Eignungsnachweis von Prüfprozessen

15
Eignungsnachweis von Prüfprozessen Edgar Dietrich, Alfred Schulze Prüfmittelfähigkeit und Messunsicherheit im aktuellen Normenumfeld ISBN 3-446-40732-4 Leseprobe Weitere Informationen oder Bestellungen unter http://www.hanser.de/3 - 446 - 40732 - 4 sowie im Buchhandel

Transcript of Eignungsnachweis von Prüfprozessen

Page 1: Eignungsnachweis von Prüfprozessen

 

 

Eignungsnachweis von Prüfprozessen

 

Edgar Dietrich, Alfred Schulze

Prüfmittelfähigkeit und Messunsicherheit im aktuellen Normenumfeld

 

ISBN 3-446-40732-4

 

Leseprobe

 

Weitere Informationen oder Bestellungen unter http://www.hanser.de/3-446-40732-4 sowie im Buchhandel

Seite 1 von 1Produktinformation

27.10.2006http://www.hanser.de/deckblatt/deckblatt1.asp?isbn=3-446-40732-4&style=Leseprobe

Page 2: Eignungsnachweis von Prüfprozessen

44

5 Prüfmittelfähigkeit als Eignungsnachweis für Messprozesse

5.1 Grundlegende Verfahren und Vorgehensweise Die Vorgehensweise bei Prüfmittelfähigkeitsuntersuchungen wurden in erster Linie von der Automobilindustrie entwickelt. Eine Norm, in der diese Betrachtungsweise festgelegt ist, gibt es bis heute nicht. Daher steht keine einheitliche Vorgehensweise zur Verfü-gung. Basierend auf der MSA [1] sind zur Konkretisierung und praktikablen Umsetzung mehrere firmenspezifische Richtlinien entstanden:

• EMS – General Motors. Co. [50] • EU 1880 – Ford Motor Co. [48] • Heft 10 – Robert Bosch GmbH [58] • QR 01 – DaimlerChrysler AG [3] • Leitfaden der Automobilindustrie [55] (s. Anhang)

um nur einige zu nennen. Alle haben zwar die gleiche Zielsetzung, unterscheiden sich allerdings bei der Berechnung der Kennwerte, Festlegung der Grenzwerte und Begriffs-definitionen. Übergreifend kann gesagt werden, dass der in Abbildung 5-1 dargestellte Ablauf allen Richtlinien zu Grunde liegt. Nur die im Flussdiagramm aufgeführten Verfah-ren 1, 2 und 3 sind von der Zielsetzung identisch: Analyse-Phase

Verfahren Zielsetzung Kennwerte Verfahren 1 Systematische Messabweichung und

Wiederholpräzision Cg, Cgk, t-Test, *) Vertrauensbereich

Verfahren 2 Wiederhol-, Vergleichspräzision (mit Bedienereinfluss)

%R&R, ndc, *) Vertrauensbereich

Verfahren 3 Wiederholpräzision (ohne Bedienereinfluss)

%R&R, ndc, *) Vertrauensbereich

Hinweis zu Verfahren 3: Es liegt eindeutig kein Bedienereinfluss vor, wenn das Teil automatisch in das Messsys-tem eingeführt und entnommen wird. Allerdings kann und sollte der Begriff „Bediener-einfluss“ weiter gefasst werden. Durch bautechnische Maßnahmen wie Anschlag, Posi-tionierhilfe usw. kann der Bedienereinfluss minimiert werden. Die Vergleichspräzision verringert sich, bzw. die grafischen Darstellungen zeigen keine signifikanten Unter-schiede zwischen den Prüfern. Bei einigen Firmen werden weitere Verfahren 4, 5, usw. behandelt. Diese haben aller-dings unterschiedliche Bedeutung und können daher weder verallgemeinert noch mit-einander verglichen werden.

* Die Abkürzungen werden bei den jeweiligen Verfahren erläutert.

Page 3: Eignungsnachweis von Prüfprozessen

5.1 Grundlegende Verfahren und Vorgehensweise 45 Die Abbildung 5-1 verdeutlicht die Anwendungsgebiete der beschriebenen Verfahren. Das Verfahren 1 wird vornehmlich bei Herstellern von Messmitteln und im Messmittel-bau verwendet. Damit kann die prinzipielle Eignung und Tauglichkeit nachgewiesen werden. Erst wenn diese Untersuchung erfolgreich abgeschlossen ist, ist die Beurtei-lung im realen Einsatzbereich gemäß Verfahren 2 oder 3 sinnvoll. Zitat aus der Ford Richtlinie EU 1880B [47]: „Eine Untersuchung nach Verfahren 1 wird man in der Regel beim Lieferanten zur Beur-teilung eines neuen Instruments vor dessen endgültiger Auslieferung und Installation durchführen. Die Untersuchung nach Verfahren 2 wird in erster Linie durchgeführt für neue oder bereits vorhandene Messmittel vor deren endgültiger Genehmigung für den Einsatz in der Fertigung. Diese Methode kann auch für Routineprüfungen und zur Neu-ausstellung eines Fähigkeitszertifikats verwendet werden.“ Warum ist die Durchführung von Verfahren 1 sinnvoll? Das Verfahren 1 beurteilt die systematische Messabweichung und die Wiederholpräzi-sion unter „idealisierten“ Bedingungen. Da die Verfahren 2 und 3 die umfassende Vor-gehensweise ist, und mehr Einflussgrößen berücksichtigen als Verfahren 1, liegt der Gedanke nahe, auf das Verfahren 1 zu verzichten, zumal es in der MSA [1] nicht als sol-ches aufgeführt ist. Trotzdem ist es von größter Bedeutung. Denn durch Verfahren 1 wird die geforderte Rückführbarkeit auf nationale und internationale Normale sichergestellt, und Abweichungen werden anhand der systematischen Messabweichung bewertbar. Ein weiterer Grund ist in der Einfachheit des Verfahrens zu sehen. Auch wenn es unter idealisierten Bedingungen:

• Messungen an einem Normal / Referenzteil • Messungen von nur einem Prüfer

durchgeführt wird, erhält man sehr schnell einen ersten Überblick. Sollte sich bereits bei Verfahren 1 herausstellen, dass das Messsystem nicht geeignet ist, können die weite-ren Untersuchungen nach Verfahren 2 oder 3 entfallen. Dafür können in einer frühen Phase des Eignungsnachweises Verbesserungs- und Abstellmaßnahmen eingeleitet werden. Hinweis: Ab der dritten Ausgabe der MSA [1] wird die systematische Messabweichung extra be-urteilt und ein Grenzwert vorgegeben. Neben den Verfahren 1, 2 und 3 gilt es, zusätzlich die:

• Unsicherheit des Normals / Referenzteil • Auflösung • Linearität und • Messbeständigkeit (Stabilität)

zu beurteilen. Dabei ist die Untersuchung der Messbeständigkeit das letzte Glied in der Kette und wird nur durchgeführt, wenn der Messprozess als geeignet angesehen wird. Mit diesem Verfahren wird der Messprozess kontinuierlich beobachtet, um festzustellen, ob er sich signifikant verändert. Dies ist insbesondere bei der Serienfertigung von emi-nenter Wichtigkeit. Nur so können plötzliche oder schleichende Veränderungen der

Page 4: Eignungsnachweis von Prüfprozessen

46 5 Prüfmittelfähigkeit als Eignungsnachweis für Messprozesse Messabweichung erkannt und Fehlentscheidungen aufgrund eines nicht geeigneten Messprozesses vermieden werden. Diese kontinuierliche Beurteilung der Messbestän-digkeit wird auch im Rahmen der Prüfmittelüberwachung (DIN EN ISO 10012 [32]) ge-fordert.

neinja

Verbesserung

ein Normalmehrere Normale

Messsystemmit höherer Auflösung

ja

nein

nein

ja

Neues / geändertesMesssystem

Linearitätund/bzw.

Verfahren 1i.O.

Verfahren 2i.O.

Verfahren 3i.O.

Verbesserungmöglich?

s. Abschnitt 10 “Umgang mitnicht geeigneten Messprozessen”

ja

ja

ja

nein

nein

nein

neinja

Messbeständigkeit während des Einsatzes überprüfen

Messmittel abgenommen

ja nein

Abbildung 5-1: Ablauf und Zusammenhang der Verfahren

Page 5: Eignungsnachweis von Prüfprozessen

47

5.2 Beurteilung Messmittel 5.2.1 Unsicherheit des Normals / Einstellmeister Um die systematische Messabweichung beurteilen zu können, muss die Rückführbar-keit in Bezug zu nationalen oder internationalen Normalen gestellt werden. Im einfachs-ten Fall sind dies handelsübliche Normale (s. Abbildung 3-6). Aufgrund der Messkette weist jedes Normal eine Messunsicherheit auf. Diese ist um so größer, je weiter das Normal von dem „Ur“-Normal entfernt ist. Die Abbildung 5-2 zeigt, wie sich die Messunsicherheit eines Normals vergrößert, je weiter es in der Hierarchiestufe vom nationalen oder internationalen Normal entfernt ist.

Messunsicherheit

A

B

C

PTB: Physikalisch-Technische Bundesanstalt

DKD: DeutscherKalibrierdienst, EichamtMPA: Materialprüfungsanstalt

Zentrales Kalibrierlaborim Unternehmen / Werk

Prüfplätze in Forschung,Entwicklung, Musterbau,Produktion, Service....

Nationales(Primär-)Normal

(PTB)Bezugs-Normal

(Firmen-)Bezugs-Normal

Gebrauchs-Normal

Abbildung 5-2: Hierarchie der Normale

Für die Maßeinheit „Gewicht“ sind in Abbildung 5-3 für drei Hierarchiestufen typische Waagen dargestellt. In diesem Fall werden die Waagen mit DKD - Zertifikat für das Wiegen von Teilen verwendet. Diese unterliegen der regelmäßigen Qualifizierung ge-mäß DIN EN ISO 10012 [32]. Das bei der Kalibrierung vorgegebene Qualifikationsinter-vall ist einzuhalten. Die Messunsicherheit U des Prüfnormals, die sich aus dem Kalibrierschein ergibt, ist quasi der erste Einflussfaktor, der sich bei der Beurteilung des Messprozesses auswirkt. Der Messprozess kann auf keinen Fall besser sein als die Unsicherheit des Normals. Daher muss zunächst die Frage gestellt werden, wie groß darf die Messunsicherheit U eines Normals werden, damit das verwendete Normal akzeptiert ist? Als Erfahrungswert hat sich die Forderung bewahrheitet, dass U 5% der Merkmalstoleranz sein muss. Bewegt sich U in dieser Größenordnung, ist die daraus resultierende Messunsicher-heitskomponente bei der Bestimmung der erweiterten Messunsicherheit des gesamten Messprozesses in der Regel vernachlässigbar!

Page 6: Eignungsnachweis von Prüfprozessen

48 5 Prüfmittelfähigkeit als Eignungsnachweis für Messprozesse

Ur-Kilogramm

Prüfgewicht(mit DKD-Zertifikat)

Waage(mit DKD-Zertifikat)

Abbildung 5-3: Messunsicherheit für die Einheit „Gewicht“

Häufig steht kein handelsübliches Normal zur Verfügung. In diesem Fall können so ge-nannte Einstellmeister oder Meisterteile (im Folgenden als Referenzteile bezeichnet) herangezogen werden. Die Namensgebung ist nicht genormt und daher firmenübergrei-fend unterschiedlich. Dabei handelt es sich häufig um normale, der Fertigung entnom-mene, Werkstücke oder speziell für einen Messprozess hergestellte Teile. Um diese Referenzteile für die Beurteilung der systematischen Messabweichung heranziehen zu können, müssen diese ähnliche Bedingungen wie die Normale erfüllen. Das heißt, sie müssen kalibriert werden und unterliegen der Prüfmittelüberwachung. Folgende Situati-onen sind zu unterscheiden: Kalibriertes Einstellstück als Normal Ein Einstellstück welches zum Einmessen der Messvorrichtung dient, ist nicht in jedem Fall geeignet, da beim Einstellen eine mögliche systematische Messabweichung, die bei der Messsystemanalyse bewertet werden soll, eliminiert wird. Wird aus wirtschaftli-chen Gründen trotzdem das Einstellstück verwendet, kann nur die Wiederholpräzision Cg/EV sicher bestimmt werden. Die Bestimmung von Cgk ist nicht sinnvoll. Mehrere kalibrierte Einstellstücke als Normale Häufig geht man schon dazu über, für jeden Messvorgang mehrere Kalibrierstücke zu besorgen. Dies ist Basis für eine sinnvolle Messsystemanalyse und bringt zusätzlich lo-gistische Vorteile während der Überwachung der Einstellstücke. Werden zwei oder mehrere Einstellstücke beschafft, ist darauf zu achten, dass deren Ist-Maße über den Toleranzbereich verteilen sind (z.B. nahe der oberen, nahe der unteren Toleranzgrenze und in der Toleranzmitte, s. Abbildung 5-24). Ein Einstellstück wird dann zum Einmes-sen des Messsystems verwendet und das zweite für die Messsystemanalyse. Bei Ver-wendung mehrerer Normale über den Toleranzbereich verteilt ist zusätzlich eine Linea-ritätsaussage möglich. Kalibriertes Werkstück (Meisterteil) Viele Bereiche lassen ein spezielles Werkstück (Meisterteil) erfassen und entsprechend kalibrieren. Dieses kalibrierte Werkstück kann sowohl zur Stabilitätsüberwachung als auch für eine Messsystemanalyse der Fertigungsmesseinrichtung verwendet werden. Zu beachten ist hierbei, dass die Kalibrierung der einzelnen Merkmale in ausreichender Genauigkeit erfolgt ist.

Page 7: Eignungsnachweis von Prüfprozessen

5.2 Beurteilung Messmittel 49 Nicht kalibrierte Merkmale an einem Einstellstück Sind an Einstellstücken einzelne Merkmale wie z. B. Form- und Lagetoleranzen nicht kalibriert, sondern nur auf Einhaltung der Herstellerangaben geprüft, dürfen diese Mess-ergebnisse nicht als Kalibrierwerte für eine Messsystemanalyse verwendet werden. Die Messwerte der Prüfung des Einstellstücks im Messraum kann sich von dem Wert auf der Fertigungsmesseinrichtung z.B. aufgrund unterschiedlicher Messstelle oder Mess-strategie erheblich unterscheiden, was zu einer falschen Bewertung des Messsystems führen kann. Wird für diese Merkmale trotzdem eine Messsystemanalyse durchgeführt, kann nur die Wiederholpräzision Cg sicher bestimmt werden. Die Berechnung von Cgk ist nicht sinnvoll. 5.2.2 Einfluss der Auflösung Jedes anzeigende Messgerät hat eine kleinste Auflösung (s. Abb. Abbildung 3-5). Bei einer analogen Anzeige kann ein Messwert auch zwischen zwei Strichen noch abge-schätzt werden. Dies ist bedienerabhängig und daher nur in Ausnahmefällen sinnvoll. Der Ziffernsprung (Auflösung) bei einer digitalen Anzeige ist nicht beeinflussbar. Bevor man überhaupt mit Verfahren 1 beginnt, sollte festgestellt werden, ob die Auflösung bei dem vorliegenden Messprozess ausreichend klein ist. Als Grenzwert für die Auflösung hat sich die Forderung: „Die Auflösung darf höchstens 5% der Toleranz betragen“ als sinnvoll herausgestellt. Hinweis: Die Auflösung ist eine Standardunsicherheitskomponente bei der Bestimmung der er-weiterten Messunsicherheit. Ist die oben gemachte Forderung erfüllt, ist in der Regel der Anteil der Messabweichung aufgrund der Auflösung vernachlässigbar klein. Entsteht ein Messwert aus einer Rechengröße (z.B. Mittelwert), ist die Anzahl der Nachkommastellen festzulegen. Dieser ist gleichzeitig die Auflösung dieses Messver-fahrens. Abbildung 5-4 und Abbildung 5-5 zeigen die Auswirkung der Auflösung auf die Quali-tätsfähigkeitskenngröße Cg und Cgk gemäß Verfahren 1.

Cg = 2,61 Cgk = 1,62 Auflösung = 0,05 (2,5%)

Messgerät bedingt fähig.

Abbildung 5-4: Auflösung Messgerät 0,05

Page 8: Eignungsnachweis von Prüfprozessen

50 5 Prüfmittelfähigkeit als Eignungsnachweis für Messprozesse Das Messgerät in Abbildung 5-4 hat eine Auflösung von 0,05. Bezogen auf die Toleranz (T=2) ergibt dies den ausreichenden Prozentsatz von 2,5%. Im Gegensatz dazu hat das Messgerät in Abbildung 5-5 eine Auflösung von 0,1. Dies entspricht bei gleicher Tole-ranz einem Prozentsatz von 5%.

Cg = 1,31 Cgk = 0,97 Auflösung = 0,1 (5%)

Messgerät nicht fähig.

Abbildung 5-5: Auflösung für Messgerät 0,1

Das Beispiel bestätigt den Grenzwert von 5%. Wird dieser Prozentsatz überschritten, wird mit höherer Wahrscheinlichkeit der Messprozess mit diesem anzeigenden Messge-rät nicht geeignet sein. Daher können weitere Untersuchungen entfallen. Die Auflösung hat nicht nur Auswirkungen auf die Fähigkeitsuntersuchung des Mess-prozesses selbst, sondern vor allem auf die Messwerte für die Prozessfähigkeitsüber-wachung. Abbildung 5-6 und Abbildung 5-7 zeigen die Auswirkung der Auflösung in der Qualitätsregelkarte.

Untergruppe

0,145

0,140

0, 135

MW = 0,1397

OEG 0,1444=

UEG = 0,1350

0,02

0,01

0,00

UEG = 0

x /R-Qualitätsregelkarte Auflösung = 0,001

Stic

hpro

benm

ittel

wer

te

Stic

hpro

benm

span

nwei

ten

252 0151050

OEG = 0,01717

R = 0,0081

Abbildung 5-6: x -R-Karte mit Messgeräteauflösung 0,001

Page 9: Eignungsnachweis von Prüfprozessen

5.2 Beurteilung Messmittel 51

OEG 0,1438=

0,145

0,140

0,135

0,02

0,01

0,00

Stic

hpro

benm

ittel

wer

te

Untergruppe

Stic

hpro

benm

span

nwei

ten

252 0151050

x /R-Qualitätsregelkarte Auflösung = 0,001

MW = 0,1398

UEG = 0,1359

UEG = 0

OEG = 0,01438

R = 0,0068

Abbildung 5-7: x -R-Karte mit Messgeräteauflösung 0,01

5.2.3 Beurteilung der Systematischen Messabweichung Um die systematische Messabweichung beurteilen zu können, wird ein Normal bzw. ein Referenzteil mehrfach (mindestens 25 mal) gemessen. Aus dieser Messwertreihe wird der Mittelwert berechnet. Die Differenz zwischen dem Bezugswert des Referenzteils (aus Kalibrierschein) und dem Mittelwert der Messung ergibt die systematische Mess-abweichung Bi (Bias):

mg xxBi −= mx = Referenzwert des Normals

n

xx

n

1ii

g

∑== Mittelwert der Messwertreihe

( )∑=

−−

=n

1i

2gig xx

1n1s Standardabweichung der Messwertreihe

mit i = 1,...,n und 15n ≥ Anzahl der Messwerte.

Nun stellt sich die Frage: „Welche maximale systematische Messabweichung ist zuläs-sig?“ In der MSA [1] ist diese Frage beantwortet. Dazu wird ein t-Test durchgeführt. Der Vertrauensbereich basierend auf dem Vertrauensniveau von P = 95% ( 05,0ˆ =α= ) muss für die ermittelte systematische Messabweichung Bi den Wert 0 beinhalten:

n

stiB̂Bi

n

stiB̂

g1,1ng1,1n 22⋅

+≤≤⋅

−αα −−−−

Page 10: Eignungsnachweis von Prüfprozessen

52 5 Prüfmittelfähigkeit als Eignungsnachweis für Messprozesse

Abbildung 5-8: Bestimmung t-Wert

Der t-Wert kann entweder aus der t-Wert-Tabelle entnommen oder mit dem qs-STAT®-Modul „Verteilungen“ (s. Abbildung 5-8) ermittelt werden. Dabei ist der Freiheitsgrad f = n-1.

Abbildung 5-9 und Abbildung 5-10 zeigen zwei unterschiedliche Fallbeispiele. Bei dem Messprozess in der Abbildung 5-9 (aus MSA [1]) fällt die systematische Messabwei-chung |Bi| = 0,00667 in den Vertrauensbereich von - 0,111 ... + 0,124 und kann damit als geeignet angesehen werden. Im Gegensatz dazu ist bei dem in Abbildung 5-10 dar-gestellten Messprozess die systematische Messabweichung zu groß. Damit muss der Messprozess verbessert werden.

Abbildung 5-9: Systematische Messabweichung akzeptabel

Page 11: Eignungsnachweis von Prüfprozessen

5.2 Beurteilung Messmittel 53

Abbildung 5-10: Systematische Messabweichung nicht akzeptabel

Hinweise: 1. Das Verfahren ist sehr sensibel. Daher werden viele Messprozesse in der Fertigung

dieser Anforderung nicht gerecht. 2. Die Beurteilung des Messprozesses bezüglich der systematischen Messabweichung

kann bei diesem Verfahren ohne Vorgabe einer Bezugsgröße (z.B. der Toleranz) er-folgen.

5.2.4 Verfahren 1 Bei dem Verfahren 1 für zweiseitig begrenzte Merkmale wird die systematische Mess-abweichung und die Streuung des Messgerätes ohne Bedienereinfluss an Hand eines Prüfnormals beurteilt. Dazu werden mit dem Messgerät an einem Normal mehrere Wie-derholungsmessungen (in der Regel mindestens 25) durchgeführt. Aus der Messwert-reihe können Mittelwert und Standardabweichung berechnet werden. Aus diesen erge-ben sich in Verbindung mit der Merkmalstoleranz die Qualitätsfähigkeitskenngröße Cg, Cgk. Mit dem Cg-Wert kann die Streuung und mit dem Cgk-Wert kann die systematische Messabweichung und die Streuung als Ganzes bewertet werden. Die Abbildung 5-11 zeigt die Einflussgrößen und die sich aus der Messung ergebenden Kenngrößen „Sys-tematische Messabweichung“ und „Gerätestreuung/Wiederholpräzision“.

Page 12: Eignungsnachweis von Prüfprozessen

54 5 Prüfmittelfähigkeit als Eignungsnachweis für Messprozesse

Umwelt

Messgerät

Normal

Hilfsmittel, Lehren

Wiederholpräzision

systematischeMessabweichung

Abbildung 5-11: Typische Einflussfaktoren bei der Beurteilung nach Verfahren 1

Ziel des Verfahrens 1 ist die Beurteilung von Herstellerangaben, insbesondere bei neu-en Messsystemen oder nach Modifikationen. Vorbereitung: • Das Normal (bzw. Referenzteil) muss während der gesamten Untersuchung stets

dieselbe Ausrichtung (Orientierung) haben.

• Zur Dokumentation der Untersuchung ist ein entsprechendes Formblatt (s. Tabelle 5.1), auf dem die Ergebnisse festgehalten und die Auswertung durchgeführt wird, zu erstellen. Neben den Messergebnissen sind die Kopfdaten, wie Angaben zur Mess-einrichtung, zum Normal bzw. zum Werkstück zu dokumentieren. Falls ein Rechner-programm wie qs-STAT® vorhanden ist, sind die Daten in die Bildschirmmaske ein-zutragen (s. Abbildung 5-12).

Abbildung 5-12: qs-STAT® Eingabemaske

Page 13: Eignungsnachweis von Prüfprozessen

v

Vorwort Die Bedeutung der „Eignung von Prüfprozessen“ hat in den letzten Jahren immer mehr zugenommen. Ende der 80er-Jahre waren es nur einige wenige Firmenrichtlinien, die auf die Bedeutung der Prüfmittel hingewiesen haben und die Eignung mit sogenannten Fähigkeitsstudien gefordert haben. Im Laufe der Zeit sind immer neue und weitere Richtlinien hinzugekommen. Weiter wurde die Vorgehensweise immer mehr verfeinert und für die Anwendung verbessert. Nachdem sich diese Methodik etabliert hatte, ka-men immer mehr Forderungen aus Quasi-Normen wie den Richtlinien nach QS-9000 oder VDA 6.1 hinzu. Damit mussten Prüfmittelfähigkeitsuntersuchungen regelmäßig durchgeführt werden, um ein Zertifikat gemäß des jeweiligen QM-Systems zu erhalten. Mittlerweile ist zu dem Thema Fähigkeitsuntersuchung die Bestimmung der Messunsi-cherheit für die Anwendungsfälle in der Fertigung hinzugekommen. So fordert bei-spielsweise die DIN EN ISO 14253 [32] für Längenmaße die Bestimmung der Messun-sicherheit und deren Berücksichtigung an den Spezifikationsgrenzen. Damit sind immer mehr Firmen verpflichtet im Rahmen ihres QM-Systems die Messunsicherheit zu be-rechnen und im jeweiligen Anwendungsfall zu verwalten. Um dies möglichst einfach durchführen zu können, hat mittlerweile der VDA den Band Prüfprozesseignung (VDA 5 [59]) herausgebracht. Bereits dem Titel ist zu entnehmen, dass man sich nicht aus-schließlich mit dem Messgerät auseinandersetzt, sondern mit dem Messgerät plus aller darauf wirkenden Einflussfaktoren. In unserem Buch „Statistische Verfahren zur Maschinen- und Prozessqualifikation“ [13] hatten wir bereits in der zweiten und dritten Auflage ein Kapitel dem Thema „Prüfmittel-fähigkeit“ gewidmet. Aufgrund der Vielfältigkeit der einzelnen Verfahren zum Nachweis der Prüfprozesseignung haben wir uns entschlossen, dieses Thema in der 4. Auflage nicht mehr zu behandeln und dafür das vorliegende Buch herauszugeben, das diese Thematik detaillierter behandelt. Besonders möchten wir uns bei Herrn Ofen (Robert Bosch GmbH, Bamberg) für die langjährige Zusammenarbeit und seine fachliche Unterstützung bedanken. Von ihm stammen große Teile des Buches „Sonderfälle bei der Beurteilung von Messverfahren“ [56]. Daraus haben wir mit seiner Zustimmung einige Textpassagen in das vorliegende Buch übernommen. Weiter möchten wir uns ganz herzlich bei Frau Mesad für das Layout und die Gestal-tung des Buches bedanken. Bei Fragen können Sie sich auch direkt an die Q-DAS® GmbH, Eisleber Str. 2, 69469 Weinheim, Tel.: 06201/3941-0, Fax: 06201/3941-24, Hotline Tel.: 06201/3941-14, E-Mail: [email protected] wenden. Weinheim, April 2003 Edgar Dietrich und Alfred Schulze

Page 14: Eignungsnachweis von Prüfprozessen

vi

Vorwort zur 2. Auflage Das in dem vorliegenden Buch behandelte Thema ist auf große Resonanz gestoßen. So hatten wir auf die erste Auflage ein hohes Feedback mit vielen Anregungen. Insbe-sondere möchten wir uns bei den Lesern bedanken, die uns auf die eine oder andere Unzulänglichkeit hingewiesen haben. Diese Vorschläge wurden aufgegriffen und in der neuen Auflage berücksichtigt. Mittlerweile ist der VDA Band 5 „Prüfprozesseignung“ im Rotdruck erschienen. Dieser hat in der Fachwelt für eine Menge Diskussionsstoff gesorgt, aber auch Fragen aufge-worfen. Daher sind wir insbesondere auf diese Thematik näher eingegangen und haben Rechenbeispiele ergänzt. In vielen Gesprächen und Seminaren wurde immer der Wunsch geäußert, dass man sich zur Bestimmung der „Erweiterten Messunsicherheit“ in Analogie zu der weit ver-breiteten Vorgehensweise der Messmittelfähigkeit „R&R“ eine ähnlich strukturierte Vor-gehensweise wünscht. Daher haben wir basierend auf aktuell gültigen Normenentwür-fen eine von den Autoren als so genannte AIO (All-in-One Methode) bezeichnete Vor-gehensweise zur Bestimmung der erweiterten Messunsicherheit entwickelt. Damit kön-nen quasi kochrezeptartig die einzelnen Standardunsicherheiten ermittelt und als End-ergebnis die erweiterte Messunsicherheit berechnet werden. Bei der Erstellung der neuen Rechenbeispiele hat uns Herr Dipl.-Ing. Michael Radeck unterstützt. Auch hat er das Thema „Attributive Prüfmittel“ bearbeitet. Für seine Mithilfe möchten wir uns bei ihm recht herzlich bedanken. Weinheim, Mai 2004 Edgar Dietrich und Alfred Schulze

Vorwort zur 3. Auflage Zwar war die Bestimmung der Messunsicherheit gemäß der „Anleitung zur Bestimmung der Messunsicherheit“ (GUM Guide to the Uncertainty in Measurement [38]) bereits in den vorangegangenen Auflagen vorhanden. Deren Anwendung in der industriellen Pro-duktion war allerdings nur wenig verbreitet. Dies hat sich in letzter Zeit allerdings verän-dert. Insbesondere durch die neue ISO 10012:2004 [32] „Messmanagementsysteme – An-forderungen an Messprozesse und Messmittel“ hat dieses Thema deutlich an Bedeu-tung gewonnen. Wie der Untertitel dieser Norm ausdrückt, ist die Messunsicherheit für die jeweiligen Messprozesse nachzuweisen. Darin steht wörtlich: „Die Messunsicherheit muss für jeden vom Messsystem überwachten Messprozess abgeschätzt werden. Die hierbei anzuwendenden Methoden sind im Guide to the Expression of Uncertainty in Measurement (GUM) [38] angegeben“. Dies war Anlaß, sich innerhalb dieses Buches mit dem Thema Messunsicherheit inten-siver auseinander zu setzen.

Page 15: Eignungsnachweis von Prüfprozessen

Inhaltsverzeichnis vii Seit dem Erscheinen der zweiten Auflage im Mai 2004 sind weitere Firmenrichtlinien zu dem Thema „Eignungsnachweis von Prüfprozessen“ veröffentlicht worden. Der dritten Auflage sind die Richtlinien von DaimlerChrysler LF05 und von der Robert Bosch GmbH Heft 10 angefügt. In beiden Richtlinien sind die in der vorliegenden Auflage theoretisch behandelten Verfahren und Vorgehensweisen für den Eignungsnachweis von Prüfpro-zessen umgesetzt. Mittlerweile liegen durch die Anwendung der Richtlinien innerhalb der Unternehmen und bei Zulieferern Erfahrungen im Umgang mit dieser Methodik vor, das den praktischen Nutzen zusätzlich bestätigt. Bei der Erstellung des Kapitels „Bestimmung der Messunsicherheit“ hat uns Herr Dipl.-Ing. Stephan Conrad unterstützt. Für seine Mithilfe möchten wir uns bei ihm recht herz-lich bedanken. Bei Fragen können Sie sich auch direkt an die Q-DAS GmbH & Co. KG, Eisleber Str. 2, 69469 Weinheim, Tel.: 06201/3941-0, Fax: 06201/3941-24, Hotline Tel.: 06201/3941-14, E-Mail: [email protected] wenden. Weinheim, September 2006 Edgar Dietrich und Alfred Schulze