3H01 054-055 1814 0,09

124 2H03 095-097 1265 0,10 177 3H01 064-065 1824 0,07

125 2H03 105-107 1275 0,07 178 3H01 074-075 1833 0,12

126 2H03 115-117 1285 0,08 179 3H01 084-085 1844 0,10

127 2H03 125-127 1295 0,10 180 3H01 094-095 1854 0,09

128 2H03 135-137 1305 0,11 181 3H01 104-105 1864 0,09

129 2H03 145-147 1315 0,12 182 3H01 114-115 1874 0,13

130 2H04 005-007 1325 0,13 183 3H01 124-125 1884 0,09

131 2H04 015-017 1335 0,13 184 3H01 137-138 1897 0,09

132 2H04 025-027 1345 0,13 185 3H01 143-145 1903 0,10

133 2H04 035-037 1355 0,13 186 3H02 004-005 1914 0,10

134 2H04 045-047 1365 0,17 187 3H02 014-015 1924 0,10

135 2H04 055-057 1375 0,11 188 3H02 024-025 1934 0,12

136 2H04 069-071 1389 0,10 189 3H02 034-035 1944 0,10

137 2H04 075-077 1395 0,09 190 3H02 044-045 1954 0,15

138 2H04 085-087 1405 0,10 191 3H02 053-054 1963 0,14

139 2H04 095-097 1415 0,10 192 3H02 064-065 1974 0,13

140 2H04 105-107 1425 0,10 193 3H02 074-075 1984 0,13

141 2H04 115-117 1435 0,09 194 3H02 084-085 1994 0,14

142 2H04 125-127 1445 0,13 195 3H02 104-105 2014 0,10

143 2H04 135-137 1455 0,07 196 3H02 114-115 2024 0,09

144 2H04 145-147 1465 0,10 197 3H02 124-125 2034 0,08

145 2H05 005-007 1475 0,10 198 3H02 134-135 2044 0,10

146 2H05 015-017 1485 0,08 199 3H02 144-145 2054 0,09

147 2H05 025-027 1495 0,08 200 3H03 004-005 2064 0,07

148 2H05 035-037 1505 0,09 201 3H03 014-015 2074 0,08

149 2H05 045-047 1515 0,09 202 3H03 024-025 2084 0,12

150 2H05 053-055 1523 0,08 203 3H03 043-044 2103 0,12

151 2H05 065-067 1535 0,09 204 3H03 053-054 2113 0,08

152 2H05 075-077 1545 0,07 205 3H03 064-065 2123 0,08

153 2H05 085-087 1555 0,07 206 3H03 074-075 2133 0,08

154 2H05 095-097 1565 0,08 207 3H03 084-085 2144 0,09

155 2H05 105-107 1575 0,08 208 3H03 094-095 2154 0,07

156 2H05 115-117 1585 0,08 209 3H03 104-105 2164 0,06

157 2H05 125-127 1595 0,06 210 3H03 114-115 2174 0,07

158 2H05 135-137 1605 0,08 211 3H03 124-125 2184 0,06

159 2H06 005-007 1625 0,07 212 3H03 134-135 2194 0,05

160 2H06 015-017 1635 0,06 213 3H03 144-145 2204 0,06

Core depth

[cm]

Bulk sediment

Corg

Nr. Sample Nr. SampleCore depth

[cm]

Bulk sediment

Corg

Page 124: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

214 3H04 005-007 2215 0,07 268 4H02 065-067 2927 0,08

215 3H04 015-017 2225 0,09 269 4H02 095-097 2957 0,13

216 3H04 025-027 2235 0,08 270 4H02 105-107 2967 0,09

217 3H04 035-037 2245 0,08 271 4H02 115-117 2977 0,07

218 3H04 045-047 2255 0,08 272 4H02 125-127 2987 0,08

219 3H04 055-057 2265 0,08 273 4H02 135-137 2997 0,12

220 3H04 065-067 2275 0,11 274 4H02 145-147 3007 0,18

221 3H04 075-077 2285 0,09 275 4H03 005-007 3017 0,09

222 3H04 085-087 2295 0,08 276 4H03 015-017 3027 0,08

223 3H04 095-097 2305 0,07 277 4H03 051-053 3063 0,09

224 3H04 105-107 2315 0,07 278 4H03 057-059 3069 0,08

225 3H04 115-117 2325 0,06 279 4H03 065-067 3077 0,09

226 3H04 125-127 2335 0,06 280 4H03 085-087 3097 0,09

227 3H04 135-137 2345 0,06 281 4H03 105-107 3117 0,08

228 3H05 003-005 2363 0,07 282 4H03 115-117 3127 0,09

229 3H05 010-012 2370 0,06 283 4H03 125-127 3137 0,26

230 3H05 018-020 2378 0,06 284 4H03 135-137 3147 0,08

231 3H05 035-037 2395 0,07 285 4H03 145-147 3157 0,08

232 3H05 045-047 2405 0,08 286 4H04 005-007 3167 0,09

233 3H05 055-057 2415 0,07 287 4H04 015-017 3177 0,07

234 3H05 065-067 2425 0,08 288 4H04 025-027 3187 0,14

235 3H05 075-077 2435 0,06 289 4H04 035-037 3197 0,07

236 3H05 087-089 2447 0,06 290 4H04 045-047 3207 0,06

237 3H05 095-097 2455 0,07 291 4H04 055-057 3217 0,06

238 3H05 105-107 2465 0,09 292 4H04 065-067 3227 0,07

239 3H05 115-117 2475 0,09 293 4H04 075-077 3237 0,08

240 3H06 005-007 2515 0,08 294 4H04 085-087 3247 0,08

241 3H06 015-017 2525 0,09 295 4H04 095-097 3257 0,09

242 3H06 025-027 2535 0,07 296 4H04 105-107 3267 0,07

243 3H06 034-036 2544 0,08 297 4H04 115-117 3277 0,11

244 3H06 045-047 2555 0,09 298 4H04 125-127 3287 0,06

245 3H06 055-057 2565 0,08 299 4H04 135-137 3297 0,07

246 3H06 069-071 2579 0,14 300 4H05 005-007 3317 0,06

247 3H06 085-087 2595 0,07 301 4H05 015-017 3327 0,08

248 3H06 095-097 2605 0,09 302 4H05 023-025 3337 0,09

249 3H06 105-107 2615 0,07 303 4H05 035-037 3347 0,08

250 3H06 115-117 2625 0,06 304 4H05 045-047 3357 0,07

251 3H06 125-127 2635 0,07 305 4H05 053-055 3365 0,06

252 3H06 135-137 2645 0,14 306 4H05 065-067 3377 0,07

253 3H06 145-147 2655 0,08 307 4H05 074-076 3386 0,06

254 4H01 005-007 2717 0,08 308 4H05 085-087 3397 0,07

255 4H01 015-017 2727 0,06 309 4H05 095-097 3407 0,09

256 4H01 055-057 2767 0,07 310 4H05 105-107 3417 0,08

257 4H01 065-067 2777 0,07 311 4H05 114-116 3426 0,08

258 4H01 075-077 2787 0,09 312 4H05 125-127 3437 0,08

259 4H01 085-087 2797 0,09 313 4H05 135-137 3447 0,08

260 4H01 095-097 2807 0,09 314 4H05 145-147 3457 0,10

261 4H01 125-127 2837 0,09 315 4H06 005-007 3467 0,13

262 4H01 135-137 2847 0,07 316 4H06 015-017 3477 0,10

263 4H01 145-147 2857 0,10 317 4H06 025-027 3487 0,07

264 4H02 005-007 2867 0,07 318 4H06 035-037 3497 0,07

265 4H02 015-017 2877 0,07 319 4H06 045-047 3507 0,05

266 4H02 025-027 2887 0,10 320 4H06 055-057 3517 0,06

267 4H02 035-037 2897 0,10 321 4H06 069-071 3531 0,06

Core depth

[cm]

Bulk sediment

Corg

Core depth

[cm]

Bulk sediment

Corg

Nr. SampleNr. Sample

Page 125: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

322 4H06 099-101 3561 0,08

323 4H06 121-123 3585 0,08

324 4H06 135-137 3597 0,10

325 4H06 145-147 3607 0,06

Core depth

[cm]

Bulk sediment

Corg

Nr. Sample

Page 126: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama
Page 127: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Appendix 2.3.

Mineralogy (XRD)

Page 128: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Sample Set 1 - Gillies/Trident

Intensity Intensity

Nr. Sample Arag. HMC LMC Quartz Arag. HMC LMC Quartz

1 GS-7603-7 6768 5701 23794 111,00 6914 6782 23600 126,002 GS-7603-8 6822 8232 20500 133,00 6748 5597 23690 152,003 GS-7603-9 8112 9604 20102 0,00 10036 9742 11352 58,004 GS-7603-10 7374 8946 23502 93,00 8512 11242 20910 123,005 GS-7603-11 6716 2312 25174 145,00 7484 8650 19504 142,006 GS-7603-12 7410 4447 23018 87,00 7772 11430 18048 165,007 GS-7603-13 6408 6135 21712 90,00 6270 9094 20836 134,008 GS-7603-14 7852 10860 20966 67,00 7668 9550 19498 189,009 TR-149-31 4414 3841 25586 236,00 4290 4311 24206 275,00

10 TR-149-32 5190 6553 23446 144,00 5778 6887 23912 156,0011 TR-149-34 5830 9080 21956 107,00 5910 11182 19436 115,0012 TR-149-35 5362 12006 21730 104,00 6350 13504 18872 115,0013 TR-149-36 6154 10786 21766 113,00 6732 12940 20748 114,0014 TR-149-37 6350 10922 18970 99,00 6796 11488 19586 97,0015 TR-149-38b 6518 9757 24488 88,00 7056 9168 18982 90,00

Nr. Sample CaCO3 %Arag.

Sed.-%

HMC

Sed.-%

LMC

Sed.-%CaCO3 %

Arag.

Sed.-%

HMC

Sed.-%

LMC

Sed.-%

1 GS-7603-7 84,28 58,98 4,10 21,20 83,76 58,50 4,61 20,652 GS-7603-8 81,44 57,46 5,34 18,64 85,05 59,57 4,09 21,383 GS-7603-9 96,04 69,97 6,89 19,18 97,27 79,07 5,75 12,454 GS-7603-10 86,41 60,33 6,50 19,58 87,76 63,50 6,89 17,385 GS-7603-11 86,01 61,09 1,93 22,98 87,04 63,03 5,64 18,366 GS-7603-12 84,99 61,76 3,24 20,00 87,74 63,43 7,08 17,247 GS-7603-13 80,98 56,71 4,38 19,89 84,40 57,76 6,21 20,438 GS-7603-14 90,06 64,12 7,22 18,73 89,36 64,61 6,12 18,629 TR-149-31 72,14 45,14 3,12 23,88 71,60 44,84 3,51 23,25

10 TR-149-32 81,94 53,36 5,13 23,46 82,28 54,75 5,03 22,5111 TR-149-34 82,60 54,97 6,16 21,47 84,91 56,91 7,50 20,5012 TR-149-35 83,19 52,91 7,95 22,33 84,87 57,12 8,17 19,5813 TR-149-36 83,01 55,34 6,89 20,78 85,20 57,62 7,66 19,9314 TR-149-37 85,57 58,77 7,17 19,63 87,26 60,36 7,26 19,6415 TR-149-38b 84,81 56,64 6,25 21,92 87,67 62,64 6,15 18,88

Sample Set 2 - Oceanus

Intensity Intensity

Nr. Sample Arag. HMC LMC Quartz Arag. HMC LMC Quartz

1a 0006JPC 30470 40266 18986 59,00 32562 42304 17146 70,002a 0012GGC 6416 9486 5242 9,00 32860 47278 23512 68,003b 0024GGC 5686 8306 5506 19,00 29952 45044 22558 88,004b 0028GGC 7366 10000 5996 16,00 26344 45268 24020 70,005 0031GGC 5379 10334 4996 0,00 29648 57302 20124 58,006 0033GGC 6146 9752 5064 0,00 28064 47312 22308 50,00

7b 0035GGC 27302 41868 25664 64,00 29810 45692 23004 63,008b 0038GGC 26039 50906 17800 0,00 29232 54004 18416 61,009 0041GGC 26536 51246 19830 65,00 29674 61266 19852 61,00

10b 0043GGC 25537 49514 18310 0,00 27292 54942 19690 54,0011b 0046PC 19098 57858 32442 44,00 20244 63356 26924 61,0012b 0048BC 8542 15708 5996 0,00 27706 55576 18530 72,0013b 0050BC 26060 41140 24264 63,00 28936 48076 22488 62,0014 0051BC 8054 15004 7486 20,00 30260 50956 21038 53,00

15a 0052BC 7896 17544 7192 19,00 25732 50154 21688 60,0016a 0053BC 9326 13110 8286 26,00 28222 45756 25060 76,0017 0054BC 8330 16104 7886 21,00 28748 48278 25572 78,0018 0055BC 27726 38552 25488 80,00 29382 47290 24574 76,0019 0069BC 26948 47246 22900 75,00 26638 46868 22890 81,0020 0070BC 22958 44228 25388 57,00 28136 47896 26398 71,0021 0072BC 27804 44624 25304 82,00 29492 46648 25066 89,0022 0075GGC 25404 54790 18022 0,00 31630 59346 19012 60,00

Fine fractionBulk sediment

Fine fractionBulk sediment

Peak Area Peak area

Peak Area Peak Area

Page 129: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Intensity Intensity

Nr. Sample Arag. HMC LMC Quartz Arag. HMC LMC Quartz

23a 0096GGC 30881 34898 20250 0,00 30326 36804 23370 64,0024 0097JPC 31091 37612 19090 0,00 35296 34016 19486 0,00

25b 0098GGC 34070 33504 25872 66,00 34264 33090 23028 78,0026b 0099JPC 24661 41656 24470 0,00 27676 42364 26758 49,0027 0100GGC 30076 33394 27844 0,00 41056 33428 30110 79,0028 0101JPC 31091 32610 26158 0,00 32406 33668 26576 66,0029 0103GGC 29372 29694 29286 82,00 30238 32840 29262 93,0030 0106GGC 30876 30120 23434 0,00 44968 34040 23044 62,00

31b 0107JPC 32468 27606 24976 73,00 40926 31292 22368 97,0032 0108GGC 34396 30804 27658 74,00 33090 30020 28076 94,0033 0110GGC 31452 29856 26692 0,00 40560 33896 19234 58,00

34b 0111GGC 30245 36970 21800 0,00 40056 32492 18542 51,0035b 0140GGC 27154 43210 32496 88,00 29940 50312 26886 65,0036 0141JPC 29672 41670 24748 62,00 30668 46338 23210 76,0037 0142JPC 29568 42422 25174 43,00 28846 44288 26028 69,00

38b 0143GGC 25278 45376 22982 0,00 29058 47354 23558 61,0039b 0145GGC 25680 50748 20860 58,00 28448 57084 19416 49,0040 0148GGC 25321 65508 16300 0,00 27220 62766 5736 0,0041 0151GCG 26149 50422 20032 49,00 28480 53686 20134 51,00

42a 0153GGC 27148 41516 26190 0,00 28338 49382 24384 82,00

Nr. Sample CaCO3 %Arag.

Sed.-%

HMC

Sed.-%

LMC

Sed.-%CaCO3 %

Arag.

Sed.-%

HMC

Sed.-%

LMC

Sed.-%

1a 0006JPC 99,87 82,25 11,97 5,64 101,132a 0012GGC 97,52 78,05 12,54 6,93 99,81 80,78 12,71 6,323b 0024GGC 98,78 78,24 12,35 8,19 99,86 80,17 13,12 6,574b 0028GGC 98,78 79,84 11,84 7,10 99,32 77,50 14,25 7,565 0031GGC 100,10 76,89 15,64 7,56 101,10 79,00 16,36 5,746 0033GGC 99,48 78,91 13,54 7,03 100,86 79,58 14,46 6,82

7b 0035GGC 98,61 77,85 12,87 7,89 100,29 80,21 13,36 6,728b 0038GGC 99,01 77,21 16,15 5,65 101,53 80,13 15,96 5,449 0041GGC 98,67 76,73 15,82 6,12 100,66 77,96 17,14 5,55

10b 0043GGC 99,87 77,78 16,12 5,96 101,52 78,62 16,86 6,0411b 0046PC 101,78 69,82 20,48 11,48 102,09 71,05 21,79 9,2612b 0048BC 99,55 78,19 15,46 5,90 100,63 78,27 16,77 5,5913b 0050BC 99,74 78,53 13,34 7,87 100,36 79,44 14,25 6,6714 0051BC 98,28 75,80 15,00 7,48 100,96 80,28 14,64 6,04

15a 0052BC 99,36 74,87 17,37 7,12 101,91 78,61 16,27 7,0416a 0053BC 99,02 79,26 12,11 7,65 100,48 79,11 13,81 7,5617 0054BC 97,38 74,65 15,26 7,47 99,90 78,30 14,12 7,4818 0055BC 97,65 78,07 11,79 7,80 99,01 78,32 13,61 7,0719 0069BC 98,93 77,35 14,53 7,04 100,80 78,72 14,83 7,2420 0070BC 96,93 73,53 14,87 8,53 100,63 78,46 14,29 7,8821 0072BC 97,39 76,65 13,24 7,51 100,76 79,79 13,64 7,3322 0075GGC 100,79 77,34 17,65 5,81 101,96 80,47 16,28 5,21

23a 0096GGC 98,24 82,04 10,25 5,95 101,84 83,60 11,16 7,0924 0097JPC 99,36 82,70 11,06 5,61 101,64 87,02 9,30 5,32

25b 0098GGC 96,99 81,30 8,85 6,83 100,71 85,23 9,12 6,3526b 0099JPC 100,41 78,06 14,08 8,27 101,91 80,31 13,24 8,3627 0100GGC 96,03 78,49 9,57 7,98 98,90 84,42 7,62 6,8628 0101JPC 97,08 80,33 9,29 7,46 100,35 83,26 9,55 7,5429 0103GGC 99,50 81,51 9,06 8,93 99,75 81,41 9,70 8,6530 0106GGC 96,85 81,25 8,77 6,83 99,43 87,24 7,27 4,92

31b 0107JPC 97,89 82,99 7,82 7,08 100,67 87,96 7,41 5,3032 0108GGC 97,44 82,00 8,13 7,30 99,22 83,08 8,34 7,8033 0110GGC 97,37 81,22 8,52 7,62 101,00 88,26 8,13 4,61

34b 0111GGC 97,20 80,06 10,78 6,36 102,77 90,14 8,05 4,5935b 0140GGC 98,17 75,74 12,80 9,63 100,09 78,40 14,14 7,5536 0141JPC 97,41 78,31 11,98 7,12 101,64 81,52 13,40 6,7137 0142JPC 98,15 78,61 12,26 7,28 101,52 80,36 13,33 7,83

38b 0143GGC 97,77 75,88 14,53 7,36 101,93 80,67 14,20 7,06

Bulk sediment Fine fraction

Peak Area Peak Area

Page 130: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr. Sample CaCO3 %Arag.

Sed.-%

HMC

Sed.-%

LMC

Sed.-%CaCO3 %

Arag.

Sed.-%

HMC

Sed.-%

LMC

Sed.-%

39b 0145GGC 98,39 75,90 15,93 6,55 100,09 77,77 16,66 5,6740 0148GGC 99,78 74,70 20,08 5,00 100,91 79,41 19,70 1,8041 0151GCG 98,91 76,82 15,81 6,28 100,59 78,71 15,91 5,97

42a 0153GGC 97,85 77,13 12,71 8,02 98,82 77,26 14,43 7,13

Sample Set 3 - Leg 166 Surface Samples

Intensity Intensity

Nr. Sample Arag. HMC LMC Quartz Arag. HMC LMC Quartz

1 1003A 36798 30732 5796 0,00 45434 32302 11020 60,002 1003B 35254 32046 3256 0,00 38178 33424 9730 58,003 1004A 37036 29636 3424 0,00 38673 31100 2327 0,004 1005A 41311 18978 2876 44,00 41723 24208 1738 61,005 1005B 42445 19284 3131 0,00 44312 18336 2097 0,006 1006A 26182 47580 27172 89,00 26826 46640 27044 109,007 1006B 25568 45122 25372 135,00 27418 46106 24548 104,008 1006C 29148 41946 24216 102,00 25424 42448 22250 112,009 1006D 25396 43342 25310 127,00 25556 42416 24200 110,00

10 1007A 40860 18388 12120 66,00 42258 17296 11272 0,0011 1007B 41474 16038 9472 57,00 42256 17838 9768 0,00

Nr. Sample CaCO3 %Arag.

Sed.-%

HMC

Sed.-%

LMC

Sed.-%CaCO3 %

Arag.

Sed.-%

HMC

Sed.-%

LMC

Sed.-%

1 1003A 96,99 87,71 7,80 1,47 101,00 91,75 6,89 2,352 1003B 96,52 87,20 8,46 0,86 101,50 90,39 8,60 2,503 1004A 98,66 90,27 7,52 0,87 101,82 93,48 7,76 0,584 1005A 99,95 95,86 3,55 0,54 102,69 97,24 5,08 0,365 1005B 97,79 93,80 3,43 0,56 103,79 100,52 2,93 0,346 1006A 95,50 73,34 14,11 8,06 96,80 74,91 13,86 8,047 1006B 93,67 72,43 13,60 7,65 97,73 76,56 13,82 7,368 1006C 94,33 75,65 11,85 6,84 97,78 76,78 13,78 7,229 1006D 94,04 73,00 13,29 7,76 97,20 75,98 13,51 7,71

10 1007A 97,83 91,14 4,03 2,66 100,84 94,81 3,65 2,3811 1007B 98,41 93,27 3,23 1,91 102,84 96,97 3,79 2,08

Sample Set 4 - Leg 101 Surface Samples

Intensity Intensity

Nr. Sample Arag. HMC LMC Quartz Arag. HMC LMC Quartz

1 626A 5930 7264 34522 33,002 627A 4998 5323 29234 47,00 6098 13238 19850 1301,003 627B 5044 8471 25874 99,00 7108 12698 17884 106,004 628A 6344 12944 25544 56,00 8646 12224 19078 91,005 629A 11054 19200 7556 19,00 13896 15810 5966 18,006 630A 13141 13806 8612 0,00 12134 14212 11960 31,007 630B 13006 14012 9508 0,00 12296 12570 6592 22,008 631A 5992 13567 26730 49,00 9030 15274 17536 36,009 632A 14062 13366 8836 38,00 12172 14306 10790 37,00

10 633A 12290 13970 11998 89,00 10480 11662 10542 40,0011 634A 10320 14352 13168 58,00 9364 12592 12460 71,0012 635A 9312 10560 10546 28,00 11738 11708 10870 36,0013 635B 10808 9598 16412 103,00 10636 10020 15256 107,00

Nr. Sample CaCO3 %Arag.

Sed.-%

HMC

Sed.-%

LMC

Sed.-%CaCO3 %

Arag.

Sed.-%

HMC

Sed.-%

LMC

Sed.-%

1 626A 97,14 59,81 6,49 30,842 627A 97,24 60,20 5,70 31,33 94,39 62,51 9,11 22,773 627B 96,84 60,23 9,03 27,59 95,63 67,13 8,36 20,144 628A 96,57 62,05 11,61 22,91 96,65 70,59 7,32 18,745 629A 100,89 79,97 15,01 5,91 102,34 87,20 6,37 8,786 630A 97,97 82,40 9,59 5,98 100,89 81,64 6,77 12,487 630B 98,51 82,10 9,78 6,63 100,82 85,96 5,88 8,97

Peak Area Peak Area

Peak Area Peak Area

Fine fractionBulk sediment

Fine fractionBulk sediment

Page 131: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr. Sample CaCO3 %Arag.

Sed.-%

HMC

Sed.-%

LMC

Sed.-%CaCO3 %

Arag.

Sed.-%

HMC

Sed.-%

LMC

Sed.-%

8 631A 97,81 61,05 12,38 24,39 99,57 72,67 8,54 18,359 632A 99,85 84,98 8,95 5,92 100,49 81,96 6,73 11,81

10 633A 98,52 80,01 9,96 8,55 99,52 80,78 6,45 12,2811 634A 94,09 73,23 10,88 9,98 95,51 74,28 7,10 14,1312 635A 98,97 79,39 9,80 9,78 99,42 82,03 5,94 11,4513 635B 90,98 72,19 6,93 11,86 92,13 73,27 5,35 13,51

Sample Set 5 - Pilsbury

Nr. Sample Arag. HMC LMC Quartz Arag. HMC LMC Quartz

1 P6401-4 8350 10624 19610 620 8660 10250 23366 6962 P6401-5 10464 13218 9024 0 10326 13984 10776 8453 P6408-23 8538 6034 15740 1882 10348 7200 14616 24134 P6408-24 5850 7614 25274 2144 4292 9044 28148 34425 P6804-12 9652 16082 9166 390 8674 16538 11566 8756 P6804-5 11242 12876 8256 0 9932 14662 13534 5367 P6804-6 10492 12676 12676 376 10338 13232 14026 3788 P6804-7 8650 14150 16952 506 8084 17340 15938 6339 P6804-8 10270 18760 8706 0 10428 18386 10296 410

10 P6804-9 9408 13132 13892 758 10280 15684 13198 56811 P6807-30 9096 10582 14266 706 9338 12256 14062 60712 P6807-31 9958 13560 14214 0 9994 12702 13810 77813 P6807-32 10204 12192 16120 0 9084 12736 14508 014 P6807-33 9834 11882 14148 0 10994 13116 15842 015 P6807-34 10272 10482 13628 372 10150 12564 13972 48716 P6807-35 10570 10944 15108 0 10230 13744 14834 60017 P7008-1 6762 4340 25074 4437 6254 7395 18498 884018 P7008-2 3402 2924 32284 4382 5532 8105 18806 792819 P7102-4 7652 9432 22318 392 8610 13396 19782 30720 P7102-5 11010 12572 13542 0 11328 13074 13986 52921 P7102-6 10502 12388 10720 0 12816 12150 11098 022 P7102-7 11468 13200 11428 0 11362 13118 12662 023 P7102-8 8418 12702 16684 565 9294 15292 15640 65124 P7102-9 5672 10750 23744 932 7958 13407 20018 66625 P7102-12 11420 10074 10716 313 11666 10216 11784 026 P7102-13 11400 10732 13154 0 11172 11978 13294 027 P7102-14 11838 10800 10516 0 12760 12004 12928 028 P7102-15 12170 9638 9850 0 13248 11708 9894 029 P7102-30 8788 21654 5821 0 9570 18524 6982 030 P7102-31 8848 13968 14362 372 9026 15128 17338 50731 P7102-32 8400 12520 17570 0 8768 15578 16430 50532 P7102-33 9142 14674 13156 521 8482 14606 17804 71933 P7102-34 8666 15180 11312 728 9720 16414 13234 84834 P7102-35 6974 13480 20928 878 8762 11901 17444 89635 P7102-36 7502 14572 11542 823 7494 15042 15314 105536 P7102-37 8670 15402 12796 956 8564 17084 13804 91337 P7102-38 7790 15252 14310 848 7340 14124 15408 129838 P7102-41 6748 4340 19194 3926 7296 3374 18804 3786

Nr. Sample CaCO3 %Arag.

Sed.-%

HMC

Sed.-%

LMC

Sed.-%CaCO3 %

Arag.

Sed.-%

HMC

Sed.-%

LMC

Sed.-%

1 P6401-4 98,86 72,21 9,36 17,29 98,11 70,55 8,40 19,162 P6401-5 95,51 77,48 10,71 7,31 94,65 75,16 11,01 8,493 P6408-23 89,17 69,99 5,31 13,86 86,59 70,35 5,36 10,884 P6408-24 85,56 56,13 6,81 22,62 83,05 47,99 8,53 26,545 P6804-12 94,44 73,77 13,17 7,50 96,67 74,47 12,06 10,156 P6804-5 96,20 79,68 10,07 6,46 94,05 70,37 13,94 9,757 P6804-6 96,46 76,48 9,99 9,99 95,85 73,68 11,53 10,648 P6804-7 94,40 69,06 11,53 13,81 96,48 75,25 10,31 10,929 P6804-8 94,17 73,25 14,29 6,63 96,49 68,45 14,61 13,43

10 P6804-9 97,15 74,51 11,00 11,64 97,51 75,43 14,15 7,93

Peak Area Peak Area

Bulk sediment Fine fraction

Page 132: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr. Sample CaCO3 %Arag.

Sed.-%

HMC

Sed.-%

LMC

Sed.-%CaCO3 %

Arag.

Sed.-%

HMC

Sed.-%

LMC

Sed.-%

11 P6807-30 98,10 75,99 9,42 12,69 96,33 74,16 10,32 11,8512 P6807-31 96,61 74,53 10,78 11,30 97,36 75,84 10,31 11,2113 P6807-32 97,72 75,46 9,58 12,67 96,44 73,32 10,81 12,3114 P6807-33 95,03 74,07 9,57 11,40 97,09 75,74 9,67 11,6815 P6807-34 98,36 78,40 8,68 11,28 97,57 76,23 10,11 11,2416 P6807-35 98,70 77,97 8,71 12,02 95,93 73,98 10,56 11,3917 P7008-1 85,23 59,67 3,77 21,79 75,88 53,75 6,32 15,8118 P7008-2 76,11 41,45 2,88 31,78 74,01 50,41 7,11 16,4919 P7102-4 97,87 69,30 8,49 20,09 98,31 70,81 11,10 16,4020 P7102-5 96,51 76,78 9,50 10,23 98,22 78,04 9,75 10,4321 P7102-6 95,94 77,36 9,96 8,62 98,31 81,89 8,58 7,8422 P7102-7 96,64 78,26 9,85 8,53 97,74 78,39 9,85 9,5123 P7102-8 95,89 70,61 10,93 14,36 95,87 71,33 12,14 12,4124 P7102-9 93,43 60,00 10,42 23,02 96,22 67,93 11,35 16,9425 P7102-12 95,87 79,82 7,78 8,28 97,77 80,93 7,82 9,0226 P7102-13 94,25 76,66 7,91 9,69 99,91 80,17 9,36 10,3827 P7102-14 96,59 80,56 8,13 7,91 97,99 80,64 8,35 9,0028 P7102-15 97,08 82,44 7,24 7,40 99,08 83,91 8,22 6,9529 P7102-30 98,42 74,19 19,10 5,13 100,18 77,97 16,13 6,0830 P7102-31 94,93 71,20 11,70 12,03 96,75 70,77 12,11 13,8731 P7102-32 96,41 70,59 10,74 15,08 98,35 71,70 12,97 13,6832 P7102-33 97,43 73,85 12,43 11,15 96,06 69,32 12,05 14,6933 P7102-34 93,97 71,17 13,07 9,74 95,25 72,17 12,78 10,3034 P7102-35 91,85 62,34 11,56 17,95 93,98 69,82 9,80 14,3635 P7102-36 92,73 68,32 13,62 10,79 92,44 65,82 13,19 13,4336 P7102-37 93,18 69,66 12,85 10,67 93,47 68,33 13,90 11,2337 P7102-38 90,95 65,74 13,01 12,21 91,65 65,36 12,57 13,7238 P7102-41 76,18 56,11 3,70 16,37 73,27 55,55 2,70 15,02

Page 133: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Appendix 2.4.

Census Counts(main component groups)

Page 134: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Sample Set 1 - Gillies/Trident

Nr. SampleFraction

[µm]pf [%]

Fragm.

pf [%]P [%]

Fragm. P

[%]

Other

fragm.

[%]

bf [%]

Peloid +

Grains

[%]

Others

[%]

1 GS-7603-7 >150 24,14 7,97 15,08 46,59 1,18 1,13 0,28 3,632 GS-7603-8 >150 41,60 10,24 10,42 29,58 1,56 2,09 0,40 4,103 GS-7603-9 >150 31,39 7,64 8,98 27,32 16,42 5,02 0,13 3,104 GS-7603-10 >150 25,10 16,12 6,81 46,23 1,72 0,80 0,11 3,115 GS-7603-11 >150 47,92 24,52 7,90 10,52 2,86 2,04 0,89 3,346 GS-7603-12 >150 27,60 21,49 7,36 34,13 3,00 2,00 0,91 3,507 GS-7603-13 >150 22,40 7,95 13,36 48,50 1,38 1,38 0,43 4,618 GS-7603-14 >150 26,50 15,74 6,86 34,55 5,75 4,07 1,45 5,089 TR-149-31 >150 46,72 9,55 8,73 30,26 1,71 0,95 0,00 2,09

10 TR-149-32 >150 28,23 9,69 9,12 45,29 1,76 1,57 0,20 4,1411 TR-149-34 >150 34,86 13,62 8,63 36,03 2,04 1,48 0,20 3,1412 TR-149-35 >150 37,41 7,90 15,63 30,47 2,88 2,10 1,02 2,6013 TR-149-36 >150 40,54 6,50 14,65 32,32 1,69 1,33 0,83 2,1514 TR-149-37 >150 30,19 10,75 10,12 39,72 2,47 2,63 0,39 3,7415 TR-149-38b >150 44,35 20,77 5,14 22,99 3,75 0,93 0,29 1,80

Sample Set 7 - Site 632

Nr. Sample

Core

depth

[cm]

Fraction

[µm]pf [%]

Fragm.

pf [%]P [%]

Fragm. P

[%]

Coral

fragm.

[%]

Nodules

[%]

Encr.

foram.

[%]

Others

[%]

1 1H01 004-006 5 250-500 42,49 24,28 3,18 22,25 0,00 4,62 1,73 1,453 1H01 025-027 26 250-500 54,22 3,57 2,60 25,32 4,55 4,87 3,25 1,625 1H01 047-049 48 250-500 43,71 2,83 4,09 48,11 0,00 0,31 0,94 0,007 1H01 075-077 76 250-500 58,20 3,72 0,62 33,44 0,62 0,62 0,62 2,179 1H01 097-099 98 250-500 59,93 4,04 1,35 31,31 0,00 0,00 1,35 2,0211 1H01 115-117 116 250-500 48,95 5,59 0,70 39,86 0,35 0,35 3,15 1,0513 1H01 135-137 136 250-500 56,43 4,72 2,10 33,07 0,00 0,00 0,52 3,1515 1H02 004-006 155 250-500 12,35 2,10 2,80 80,19 0,23 0,00 0,47 1,8617 1H02 025-027 176 250-500 25,53 2,69 4,41 64,88 0,00 0,96 0,19 1,3419 1H02 046-048 197 250-500 22,27 2,05 2,73 71,36 0,00 0,91 0,00 0,6821 1H02 065-067 216 250-500 29,33 1,83 1,50 65,17 0,17 0,67 0,00 1,3323 1H02 113-115 264 250-500 27,83 1,99 4,57 56,06 7,16 1,19 0,00 1,1925 1H02 147-149 298 250-500 22,14 1,25 5,00 69,29 0,00 0,36 0,00 1,9627 1H03 015-017 316 250-500 38,45 3,88 3,51 51,76 0,00 0,37 0,00 2,0329 1H03 036-038 337 250-500 11,18 1,37 5,49 81,76 0,00 0,20 0,00 0,0031 1H03 055-057 356 250-500 57,24 2,38 1,08 36,07 1,08 0,00 0,22 1,9433 1H03 075-077 376 250-500 19,62 2,30 3,76 73,90 0,00 0,00 0,00 0,4235 1H03 107-109 408 250-500 67,77 4,35 0,26 26,85 0,26 0,26 0,00 0,2637 1H03 125-127 425 250-500 29,23 7,39 5,28 53,87 0,35 2,11 1,06 0,7039 1H03 145-147 446 250-500 25,18 4,26 4,61 59,93 0,35 2,84 2,13 0,7141 1H04 015-017 466 250-500 26,69 2,25 2,08 68,11 0,00 0,17 0,00 0,6943 1H04 035-037 486 250-500 21,40 4,35 0,67 71,24 0,33 0,67 0,00 1,3445 1H04 055-057 506 250-500 33,22 4,32 2,99 58,14 0,00 1,00 0,00 0,3347 1H04 079-081 530 250-500 29,69 3,13 1,12 64,51 0,00 0,45 0,00 1,1249 1H04 101-103 552 250-500 10,95 1,18 2,96 83,73 0,00 0,30 0,30 0,5951 1H04 118-120 569 250-500 18,64 2,03 0,68 75,59 0,68 1,36 0,34 0,6853 1H04 137-139 588 250-500 22,12 1,76 0,64 74,68 0,00 0,16 0,00 0,6455 1H05 015-017 616 250-500 73,56 3,45 0,57 17,82 0,29 0,57 2,87 0,8657 1H05 034-036 635 250-500 44,13 7,05 0,26 20,37 7,57 15,40 3,39 1,8359 2H01 005-007 696 250-500 11,86 2,06 5,15 76,80 0,00 0,00 2,58 1,5561 2H01 025-027 716 250-500 40,21 3,09 4,81 48,11 0,00 0,34 1,72 1,7263 2H01 045-047 736 250-500 44,10 8,68 2,08 40,97 0,00 0,35 2,43 1,3965 2H01 065-067 756 250-500 37,29 3,15 4,12 50,12 0,24 0,00 3,39 1,6967 2H01 085-087 776 250-500 57,59 6,59 1,72 31,52 0,00 0,29 1,15 1,1569 2H01 105-107 796 250-500 26,93 4,95 1,86 61,61 0,62 0,93 1,55 1,5571 2H01 123-125 814 250-500 40,00 2,50 4,44 45,56 0,56 2,78 3,61 0,5673 2H01 146-148 837 250-500 80,00 5,33 0,33 3,67 0,00 2,33 5,67 2,67

Page 135: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr. Sample

Core

depth

[cm]

Fraction

[µm]pf [%]

Fragm.

pf [%]P [%]

Fragm. P

[%]

Coral

fragm.

[%]

Nodules

[%]

Encr.

foram.

[%]

Others

[%]

75 2H02 015-017 856 250-500 80,34 7,12 0,00 3,05 0,34 1,36 6,44 1,3677 2H02 035-037 876 250-500 65,07 11,03 0,00 8,09 0,00 2,94 7,72 5,1579 2H02 055-057 896 250-500 35,78 3,44 1,15 50,69 0,23 1,83 5,05 1,8381 2H02 078-080 919 250-500 50,27 3,74 0,53 18,18 0,00 14,44 12,30 0,5383 2H02 103-105 944 250-500 81,15 4,47 0,32 5,11 0,00 2,56 6,07 0,3285 2H02 123-125 964 250-500 74,92 5,02 0,00 13,17 0,00 0,31 6,27 0,3187 2H02 143-145 984 250-500 57,84 12,20 1,74 17,07 0,00 3,14 5,57 2,4489 2H03 013-014 1004 250-500 45,16 7,92 0,59 28,45 0,00 9,09 7,92 0,8891 2H03 111-112 1102 250-500 13,61 10,20 0,00 20,41 31,29 19,39 2,04 3,0693 2H03 134-135 1125 250-500 29,80 7,95 1,32 35,76 11,26 8,94 4,30 0,6695 2H04 004-005 1145 250-500 51,82 7,59 2,64 27,72 1,98 2,64 5,28 0,3397 2H04 024-025 1165 250-500 82,57 6,25 0,33 2,63 0,66 1,64 2,63 3,2999 2H04 046-047 1187 250-500 35,07 5,90 5,56 28,82 10,07 4,86 6,60 3,13101 2H04 064-065 1205 250-500 49,34 3,97 0,99 32,12 0,00 5,63 7,95 0,00103 2H04 084-085 1225 250-500 58,86 10,44 0,00 14,87 0,95 3,80 8,23 2,85105 2H04 106-107 1247 250-500 13,64 5,84 1,62 18,51 27,27 25,97 3,25 3,90107 2H04 124-125 1265 250-500 45,40 4,18 1,11 42,34 1,67 2,23 1,67 1,39109 2H04 143-144 1284 250-500 55,73 2,17 0,62 35,60 1,24 1,24 3,41 0,00111 2H05 024-025 1315 250-500 38,03 3,61 2,30 42,62 2,95 3,28 6,23 0,98113 2H05 054-055 1345 250-500 53,02 3,77 0,75 35,68 1,26 1,76 2,76 1,01115 2H05 076-077 1367 250-500 17,69 2,72 6,80 61,22 0,68 6,12 4,08 0,68117 2H05 095-096 1386 250-500 18,24 2,64 7,25 65,27 1,32 3,52 1,10 0,66119 2H05 116-117 1407 250-500 50,00 6,99 0,37 38,97 0,37 1,84 0,74 0,74121 2H05 134-135 1425 250-500 34,30 6,50 2,89 25,27 1,44 22,02 3,97 3,61123 2H06 015-017 1456 250-500 13,76 2,13 9,11 67,64 1,94 3,88 0,58 0,97125 2H06 043-045 1484 250-500 10,94 1,53 7,22 74,62 0,22 1,09 3,94 0,44127 2H06 063-065 1504 250-500 34,89 4,05 1,56 56,39 0,31 0,93 0,00 1,87129 2H06 083-085 1524 250-500 28,38 1,97 1,53 57,42 0,00 8,95 0,66 1,09131 2H06 103-105 1544 250-500 38,23 5,50 3,67 46,79 0,00 0,61 4,59 0,61133 2H06 123-125 1564 250-500 25,70 4,07 7,89 51,40 2,29 2,80 5,09 0,76135 2H07 004-006 1595 250-500 7,19 0,90 6,89 76,80 2,10 3,29 1,20 1,65137 3H01 013-015 1684 250-500 67,24 5,41 0,00 17,38 1,14 3,42 4,56 0,85139 3H01 033-035 1704 250-500 59,09 3,41 0,00 5,11 3,98 16,76 9,09 2,56141 3H01 053-055 1724 250-500 87,39 0,90 0,00 7,51 0,30 0,30 1,80 1,80143 3H02 104-106 1925 250-500 34,43 2,95 0,00 35,08 2,62 10,82 11,80 2,30145 3H02 126-128 1947 250-500 11,30 4,11 2,40 25,00 20,89 27,05 7,88 1,37147 3H03 055-057 2026 250-500 50,00 5,33 1,67 38,00 0,00 2,00 3,00 0,00149 3H03 077-079 2048 250-500 53,06 4,08 1,46 18,08 10,79 3,79 7,29 1,46151 3H03 097-099 2068 250-500 33,63 3,56 1,78 35,19 10,47 6,46 6,90 2,00153 3H03 147-149 2118 250-500 27,70 6,42 4,05 32,43 11,15 7,43 7,43 3,38155 3H04 016-018 2137 250-500 28,93 5,08 0,76 39,85 4,31 11,42 7,11 2,54157 3H04 036-038 2157 250-500 36,47 4,36 0,46 19,04 6,88 16,97 13,30 2,52159 3H04 057-059 2178 250-500 46,73 1,96 0,65 25,16 4,90 9,80 10,13 0,65161 3H04 076-078 2197 250-500 43,21 8,71 1,05 26,48 5,23 7,32 6,97 1,05163 3H04 096-098 2217 250-500 75,37 5,93 0,00 4,45 0,59 5,93 7,12 0,59165 3H04 116-118 2237 250-500 44,72 5,83 0,00 3,61 1,94 34,17 8,89 0,83167 3H04 136-138 2257 250-500 75,24 4,39 0,31 11,91 1,25 1,25 0,00 5,64169 3H05 034-036 2305 250-500 58,62 7,93 0,34 28,97 0,00 0,34 1,72 2,07171 3H05 054-056 2325 250-500 37,42 4,91 1,84 48,16 2,15 3,07 1,53 0,92173 3H05 074-076 2345 250-500 17,08 2,25 1,57 33,03 3,82 35,06 6,52 0,67175 3H06 031-033 2452 250-500 48,57 3,64 0,26 38,44 0,52 6,49 1,56 0,52177 3H06 060-062 2481 250-500 38,44 5,78 2,38 43,54 0,00 5,10 3,40 1,36179 3H06 084-086 2505 250-500 45,91 4,47 0,25 43,18 0,50 1,74 2,73 1,24181 3H0-6 106-108 2527 250-500 32,90 6,68 0,77 46,79 0,51 8,23 3,08 1,03183 3H06 126-128 2547 250-500 57,69 4,14 0,00 22,49 0,89 5,92 7,99 0,89185 3H06 146-148 2567 250-500 8,74 4,90 0,85 34,75 18,55 26,87 2,77 2,56187 4H01 145-146 2776 250-500 8,77 2,05 2,05 34,80 20,76 24,85 3,51 3,22189 4H02 014-015 2795 250-500 30,14 3,55 3,19 38,65 7,45 10,64 4,61 1,77191 4H02 035-036 2816 250-500 4,95 3,63 1,32 29,70 36,63 15,51 2,97 5,28193 4H02 066-067 2847 250-500 27,70 4,68 3,96 53,60 1,44 1,44 5,04 2,16

Page 136: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr. Sample

Core

depth

[cm]

Fraction

[µm]pf [%]

Fragm.

pf [%]P [%]

Fragm. P

[%]

Coral

fragm.

[%]

Nodules

[%]

Encr.

foram.

[%]

Others

[%]

195 4H02 084-085 2865 250-500 32,48 5,11 6,57 34,31 3,28 6,93 8,39 2,92197 4H02 105-106 2886 250-500 30,48 4,13 4,13 47,62 2,22 6,03 3,81 1,59199 4H02 124-125 2905 250-500 11,76 2,94 1,96 34,97 16,01 21,90 7,19 3,27201 4H03 034-035 2965 250-500 44,44 3,70 0,99 43,95 0,49 1,98 2,96 1,48204 4H03 094-095 3025 250-500 16,28 10,08 1,16 46,12 0,00 16,67 8,53 1,16206 4H03 114-115 3045 250-500 28,94 3,40 1,70 23,40 14,89 22,13 4,26 1,28208 4H03 134-135 3065 250-500 21,17 9,46 2,70 36,49 0,90 19,82 7,66 1,80210 4H04 004-005 3085 250-500 44,04 4,59 0,00 49,08 0,46 0,46 0,46 0,92212 4H04 025-026 3106 250-500 41,52 11,91 0,36 16,97 17,33 10,11 0,36 1,44214 4H04 045-046 3126 250-500 11,41 11,03 2,09 65,40 3,23 2,85 2,09 1,90216 4H04 085-086 3166 250-500 45,45 3,45 0,94 45,77 0,63 0,94 0,00 2,82218 4H04 105-106 3186 250-500 10,40 4,00 0,27 54,40 17,60 10,67 0,80 1,87220 4H04 138-139 3219 250-500 17,78 11,48 2,59 21,11 32,22 9,63 2,22 2,96222 4H05 014-015 3245 250-500 21,07 4,35 1,34 56,52 10,70 3,68 1,00 1,34224 4H05 035-036 3266 250-500 50,00 8,75 0,00 31,67 5,42 1,25 0,00 2,92226 4H05 085-086 3316 250-500 81,64 4,24 0,00 3,95 1,98 4,24 3,11 0,85

Sample Set 8 - Site 633

Nr. Sample

Core

depth

[cm]

Fraction

[µm]pf [%]

Fragm.

pf [%]P [%]

Fragm. P

[%]

Coral

fragm.

[%]

Nodules

[%]

Others

[%]

1 1H01 005-007 5 250-500 11,75 3,71 21,86 39,38 0,21 21,65 1,445 1H01 045-047 45 250-500 14,29 1,96 28,01 54,62 0,00 0,56 0,567 1H01 065-067 65 250-500 6,70 1,34 22,10 62,39 0,33 5,13 2,019 1H01 085-087 85 250-500 18,45 5,63 9,71 20,39 8,35 30,68 6,80

11 1H01 105-107 105 250-500 18,35 4,52 14,99 51,81 1,94 4,52 3,8815 1H01 145-147 145 250-500 28,48 2,32 10,26 55,63 0,33 1,99 0,9919 1H02 035-037 185 250-500 21,41 2,77 18,89 45,09 0,50 8,06 3,2721 1H02 055-057 205 250-500 17,75 3,34 23,82 44,61 1,06 4,86 4,5525 1H02 095-097 245 250-500 10,61 2,78 20,20 63,89 0,25 0,76 1,5229 1H02 135-137 285 250-500 14,53 1,21 16,71 48,91 0,24 17,68 0,73

32 1H03 013-015 313 250-500 14,16 5,12 12,65 27,41 0,90 37,95 1,8133 1H03 035-037 335 250-500 14,31 1,89 12,82 49,11 0,00 16,90 4,9736 1H03 065-067 365 250-500 19,08 4,00 11,08 28,62 0,31 36,92 0,0038 1H03 085-087 385 250-500 30,85 2,75 8,26 42,42 4,68 9,64 1,3840 1H03 105-107 405 250-500 16,17 1,63 16,27 55,79 1,24 5,45 3,4444 1H03 145-147 445 250-500 24,27 2,15 12,33 58,12 0,00 2,35 0,7848 1H04 035-037 485 250-500 24,58 1,35 11,11 49,83 1,01 11,78 0,3450 1H04 055-057 505 250-500 16,68 2,53 15,93 50,23 2,72 6,75 5,1554 1H04 095-097 545 250-500 24,65 2,05 6,42 19,90 0,00 44,54 2,4456 1H04 117-119 567 250-500 13,14 2,01 7,88 70,02 0,15 3,86 2,9458 1H04 135-137 585 250-500 63,89 3,61 0,00 10,83 0,00 20,00 1,6760 1H05 005-007 605 250-500 19,43 1,08 0,00 0,38 0,44 74,29 4,3863 1H05 045-047 645 250-500 25,99 3,11 1,41 7,34 6,50 51,69 3,9567 1H05 085-087 685 250-500 44,16 7,14 0,97 10,06 0,00 36,69 0,9769 1H05 105-107 705 250-500 33,24 4,44 1,86 14,26 1,43 40,83 3,9471 1H05 125-127 725 250-500 54,43 7,54 2,62 12,13 0,66 19,02 3,6173 1H06 005-007 755 250-500 37,17 5,90 0,29 14,16 0,29 40,41 1,7776 1H06 035-037 785 250-500 38,21 6,98 1,99 38,54 0,00 11,96 2,3377 1H06 045-047 795 250-500 30,91 4,97 5,15 49,56 0,00 1,07 8,3580 1H06 075-077 825 250-500 8,29 0,94 0,00 0,38 0,00 89,83 0,5682 1H06 095-097 845 250-500 58,91 5,72 0,00 0,91 0,00 28,87 5,5985 2H01 005-007 875 250-500 35,05 5,14 7,07 46,62 0,00 2,57 3,5487 2H01 025-027 895 250-500 29,69 3,28 6,41 50,00 0,16 7,19 3,2890 2H01 055-057 925 250-500 68,35 6,85 0,40 2,02 0,60 20,36 1,4194 2H01 095-097 965 250-500 50,39 4,86 6,23 32,49 0,19 2,92 2,9296 2H01 115-117 985 250-500 58,67 9,60 1,07 14,93 0,00 14,40 1,33

100 2H02 005-007 1025 250-500 53,52 7,25 1,49 8,53 23,24 0,00 5,97102 2H02 025-027 1045 250-500 56,90 9,76 0,00 2,36 0,00 27,95 3,03

Page 137: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr. Sample

Core

depth

[cm]

Fraction

[µm]pf [%]

Fragm.

pf [%]P [%]

Fragm. P

[%]

Coral

fragm.

[%]

Nodules

[%]

Others

[%]

106 2H02 065-067 1085 250-500 78,60 9,47 0,00 0,00 0,00 11,11 0,82108 2H02 085-087 1105 250-500 73,68 6,91 0,00 0,00 0,00 18,42 0,99112 2H02 125-127 1145 250-500 39,81 5,73 0,00 11,15 1,27 39,17 2,87116 2H03 015-017 1185 250-500 36,41 6,16 1,96 24,09 0,00 28,85 2,52118 2H03 035-037 1205 250-500 23,45 2,42 7,98 55,36 0,64 8,30 1,85122 2H03 075-077 1245 250-500 12,26 2,58 13,23 49,03 0,32 19,03 3,55126 2H03 115-117 1285 250-500 21,05 2,76 21,05 23,81 3,51 25,31 2,51128 2H03 135-137 1305 250-500 13,04 3,51 26,25 50,33 0,33 2,51 4,01132 2H04 025-027 1345 250-500 18,21 2,98 30,46 30,46 0,33 13,58 3,97135 2H04 055-057 1375 250-500 24,03 1,66 23,48 45,86 0,00 3,87 1,10138 2H04 085-087 1405 250-500 62,96 4,89 0,00 1,96 0,49 27,14 2,57142 2H04 125-127 1445 250-500 28,73 3,64 1,00 19,70 1,00 39,02 6,90146 2H05 015-017 1485 250-500 21,89 2,96 0,89 28,70 0,00 43,20 2,37149 2H05 045-047 1515 250-500 49,55 4,78 2,99 32,24 0,00 5,07 5,37152 2H05 075-077 1545 250-500 24,52 5,99 0,82 4,63 0,00 61,85 2,18156 2H05 115-117 1585 250-500 25,13 0,80 0,00 2,14 0,00 71,39 0,53158 2H05 135-137 1605 250-500 36,82 3,75 0,00 0,80 0,80 56,70 1,14161 2H06 025-027 1645 250-500 39,61 4,35 0,00 0,60 0,00 53,50 1,93165 2H06 065-067 1685 250-500 52,49 4,40 0,00 2,93 0,00 39,59 0,59168 2H06 095-097 1715 250-500 20,65 2,07 0,17 0,00 9,29 62,31 5,51170 2H06 121-123 1741 250-500 16,71 1,75 1,00 9,98 7,98 61,60 1,00173 3H01 024-025 1784 250-500 25,89 3,19 11,70 45,39 0,00 12,41 1,42175 3H01 044-045 1804 250-500 18,54 4,41 20,67 41,19 0,76 12,77 1,67179 3H01 084-085 1844 250-500 32,48 2,23 20,06 40,13 0,00 3,18 1,91183 3H01 124-125 1884 250-500 28,57 3,90 24,03 34,09 0,00 6,49 2,92185 3H01 143-145 1903 250-500 23,65 1,90 22,86 42,54 0,16 7,62 1,27189 3H02 034-035 1944 250-500 10,15 2,15 23,38 21,23 0,00 37,23 5,85192 3H02 064-065 1974 250-500 10,80 0,50 15,33 54,77 0,00 17,84 0,75193 3H02 074-075 1984 250-500 26,53 1,57 23,39 31,59 2,27 5,76 8,90196 3H02 114-115 2024 250-500 52,78 2,95 2,95 14,76 0,35 24,31 1,91198 3H02 134-135 2044 250-500 34,56 3,68 5,10 19,26 0,00 35,41 1,98201 3H03 014-015 2074 250-500 40,79 4,16 2,18 30,69 0,00 20,40 1,78203 3H03 043-044 2103 250-500 43,54 2,40 0,90 3,00 0,00 45,35 4,80207 3H03 084-085 2144 250-500 20,25 3,07 0,41 7,77 0,20 68,30 0,00211 3H03 124-125 2184 250-500 25,00 4,00 0,00 6,80 0,00 63,80 0,40213 3H03 144-145 2204 250-500 23,00 3,00 0,00 0,00 0,00 71,50 2,50217 3H04 035-037 2245 250-500 45,94 7,52 0,00 3,17 0,20 40,79 2,38221 3H04 075-077 2283 250-500 48,26 2,90 0,00 1,35 0,39 46,53 0,58223 3H04 095-097 2305 250-500 37,34 5,07 0,00 1,30 0,43 48,48 7,38227 3H04 135-137 2345 250-500 22,43 0,62 0,00 2,18 0,93 72,90 0,93230 3H05 018-020 2378 250-500 51,81 3,02 0,20 3,63 2,42 36,90 2,02232 3H05 045-047 2405 250-500 55,76 4,32 0,00 0,00 0,00 35,25 4,68236 3H05 087-089 2447 250-500 54,21 2,49 0,00 1,87 11,53 27,73 2,18239 3H05 115-117 2475 250-500 40,52 4,09 0,22 3,88 9,48 37,72 4,09240 3H06 005-007 2515 250-500 37,65 8,04 0,20 2,35 0,20 44,12 7,45243 3H06 034-035 2544 250-500 54,21 9,43 0,00 7,74 0,67 25,25 2,69246 3H06 069-071 2579 250-500 21,77 6,70 1,44 11,24 27,03 25,36 6,46248 3H06 095-097 2605 250-500 25,49 2,27 0,00 0,32 1,95 57,31 12,66252 3H06 135-137 2645 250-500 50,44 1,47 0,00 0,59 0,88 45,16 1,47254 4H01 005-007 2717 250-500 17,85 5,89 0,67 4,21 1,85 62,29 7,24255 4H01 015-017 2727 250-500 34,84 3,74 0,20 2,36 0,59 57,28 0,98256 4H01 055-057 2767 250-500 29,82 2,41 0,00 0,30 0,00 66,87 0,60257 4H01 065-067 2777 250-500 49,33 3,24 0,00 0,76 1,33 44,76 0,57260 4H01 095-097 2807 250-500 38,41 3,80 0,00 0,54 2,54 50,00 4,71262 4H01 135-137 2847 250-500 45,05 7,35 0,00 6,71 1,28 36,74 2,88265 4H02 015-017 2877 250-500 42,63 3,75 0,80 15,55 0,54 35,92 0,80267 4H02 035-037 2897 250-500 41,33 4,80 0,00 7,73 0,53 44,00 1,60268 4H02 065-067 2927 250-500 5,57 1,79 0,00 0,00 0,40 91,85 0,40269 4H02 095-097 2957 250-500 41,06 6,52 0,00 4,59 0,72 43,96 3,14271 4H02 115-117 2977 250-500 31,55 4,72 0,00 5,79 0,43 56,22 1,29

Page 138: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr. Sample

Core

depth

[cm]

Fraction

[µm]pf [%]

Fragm.

pf [%]P [%]

Fragm. P

[%]

Coral

fragm.

[%]

Nodules

[%]

Others

[%]

274 4H02 145-147 3007 250-500 45,73 5,18 1,37 30,34 1,07 10,37 5,95276 4H03 015-017 3027 250-500 3,83 0,00 0,00 0,00 0,00 96,17 0,00277 4H03 051-053 3063 250-500 31,87 7,85 0,00 0,46 1,85 57,04 0,92279 4H03 065-067 3077 250-500 75,66 7,62 0,00 1,76 0,00 14,08 0,88281 4H03 105-107 3117 250-500 23,78 4,55 0,00 0,00 0,00 69,41 2,27284 4H03 135-137 3147 250-500 30,82 4,09 0,00 1,57 0,00 63,21 0,31287 4H04 015-017 3177 250-500 13,93 0,55 0,00 0,00 0,00 85,25 0,27290 4H04 045-047 3207 250-500 38,25 6,32 0,00 0,00 0,70 52,63 2,11294 4H04 085-087 3247 250-500 74,77 12,50 0,00 3,70 0,93 7,41 0,69297 4H04 115-117 3277 250-500 41,61 1,84 0,00 0,69 0,00 55,63 0,23300 4H05 005-007 3317 250-500 48,58 3,88 0,00 0,00 0,00 41,86 5,68303 4H05 035-037 3347 250-500 65,48 4,76 0,00 1,49 0,89 26,19 1,19306 4H05 065-067 3377 250-500 59,80 2,94 0,00 0,98 2,61 32,03 1,63309 4H05 095-097 3407 250-500 40,91 5,94 0,00 0,00 1,05 44,76 7,34313 4H05 135-137 3447 250-500 58,79 5,43 0,00 1,60 0,00 32,91 1,28316 4H06 015-017 3477 250-500 85,44 4,40 0,82 4,40 0,00 3,57 1,37319 4H06 045-047 3507 250-500 1,97 0,44 0,00 0,00 0,00 97,59 0,00321 4H06 069-071 3531 250-500 34,01 2,88 0,00 0,29 0,86 61,67 0,29322 4H06 099-101 3561 250-500 9,33 4,78 0,00 0,96 0,00 83,97 0,96323 4H06 123-125 3587 250-500 68,91 5,88 0,00 4,48 0,00 20,17 0,56325 4H06 145-147 3607 250-500 48,52 5,12 0,00 0,00 0,54 40,43 5,39327 5H01 015-017 3640 250-500 35,64 4,95 0,00 0,59 0,99 57,43 0,40330 5H01 055-057 3680 250-500 53,55 2,37 0,00 1,18 0,00 42,89 0,00332 5H01 075-077 3700 250-500 54,50 7,66 0,00 0,00 6,76 16,22 14,86336 5H01 115-117 3740 250-500 44,51 2,19 0,00 0,94 0,31 52,04 0,00340 5H02 005-007 3780 250-500 29,10 1,00 0,00 0,50 0,00 69,40 0,00342 5H02 025-027 3800 250-500 86,17 4,90 0,00 0,86 0,29 4,61 3,17346 5H02 065-067 3840 250-500 62,33 8,33 0,00 0,00 0,00 25,67 3,67350 5H02 105-107 3880 250-500 23,81 3,26 0,00 2,26 0,00 69,92 0,75352 5H02 125-127 3900 250-500 22,62 2,54 0,00 0,00 0,00 71,25 3,59354 5H02 145-147 3920 250-500 32,16 6,49 0,00 0,54 0,00 60,00 0,81358 5H03 035-037 3960 250-500 6,57 3,56 0,00 0,00 0,00 89,87 0,00360 5H03 055-057 3980 250-500 25,47 3,52 0,00 1,36 0,54 68,02 1,08362 5H03 075-077 4000 250-500 15,52 0,81 0,00 0,00 0,00 83,06 0,60366 5H03 115-117 4040 250-500 38,61 8,91 0,00 1,98 5,94 41,25 3,30370 5H04 005-007 4080 250-500 23,09 4,36 0,00 2,83 1,09 67,10 1,53372 5H04 025-027 4100 250-500 22,57 1,36 0,00 0,39 0,39 71,79 3,50376 5H04 065-067 4140 250-500 13,31 1,62 0,00 1,30 0,97 82,79 0,00379 5H04 105-107 4180 250-500 21,34 1,22 0,00 0,61 0,00 76,52 0,30381 5H04 125-127 4200 250-500 45,82 2,57 0,00 0,43 0,86 49,89 0,43385 5H05 014-015 4239 250-500 27,62 5,40 0,00 0,95 0,00 64,13 1,90389 5H05 053-054 4279 250-500 28,42 2,98 0,00 1,75 1,93 63,51 1,40392 5H05 084-085 4309 250-500 56,21 6,51 0,00 0,00 0,00 30,77 6,51396 5H05 124-125 4349 250-500 39,59 2,49 0,00 0,00 0,23 56,79 0,90398 5H06 014-015 4389 250-500 3,83 1,47 0,00 0,29 0,00 94,40 0,00400 5H06 034-035 4409 250-500 11,82 2,31 0,00 0,29 0,00 84,44 1,15404 5H06 074-075 4449 250-500 12,01 1,96 0,00 0,00 0,00 84,92 1,12407 5H06 104-105 4479 250-500 7,21 2,40 0,00 0,00 0,00 89,98 0,40409 5H06 125-126 4501 250-500 6,75 1,18 0,00 0,00 0,00 90,05 2,02413 5H07 014-015 4539 250-500 25,45 2,12 0,00 0,00 0,00 71,82 0,61416 5H07 044-045 4569 250-500 14,95 1,00 0,00 0,33 0,00 83,72 0,00419 6H01 024-025 4609 250-500 4,48 4,72 0,00 0,00 0,24 88,92 1,65423 6H01 064-065 4649 250-500 22,93 4,15 0,00 0,00 0,22 70,74 1,97426 6H01 093-094 4678 250-500 31,48 2,91 0,00 0,53 0,00 64,29 0,79429 6H01 123-124 4708 250-500 21,41 4,56 0,00 0,00 0,00 67,43 6,61431 6H02 013-014 4748 250-500 31,02 4,81 0,00 1,07 0,00 61,50 1,60434 6H02 043-044 4778 250-500 10,61 3,03 0,00 0,30 0,00 85,45 0,61437 6H02 073-074 4808 250-500 11,36 1,82 0,00 0,00 0,00 85,91 0,91444 6H02 144-145 4879 250-500 10,69 0,58 0,00 0,00 0,00 88,73 0,00446 6H03 015-017 4900 250-500 39,96 3,47 0,00 0,00 0,00 54,05 2,51

Page 139: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr. Sample

Core

depth

[cm]

Fraction

[µm]pf [%]

Fragm.

pf [%]P [%]

Fragm. P

[%]

Coral

fragm.

[%]

Nodules

[%]

Others

[%]

450 6H03 055-057 4940 250-500 51,37 5,22 0,00 0,00 0,55 41,76 1,10454 6H03 095-097 4980 250-500 40,85 6,40 0,00 0,00 0,00 51,83 0,91456 6H03 115-117 5000 250-500 6,44 0,28 0,00 0,00 0,00 93,28 0,00460 6H04 005-007 5040 250-500 0,00 0,00 0,00 0,33 0,00 99,67 0,00463 6H04 045-047 5080 250-500 0,00 0,00 0,00 0,00 0,00 100,00 0,00465 6H04 065-067 5100 250-500 0,00 0,00 0,00 0,00 0,00 100,00 0,00469 6H04 105-107 5140 250-500 0,00 0,00 0,00 0,00 0,00 100,00 0,00471 6H04 125-127 5160 250-500 0,34 0,34 0,00 0,00 0,00 98,99 0,34473 6H05 005-007 5190 250-500 0,81 0,00 0,00 0,00 0,00 98,92 0,27474 6H05 054-056 5239 250-500 0,00 0,00 0,00 0,00 0,00 100,00 0,00478 6H05 095-097 5280 250-500 0,00 0,29 0,00 0,00 0,00 99,71 0,00479 6H06 005-007 5340 250-500 0,00 0,00 0,00 0,00 0,00 99,85 0,15480 6H06 025-027 5360 250-500 0,00 0,00 0,00 0,00 0,00 100,00 0,00482 6H06 065-067 5400 250-500 0,18 0,18 0,00 0,00 0,00 99,28 0,36483 6H06 085-087 5420 250-500 0,00 0,00 0,00 0,25 0,00 99,75 0,00484 6H06 125-127 5460 250-500 0,00 0,00 0,00 0,00 0,00 100,00 0,00485 6H06 145-147 5480 250-500 0,00 0,00 0,00 0,00 0,00 100,00 0,00487 6-cc 025-027 5510 250-500 0,57 0,00 0,00 0,00 0,19 98,28 0,95

Sample Set 8 - Site 633

Nr. Sample

Core

depth

[cm]

Fraction

[µm]pf [%]

Fragm.

pf [%]P [%]

Fragm. P

[%]

Coral

fragm.

[%]

Nodules

[%]

Others

[%]

29 1H02 135-137 285 >125 22,10 5,52 9,47 41,89 0,01 18,32 2,6956 1H04 117-119 567 >125 22,81 2,92 7,96 60,09 0,01 5,39 0,8180 1H06 075-077 825 >125 20,76 5,16 0,00 3,49 0,03 70,52 0,04

108 2H02 085-087 1105 >125 75,86 6,41 0,00 4,13 0,00 13,51 0,09142 2H04 125-127 1445 >125 24,35 4,57 0,80 49,29 0,29 19,97 0,73173 3H01 024-025 1784 >125 24,51 4,49 2,04 51,05 0,37 17,10 0,44201 3H03 014-015 2074 >125 19,58 5,44 4,48 58,85 0,00 11,01 0,64232 3H05 045-047 2405 >125 53,90 5,86 0,00 9,69 0,00 29,63 0,92256 4H01 055-057 2767 >125 57,24 5,64 0,00 0,42 0,78 35,88 0,05276 4H03 015-017 3027 >125 12,05 2,70 0,00 0,14 0,00 83,82 1,28303 4H05 035-037 3347 >125 63,38 9,52 0,00 1,27 0,64 22,92 2,27327 5H01 015-017 3640 >125 53,42 14,39 0,00 0,23 1,77 28,07 2,12358 5H03 035-037 3960 >125 22,12 3,10 0,00 0,00 0,00 74,78 0,00389 5H05 053-054 4279 >125 48,96 6,97 0,00 0,18 0,48 41,55 1,86419 6H01 024-025 4609 >125 7,20 3,44 0,00 0,13 0,02 89,09 0,11450 6H03 055-057 4940 >125 34,88 8,77 0,00 0,00 0,04 56,06 0,25478 6H05 095-097 5280 >125 4,41 5,81 0,00 0,00 0,00 88,98 0,80

Sample Set 9 - Site 1006

Nr. Sample

Core

depth

[cm]

Fraction

[µm]pf [%]

Fragm.

pf [%]P [%]

Fragm. P

[%]

Coral

fragm.

[%]

Nodules

[%]

Encr.

forams

[%]

Others

[%]

1 1H02 135-137 285 250-500 31,40 5,99 5,37 50,62 0,00 4,75 0,00 1,86

2 1H03 075-077 375 250-500 47,44 8,97 5,77 36,11 0,00 0,43 0,00 1,28

3 3H01 035-037 1695 250-500 75,71 8,81 0,48 10,48 0,00 1,67 0,00 2,86

4 3H06 135-137 2545 250-500 64,13 11,55 1,22 17,33 0,30 3,95 0,00 1,52

5 4H05 055-057 3265 250-500 67,54 8,07 0,94 13,88 0,00 8,44 0,00 1,13

6 4H05 135-137 3345 250-500 50,93 5,86 0,62 20,06 0,00 1,23 0,00 21,30

7 5H03 015-017 3875 250-500 59,80 6,98 0,00 9,30 0,00 3,65 0,00 20,27

8 5H05 015-017 4175 250-500 74,20 7,86 0,00 3,19 0,00 9,34 0,00 5,41

9 6H02 055-057 4715 250-500 38,82 5,90 0,00 1,23 0,98 41,77 0,00 11,30

10 6H03 034-035 4844 250-500 65,22 16,52 0,00 7,83 0,00 1,74 4,35 4,35

11 6H03 055-056 4865 250-500 46,80 14,00 1,20 31,60 0,40 2,80 0,40 2,80

12 6H03 075-076 4885 250-500 43,13 15,27 0,00 8,78 0,00 23,66 6,87 2,29

Page 140: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr. Sample

Core

depth

[cm]

Fraction

[µm]pf [%]

Fragm.

pf [%]P [%]

Fragm. P

[%]

Coral

fragm.

[%]

Nodules

[%]

Encr.

forams

[%]

Others

[%]

13 6H03 095-096 4905 250-500 47,84 9,35 0,00 10,07 0,00 20,14 9,71 2,88

14 6H03 115-116 4925 250-500 58,55 10,60 0,24 2,89 0,24 20,72 6,02 0,72

15 6H03 135-136 4945 250-500 21,56 2,87 0,21 2,67 0,00 58,93 12,73 1,03

16 6H04 015-016 4975 250-500 54,90 8,76 0,26 1,80 0,00 22,68 10,82 0,77

17 6H04 035-036 4995 250-500 59,93 10,83 0,00 3,61 0,00 11,55 11,91 2,17

18 6H04 056-057 5016 250-500 65,28 6,33 0,00 2,62 0,00 17,47 7,64 0,66

19 6H04 075-076 5035 250-500 58,43 10,39 0,28 7,30 0,00 14,33 7,02 2,25

20 6H04 095-096 5055 250-500 69,23 8,39 0,00 3,73 0,00 13,05 4,66 0,93

21 6H04 116-117 5076 250-500 33,19 4,28 0,00 2,14 0,00 42,61 14,99 2,78

22 6H04 135-136 5095 250-500 57,29 8,04 0,00 0,50 0,00 27,14 4,52 2,51

23 6H05 035-036 5145 250-500 66,13 8,31 0,00 1,92 0,00 13,10 9,27 1,28

24 6H05 055-056 5165 250-500 50,57 11,03 0,38 2,66 0,00 22,43 10,27 2,66

25 6H05 075-076 5185 250-500 56,87 8,09 0,27 1,62 0,00 24,26 7,55 1,35

26 6H05 095-096 5205 250-500 57,14 10,39 0,00 5,52 0,00 15,26 9,42 2,27

27 6H05 115-116 5225 250-500 61,43 7,14 1,07 3,57 0,71 17,14 6,07 2,86

28 6H06 015-016 5269 250-500 73,25 11,25 0,00 4,26 1,22 3,95 4,26 1,82

29 6H06 035-036 5289 250-500 62,34 6,75 0,00 0,26 0,00 14,81 14,81 1,04

30 6H06 056-057 5310 250-500 58,06 13,20 0,00 4,69 0,00 9,68 12,90 1,47

31 6H06 075-076 5329 250-500 69,85 11,25 0,21 2,34 0,00 4,88 9,98 1,49

32 6H06 095-097 5349 250-500 59,69 9,69 0,77 7,65 0,51 16,33 ? 5,36

33 6H06 116-117 5370 250-500 67,38 8,80 0,00 10,30 0,21 6,65 5,58 1,07

34 6H07 016-017 5426 250-500 68,25 5,85 1,39 11,42 0,00 7,52 3,62 1,95

35 6H07 035-036 5445 250-500 70,33 6,67 0,33 10,33 0,00 7,67 2,67 2,00

36 6H07 056-057 5466 250-500 61,36 8,18 0,00 5,00 0,00 14,09 10,00 1,36

37 7H01 017-018 5477 250-500 50,13 5,60 0,25 9,16 0,25 26,72 6,11 1,78

38 7H01 056-057 5516 250-500 70,75 7,11 0,00 7,11 0,00 5,14 8,30 1,58

39 7H01 076-077 5536 250-500 69,83 7,54 0,00 6,70 0,00 8,94 5,03 1,96

40 7H01 096-097 5556 250-500 72,56 11,11 0,00 4,76 0,00 1,81 6,58 3,17

41 7H01 116-117 5576 250-500 68,68 10,99 0,00 8,52 0,00 6,87 3,85 1,10

42 7H01 135-136 5595 250-500 33,85 6,19 0,00 0,00 0,00 45,13 14,82 0,00

43 7H02 036-037 5646 250-500 71,43 16,50 0,25 1,97 0,00 2,71 5,67 1,48

44 7H02 057-058 5667 250-500 69,33 17,60 0,00 4,53 0,53 1,07 6,40 0,53

45 7H02 076-077 5686 250-500 69,31 14,83 0,00 4,14 1,03 3,79 4,83 2,07

46 7H02 096-097 5706 250-500 70,56 12,18 0,00 3,05 0,00 3,81 6,85 3,55

47 7H02 116-117 5726 250-500 76,77 9,89 0,00 4,95 0,00 3,44 1,08 3,87

48 7H02 136-137 5746 250-500 75,56 12,56 0,00 3,81 0,00 2,02 4,48 1,57

49 7H03 015-016 5775 250-500 67,01 9,54 0,26 10,05 0,26 2,58 5,41 4,90

50 7H03 035-036 5795 250-500 82,77 8,62 0,00 4,76 0,00 0,45 1,36 2,04

51 7H03 056-057 5816 250-500 89,08 5,46 0,00 1,37 0,00 1,02 0,68 2,39

52 7H03 076-077 5836 250-500 75,60 7,56 0,00 9,97 0,00 1,03 2,75 3,09

53 7H03 095-097 5855 250-500 57,89 13,33 1,40 7,72 0,00 8,42 ? 11,23

54 7H03 134-135 5894 250-500 71,53 11,53 0,00 4,41 2,37 3,05 0,00 7,12

Page 141: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Detailed census counts

(foraminifera assemblage)

Appendix 2.5.

Page 142: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr.Sample

Fraction [µm]150-

250

250-

315

315-

400 > 400

150-

250

250-

315

315-

400 > 400

G. rubescens white 1344 16 0 0 2240 16 0 0G. rubescens pink 960 0 0 0 1216 0 0 0G. tenellus 0 0 0 0 0 0 0 0G. ruber white 12288 1264 352 24 14528 3024 928 160G. ruber pink 512 368 280 64 1024 848 864 192G. glutinata 2688 0 0 0 2496 80 0 0G. bulloides 0 0 0 0 0 0 0 0G. calida 64 80 64 0 192 160 240 0G. aequilateralis 2816 672 640 224 2560 1168 912 512G. sacculifer sacculifer 1536 608 1728 1344G. sacculifer trilobus 320 672 1472 1104G. conglomerata 0 0 0 0 0 0 0 0O. universa 128 32 96 832 64 96 160 1536G. conglobatus 0 0 8 56 0 0 16 96T. humilis 0 0 0 0 0 0 0 0N. dutertrei 128 112 344 368 320 544 864 1216G. cultrata 0 0 0 0 0 0 0 0G. menardii dextral 64 0 16 0 0 0 64G. menardii sinistral 704 416 496 1472 320 416 1536P. obliquiloculata 64 48 160 136 64 80 224 320G. tumida 64 0 112 168 0 96 96 320S. dehiscens 0 0 0 0 64 16 0 128Candeina nitida 64 16 64 16 64 16 160 32G. truncatulinoides dextral 0 48 80 64 48 80 192G. truncatulinoides sinistral 0 0 24 0 0 0 32PDI 320 64 88 0 448 16 112 0N. pachyderma dextral 0 0 0 0 0 0 0 0Hastigerina 0 0 0 0 64 0 48 0G. digitata 0 0 0 0 0 0 0 0G. crassaformis 0 16 24 8 0 16 32 0T. quinqueloba 0 0 0 0 0 0 0 0G. inflata 0 0 0 0 0 0 0 0Other plankt. foraminifera 256 16 24 0 640 16 32 0Limacina inflata 6912 384 96 248 2880 144 48 96Limacina trochiformis 896 48 0 32 384 16 16 0Limacina lesueuri 64 16 8 0 64 16 32 0Limacina bulimoides 64 48 24 80 0 0 16 0Diacria trispinosa 0 0 0 8 0 0 0 0Creseis virgula 0 0 0 0 0 0 0 0Creseis acicula clava 0 96 240 64 0 0 80 192Creseis acicula acicula 192 208 208 208 0 16 160 96Cavolinia inflexa 128 80 40 16 320 64 0 0Styliola 0 0 0 64 0 0 0 0Clio 0 0 48 0 0 0 16 32Other pteropods 6208 80 0 48 5952 32 0 32Agglutinated benthic foram. 512 80 0 24 0 32 80 160Buliminia 0 0 0 0 0 16 0 0Uvigerina 0 0 0 0 64 128 32 0Other benthic foraminifera 960 80 32 8 1792 192 224 128Ostracods 512 48 0 8 512 32 32 0Gastropods 320 96 72 8 320 144 48 0Bivalves 2240 48 16 0 2816 128 0 0Heteropods 4992 432 224 64 3200 288 0 0Echinoderma (fragments) 0 0 0 0 0 0 0 0Otoliths 0 0 8 0 64 0 0 0Fragm. of pteropods 61504 4272 2152 1776 35264 2800 1504 704Fragm. of plankt. foraminifera 10112 960 528 328 11136 1264 896 640Fragm. of bivalves/gastropods 576 96 0 40 384 128 0 64Other fragments 832 160 64 0 1408 48 32 64Peloids 0 0 0 0 64 0 0 0Grains 384 32 0 0 448 32 0 0Sponge spicules 1152 16 8 0 704 0 0 0Radiolaria 704 0 0 0 384 0 0 0Other remaining particles 128 16 8 16 320 48 32 0Artifacts (Liner) 320 96 152 344 576 224 272 1088

1264 952 2832 2560

80

Sam

ple

Set

1 -

Gil

lies/T

rid

en

t 1 2GS-7603-7 GS-7603-8

280

Page 143: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr.Sample

Fraction [µm]150-

250

250-

315

315-

400 > 400

150-

250

250-

315

315-

400 > 400

G. rubescens white 2048 0 0 0 960 0 0 0G. rubescens pink 256 0 0 0 576 0 0 0G. tenellus 3072 0 0 0 576 0 0 0G. ruber white 32512 8704 1600 160 8960 1712 416 48G. ruber pink 3072 2048 1600 416 640 720 592 56G. glutinata 10752 512 0 0 3200 64 0 0G. bulloides 0 0 0 0 0 0 0 0G. calida 2304 512 384 32 832 240 80 8G. aequilateralis 1792 2880 3264 992 1792 704 368 120G. sacculifer sacculifer 2048 1856 2560 2016 512 880 1600 1472G. sacculifer trilobus 3072 1984 384 32 704 752 544 56G. conglomerata 0 0 0 0 0 0 0 0O. universa 0 128 512 5056 0 16 64 536G. conglobatus 0 192 64 736 0 16 0 24T. humilis 0 0 0 0 0 0 0 0N. dutertrei 3328 1536 2752 1536 960 224 768 488G. cultrata 0 0 0 0 0 0 0 0G. menardii dextral 0 0 0 0 0 0G. menardii sinistral 2560 640 640 176 208 488P. obliquiloculata 1024 448 320 480 320 192 128 64G. tumida 0 0 0 0 0 48 48 136S. dehiscens 0 0 0 0 0 0 0 16Candeina nitida 256 64 64 32 192 16 64 0G. truncatulinoides dextral 512 1344 256 80 80 40G. truncatulinoides sinistral 0 0 0 0 32 32PDI 512 64 0 0 192 48 32 16N. pachyderma dextral 0 0 0 0 0 0 0 0Hastigerina 0 192 128 0 0 0 16 8G. digitata 0 0 0 32 0 0 0 0G. crassaformis 256 448 192 160 64 32 64 16T. quinqueloba 1024 128 0 0 0 0 0 0G. inflata 2816 192 0 0 0 0 0 0Other plankt. foraminifera 1024 192 768 0 192 48 16 0Limacina inflata 9728 1024 1088 2176 4224 80 64 48Limacina trochiformis 3328 320 0 64 192 16 0 0Limacina lesueuri 0 128 0 192 0 48 0 0Limacina bulimoides 0 0 0 384 0 0 0 8Diacria trispinosa 0 0 0 0 0 0 0 0Creseis virgula 0 0 0 0 0 0 0 0Creseis acicula clava 0 0 320 128 0 0 16 24Creseis acicula acicula 768 64 384 224 0 80 112 16Cavolinia inflexa 0 0 0 64 0 0 16 16Styliola 0 0 0 32 0 0 0 16Clio 0 0 0 32 0 0 0 0Other pteropods 1792 64 384 0 3008 80 0 0Agglutinated benthic foram. 1024 320 256 96 0 16 16 40Buliminia 0 0 0 0 0 0 0 0Uvigerina 0 64 0 0 0 0 32 0Other benthic foraminifera 15872 2112 448 96 960 32 48 16Ostracods 768 192 128 64 192 32 0 8Gastropods 2304 832 256 160 192 48 16 0Bivalves 1792 64 0 0 1664 32 0 8Heteropods 9984 1792 1216 608 1600 144 32 8Echinoderma (fragments) 512 64 0 32 128 0 0 0Otoliths 0 0 0 32 128 0 0 0Fragm. of pteropods 88576 12544 4544 4704 62336 2512 1424 552Fragm. of plankt. foraminifera 23296 4544 1792 1248 19072 2544 1200 480Fragm. of bivalves/gastropods 2304 320 320 192 704 144 0 40Other fragments 56832 5120 704 544 1152 176 176 88Peloids 0 0 0 0 0 16 0 0Grains 512 0 0 0 128 16 0 0Sponge spicules 1024 192 0 0 1088 256 80 0Radiolaria 256 0 0 0 192 0 0 0Other remaining particles 1536 64 1728 512 384 32 0 8Artifacts (Liner) 768 192 0 352 128 32 16 304

576 768

448 448

3 4GS-7603-10GS-7603-9

Page 144: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr.Sample

Fraction [µm]150-

250

250-

315

315-

400 > 400

150-

250

250-

315

315-

400 > 400

G. rubescens white 2688 0 0 0 1600 16 0 0G. rubescens pink 3328 0 0 0 1280 0 0 0G. tenellus 1280 0 0 0 0 0 0 0G. ruber white 19200 4864 1088 160 11072 2224 592 80G. ruber pink 1152 1216 1472 272 1408 752 720 176G. glutinata 5504 128 0 0 2560 32 0 0G. bulloides 0 0 0 0 0 0 0 0G. calida 768 448 352 32 64 160 144 16G. aequilateralis 3712 1216 1120 400 3456 736 384 160G. sacculifer sacculifer 2432 2112 2400 2112 3264 784G. sacculifer trilobus 2304 1472 1760 336 1280 848G. conglomerata 0 0 0 0 0 0 0 0O. universa 0 0 128 1104 0 48 32 560G. conglobatus 0 0 0 176 0 32 0 48T. humilis 0 0 0 0 0 0 0 0N. dutertrei 512 384 1952 1504 384 272 800 336G. cultrata 0 0 0 0 0 0 0 0G. menardii dextral 0 0 0 0 0 0 0 32G. menardii sinistral 1408 896 416 1280 1152 208 448 864P. obliquiloculata 768 640 160 128 64 64 96 32G. tumida 128 0 0 336 0 128 48 96S. dehiscens 0 0 0 80 0 0 16 16Candeina nitida 128 64 0 16 192 16 48 0G. truncatulinoides dextral 256 128 160 96 192 48 112 176G. truncatulinoides sinistral 0 128 32 48 0 16 32 0PDI 0 448 96 96 384 128 240 48N. pachyderma dextral 0 0 0 0 0 0 0 0Hastigerina 0 0 0 16 0 0 0 0G. digitata 0 0 32 0 0 0 0 0G. crassaformis 128 0 160 32 64 48 32 32T. quinqueloba 0 0 0 0 0 0 0 0G. inflata 256 64 0 0 0 0 0 0Other plankt. foraminifera 384 128 32 32 128 16 32 32Limacina inflata 2816 128 32 48 3264 0 32 64Limacina trochiformis 512 0 0 0 320 32 0 0Limacina lesueuri 128 192 32 0 0 16 16 0Limacina bulimoides 0 0 0 0 0 0 16 16Diacria trispinosa 0 0 0 0 0 0 0 0Creseis virgula 0 0 0 0 0 0 0 0Creseis acicula clava 0 64 64 16 0 16 96 16Creseis acicula acicula 128 0 32 64 64 112 128 64Cavolinia inflexa 128 64 32 16 128 0 16 0Styliola 0 0 0 0 0 0 0 0Clio 0 0 0 0 0 0 16 0Other pteropods 4736 0 0 0 4352 16 0 16Agglutinated benthic foram. 0 0 96 80 64 0 0 48Buliminia 256 128 0 0 64 0 32 0Uvigerina 128 0 64 0 0 64 112 0Other benthic foraminifera 2176 192 128 176 2240 256 176 128Ostracods 128 64 64 16 576 64 0 16Gastropods 512 256 64 32 640 128 48 0Bivalves 2816 64 0 0 2752 80 0 32Heteropods 3584 320 64 32 2816 64 0 0Echinoderma (fragments) 0 0 0 0 0 16 0 0Otoliths 0 0 0 16 64 0 16 0Fragm. of pteropods 9856 4992 1920 864 48192 3344 1680 1024Fragm. of plankt. foraminifera 29952 6336 3456 1344 28736 3104 1584 736Fragm. of bivalves/gastropods 768 128 64 160 1280 272 0 32Other fragments 2816 256 384 208 2560 400 128 96Peloids 0 128 128 80 128 64 160 32Grains 896 192 64 0 1024 32 0 0Sponge spicules 768 0 0 0 384 0 0 0Radiolaria 512 0 32 0 192 0 0 0Other remaining particles 256 0 0 0 448 64 48 0Artifacts (Liner) 640 192 448 1200 256 64 112 304

1344 928

GS-7603-11 GS-7603-12

5 6

Page 145: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr.Sample

Fraction [µm]150-

250

250-

315

315-

400 > 400

150-

250

250-

315

315-

400 > 400

G. rubescens white 1408 0 0 0 384 32 0 0G. rubescens pink 320 0 0 0 384 0 0 0G. tenellus 0 0 0 0 0 0 0 0G. ruber white 11008 1344 288 96 7360 1200 280 72G. ruber pink 896 480 536 192 512 400 400 88G. glutinata 1216 16 0 0 1600 48 0 0G. bulloides 0 0 0 0 0 0 0 0G. calida 0 224 168 64 704 176 184 32G. aequilateralis 3264 1040 592 480 1280 560 320 304G. sacculifer sacculifer 2112 432 1216 336G. sacculifer trilobus 64 528 384 416G. conglomerata 0 0 0 0 0 0 0 0O. universa 0 16 32 800 0 16 48 264G. conglobatus 0 0 24 80 0 0 0 112T. humilis 0 0 0 0 0 0 0 0N. dutertrei 192 192 440 304 64 176 352 400G. cultrata 0 0 0 0 0 0 0 0G. menardii dextral 192 0 0 0 64 0 0 16G. menardii sinistral 768 224 192 544 640 224 104 440P. obliquiloculata 0 160 128 208 64 80 88 64G. tumida 0 16 56 96 0 16 16 104S. dehiscens 0 0 0 16 0 0 0 16Candeina nitida 0 16 16 0 0 0 16 0G. truncatulinoides dextral 0 80 48 80 0 48 104 168G. truncatulinoides sinistral 0 0 0 16 0 0 0 0PDI 1472 16 80 96 0 32 88 48N. pachyderma dextral 0 0 0 0 0 0 0 0Hastigerina 64 0 0 0 0 0 0 16G. digitata 0 0 8 0 0 0 0 0G. crassaformis 0 0 40 16 0 0 16 0T. quinqueloba 0 0 0 0 0 0 0 0G. inflata 0 0 0 0 0 0 0 0Other plankt. foraminifera 448 32 16 0 576 64 0 0Limacina inflata 3712 80 64 224 1280 16 0 8Limacina trochiformis 576 16 48 0 0 0 0 0Limacina lesueuri 192 0 64 48 0 0 0 8Limacina bulimoides 128 16 32 64 128 0 8 0Diacria trispinosa 0 0 0 16 0 0 0 0Creseis virgula 0 0 0 0 0 0 0 0Creseis acicula clava 512 128 184 160 192 48 80 40Creseis acicula acicula 1664 496 144 128 704 80 32 16Cavolinia inflexa 512 160 24 96 128 48 8 8Styliola 0 0 0 80 0 0 0 0Clio 0 0 0 0 0 0 0 0Other pteropods 7296 80 0 32 2304 0 0 0Agglutinated benthic foram. 192 32 64 0 64 64 24 48Buliminia 128 0 0 0 320 0 8 0Uvigerina 128 32 16 16 256 48 120 0Other benthic foraminifera 1344 176 104 16 2624 96 40 40Ostracods 448 48 32 16 960 64 16 16Gastropods 448 96 16 16 64 32 8 0Bivalves 3648 160 8 48 1408 48 8 8Heteropods 4544 288 0 0 1152 32 0 0Echinoderma (fragments) 64 0 0 0 64 0 8 0Otoliths 0 0 0 0 0 0 0 0Fragm. of pteropods 67200 6624 2672 2608 28608 2144 672 424Fragm. of plankt. foraminifera 10752 1232 608 368 11328 1728 1000 456Fragm. of bivalves/gastropods 896 144 88 80 448 48 0 8Other fragments 896 144 8 0 4224 496 32 48Peloids 0 0 0 0 384 80 48 72Grains 640 64 0 0 704 48 0 0Sponge spicules 1216 16 0 0 896 32 8 0Radiolaria 576 32 0 0 448 0 0 0Other remaining particles 512 64 16 32 448 32 72 40Artifacts (Liner) 576 320 280 608 0 112 80 336

608 6001264 1280

GS-7603-14GS-7603-13

7 8

Page 146: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr.Sample

Fraction [µm]150-

250

250-

315

315-

400 > 400

150-

250

250-

315

315-

400 > 400

G. rubescens white 320 0 0 0 1792 0 0 0G. rubescens pink 0 0 0 0 64 0 0 0G. tenellus 128 0 0 0 0 0 0 0G. ruber white 13248 1776 336 48 11968 1680 448 16G. ruber pink 1216 704 416 16 832 560 640 128G. glutinata 1728 32 0 0 1664 32 0 0G. bulloides 0 0 0 0 0 0 0 0G. calida 2304 432 240 48 2688 448 160 24G. aequilateralis 576 848 608 208 1984 496 608 216G. sacculifer sacculifer 2944 1072 2176 1072G. sacculifer trilobus 640 752 704 560G. conglomerata 0 0 0 0 0 0 0 0O. universa 0 32 128 1264 0 96 112 1160G. conglobatus 0 0 48 64 0 0 16 112T. humilis 0 0 0 0 0 0 0 0N. dutertrei 384 256 784 624 0 240 736 696G. cultrata 0 0 0 0 0 0 0 0G. menardii dextral 0 0 0 0 64 0 0 0G. menardii sinistral 1472 432 224 672 1088 368 384 712P. obliquiloculata 320 240 272 192 64 96 192 200G. tumida 0 16 48 240 64 16 48 152S. dehiscens 0 0 0 64 0 0 16 24Candeina nitida 0 64 16 0 0 16 16 24G. truncatulinoides dextral 128 48 112 160 64 80 128 144G. truncatulinoides sinistral 0 0 0 0 0 0 0 0PDI 0 0 0 48 256 16 112 16N. pachyderma dextral 0 0 0 0 0 0 0 0Hastigerina 0 0 0 0 0 16 0 8G. digitata 0 64 0 0 0 0 0 0G. crassaformis 0 0 0 0 64 32 48 24T. quinqueloba 64 0 0 0 0 0 0 0G. inflata 64 0 0 0 0 16 0 0Other plankt. foraminifera 0 16 0 0 960 80 0 16Limacina inflata 1344 48 48 48 3392 64 0 56Limacina trochiformis 256 32 0 0 640 0 0 0Limacina lesueuri 192 0 0 0 64 32 32 16Limacina bulimoides 0 0 16 48 128 16 16 40Diacria trispinosa 0 0 0 0 0 0 0 0Creseis virgula 0 0 0 0 0 0 0 0Creseis acicula clava 0 64 64 80 320 144 144 112Creseis acicula acicula 640 128 128 64 768 96 96 24Cavolinia inflexa 256 48 16 0 192 96 48 16Styliola 0 0 0 0 0 0 0 0Clio 0 0 0 0 64 0 0 8Other pteropods 2624 16 0 0 4224 16 16 24Agglutinated benthic foram. 192 48 16 0 640 96 16 40Buliminia 0 0 0 0 0 0 0 0Uvigerina 0 0 0 0 0 16 0 0Other benthic foraminifera 512 64 0 16 1280 128 128 32Ostracods 0 0 16 0 320 0 64 0Gastropods 64 0 0 0 64 96 128 8Bivalves 576 128 16 16 1536 32 0 8Heteropods 1600 32 16 16 2752 160 0 0Echinoderma (fragments) 192 32 32 32 0 0 0 0Otoliths 0 16 0 16 0 0 0 0Fragm. of pteropods 24448 1728 384 560 61504 3984 2096 1024Fragm. of plankt. foraminifera 6912 912 480 256 13056 896 560 168Fragm. of bivalves/gastropods 640 16 160 192 1088 160 16 72Other fragments 256 0 48 224 1216 112 0 0Peloids 0 0 0 0 0 0 0 0Grains 0 0 0 0 256 48 0 0Sponge spicules 320 0 0 0 1536 16 0 0Radiolaria 192 16 0 0 640 48 0 0Other remaining particles 128 80 0 0 1664 80 32 0Artifacts (Liner) 960 176 128 304 704 128 240 408

1584 1088 1680 1328

TR149-32TR149-31

9 10

Page 147: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr.Sample

Fraction [µm]150-

250

250-

315

315-

400 > 400

150-

250

250-

315

315-

400 > 400

G. rubescens white 448 0 0 0 2368 0 0 0G. rubescens pink 64 0 0 0 512 0 0 0G. tenellus 320 0 0 0 0 0 0 0G. ruber white 8192 1168 184 16 16576 1834,7 240 32G. ruber pink 192 400 288 32 1088 704 352 32G. glutinata 1088 16 8 0 2112 64 0 0G. bulloides 0 0 0 0 0 0 0 0G. calida 256 112 144 0 1216 43 160 0G. aequilateralis 2176 1056 632 480 3648 1045,3 592 368G. sacculifer sacculifer 768 688 352 704 1920 1237,3G. sacculifer trilobus 448 400 736 288 1216 1152G. conglomerata 0 0 0 0 0 0 0 0O. universa 64 48 40 1072 0 43 80 1040G. conglobatus 0 0 24 64 64 0 48 112T. humilis 0 0 0 0 0 0 0 0N. dutertrei 0 208 232 208 768 299 736 320G. cultrata 0 0 0 0 0 0 0 0G. menardii dextral 0 0 0 0 64 0 0 0G. menardii sinistral 896 192 136 448 1216 384 256 592P. obliquiloculata 0 64 72 96 384 213 288 320G. tumida 64 16 40 144 0 43 96 240S. dehiscens 0 0 8 64 0 0 16 0Candeina nitida 0 0 40 16 0 43 48 48G. truncatulinoides dextral 0 32 32 80 64 21 160 128G. truncatulinoides sinistral 0 0 0 0 64 0 32 16PDI 64 32 32 0 64 21 48 0N. pachyderma dextral 0 0 0 0 0 0 0 0Hastigerina 0 0 0 0 0 0 32 64G. digitata 0 16 0 0 0 0 0 0G. crassaformis 0 16 16 16 0 43 0 0T. quinqueloba 0 0 0 0 0 0 0 0G. inflata 0 0 0 0 0 0 0 0Other plankt. foraminifera 256 64 24 16 320 21 48 0Limacina inflata 1984 112 56 96 6848 661 240 448Limacina trochiformis 448 32 0 0 1728 85 16 0Limacina lesueuri 0 0 0 0 128 21 0 0Limacina bulimoides 0 32 32 64 0 43 64 176Diacria trispinosa 0 0 0 0 0 0 0 0Creseis virgula 0 0 0 0 0 0 0 0Creseis acicula clava 0 16 56 0 0 64 144 16Creseis acicula acicula 64 32 40 0 64 64 176 64Cavolinia inflexa 0 16 24 0 128 43 32 48Styliola 0 0 0 16 0 0 0 128Clio 0 0 0 0 0 0 48 0Other pteropods 1280 16 0 0 3392 107 0 0Agglutinated benthic foram. 0 64 80 64 320 0 32 64Buliminia 0 0 0 0 64 0 0 0Uvigerina 0 0 0 0 0 21 0 0Other benthic foraminifera 768 80 24 48 1856 384 32 32Ostracods 192 16 24 16 576 21 32 32Gastropods 0 0 8 32 256 107 112 0Bivalves 1408 0 0 0 832 64 16 0Heteropods 1856 240 56 16 4864 661 256 112Echinoderma (fragments) 0 0 0 0 0 21 16 0Otoliths 0 32 0 0 192 0 0 16Fragm. of pteropods 22976 2384 1224 912 33024 4416 1984 1264Fragm. of plankt. foraminifera 8640 896 552 304 8064 1386,7 592 512Fragm. of bivalves/gastropods 256 64 24 32 640 85 0 32Other fragments 1024 112 32 16 2432 299 304 48Peloids 0 0 0 0 0 0 16 0Grains 128 0 24 0 1152 192 0 0Sponge spicules 320 0 0 0 448 0 0 0Radiolaria 0 16 0 0 192 0 0 0Other remaining particles 320 16 0 0 384 21 48 80Artifacts (Liner) 128 208 96 416 256 21 32 32

1648 880

TR149-35TR149-34

11 12

Page 148: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr.Sample

Fraction [µm]150-

250

250-

315

315-

400 > 400

150-

250

250-

315

315-

400 > 400

G. rubescens white 1920 0 0 0 896 16 0 0G. rubescens pink 128 0 0 0 384 0 0 0G. tenellus 1664 0 0 0 768 16 0 0G. ruber white 15616 1680 224 0 19456 1872 304 32G. ruber pink 768 528 208 48 256 656 432 32G. glutinata 2944 16 0 0 5248 16 0 0G. bulloides 0 0 0 0 0 0 0 0G. calida 384 224 96 16 1664 256 80 16G. aequilateralis 4992 1328 1088 384 2560 1088 672 272G. sacculifer sacculifer 1792 1296 1536 960 1152 992 1328 944G. sacculifer trilobus 1664 688 480 96 2304 960 432 64G. conglomerata 0 0 0 0 0 0 0 0O. universa 0 80 64 1024 256 32 96 736G. conglobatus 128 16 16 112 0 0 16 96T. humilis 0 0 0 0 0 0 0 0N. dutertrei 384 336 784 544 896 192 736 320G. cultrata 0 0 0 0 0 0 0 0G. menardii dextral 0 0 0 0 0 16 0 0G. menardii sinistral 2176 560 336 880 2304 384 288 640P. obliquiloculata 256 128 288 288 256 272 208 208G. tumida 0 16 96 352 0 16 64 224S. dehiscens 0 0 0 64 0 0 16 16Candeina nitida 0 32 16 48 128 64 0 32G. truncatulinoides dextral 0 32 64 80 128 128 96 80G. truncatulinoides sinistral 0 0 0 16 0 0 16 0PDI 384 48 32 16 0 48 0 16N. pachyderma dextral 0 0 0 0 0 0 0 0Hastigerina 0 0 16 32 0 32 32 0G. digitata 0 48 0 0 128 0 0 0G. crassaformis 128 16 32 0 0 0 16 0T. quinqueloba 0 0 0 0 0 0 0 0G. inflata 0 0 0 0 0 0 0 0Other plankt. foraminifera 512 32 32 0 512 80 0 0Limacina inflata 5120 432 256 624 7040 272 32 192Limacina trochiformis 1152 0 16 0 1280 96 0 32Limacina lesueuri 128 16 16 32 0 16 0 32Limacina bulimoides 0 96 96 144 0 0 80 48Diacria trispinosa 0 0 0 0 0 0 0 0Creseis virgula 0 0 0 0 0 0 0 0Creseis acicula clava 0 16 256 128 128 16 32 16Creseis acicula acicula 0 32 256 0 128 48 64 48Cavolinia inflexa 0 0 96 48 0 0 0 16Styliola 0 0 0 144 0 0 16 32Clio 0 0 16 0 0 0 0 16Other pteropods 3584 144 0 16 4608 64 0 0Agglutinated benthic foram. 256 80 16 48 256 48 32 32Buliminia 0 0 0 0 128 0 0 0Uvigerina 0 0 0 0 0 0 0 0Other benthic foraminifera 1024 144 96 80 4096 128 32 48Ostracods 128 16 16 0 1152 64 16 16Gastropods 256 96 176 0 512 112 48 64Bivalves 1280 96 16 0 2048 80 0 0Heteropods 4992 816 464 128 3328 512 128 112Echinoderma (fragments) 0 0 0 0 128 16 0 0Otoliths 0 16 16 0 128 16 0 0Fragm. of pteropods 36224 1008 3392 1888 64768 4976 1472 1136Fragm. of plankt. foraminifera 6656 944 656 288 17152 1472 672 288Fragm. of bivalves/gastropods 640 32 16 16 1664 128 48 32Other fragments 1152 144 192 32 2304 112 128 80Peloids 0 0 48 0 0 0 0 0Grains 896 112 32 0 640 64 0 0Sponge spicules 256 0 0 0 640 0 0 0Radiolaria 256 48 0 0 256 0 0 0Other remaining particles 128 16 0 16 1408 48 32 32Artifacts (Liner) 0 80 32 32 384 176 128 160

TR149-37

1413TR149-36

Page 149: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr.Sample

Fraction [µm]150-

250

250-

315

315-

400 > 400

G. rubescens white 1344 32 0 0G. rubescens pink 512 0 0 0G. tenellus 192 64 0 0G. ruber white 7744 1728 448 48G. ruber pink 832 800 752 104G. glutinata 1984 32 0 0G. bulloides 0 0 0 0G. calida 256 224 0 16G. aequilateralis 2176 448 432 144G. sacculifer sacculifer 832 928 1008 960G. sacculifer trilobus 640 768 384 72G. conglomerata 0 0 0 0O. universa 0 64 80 552G. conglobatus 0 0 32 104T. humilis 0 0 0 0N. dutertrei 64 512 928 864G. cultrata 0 0 0 0G. menardii dextral 128 0 0 0G. menardii sinistral 512 288 272 616P. obliquiloculata 128 256 144 120G. tumida 0 96 160 72S. dehiscens 0 32 0 16Candeina nitida 64 0 16 0G. truncatulinoides dextral 192 192 288 288G. truncatulinoides sinistral 0 64 48 64PDI 256 128 16 16N. pachyderma dextral 0 0 0 0Hastigerina 0 0 0 0G. digitata 0 0 0 0G. crassaformis 64 32 112 40T. quinqueloba 0 0 0 0G. inflata 128 320 0 0Other plankt. foraminifera 256 96 32 8Limacina inflata 1408 160 16 56Limacina trochiformis 192 0 0 0Limacina lesueuri 0 0 16 0Limacina bulimoides 0 0 16 16Diacria trispinosa 0 0 0 0Creseis virgula 0 0 0 0Creseis acicula clava 0 0 48 16Creseis acicula acicula 0 0 16 0Cavolinia inflexa 0 0 0 8Styliola 0 0 0 8Clio 0 0 0 0Other pteropods 1280 0 0 0Agglutinated benthic foram. 64 32 0 32Buliminia 0 0 0 0Uvigerina 0 32 0 0Other benthic foraminifera 256 128 128 56Ostracods 192 32 0 16Gastropods 128 128 0 8Bivalves 704 64 0 8Heteropods 640 96 16 8Echinoderma (fragments) 0 0 0 0Otoliths 0 64 0 16Fragm. of pteropods 15424 1568 640 336Fragm. of plankt. foraminifera 12608 2048 976 600Fragm. of bivalves/gastropods 1088 32 0 72Other fragments 1216 160 144 216Peloids 0 0 0 0Grains 128 64 32 0Sponge spicules 0 0 0 0Radiolaria 0 0 16 0Other remaining particles 0 0 32 0Artifacts (Liner) 320 128 192 232

TR149-38b

15

Page 150: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr.

Sample

Core depth [cm]

Fraction [µm] >1000

500-

1000 250-500 >1000

500-

1000 250-500 >1000

500-

1000 250-500

O. universa 0 46 0 0 72 16 0 40 80G. truncatulinoides dextral 0 6 80 0 12 64 0 8 16G. truncatulinoides sinistral 0 0 48 0 0 8 0 0 0G. menardii 0 0 16 0 0 0 0 4 0G. inflata 0 0 0 0 0 32 0 0 0Candeina nitida 0 0 16 0 0 0 0 0 64Pulleniatina 0 0 0 0 0 0 0 0 0G. ruber white 0 0 224 0 0 160 0 0 624G. calida 0 0 48 0 0 0 0 0 80G. ruber pink 0 0 112 0 0 16 0 0 368G. sacculifer 0 2 176 0 0 40 0 0 528G. rubescens 0 0 32 0 0 0 0 0 176Globigerinella aequilateralis 0 12 96 0 6 112 0 12 128N. dutertrei 0 0 16 0 0 16 0 0 0G. conglobatus 0 28 32 0 0 8 0 28 96G. tumida 0 0 0 0 0 0 0 0 16G. hirsuta 0 0 0 0 0 0 0 0 0S. dehiscenc 0 0 0 0 0 0 0 0 0Hastigerina 0 2 16 0 0 0 0 0 0G. crassaformis 0 0 0 0 0 0 0 0 0Other planktonic foram. 0 2 0 0 0 8 0 4 128Agglutinated benthic foram. 0 2 0 0 0 0 0 0 0Other benthic foram. 0 0 64 0 0 24 0 8 368Clio pyramidata 0 4 0 1 2 8 2 0 0Clio polita 0 0 0 0 0 152 0 12 112Limacina inflata 0 64 208 0 78 240 0 104 496Limacina trochiformis 0 0 304 0 0 112 0 0 192Limacina lesueuri 0 20 32 0 6 96 0 12 16Limacina bulimoides 0 30 0 0 14 16 0 44 0Diacria trispinosa 0 0 0 0 0 0 1 0 0Diacria quadridenta 0 0 0 2 0 0 4 0 0Creseis virgula 0 0 0 0 0 0 0 0 0Creseis acicula clava 0 0 0 0 4 56 0 16 64Creseis acicula acicula 0 0 48 0 8 120 0 8 112Cavolinia inflexa 0 2 0 0 0 16 0 8 64Cavolinia longirostris 0 0 0 0 0 0 1 0 0Styliola subula 2 28 480 1 16 344 9 48 224Other pteropods 1 4 48 0 8 64 0 4 192Heteropods 0 16 576 0 14 360 0 12 592Ostracods 0 0 0 0 0 8 0 0 32Gastropods 0 0 0 0 0 8 0 0 112Bivalves 0 2 32 0 2 16 1 0 112Otoliths 0 0 0 0 2 0 1 0 16Sponge spicules 0 0 0 0 2 40 0 0 0Nodules 0 28 1680 0 36 368 16 188 2720Pyrite 0 0 0 0 0 0 0 0 0Fragm. plankt. foram. 0 18 288 0 8 96 0 0 304Fragm. pteropods 6 130 3056 8 256 4472 30 336 7904Fragm. bivalves/gastropods 0 0 0 0 0 8 0 4 0Coral fragm. 0 2 16 0 0 24 0 4 0Other fragm. 0 4 16 0 0 8 0 8 144Other remaining particles 0 0 0 0 0 32 0 0 16

Sam

ple

Set

8 -

Sit

e 6

33

1H01 005-007 1H01 065-067 1H03 035-037

5 65 335

1 7 33

Page 151: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr.

Sample

Core depth [cm]

Fraction [µm] >1000

500-

1000 250-500 >1000

500-

1000 250-500 >1000

500-

1000 250-500

O. universa 0 116 64 0 14 64 0 128 0G. truncatulinoides dextral 0 20 416 0 0 8 0 0 64G. truncatulinoides sinistral 0 0 16 0 0 36 0 0 0G. menardii 0 0 64 0 0 0 0 16 64G. inflata 0 0 16 0 0 0 0 0 0Candeina nitida 0 0 0 0 0 0 0 0 0Pulleniatina 0 0 0 0 0 4 0 0 0G. ruber white 0 0 672 0 0 224 0 0 896G. calida 0 0 64 0 1 32 0 8 32G. ruber pink 0 0 64 0 0 4 0 0 96G. sacculifer 0 0 512 0 0 136 0 0 896G. rubescens 0 0 16 0 0 60 0 0 32Globigerinella aequilateralis 0 2 496 0 2 56 0 24 480N. dutertrei 0 0 48 0 0 0 0 0 0G. conglobatus 0 16 160 0 11 84 0 16 64G. tumida 0 0 0 0 0 4 0 0 0G. hirsuta 0 0 16 0 0 0 0 0 0S. dehiscenc 0 0 0 0 0 0 0 0 0Hastigerina 0 0 16 0 0 12 0 0 32G. crassaformis 0 0 0 0 0 16 0 0 64Other planktonic foram. 0 0 64 0 0 28 0 8 0Agglutinated benthic foram. 0 0 0 0 0 0 0 0 0Other benthic foram. 0 4 256 0 0 12 0 4 128Clio pyramidata 0 2 0 0 0 4 0 0 0Clio polita 0 0 240 0 0 0 0 8 128Limacina inflata 0 34 560 0 0 48 0 0 32Limacina trochiformis 0 0 128 0 0 28 0 20 192Limacina lesueuri 0 0 32 0 0 0 0 4 0Limacina bulimoides 0 22 0 0 1 0 0 76 64Diacria trispinosa 0 0 0 0 0 0 0 0 0Diacria quadridenta 3 0 0 0 0 0 0 0 0Creseis virgula 0 0 0 0 0 0 0 0 0Creseis acicula clava 0 6 32 0 0 0 0 0 32Creseis acicula acicula 0 0 400 0 0 0 0 0 96Cavolinia inflexa 0 2 48 0 0 0 0 0 64Cavolinia longirostris 0 0 0 0 0 0 0 0 0Styliola subula 1 20 480 0 0 16 2 48 448Other pteropods 0 2 288 0 1 24 3 36 256Heteropods 0 10 512 0 0 80 0 0 320Ostracods 0 0 48 0 0 4 0 4 32Gastropods 0 0 64 0 0 4 0 0 96Bivalves 0 4 0 0 0 24 0 0 96Otoliths 0 0 16 0 0 4 0 4 64Sponge spicules 0 0 0 0 0 0 0 0 0Nodules 5 104 912 0 50 1388 2 0 800Pyrite 0 0 0 0 0 0 0 0 0Fragm. plankt. foram. 0 2 272 0 4 64 0 16 416Fragm. pteropods 6 314 9328 0 5 620 6 652 14496Fragm. bivalves/gastropods 0 0 0 0 0 8 0 12 128Coral fragm. 0 0 208 0 0 0 0 0 32Other fragm. 1 2 176 0 0 8 0 16 64Other remaining particles 0 0 16 0 0 12 0 0 0

1H03 105-107 1H04 095-097 1H04 117-119

405 545 567

40 54 56

Page 152: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr.

Sample

Core depth [cm]

Fraction [µm] >1000

500-

1000 250-500 >1000

500-

1000 250-500 >1000

500-

1000 250-500

O. universa 0 61 112 0 121 116 0 58 128G. truncatulinoides dextral 0 20 416 0 11 88 0 0 40G. truncatulinoides sinistral 0 1 16 0 11 160 0 0 0G. menardii 0 0 16 0 1 0 0 37 32G. inflata 0 0 0 0 0 52 0 0 0Candeina nitida 0 0 0 0 0 0 0 0 16Pulleniatina 0 0 0 0 0 0 0 2 0G. ruber white 0 0 688 0 0 396 0 0 736G. calida 0 0 32 0 0 36 0 0 8G. ruber pink 0 0 640 0 0 32 0 0 112G. sacculifer 0 1 272 0 1 416 0 0 200G. rubescens 0 0 64 0 0 20 0 0 24Globigerinella aequilateralis 0 12 432 0 17 244 0 7 112N. dutertrei 0 0 0 0 0 8 0 0 0G. conglobatus 0 5 48 0 13 24 0 5 56G. tumida 0 0 0 0 0 0 0 0 0G. hirsuta 0 0 0 0 0 0 0 0 0S. dehiscenc 0 0 0 0 0 4 0 0 0Hastigerina 0 2 0 0 5 0 0 0 16G. crassaformis 0 0 0 0 0 100 0 0 24Other planktonic foram. 0 0 48 0 0 116 0 1 16Agglutinated benthic foram. 6 9 0 0 0 0 0 0 0Other benthic foram. 1 34 416 0 3 60 0 7 64Clio pyramidata 0 0 0 0 0 0 0 0 0Clio polita 0 0 48 0 0 0 0 1 48Limacina inflata 0 1 112 0 0 0 0 0 0Limacina trochiformis 0 0 0 0 0 0 0 1 144Limacina lesueuri 0 0 0 0 0 0 0 1 40Limacina bulimoides 0 40 112 0 0 0 0 10 0Diacria trispinosa 0 0 0 0 0 0 0 0 0Diacria quadridenta 0 0 0 0 0 0 0 0 0Creseis virgula 0 0 0 0 0 0 0 0 8Creseis acicula clava 0 0 0 0 0 0 0 0 0Creseis acicula acicula 0 0 0 0 0 0 0 0 8Cavolinia inflexa 0 0 0 0 0 0 0 0 0Cavolinia longirostris 0 0 0 0 0 0 0 0 0Styliola subula 0 4 32 0 0 0 0 2 16Other pteropods 0 1 96 0 0 0 0 0 24Heteropods 0 1 64 0 0 0 0 0 40Ostracods 0 0 0 0 0 20 0 1 16Gastropods 0 1 16 0 0 0 0 1 16Bivalves 0 1 112 0 1 40 0 1 32Otoliths 1 4 0 0 2 0 0 0 0Sponge spicules 0 0 0 0 0 0 0 0 0Nodules 0 16 96 1 90 888 0 26 368Pyrite 0 0 0 0 0 0 0 0 0Fragm. plankt. foram. 0 9 448 0 11 176 0 8 168Fragm. pteropods 2 143 4464 0 0 28 0 64 2560Fragm. bivalves/gastropods 0 4 0 0 0 0 0 1 8Coral fragm. 0 0 0 0 0 0 0 0 8Other fragm. 0 10 192 0 4 44 0 0 24Other remaining particles 0 0 16 0 1 0 0 0 8

1H06 045-047 1H06 095-097 2H01 025-027

795 845 895

77 82 87

Page 153: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr.

Sample

Core depth [cm]

Fraction [µm] >1000

500-

1000 250-500 >1000

500-

1000 250-500 >1000

500-

1000 250-500

O. universa 0 22 68 0 176 144 0 390 288G. truncatulinoides dextral 0 1 192 0 9 136 0 103 736G. truncatulinoides sinistral 0 0 0 0 0 8 0 4 32G. menardii 0 0 12 0 1 8 0 0 64G. inflata 0 0 4 0 0 0 0 0 320Candeina nitida 0 0 4 0 1 152 0 0 0Pulleniatina 0 0 0 0 0 0 0 2 0G. ruber white 0 0 188 0 0 584 0 0 1248G. calida 0 0 12 0 0 16 0 0 160G. ruber pink 0 0 20 0 0 72 0 0 160G. sacculifer 0 0 404 0 1 216 0 0 1568G. rubescens 0 0 12 0 0 48 0 0 64Globigerinella aequilateralis 0 0 20 0 3 344 0 14 1184N. dutertrei 0 0 8 0 0 8 0 1 0G. conglobatus 0 11 68 0 62 200 0 22 64G. tumida 0 0 0 0 0 0 0 0 0G. hirsuta 0 0 8 0 0 0 0 0 96S. dehiscenc 0 0 0 0 2 0 0 1 0Hastigerina 0 1 8 0 2 16 0 0 0G. crassaformis 0 0 0 0 0 8 0 11 0Other planktonic foram. 0 0 8 0 2 48 0 0 128Agglutinated benthic foram. 0 0 0 0 0 0 0 0 0Other benthic foram. 0 5 36 0 4 136 0 5 0Clio pyramidata 0 0 0 0 0 0 0 0 0Clio polita 0 0 12 0 0 0 0 0 0Limacina inflata 0 0 4 0 0 0 0 0 0Limacina trochiformis 0 1 12 0 1 56 0 0 0Limacina lesueuri 0 0 0 0 0 0 0 0 0Limacina bulimoides 0 2 0 0 0 0 0 0 0Diacria trispinosa 0 0 0 0 0 0 0 0 0Diacria quadridenta 0 0 0 0 0 0 0 0 0Creseis virgula 0 0 0 0 0 0 0 0 0Creseis acicula clava 0 0 8 0 0 0 0 0 0Creseis acicula acicula 0 0 0 0 0 0 0 0 0Cavolinia inflexa 0 0 0 0 0 0 0 0 0Cavolinia longirostris 0 0 0 0 0 0 0 0 0Styliola subula 0 0 0 0 0 0 0 0 0Other pteropods 0 1 20 0 0 0 0 0 0Heteropods 0 5 72 0 0 0 0 0 0Ostracods 0 0 12 0 0 16 0 0 64Gastropods 0 0 4 0 1 8 0 0 0Bivalves 0 0 8 0 0 16 0 0 0Otoliths 0 0 0 0 5 32 0 7 0Sponge spicules 0 0 0 0 0 0 0 0 0Nodules 0 0 60 0 0 0 0 79 864Pyrite 0 0 0 0 0 0 0 0 0Fragm. plankt. foram. 0 3 100 0 17 272 0 20 736Fragm. pteropods 0 28 668 0 10 320 0 0 0Fragm. bivalves/gastropods 1 1 0 0 2 0 0 0 0Coral fragm. 0 2 4 2 15 872 0 0 0Other fragm. 0 0 0 0 17 8 0 1 0Other remaining particles 0 1 0 0 1 8 0 1 0

2H01 095-097

965

2H02 005-007 2H02 065-067

1025 1085

94 100 106

Page 154: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr.

Sample

Core depth [cm]

Fraction [µm] >1000

500-

1000 250-500 >1000

500-

1000 250-500 >1000

500-

1000 250-500

O. universa 0 100 80 0 16 92 0 4 64G. truncatulinoides dextral 0 20 112 0 9 196 0 0 32G. truncatulinoides sinistral 0 0 0 0 0 0 0 0 0G. menardii 0 0 0 0 0 0 0 2 0G. inflata 0 0 0 0 0 28 0 0 16Candeina nitida 0 0 0 0 0 0 0 0 0Pulleniatina 0 0 0 0 0 0 0 0 0G. ruber white 0 0 384 0 0 256 0 0 1200G. calida 0 0 64 0 0 12 0 0 0G. ruber pink 0 0 16 0 0 16 0 0 16G. sacculifer 0 0 208 0 1 216 0 1 656G. rubescens 0 0 64 0 0 8 0 0 16Globigerinella aequilateralis 0 12 192 0 4 44 0 6 464N. dutertrei 0 0 16 0 0 4 0 0 0G. conglobatus 0 4 48 0 5 8 0 2 64G. tumida 0 0 0 0 0 4 0 0 0G. hirsuta 0 0 0 0 0 0 0 0 0S. dehiscenc 0 4 0 0 0 0 0 0 0Hastigerina 0 0 0 0 0 12 0 1 0G. crassaformis 0 0 16 0 0 0 0 3 16Other planktonic foram. 0 0 48 0 0 20 0 2 112Agglutinated benthic foram. 0 0 0 0 0 0 0 0 0Other benthic foram. 0 0 96 0 2 64 0 7 48Clio pyramidata 0 0 0 0 2 0 0 0 0Clio polita 0 0 96 0 0 0 0 0 0Limacina inflata 0 420 1504 0 0 0 0 2 32Limacina trochiformis 0 4 64 0 0 20 0 0 80Limacina lesueuri 0 0 16 0 0 4 0 0 0Limacina bulimoides 0 8 0 0 1 0 0 31 16Diacria trispinosa 1 0 0 0 0 0 0 0 0Diacria quadridenta 6 0 0 0 0 0 0 0 0Creseis virgula 0 0 0 0 0 0 0 0 0Creseis acicula clava 0 0 0 0 0 0 0 0 0Creseis acicula acicula 0 0 16 0 0 0 0 0 0Cavolinia inflexa 0 8 48 0 0 0 0 0 0Cavolinia longirostris 0 0 0 0 0 0 0 0 0Styliola subula 4 8 224 0 0 4 0 0 0Other pteropods 3 0 96 0 0 0 0 0 0Heteropods 0 12 448 0 0 4 0 0 32Ostracods 0 0 16 0 0 12 0 0 0Gastropods 0 0 64 0 0 4 0 5 16Bivalves 0 0 48 0 0 28 0 2 80Otoliths 0 4 0 1 1 0 0 2 0Sponge spicules 0 0 0 0 0 0 0 0 0Nodules 0 16 240 0 37 1244 0 25 272Pyrite 0 0 0 0 2 12 0 0 0Fragm. plankt. foram. 0 36 336 0 2 116 0 5 256Fragm. pteropods 24 424 4816 1 31 628 0 42 1728Fragm. bivalves/gastropods 0 0 48 0 1 24 0 1 0Coral fragm. 0 0 32 0 0 32 0 0 0Other fragm. 1 0 112 0 0 76 0 3 48Other remaining particles 0 4 0 0 0 0 1 2 96

2H03 135-137 2H04 125-127 2H05 045-047

1305 1445 1515

128 142 149

Page 155: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr.

Sample

Core depth [cm]

Fraction [µm] >1000

500-

1000 250-500 >1000

500-

1000 250-500 >1000

500-

1000 250-500

O. universa 0 27 100 0 34 64 0 56 896G. truncatulinoides dextral 0 12 108 0 2 112 0 4 32G. truncatulinoides sinistral 0 1 16 0 0 0 0 0 0G. menardii 0 8 20 0 66 208 0 0 0G. inflata 0 0 12 0 0 32 0 0 0Candeina nitida 0 0 0 0 0 0 0 0 0Pulleniatina 0 0 8 0 6 16 0 0 0G. ruber white 0 0 360 0 0 544 0 0 640G. calida 0 0 12 0 0 96 0 0 0G. ruber pink 0 0 20 0 0 0 0 0 0G. sacculifer 0 2 296 0 0 368 0 8 448G. rubescens 0 0 4 0 0 32 0 0 0Globigerinella aequilateralis 0 1 216 0 2 176 0 0 96N. dutertrei 0 0 28 0 0 0 0 0 0G. conglobatus 0 21 84 0 16 224 0 4 0G. tumida 0 0 8 0 0 0 0 0 0G. hirsuta 0 0 0 0 0 0 0 0 0S. dehiscenc 0 3 4 0 24 0 0 16 0Hastigerina 0 0 0 0 0 0 0 0 0G. crassaformis 0 1 12 0 8 0 0 0 32Other planktonic foram. 0 0 4 0 0 48 0 0 0Agglutinated benthic foram. 0 0 0 0 8 16 0 12 0Other benthic foram. 0 1 28 4 44 160 2 12 96Clio pyramidata 0 0 0 0 0 0 0 0 0Clio polita 0 0 0 0 0 0 0 0 0Limacina inflata 0 0 0 0 0 0 0 0 0Limacina trochiformis 0 0 0 0 0 0 0 0 64Limacina lesueuri 0 0 0 0 0 0 0 0 0Limacina bulimoides 0 0 0 0 0 0 0 0 0Diacria trispinosa 0 0 0 0 0 0 0 0 0Diacria quadridenta 0 0 0 0 0 0 0 0 0Creseis virgula 0 0 0 0 0 0 0 0 0Creseis acicula clava 0 0 0 0 0 0 0 0 0Creseis acicula acicula 0 0 0 0 0 0 0 0 0Cavolinia inflexa 0 0 0 0 0 0 0 0 0Cavolinia longirostris 0 0 0 0 0 0 0 0 0Styliola subula 0 0 0 0 0 0 0 0 0Other pteropods 0 0 0 0 0 0 0 0 32Heteropods 0 0 0 0 0 16 0 0 32Ostracods 0 0 4 0 0 32 0 0 0Gastropods 1 0 0 0 4 0 0 8 0Bivalves 0 0 8 0 0 16 0 0 0Otoliths 0 1 4 0 2 0 0 4 0Sponge spicules 0 0 0 0 0 0 0 0 0Nodules 0 130 1772 38 764 5792 40 688 7904Pyrite 0 0 0 0 0 0 0 0 0Fragm. plankt. foram. 0 7 144 0 4 192 0 0 224Fragm. pteropods 0 0 20 0 0 0 0 56 1280Fragm. bivalves/gastropods 0 0 0 0 8 16 1 16 0Coral fragm. 0 0 0 22 246 864 19 220 1024Other fragm. 0 3 12 0 16 224 1 0 0Other remaining particles 0 1 8 2 8 48 0 0 32

2H06 025-027 2H06 095-097 2H06 121-123

1645 1715 1741

168 170161

Page 156: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr.

Sample

Core depth [cm]

Fraction [µm] >1000

500-

1000 250-500

O. universa 0 3 80G. truncatulinoides dextral 0 0 4G. truncatulinoides sinistral 0 0 8G. menardii 0 1 24G. inflata 0 0 4Candeina nitida 0 0 0Pulleniatina 0 0 4G. ruber white 0 0 180G. calida 0 0 20G. ruber pink 0 0 0G. sacculifer 0 0 188G. rubescens 0 0 4Globigerinella aequilateralis 0 1 44N. dutertrei 0 0 0G. conglobatus 0 3 32G. tumida 0 0 0G. hirsuta 0 0 0S. dehiscenc 0 1 4Hastigerina 0 0 0G. crassaformis 0 0 0Other planktonic foram. 0 0 12Agglutinated benthic foram. 0 0 0Other benthic foram. 0 2 48Clio pyramidata 1 2 0Clio polita 0 0 16Limacina inflata 0 69 228Limacina trochiformis 0 3 60Limacina lesueuri 0 0 0Limacina bulimoides 0 3 0Diacria trispinosa 0 0 0Diacria quadridenta 3 0 0Creseis virgula 0 0 0Creseis acicula clava 0 1 4Creseis acicula acicula 0 1 16Cavolinia inflexa 0 2 16Cavolinia longirostris 0 0 0Styliola subula 1 5 44Other pteropods 3 0 36Heteropods 0 1 116Ostracods 0 0 12Gastropods 0 0 8Bivalves 0 1 8Otoliths 0 0 0Sponge spicules 0 0 0Nodules 0 0 132Pyrite 0 0 24Fragm. plankt. foram. 0 2 36Fragm. pteropods 14 111 724Fragm. bivalves/gastropods 0 2 8Coral fragm. 0 3 52Other fragm. 0 2 84Other remaining particles 0 0 12

3H02 074-075

1984

193

Page 157: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr.

Sample

Core depth [cm]

Fraction [µm]>1000

500-

1000

250-

500 >1000

500-

1000

250-

500 >1000

500-

1000

250-

500 >1000

500-

1000

250-

500

O. universa 0 42 92 0 17 64 0 85 88 0 118 112G. truncatulinoides 0 2 164 0 2 120 0 5 136 0 35 288G. menardii 0 0 0 0 0 0 0 0 0 0 0 0G. inflata 0 0 0 0 0 0 0 0 0 0 0 0Candeina nitida 0 0 0 0 0 16 0 0 0 0 0 0Pulleniatina 0 5 8 0 0 8 0 0 16 0 73 160G. ruber white 0 0 480 0 0 520 0 0 832 0 0 400G. calida 0 0 52 0 0 48 0 0 176 0 0 32G. ruber pink 0 0 12 0 0 48 0 0 16 0 0 16G. sacculifer 0 2 88 0 0 136 0 1 360 0 7 976G. rubescens 0 0 0 0 0 16 0 0 32 0 0 0Globigerinella aequilateralis 0 0 44 0 0 32 0 0 160 0 0 240N. dutertrei 0 0 8 0 0 0 0 0 0 0 1 0G. conglobatus 0 1 16 0 3 64 0 30 120 0 21 64G. tumida 0 0 0 0 0 0 0 0 0 0 0 0S. dehiscens 0 1 0 0 0 0 0 0 0 0 42 0Other planktonic foram. 0 2 196 0 0 32 0 6 128 0 8 192Pteropods+Heteropods 0 0 24 0 0 0 0 0 0 0 0 0Benthic foraminifera 0 0 32 0 2 64 0 7 96 0 12 32Ostr./Gastr./Bivalves 0 1 8 0 0 0 0 2 48 0 0 0Fragm. Pteropods 0 5 80 0 0 0 0 1 72 0 0 0Fragm. plankt. foram. 0 0 64 0 0 144 0 15 280 0 9 192Coral fragm. 0 0 0 0 0 0 0 2 24 0 0 0Other fragm. 0 1 76 0 3 56 3 9 192 0 4 80Nodules 0 146 1208 12 399 3432 3 214 2680 1 115 1568Pyrite 0 0 0 0 0 0 0 0 40 0 5 80Other remaining particles 0 0 12 0 0 0 0 3 32 1 2 16

Nr.

Sample

Core depth [cm]

Fraction [µm]>1000

500-

1000

250-

500 >1000

500-

1000

250-

500 >1000

500-

1000

250-

500 >1000

500-

1000

250-

500

O. universa 0 58 120 0 5 36 0 11 24 0 44 152G. truncatulinoides 0 0 72 0 1 48 0 14 88 0 0 16G. menardii 0 0 0 0 0 0 0 1 0 0 0 0G. inflata 0 0 0 0 0 0 0 0 0 0 0 0Candeina nitida 0 0 0 0 0 4 0 0 0 0 0 0Pulleniatina 0 3 64 0 2 24 0 0 8 0 0 24G. ruber white 0 0 464 0 0 308 0 0 264 0 1 384G. calida 0 0 72 0 0 8 0 0 8 0 0 0G. ruber pink 0 0 0 0 0 0 0 0 144 0 0 16G. sacculifer 0 0 400 0 0 92 0 2 104 0 5 504G. rubescens 0 0 24 0 0 0 0 0 24 0 0 0Globigerinella aequilateralis 0 1 152 0 0 48 0 3 136 0 0 88N. dutertrei 0 0 16 0 0 0 0 0 0 0 0 24G. conglobatus 0 7 16 0 0 12 0 1 8 0 5 360G. tumida 0 0 0 0 0 0 0 0 0 0 0 0S. dehiscens 0 12 40 0 1 0 0 0 0 0 14 24Other planktonic foram. 0 3 96 0 1 48 0 0 40 0 1 104Pteropods+Heteropods 0 0 8 0 0 0 0 1 32 0 0 0Benthic foraminifera 1 4 96 0 4 64 2 8 104 2 2 32Ostr./Gastr./Bivalves 0 0 40 0 0 0 1 0 32 0 1 16Fragm. Pteropods 0 2 96 0 1 8 0 2 200 0 1 24Fragm. plankt. foram. 0 5 328 0 1 56 0 2 280 0 3 168Coral fragm. 0 0 8 0 6 48 52 79 88 1 12 112Other fragm. 0 8 112 0 1 160 4 6 208 0 5 160Nodules 4 160 1800 2 125 1412 71 351 2960 5 185 2208Pyrite 0 0 0 0 1 8 0 0 0 0 2 0Other remaining particles 0 5 56 1 6 80 1 4 0 0 1 0

203

3H03 043-044

2103

213

3H03 144-145

2204

223

3H04 095-097

2305

232

3H05 045-047

2405

240

3H06 005-007

2515

248

3H06 095-097

2605

254

4H01 005-007

2717

260

4H01 095-097

2807

Page 158: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr.

Sample

Core depth [cm]

Fraction [µm]>1000

500-

1000

250-

500 >1000

500-

1000

250-

500 >1000

500-

1000

250-

500 >1000

500-

1000

250-

500

O. universa 0 16 96 1 30 72 0 16 8 0 34 192G. truncatulinoides 0 4 0 0 20 328 0 6 192 0 0 0G. menardii 0 0 0 0 1 0 0 0 0 0 0 0G. inflata 0 0 0 0 0 0 0 0 0 0 0 0Candeina nitida 0 0 0 0 0 8 0 0 0 0 0 48Pulleniatina 0 12 64 0 1 40 0 0 0 0 1 16G. ruber white 0 0 352 0 0 1176 0 2 576 0 0 544G. calida 0 0 96 0 0 0 0 0 24 0 0 208G. ruber pink 0 0 0 0 0 0 0 0 0 0 0 0G. sacculifer 0 4 64 0 3 368 0 1 208 0 0 544G. rubescens 0 0 64 0 0 0 0 0 0 0 0 0Globigerinella aequilateralis 0 0 32 0 0 216 0 0 16 0 0 32N. dutertrei 0 0 0 0 0 0 0 0 0 0 0 0G. conglobatus 0 0 0 0 15 24 0 1 16 0 8 32G. tumida 0 0 0 0 0 0 0 0 0 0 0 0S. dehiscens 0 28 64 0 4 24 0 12 16 0 10 16Other planktonic foram. 0 12 64 0 2 144 0 4 32 0 2 112Pteropods+Heteropods 0 0 0 0 1 72 1 0 0 0 0 0Benthic foraminifera 0 0 0 0 23 136 1 8 48 0 8 80Ostr./Gastr./Bivalves 0 0 0 0 2 48 2 1 0 0 1 0Fragm. Pteropods 0 0 0 0 47 1592 0 0 0 0 0 0Fragm. plankt. foram. 0 8 288 0 16 272 0 9 208 0 9 288Coral fragm. 0 8 64 6 12 56 0 2 0 1 6 32Other fragm. 0 0 64 0 4 120 0 1 56 0 3 16Nodules 94 1056 14784 4 100 544 2 163 3176 5 256 2400Pyrite 0 0 0 0 0 0 0 0 0 0 0 0Other remaining particles 0 0 0 0 2 8 0 1 0 0 1 0

Nr.

Sample

Core depth [cm]

Fraction [µm]>1000

500-

1000

250-

500 >1000

500-

1000

250-

500 >1000

500-

1000

250-

500 >1000

500-

1000

250-

500

O. universa 0 14 72 0 21 40 0 48 0 0 204 176G. truncatulinoides 0 1 8 0 0 0 0 0 0 0 4 0G. menardii 0 2 16 0 3 24 0 0 0 0 0 48G. inflata 0 0 0 0 0 0 0 0 0 0 0 0Candeina nitida 0 0 8 0 0 0 0 0 0 0 2 0Pulleniatina 0 8 192 0 0 4 0 16 0 0 2 0G. ruber white 0 0 704 0 0 184 0 0 320 0 0 832G. calida 0 0 80 0 0 8 0 0 0 0 0 112G. ruber pink 0 0 0 0 0 0 0 0 0 0 0 0G. sacculifer 0 0 216 0 0 88 0 0 64 0 0 448G. rubescens 0 0 16 0 0 0 0 0 0 0 0 0Globigerinella aequilateralis 0 0 24 0 0 28 0 0 0 0 0 144N. dutertrei 0 0 8 0 0 0 0 0 0 0 0 112G. conglobatus 0 22 64 0 5 32 0 0 0 0 4 128G. tumida 0 0 0 0 0 0 0 0 0 0 0 0S. dehiscens 0 0 0 0 24 0 0 48 0 0 98 224Other planktonic foram. 0 1 96 0 2 60 0 0 192 0 10 656Pteropods+Heteropods 0 0 0 0 0 0 0 0 0 0 0 0Benthic foraminifera 0 2 16 0 1 20 0 0 0 0 4 112Ostr./Gastr./Bivalves 0 0 0 0 0 8 0 0 0 0 0 32Fragm. Pteropods 0 0 0 0 0 0 0 0 0 0 0 0Fragm. plankt. foram. 0 0 120 0 4 68 0 16 128 0 8 304Coral fragm. 0 0 0 0 0 12 0 0 0 1 2 32Other fragm. 0 1 56 0 0 56 0 0 0 1 18 176Nodules 0 150 1296 0 23 512 65 4192 28480 3 216 2400Pyrite 0 0 0 0 0 0 0 0 0 0 0 0Other remaining particles 0 1 104 0 0 0 0 0 0 0 6 0

268

4H02 065-067

2927

274

4H02 145-147

3007

281

4H03 105-107

3117

290

4H04 045-047

3207

300

4H05 005-007

3317

309

4H05 095-097

3407

319

4H06 045-047

3507

325

4H06 145-147

3607

Page 159: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr.

Sample

Core depth [cm]

Fraction [µm]>1000

500-

1000

250-

500 >1000

500-

1000

250-

500 >1000

500-

1000

250-

500 >1000

500-

1000

250-

500

O. universa 0 83 352 0 152 256 0 80 176 0 201 160G. truncatulinoides 0 0 32 0 8 0 0 0 0 0 0 0G. menardii 0 0 0 0 0 32 0 0 16 0 0 0G. inflata 0 0 0 0 0 0 0 0 0 0 0 0Candeina nitida 0 0 48 0 0 32 0 0 0 0 0 64Pulleniatina 0 1 32 0 0 0 0 0 16 0 0 0G. ruber white 0 0 768 0 0 352 0 0 368 0 0 768G. calida 0 0 96 0 0 160 0 0 48 0 0 80G. ruber pink 0 0 0 0 0 0 0 0 0 0 0 0G. sacculifer 0 0 1408 0 32 1280 0 0 880 0 5 1008G. rubescens 0 0 48 0 0 32 0 0 32 0 0 16Globigerinella aequilateralis 0 5 576 0 0 384 0 2 80 0 0 320N. dutertrei 0 0 0 0 0 0 0 0 0 0 0 32G. conglobatus 0 9 32 0 16 64 0 2 16 0 20 96G. tumida 0 0 0 0 0 0 0 0 0 0 0 0S. dehiscens 0 47 128 0 216 160 0 22 48 0 105 224Other planktonic foram. 0 5 352 0 48 672 0 0 176 0 10 272Pteropods+Heteropods 0 0 0 0 0 0 0 0 0 0 0 0Benthic foraminifera 0 5 384 0 0 160 0 2 32 0 22 208Ostr./Gastr./Bivalves 0 0 32 0 0 0 0 0 0 0 4 16Fragm. Pteropods 0 1 0 0 0 0 0 0 32 0 0 0Fragm. plankt. foram. 0 8 544 0 8 384 0 4 112 0 31 352Coral fragm. 0 6 480 0 0 0 0 4 32 0 0 0Other fragm. 0 9 576 2 24 384 0 12 192 0 6 112Nodules 0 89 1152 105 1640 10784 72 638 5904 3 97 1664Pyrite 0 0 0 0 0 0 0 4 48 0 1 16Other remaining particles 0 0 64 1 0 0 0 10 16 1 2 0

Nr.

Sample

Core depth [cm]

Fraction [µm]>1000

500-

1000

250-

500 >1000

500-

1000

250-

500 >1000

500-

1000

250-

500 >1000

500-

1000

250-

500

O. universa 0 24 96 0 16 64 0 37 232 0 0 0G. truncatulinoides 0 0 0 0 0 0 0 0 8 0 0 0G. menardii 0 0 0 0 0 0 0 0 16 0 0 0G. inflata 0 0 0 0 0 0 0 0 0 0 0 0Candeina nitida 0 0 16 0 0 0 0 0 0 0 0 0Pulleniatina 0 0 0 0 0 0 0 0 0 0 0 0G. ruber white 0 0 160 0 2 100 0 0 320 0 0 0G. calida 0 0 16 0 0 8 0 0 24 0 0 0G. ruber pink 0 0 0 0 0 0 0 0 0 0 0 0G. sacculifer 0 0 224 0 0 68 0 3 488 0 0 0G. rubescens 0 0 32 0 0 44 0 0 120 0 0 0Globigerinella aequilateralis 0 0 16 0 1 12 0 0 56 0 0 0N. dutertrei 0 0 0 0 0 0 0 0 0 0 0 0G. conglobatus 0 2 16 0 0 4 0 0 0 0 0 0G. tumida 0 0 0 0 0 0 0 0 0 0 0 0S. dehiscens 0 0 0 0 3 16 0 7 120 0 0 0Other planktonic foram. 0 0 64 0 1 60 0 25 272 0 0 0Pteropods+Heteropods 0 0 0 0 0 0 0 0 0 0 0 0Benthic foraminifera 1 18 128 0 1 24 1 4 80 0 0 0Ostr./Gastr./Bivalves 0 2 0 0 0 16 0 1 0 0 0 0Fragm. Pteropods 0 0 0 0 0 0 0 0 0 0 0 0Fragm. plankt. foram. 0 14 112 1 6 80 0 2 144 0 0 0Coral fragm. 0 0 0 0 0 0 0 0 0 0 0 0Other fragm. 0 8 64 0 6 56 0 2 16 0 0 0Nodules 80 932 8544 8 145 1184 13 314 2240 49 2680 13728Pyrite 0 0 0 0 0 0 0 0 0 0 0 0Other remaining particles 0 4 0 0 0 20 0 0 8 0 0 0

332

5H01 075-077

3700

352

5H02 125-127

3900

372

5H04 025-027

4100

392

5H05 084-085

4309

409

5H06 125-126

4500

429

6H01 123-124

4708

446

6H03 015-017

4900

465

6H04 065-067

5100

Page 160: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr.

Sample

Core depth [cm]

Fraction [µm]>1000

500-

1000

250-

500 >1000

500-

1000

250-

500

O. universa 0 0 0 0 0 4G. truncatulinoides 0 0 0 0 0 0G. menardii 0 0 0 0 0 0G. inflata 0 0 0 0 0 0Candeina nitida 0 0 0 0 0 0Pulleniatina 0 0 0 0 0 0G. ruber white 0 0 0 0 0 4G. calida 0 0 0 0 0 0G. ruber pink 0 0 0 0 0 0G. sacculifer 0 0 0 0 0 0G. rubescens 0 0 0 0 0 0Globigerinella aequilateralis 0 0 0 0 0 0N. dutertrei 0 0 0 0 0 0G. conglobatus 0 0 0 0 0 0G. tumida 0 0 0 0 0 0S. dehiscens 0 0 0 0 0 4Other planktonic foram. 0 0 0 0 0 0Pteropods+Heteropods 0 0 0 0 0 0Benthic foraminifera 0 0 0 0 0 8Ostr./Gastr./Bivalves 0 0 0 0 0 0Fragm. Pteropods 0 0 0 0 0 0Fragm. plankt. foram. 0 0 0 0 0 0Coral fragm. 0 0 0 0 0 4Other fragm. 0 0 16 0 0 12Nodules 14 1452 10832 4 102 2060Pyrite 0 0 0 0 0 0Other remaining particles 0 0 0 0 0 0

479

6H06 005-007

5340

487

6-cc 025-027

5510

Page 161: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Appendix 2.6.

Limacina inflata Dissolution Index (LDX)

Page 162: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Sample Set 1 - Gillies/Trident Sample Set 5 - Pilsbury

Nr. Sample LDX Nr. Sample LDX

1 GS-7603-7 2,39 1 P6401-4 1,332 GS-7603-8 4,33 2 P6401-5 1,893 GS-7603-9 2,25 3 P6408-23 3,004 GS-7603-10 3,25 4 P6408-24 1,695 GS-7603-11 2,73 5 P6804, 005 1,006 GS-7603-12 3,50 6 P6804, 006 1,067 GS-7603-13 2,90 7 P6804, 007 0,818 GS-7603-14 2,50 8 P6804, 008 0,949 TR-149-31 4,40 9 P6804, 009 0,31

10 TR-149-32 3,62 10 P6804-12 0,7511 TR-149-34 2,81 11 P6807, 030 0,6912 TR-149-35 2,58 12 P6807, 031 0,9413 TR-149-36 2,65 13 P6807, 032 1,1314 TR-149-37 2,61 14 P6807, 033 0,8815 TR-149-38b 2,21 15 P6807, 034 0,94

16 P6807, 035 1,00Sample Set 2 - Oceanus 17 P7008-1 n.d.

Nr. Sample LDX 18 P7008-2 n.d.1b 0006JPC 0,68 19 P7102, 004 0,632b 0012GGC 1,00 20 P7102, 005 0,813b 0024GGC 1,40 21 P7102, 006 1,004b 0028GGC 0,50 22 P7102, 007 0,735 0031GGC 1,00 23 P7102, 008 0,816 0033GGC 1,83 24 P7102, 009 1,31

7b 0035GGC 1,27 25 P7102, 012 2,258b 0038GGC 0,41 26 P7102, 013 1,509 0041GGC 0,50 27 P7102, 014 1,91

10b 0043GGC 0,24 28 P7102, 015 n.d.11b 0046PC 1,18 29 P7102, 030 0,6312b 0048BC 0,64 30 P7102, 031 0,4413b 0050BC 1,11 31 P7102, 032 1,5614 0051BC 1,45 32 P7102, 033 0,50

15b 0052BC 0,46 33 P7102, 034 1,7316b 0053BC 1,10 34 P7102, 035 1,5017 0054BC 0,83 35 P7102, 036 1,1918 0055BC 1,00 36 P7102, 037 1,5019 0069BC 0,83 37 P7102, 038 1,8820 0070BC 1,00 38 P7102-41 3,7121 0072BC 1,0722 0075GGC 0,33

23b 0096GGC 0,9424 0097JPC 1,11

25b 0098GGC 1,1726b 0099JPC 1,0027 0100GGC 1,0028 0101JPC 1,1729 0103GGC 0,7530 0106GGC 2,06

31b 0107JPC 1,2132 0108GGC 1,6833 0110GGC 1,00

34b 0111GGC 0,9435b 0140GGC 1,1536 0141JPC 1,2437 0142JPC 0,94

38b 0143GGC 1,2939b 0145GGC 0,3840 0148GGC 0,5041 0151GCG 0,36

42b 0153GGC 1,05

Page 163: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Sample Set 8 - Site 633

Nr. SampleCore depth

[cm]LDX Nr. Sample Core depth [cm] LDX

1 1H01 005-007 5,00 0,20 60 1H05 005-007 605 n.d.2 1H01 015-017 15 0,40 61 1H05 015-017 615 n.d.3 1H01 025-027 25 0,00 62 1H05 025-027 625 n.d.4 1H01 035-037 35 0,40 63 1H05 045-047 645 n.d.5 1H01 045-047 45 1,70 64 1H05 055-057 655 n.d.6 1H01 055-057 55 1,60 65 1H05 065-067 665 n.d.7 1H01 065-067 65 0,70 66 1H05 075-077 675 n.d.8 1H01 075-077 75 1,00 67 1H05 085-087 685 n.d.9 1H01 085-087 85 0,40 68 1H05 095-097 695 n.d.

10 1H01 095-097 95 1,30 69 1H05 105-107 705 n.d.11 1H01 105-107 105 1,00 70 1H05 117-119 717 n.d.12 1H01 112-114 115 1,40 71 1H05 125-127 725 n.d.13 1H01 125-127 125 2,30 72 1H05 135-137 735 n.d.14 1H01 135-137 135 2,20 73 1H06 005-007 755 n.d.15 1H01 145-147 145 1,60 74 1H06 015-017 765 n.d.16 1H02 005-007 155 1,90 75 1H06 025-027 775 n.d.17 1H02 015-017 165 2,10 76 1H06 035-037 785 n.d.18 1H02 025-027 175 1,40 77 1H06 045-047 795 n.d.19 1H02 035-037 185 1,80 78 1H06 055-057 805 n.d.20 1H02 045-047 195 2,10 79 1H06 065-067 815 n.d.21 1H02 055-057 205 1,00 80 1H06 075-077 825 n.d.22 1H02 065-067 215 1,00 81 1H06 085-087 835 n.d.23 1H02 075-077 225 1,00 82 1H06 095-097 845 n.d.24 1H02 085-087 235 1,90 83 1 c/c 005-007 855 n.d.25 1H02 095-097 245 1,80 84 1 c/c 015-017 865 n.d.26 1H02 105-107 255 0,70 85 2H01 005-007 875 2,9027 1H02 117-118 265 0,20 86 2H01 015-017 885 2,4028 1H02 125-127 275 0,30 87 2H01 025-027 895 n.d.29 1H02 135-137 285 0,70 88 2H01 035-037 905 n.d.30 1H02 145-147 295 1,40 89 2H01 045-047 915 n.d.31 1H03 005-007 305 n.d. 90 2H01 055-057 925 n.d.32 1H03 013-015 313 1,10 91 2H01 065-067 935 n.d.33 1H03 035-037 335 2,00 92 2H01 075-077 945 n.d.34 1H03 045-047 345 2,00 93 2H01 085-087 955 n.d.35 1H03 055-057 355 1,70 94 2H01 095-097 965 n.d.36 1H03 065-067 365 1,80 95 2H01 105-107 975 n.d.37 1H03 075-077 375 1,18 96 2H01 115-117 985 n.d.38 1H03 085-087 385 1,40 97 2H01 125-127 995 n.d.39 1H03 095-097 395 2,00 98 2H01 135-137 1005 n.d.40 1H03 105-107 405 2,00 99 2H01 145-147 1015 n.d.41 1H03 117-119 417 2,00 100 2H02 005-007 1025 n.d.42 1H03 125-127 425 2,00 101 2H02 015-017 1035 n.d.43 1H03 135-137 435 1,50 102 2H02 025-027 1045 n.d.44 1H03 145-147 445 1,20 103 2H02 035-037 1055 n.d.45 1H04 005-007 455 1,50 104 2H02 045-047 1065 n.d.46 1H04 015-017 465 2,10 105 2H02 052-054 1072 n.d.47 1H04 025-027 475 2,00 106 2H02 065-067 1085 n.d.48 1H04 035-037 485 2,30 107 2H02 075-077 1095 n.d.49 1H04 045-047 495 2,20 108 2H02 085-087 1105 n.d.50 1H04 055-057 505 2,00 109 2H02 095-097 1115 n.d.51 1H04 065-067 515 2,20 110 2H02 105-107 1125 n.d.52 1H04 075-077 525 2,30 111 2H02 115-117 1135 n.d.53 1H04 085-087 535 2,60 112 2H02 125-127 1145 n.d.54 1H04 095-097 545 n.d. 113 2H02 135-137 1155 n.d.55 1H04 105-107 555 n.d. 114 2H02 145-147 1165 n.d.56 1H04 117-119 567 n.d. 115 2H03 005-007 1175 n.d.57 1H04 125-127 575 n.d. 116 2H03 015-017 1185 n.d.58 1H04 135-137 585 n.d. 117 2H03 023-025 1193 n.d.59 1H04 145-147 595 n.d. 118 2H03 035-037 1205 4,18

Page 164: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr. SampleCore depth

[cm]LDX Nr. Sample Core depth [cm] LDX

119 2H03 045-047 1215 2,50 179 3H01 084-085 1844 0,20120 2H03 053-055 1223 n.d. 180 3H01 094-095 1854 0,70121 2H03 065-067 1235 3,00 181 3H01 104-105 1864 0,80122 2H03 075-077 1245 1,60 182 3H01 114-115 1874 0,83123 2H03 085-087 1255 1,00 183 3H01 124-125 1884 0,60124 2H03 095-097 1265 1,00 184 3H01 137-138 1897 0,90125 2H03 105-107 1275 0,90 185 3H01 143-145 1903 0,90126 2H03 115-117 1285 1,00 186 3H02 004-005 1914 0,00127 2H03 125-127 1295 1,90 187 3H02 014-015 1924 1,10128 2H03 135-137 1305 1,80 188 3H02 024-025 1934 0,50129 2H03 145-147 1315 2,00 189 3H02 034-035 1944 0,40130 2H04 005-007 1325 1,60 190 3H02 044-045 1954 0,00131 2H04 015-017 1335 1,30 191 3H02 053-054 1963 0,50132 2H04 025-027 1345 1,70 192 3H02 064-065 1974 0,30133 2H04 035-037 1355 1,60 193 3H02 074-075 1984 1,10134 2H04 045-047 1365 2,20 194 3H02 084-085 1994 1,50135 2H04 055-057 1375 2,10 195 3H02 104-105 2014 n.d.136 2H04 069-071 1389 n.d. 196 3H02 114-115 2024 n.d.137 2H04 075-077 1395 n.d. 197 3H02 124-125 2034 n.d.138 2H04 085-087 1405 n.d. 198 3H02 134-135 2044 n.d.139 2H04 095-097 1415 n.d. 199 3H02 144-145 2054 n.d.140 2H04 105-107 1425 n.d. 200 3H03 004-005 2064 n.d.141 2H04 115-117 1435 1,67 201 3H03 014-015 2074 n.d.142 2H04 125-127 1445 n.d. 202 3H03 024-025 2084 n.d.143 2H04 135-137 1455 n.d. 203 3H03 043-044 2103 n.d.144 2H04 145-147 1465 3,50 204 3H03 053-054 2113 n.d.145 2H05 005-007 1475 1,00 205 3H03 064-065 2123 n.d.146 2H05 015-017 1485 n.d. 206 3H03 074-075 2133 n.d.147 2H05 025-027 1495 n.d. 207 3H03 084-085 2144 n.d.148 2H05 035-037 1505 1,73 208 3H03 094-095 2154 n.d.149 2H05 045-047 1515 n.d. 209 3H03 104-105 2164 n.d.150 2H05 053-055 1523 2,50 210 3H03 114-115 2174 n.d.151 2H05 065-067 1535 n.d. 211 3H03 124-125 2184 n.d.152 2H05 075-077 1545 n.d. 212 3H03 134-135 2194 n.d.153 2H05 085-087 1555 n.d. 213 3H03 144-145 2204 n.d.154 2H05 095-097 1565 n.d. 214 3H04 005-007 2215 n.d.155 2H05 105-107 1575 n.d. 215 3H04 015-017 2225 n.d.156 2H05 115-117 1585 n.d. 216 3H04 025-027 2235 n.d.157 2H05 125-127 1595 n.d. 217 3H04 035-037 2245 n.d.158 2H05 135-137 1605 n.d. 218 3H04 045-047 2255 n.d.159 2H06 005-007 1625 n.d. 219 3H04 055-057 2265 n.d.160 2H06 015-017 1635 n.d. 220 3H04 065-067 2275 n.d.161 2H06 025-027 1645 n.d. 221 3H04 075-077 2285 n.d.162 2H06 035-037 1655 n.d. 222 3H04 085-087 2295 n.d.163 2H06 045-047 1665 n.d. 223 3H04 095-097 2305 n.d.164 2H06 053-057 1673 n.d. 224 3H04 105-107 2315 n.d.165 2H06 065-067 1685 n.d. 225 3H04 115-117 2325 n.d.166 2H06 075-077 1695 n.d. 226 3H04 125-127 2335 n.d.167 2H06 085-087 1705 n.d. 227 3H04 135-137 2345 n.d.168 2H06 095-097 1715 n.d. 228 3H05 003-005 2363 n.d.169 2H06 105-107 1725 n.d. 229 3H05 010-012 2370 n.d.170 2H06 121-123 1741 n.d. 230 3H05 018-020 2378 n.d.171 3H01 004-005 1764 2,75 231 3H05 035-037 2395 n.d.172 3H01 016-017 1776 1,80 232 3H05 045-047 2405 n.d.173 3H01 024-025 1784 2,10 233 3H05 055-057 2415 n.d.174 3H01 034-035 1794 1,90 234 3H05 065-067 2425 n.d.175 3H01 044-045 1804 1,60 235 3H05 075-077 2435 n.d.176 3H01 054-055 1814 1,00 236 3H05 087-089 2447 n.d.177 3H01 064-065 1824 1,80 237 3H05 095-097 2455 n.d.178 3H01 073-074 1833 0,30 238 3H05 105-107 2465 n.d.

Page 165: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr. SampleCore depth

[cm]LDX Nr. Sample Core depth [cm] LDX

239 3H05 115-117 2475 n.d. 299 4H04 135-137 3297 n.d.240 3H06 005-007 2515 n.d. 300 4H05 005-007 3317 n.d.241 3H06 015-017 2525 n.d. 301 4H05 015-017 3327 n.d.242 3H06 025-027 2535 n.d. 302 4H05 023-025 3337 n.d.243 3H06 034-036 2544 n.d. 303 4H05 035-037 3347 n.d.244 3H06 045-047 2555 n.d. 304 4H05 045-047 3357 n.d.245 3H06 055-057 2565 n.d. 305 4H05 053-055 3365 n.d.246 3H06 069-071 2579 n.d. 306 4H05 065-067 3377 n.d.247 3H06 085-087 2595 n.d. 307 4H05 074-076 3386 n.d.248 3H06 095-097 2605 n.d. 308 4H05 085-087 3397 n.d.249 3H06 105-107 2615 n.d. 309 4H05 095-097 3407 n.d.250 3H06 115-117 2625 n.d. 310 4H05 105-107 3417 n.d.251 3H06 125-127 2635 n.d. 311 4H05 114-116 3426 n.d.252 3H06 135-137 2645 n.d. 312 4H05 125-127 3437 n.d.253 3H06 145-147 2655 n.d. 313 4H05 135-137 3447 n.d.254 4H01 005-007 2717 n.d. 314 4H05 145-147 3457 n.d.255 4H01 015-017 2727 n.d. 315 4H06 005-007 3467 n.d.256 4H01 055-057 2767 n.d. 316 4H06 015-017 3477 n.d.257 4H01 065-067 2777 n.d. 317 4H06 025-027 3487 n.d.258 4H01 075-077 2787 n.d. 318 4H06 035-037 3497 n.d.259 4H01 085-087 2797 n.d. 319 4H06 045-047 3507 n.d.260 4H01 095-097 2807 n.d. 320 4H06 055-057 3517 n.d.261 4H01 125-127 2837 n.d. 321 4H06 069-071 3531 n.d.262 4H01 135-137 2847 n.d. 322 4H06 099-101 3561 n.d.263 4H01 145-147 2857 n.d. 323 4H06 121-123 3585 n.d.264 4H02 005-007 2867 n.d. 324 4H06 135-137 3597 n.d.265 4H02 015-017 2877 n.d. 325 4H06 145-147 3607 n.d.266 4H02 025-027 2887 n.d. 326 4H07 005-007 3617 n.d.267 4H02 035-037 2897 n.d. 327 5H01 015-017 3640 n.d.268 4H02 065-067 2927 n.d. 328 5H01 035-037 3660 n.d.269 4H02 095-097 2957 n.d. 329 5H01 045-047 3670 n.d.270 4H02 105-107 2967 n.d. 330 5H01 055-057 3680 n.d.271 4H02 115-117 2977 n.d. 331 5H01 065-067 3690 n.d.272 4H02 125-127 2987 n.d. 332 5H01 075-077 3700 n.d.273 4H02 135-137 2997 n.d. 333 5H01 085-087 3710 n.d.274 4H02 145-147 3007 n.d. 334 5H01 095-097 3720 n.d.275 4H03 005-007 3017 n.d. 335 5H01 105-107 3730 n.d.276 4H03 015-017 3027 n.d. 336 5H01 115-117 3740 n.d.277 4H03 051-053 3063 n.d. 337 5H01 125-127 3750 n.d.278 4H03 057-059 3069 n.d. 338 5H01 135-137 3760 n.d.279 4H03 065-067 3077 n.d. 339 5H01 145-147 3770 n.d.280 4H03 085-087 3097 n.d. 340 5H02 005-007 3780 n.d.281 4H03 105-107 3117 n.d. 341 5H02 015-017 3790 n.d.282 4H03 115-117 3127 n.d. 342 5H02 025-027 3800 n.d.283 4H03 125-127 3137 n.d. 343 5H02 035-037 3810 n.d.284 4H03 135-137 3147 n.d. 344 5H02 045-047 3820 n.d.285 4H03 145-147 3157 n.d. 345 5H02 055-057 3830 n.d.286 4H04 005-007 3167 n.d. 346 5H02 065-067 3840 n.d.287 4H04 015-017 3177 n.d. 347 5H02 075-077 3850 n.d.288 4H04 025-027 3187 n.d. 348 5H02 085-087 3860 n.d.289 4H04 035-037 3197 n.d. 349 5H02 095-097 3870 n.d.290 4H04 045-047 3207 n.d. 350 5H02 105-107 3880 n.d.291 4H04 055-057 3217 n.d. 351 5H02 115-117 3890 n.d.292 4H04 065-067 3227 n.d. 352 5H02 125-127 3900 n.d.293 4H04 075-077 3237 n.d. 353 5H02 135-137 3910 n.d.294 4H04 085-087 3247 n.d. 354 5H02 145-147 3920 n.d.295 4H04 095-097 3257 n.d. 355 5H03 005-007 3930 n.d.296 4H04 105-107 3267 n.d. 356 5H03 015-017 3940 n.d.297 4H04 115-117 3277 n.d. 357 5H03 023-025 3948 n.d.298 4H04 125-127 3287 n.d. 358 5H03 035-037 3960 n.d.

Page 166: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr. SampleCore depth

[cm]LDX Nr. Sample Core depth [cm] LDX

359 5H03 045-047 3970 n.d. 419 6H01 024-025 4609 n.d.360 5H03 055-057 3980 n.d. 420 6H01 034-035 4619 n.d.361 5H03 065-067 3990 n.d. 421 6H01 044-045 4629 n.d.362 5H03 075-077 4000 n.d. 422 6H01 053-054 4638 n.d.363 5H03 085-087 4010 n.d. 423 6H01 064-065 4649 n.d.364 5H03 095-097 4020 n.d. 424 6H01 073-074 4658 n.d.365 5H03 105-107 4030 n.d. 425 6H01 083-084 4668 n.d.366 5H03 115-117 4040 n.d. 426 6H01 093-094 4678 n.d.367 5H03 125-127 4050 n.d. 427 6H01 103-104 4688 n.d.368 5H03 135-137 4060 n.d. 428 6H01 113-114 4698 n.d.369 5H03 145-147 4070 n.d. 429 6H01 123-124 4708 n.d.370 5H04 005-007 4080 n.d. 430 6H02 003-004 4738 n.d.371 5H04 015-017 4090 n.d. 431 6H02 013-014 4748 n.d.372 5H04 025-027 4100 n.d. 432 6H02 024-025 4759 n.d.373 5H04 035-037 4110 n.d. 433 6H02 033-034 4768 n.d.374 5H04 045-047 4120 n.d. 434 6H02 043-044 4778 n.d.375 5H04 055-057 4130 n.d. 435 6H02 053-054 4788 n.d.376 5H04 065-067 4140 n.d. 436 6H02 063-064 4798 n.d.377 5H04 075-077 4250 n.d. 437 6H02 073-074 4808 n.d.378 5H04 095-097 4170 n.d. 438 6H02 084-085 4819 n.d.379 5H04 105-107 4180 n.d. 439 6H02 094-095 4829 n.d.380 5H04 115-117 4190 n.d. 440 6H02 104-105 4839 n.d.381 5H04 125-127 4200 n.d. 441 6H02 115-116 4850 n.d.382 5H04 135-137 4210 n.d. 442 6H02 124-125 4859 n.d.383 5H04 145-147 4220 n.d. 443 6H02 133-134 4868 n.d.384 5H05 004-005 4229 n.d. 444 6H02 144-145 4879 n.d.385 5H05 014-015 4239 n.d. 445 6H03 005-007 4890 n.d.386 5H05 024-025 4249 n.d. 446 6H03 015-017 4900 n.d.387 5H05 034-035 4259 n.d. 447 6H03 023-025 4908 n.d.388 5H05 043-044 4268 n.d. 448 6H03 035-032 4920 n.d.389 5H05 053-054 4279 n.d. 449 6H03 045-047 4930 n.d.390 5H05 064-065 4289 n.d. 450 6H03 055-057 4940 n.d.391 5H05 074-075 4299 n.d. 451 6H03 065-067 4950 n.d.392 5H05 084-085 4309 n.d. 452 6H03 075-077 4960 n.d.393 5H05 093-094 4318 n.d. 453 6H03 085-087 4970 n.d.394 5H05 104-105 4329 n.d. 454 6H03 095-097 4980 n.d.395 5H05 115-116 4340 n.d. 455 6H03 105-107 4990 n.d.396 5H05 124-125 4349 n.d. 456 6H03 115-117 5000 n.d.397 5H05 134-135 4359 n.d. 457 6H03 125-127 5010 n.d.398 5H06 014-015 4389 n.d. 458 6H03 135-137 5020 n.d.399 5H06 024-025 4399 n.d. 459 6H03 145-147 5030 n.d.400 5H06 034-035 4409 n.d. 460 6H04 005-007 5040 n.d.401 5H06 044-045 4419 n.d. 461 6H04 015-017 5050 n.d.402 5H06 054-056 4429 n.d. 462 6H04 025-027 5060 n.d.403 5H06 064-065 4439 n.d. 463 6H04 045-047 5080 n.d.404 5H06 074-075 4449 n.d. 464 6H04 055-057 5090 n.d.405 5H06 084-085 4459 n.d. 465 6H04 065-067 5100 n.d.406 5H06 094-095 4469 n.d. 466 6H04 075-077 5110 n.d.407 5H06 104-105 4479 n.d. 467 6H04 085-087 5120 n.d.408 5H06 114-115 4489 n.d. 468 6H04 095-097 5130 n.d.409 5H06 124-125 4500 n.d. 469 6H04 105-107 5140 n.d.410 5H06 135-136 4510 n.d. 470 6H04 115-117 5150 n.d.411 5H06 146-147 4521 n.d. 471 6H04 125-127 5160 n.d.412 5H07 004-005 4529 n.d. 472 6H04 135-137 5170 n.d.413 5H07 014-15 4539 n.d. 473 6H05 004-005 5189 n.d.414 5H07 024-025 4549 n.d. 474 6H05 054-056 5239 n.d.415 5H07 034-035 4559 n.d. 475 6H05 065-067 5250 n.d.416 5H07 044-045 4569 n.d. 476 6H05 075-077 5260 n.d.417 6H01 004-005 4589 n.d. 477 6H05 085-087 5270 n.d.418 6H01 014-015 4599 n.d. 478 6H05 095-097 5880 n.d.

Page 167: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Nr. SampleCore depth

[cm]LDX

479 6H06 005-007 5340 n.d.480 6H06 025-027 5360 n.d.481 6H06 045-047 5380 n.d.482 6H06 065-067 5400 n.d.483 6H06 085-087 5420 n.d.484 6H06 125-127 5460 n.d.485 6H06 145-147 5480 n.d.486 6c/c 005-007 5490 n.d.487 6c/c 025-027 5510 n.d.488 6c/c 045-047 5530 n.d.

Page 168: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama
Page 169: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Appendix 2.7.

Stable Isotopes

Page 170: Carbonate preservation in Pliocene to Holocene ...elib.suub.uni-bremen.de/diss/docs/00010718.pdf · Carbonate preservation in Pliocene to Holocene periplatform sediments (Great Bahama

Sample Set 8 - Site 633

Nr. Sample Core depth [cm] d13

C vs. PDB d18

O vs. PDB

1 1H01 005-007 5,00 3,13 -0,6233 1H03 035-037 335 2,30 1,2140 1H03 105-107 405 2,34 1,5687 2H01 025-027 895 2,00 1,65106 2H02 065-067 1085 2,06 2,17128 2H03 135-137 1305 2,77 0,94142 2H04 125-127 1445 1,46 2,43168 2H06 095-097 1715 1,99 2,75170 2H06 121-123 1741 2,01 2,75193 3H02 074-075 1984 2,88 0,82203 3H03 043-044 2103 1,80 2,57232 3H05 045-047 2405 1,71 2,18248 3H06 095-097 2605 1,87 2,00260 4H01 095-097 2807 1,73 1,70268 4H02 065-067 2927 2,05 2,49274 4H02 145-147 3007 2,86 0,72281 4H03 105-107 3117 2,17 1,51300 4H05 005-007 3317 1,97 2,15319 4H06 045-047 3507 2,27 2,82325 4H06 145-147 3607 2,02 2,60