Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen...

31
- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums? 31 Inhaltsverzeichnis Kapitel Seite Vorwort…………………………………………………………………………….... 1. Mathematische Grundlagen des Goldenen Schnittes…………………. 1.1. Was ist der „Goldene Schnitt“?.............................................................. 1.2. Nähere Betrachtung des Teilungsverhältnisses – Herleitung der Zahlen τ und ρ………………………………………………………………. 1.3. Die Zahlen τ und ρ………………………………………………………….. 1.3.1. Allgemeine Eigenschaften………………………………………………………… 1.3.2. Linealisierung der Potenzen des Goldenen Schnittes………………………… 1.4. Geometrische Verfahren zur Konstruktion des Goldenen Schnittes…………………………………………………………………….. 1.4.1. „Die klassische Konstuktion“……………………………………………………… 1.4.2. „Die beliebte Konstruktion“………………………………………………………... 1.4.3. Konstruktion des Goldenen Schnittes nach Euklid……………………………... 1.4.4. Das Verfahren mit „äußerer Teilung“…………………………………………….. 2. Vorkommen des Goldenen Schnittes in der Mathematik……………… 2.1. Angewandter Goldener Schnitt……………………………………………. 2.1.1. Goldenes Rechteck………………………………………………………………… 2.1.2. Die Goldenen Dreiecke – das spitze und das stumpfe………………………… 2.1.3. Goldener Winkel Ψ…………………………………………………………………. 2.2. Entdeckt und bewiesen – Vorkommen des Goldenen Schnittes ohne beabsichtigtes Anwenden…………………………………………………. 2.2.1. Regelmäßiges Fünfeck – Pentagramm – regelmäßiges Zehneck…………… 2.2.2. Der Goldene Schnitt im Ikosaeder……………………………………………….. 2.2.3. Die Reihe der Fibonacci-Zahlen………………………………………………….. 2.2.3.1. Der Stammbaum einer Drohne als Beispiel für die Fibonacci-Reihe……….. 2.2.3.2. Mathematische Eigenschaften der Fibonacci-Reihe………………………….. 3. Vorkommen des Goldenen Schnittes außerhalb der Mathematik…… 3.1. Der Goldene Schnitt in der Biologie……………………………………… 3.1.1. Goldener Schnitt in der Anatomie………………………………………………… 3.1.2. Goldener Schnitt in der Botanik ………………………………………………….. 3.2. Der Goldene Schnitt in der Architektur…………………………………… 3.3. Der Goldene Schnitt in der Kunst…………………………………………. 3.4. Der Goldene Schnitt in der Musik………………………………………… 4. Die Historie des Goldenen Schnittes……………………………………… 4.1. Der Goldene Schnitt in der Antike: Pythagoräer – Euklid……………… 4.2. Der Goldene Schnitt in der Renaissance………………………………… 4.3. Der Goldene Schnitt von der Frühen Neuzeit bis zur Gegenwart…….. 5. Die Popularität des Goldenen Schnittes…………………………………. Nachwort……………………………………………………………………………. Glossar………………………………………………………………………………. Literaturverzeichnis………………………………………………………………. Erklärung……………………………………………………………………………. 2 3 3 3 4 4 5 7 7 8 9 10 11 11 11 12 15 15 15 18 18 18 20 22 22 22 23 24 25 25 26 26 27 28 29 30 31 31 31

Transcript of Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen...

Page 1: Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der obigen Tabelle folgendermaßen definiert:

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums?

31

Inhaltsverzeichnis

Kapitel Seite

Vorwort …………………………………………………………………………….... 1. Mathematische Grundlagen des Goldenen Schnittes …………………. 1.1. Was ist der „Goldene Schnitt“?.............................................................. 1.2. Nähere Betrachtung des Teilungsverhältnisses – Herleitung der Zahlen τ und ρ………………………………………………………………. 1.3. Die Zahlen τ und ρ………………………………………………………….. 1.3.1. Allgemeine Eigenschaften………………………………………………………… 1.3.2. Linealisierung der Potenzen des Goldenen Schnittes………………………… 1.4. Geometrische Verfahren zur Konstruktion des Goldenen Schnittes…………………………………………………………………….. 1.4.1. „Die klassische Konstuktion“……………………………………………………… 1.4.2. „Die beliebte Konstruktion“………………………………………………………... 1.4.3. Konstruktion des Goldenen Schnittes nach Euklid……………………………... 1.4.4. Das Verfahren mit „äußerer Teilung“…………………………………………….. 2. Vorkommen des Goldenen Schnittes in der Mathemat ik……………… 2.1. Angewandter Goldener Schnitt……………………………………………. 2.1.1. Goldenes Rechteck………………………………………………………………… 2.1.2. Die Goldenen Dreiecke – das spitze und das stumpfe………………………… 2.1.3. Goldener Winkel Ψ…………………………………………………………………. 2.2. Entdeckt und bewiesen – Vorkommen des Goldenen Schnittes ohne beabsichtigtes Anwenden…………………………………………………. 2.2.1. Regelmäßiges Fünfeck – Pentagramm – regelmäßiges Zehneck…………… 2.2.2. Der Goldene Schnitt im Ikosaeder……………………………………………….. 2.2.3. Die Reihe der Fibonacci-Zahlen………………………………………………….. 2.2.3.1. Der Stammbaum einer Drohne als Beispiel für die Fibonacci-Reihe……….. 2.2.3.2. Mathematische Eigenschaften der Fibonacci-Reihe………………………….. 3. Vorkommen des Goldenen Schnittes außerhalb der M athematik …… 3.1. Der Goldene Schnitt in der Biologie……………………………………… 3.1.1. Goldener Schnitt in der Anatomie………………………………………………… 3.1.2. Goldener Schnitt in der Botanik ………………………………………………….. 3.2. Der Goldene Schnitt in der Architektur…………………………………… 3.3. Der Goldene Schnitt in der Kunst…………………………………………. 3.4. Der Goldene Schnitt in der Musik………………………………………… 4. Die Historie des Goldenen Schnittes ……………………………………… 4.1. Der Goldene Schnitt in der Antike: Pythagoräer – Euklid……………… 4.2. Der Goldene Schnitt in der Renaissance………………………………… 4.3. Der Goldene Schnitt von der Frühen Neuzeit bis zur Gegenwart…….. 5. Die Popularität des Goldenen Schnittes …………………………………. Nachwort ……………………………………………………………………………. Glossar ………………………………………………………………………………. Literaturverzeichnis ………………………………………………………………. Erklärung …………………………………………………………………………….

2

3 3

3 4 4 5

7 7 8 9

10

11 11 11 12 15

15 15 18 18 18 20

22 22 22 23 24 25 25

26 26 27 28

29

30 31 31 31

Page 2: Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der obigen Tabelle folgendermaßen definiert:

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums?

31

Vorwort

Der Begriff des „Goldenen Schnittes“ wird wahrscheinlich keinem ganz fremd erschei-

nen – allerdings wissen abgesehen von Architekten und Mathematikern vermutlich nur

wenige, worum es sich dabei im Einzelnen handelt. Bevor ich mich entschloss, meine

Jahresarbeit diesem Thema zu widmen, gehörte ich wie die meisten anderen zu den-

jenigen, die ausschließlich durch kurzes Ansprechen im schulischen Unterricht im Gro-

ben wissen, worum es sich bei diesem Ausdruck handelt.

Ich muss eingestehen, dass der Grund, der mich dazu veranlasste, meine Facharbeit

über den Goldenen Schnitt zu schreiben, zunächst einmal nicht das Thema an sich

war, sondern der Wunsch, aufgrund meiner Vorliebe für Mathematik meine Arbeit in

eben diesem Fach zu schreiben. Jedoch wurde ich bei meiner Suche nach einem pas-

senden Thema schnell auf den Goldenen Schnitt, einem einzigartigen Phänomen in

der riesigen Welt der Mathematik, aufmerksam und mein Interesse dafür steigerte sich

umso mehr, je weiter ich mich mit diesem Gebiet befasste.

Meine Annahme, dass dieses Thema nicht genug Stoff für meine Abhandlung liefern

würde, wurde sehr schnell widerlegt. Im Gegenteil: Aufgrund der Fülle an höchst inte-

ressantem Material sehe ich mich gezwungen in dieser Arbeit einen Schwerpunkt zu

setzen. Ich habe mich entschlossen mehr auf die „mathematischen“ den Goldenen

Schnitt betreffenden Dinge einzugehen als auf Aspekte wie seine Geschichte oder sein

Vorkommen in Kunst und Natur. Allerdings werde ich auch diese Bereiche nicht ganz

außer Acht lassen.

Alles in einem soll dies nach meinem Wunsch eine schwerpunktmäßig mathematische

Facharbeit werden, in der die mathematischen Eigenschaften des als „Goldener

Schnitt“ benannten Teilungsverhältnisses in den Vordergrund gestellt werden. Mithilfe

der insbesondere mathematischen und anderer Besonderheiten möchte ich Ihnen und

mir durch diese Arbeit zu erklären versuchen, woher die große Popularität des Golde-

nen Schnittes rührt.

Aufgrund meiner Schwerpunktsetzung besteht die gesamte Jahresarbeit aus zwei Tei-

len: Der erste von ihnen beinhaltet die ersten beiden – nicht unwesentlich größeren –

mathematischen Kapitel und der zweite die restlichen nichtmathematischen Kapitel.

Ich wünsche Ihnen viel Vergnügen beim Lesen meiner Arbeit und hoffe, dass ich Sie

mit neuen Erkenntnissen bereichern kann.

Anmerkung: kursiv und blau geschriebene Wörter sind im Glossar erläutert

Page 3: Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der obigen Tabelle folgendermaßen definiert:

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums?

31

1. Mathematische Grundlagen des Goldenen Schnittes

1.1. Was ist der „Goldene Schnitt“?

Der Goldene Schnitt beschreibt die Teilung einer Strecke, bei der das Verhältnis des

längeren Teilstücks zum kürzeren mit dem Verhältnis der gesamten Strecke zum län-

geren Teilstück übereinstimmt.

Teilung einer Strecke nach dem Goldenen Schnitt

Bezeichnet man gemäß der obigen Abbildung die längere Teilstrecke als a und die

kürzere als b, erhält man folgende Gleichung, die den Goldenen Schnitt beschreibt:

a

ba

b

a +=

1.2. Nähere Betrachtung des Teilungsverhältnisses – Herleitung der

Zahlen τ und ρ

Der Quotient aus dem längeren Teilstück a und dem kürzeren Teilstück b der durch

den Goldenen Schnitt geteilten Strecke ist konstant und wird mit dem griechischen

Buchstaben τ (ausgesprochen „tau“; bezieht sich auf das griechische Wort „tome“ für

„Schnitt“1.) bezeichnet2:

τ=+=a

ba

b

a

Demzufolge gilt τ⋅= ba . Man nehme nun, um die Größe von τ zu ermitteln, an, dass

die Länge der kürzeren Teilstrecke b = 1 betrage und bezeichne die längere Teilstrecke

a als x, sodass gelte τ⋅= 1x bzw. τ=x . Eingesetzt in die obere Gleichung ergibt sich

Folgendes:

x

xx 1

1

+=

Durch Umformen erhält man diese quadratische Gleichung:

1 Vgl. http://de.wikipedia.org/wiki/Goldener_Schnitt 2 Vgl. Walser, Hans; Der Goldene Schnitt, Stuttgart; Leipzig: Teubner; Zürich: Verl. der Fachvereine, 1993, S.12 f.

Page 4: Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der obigen Tabelle folgendermaßen definiert:

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums?

31

012 =−− xx

die durch Anwenden der pq-Formel und erneutes Umformen für x zwei Ergebnisse lie-

fert:

14

15,01 ++=x ∩ 1

4

15,02 +−=x

2

5

2

11 +=x ∩

2

5

2

12 −=x

2

511

+=x ∩ 2

512

−=x

618,11 ≈x ∩ 618,02 −≈x

Da der Quotient positiv sein muss, ist mit 618,12

511 ≈+=x ein eindeutiges Ergebnis

für τ gegeben; es gilt also:

618,12

51 ≈+=τ

So wie die Zahl τ das Verhältnis der längeren Teilstrecke zur kürzeren beschreibt, steht

ihr Kehrwert für das Verhältnis der kürzeren Teilstrecke zur längeren. Dieser wird mit

dem griechischen Buchstaben ρ (ausgesprochen: „rho“) beschrieben3 und beträgt ca.

0,618. Es gilt also:

618,051

21 ≈+

=+

===ba

a

a

b

τρ

1.3. Die Zahlen τ und ρ

1.3.1. Allgemeine Eigenschaften

Die beiden Zahlen τ und ρ sind irrational, d.h. sie können nicht durch den Quotienten

zweier ganzer Zahlen ausgedrückt werden. Für sie beide gelten folgende Beziehun-

gen4:

3 Vgl. Walser, S.12 f. 4 Vgl. Walser, S.13

Page 5: Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der obigen Tabelle folgendermaßen definiert:

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums?

31

1

1

1

5

1

2

2

=−

=+=−=+

=⋅

ττρρ

ρτρτ

ρτ

Die quadratische Gleichung 012 =−− xx aus → Kap.1.2. hat die beiden Lösungen

x1 = τ und x2 = -ρ. Wenn man bei der Anwendung des Goldenen Schnittes auf eine

Strecke mit der Annahme, dass das kürzere Teilstück b = 1 lang werden soll, das län-

gere Teilstück a berechnen möchte, erhält man aus der Gleichung 012 =−+ xx die

beiden Ergebnisse x1 = ρ und x2 = -τ. Diese beiden Gleichungen

012 =−+ xx � xx −= 12

012 =−− xx � 12 += xx

sind „die beiden Schlüsselgleichungen für den Goldenen Schnitt“5.

1.3.2. Linealisierung der Potenzen des Goldenen Sch nittes 6

Dadurch, dass τ eine Lösung der Gleichung

12 += xx

ist, und dass somit gilt

12 += ττ ,

kann τ2 durch den linearen Ausdruck τ + 1 ersetzt werden und höhere Potenzen von τ

können durch einen linearen Ausdruck in τ ersetzt werden, beispielsweise τ3:

121)1( 223 +=++=+=+== ττττττττττ

oder τ4:

23)1(22)12( 234 +=++=+=+== ττττττττττ

Wenn man die Gleichung

12 += ττ

mit τn multipliziert, erhält man folgende allgemeine Beziehung:

nnn τττ += ++ 12

Kennt man die linearen Ausdrücke für τn+1 und τn, erhält man nun durch Addition den

linearen Ausdruck für τn+2:

5 Vgl. Walser, S.13 6 Vgl. Walser, S.73 ff.

Page 6: Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der obigen Tabelle folgendermaßen definiert:

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums?

31

Linealisierung der Potenzen von τ7

0τ = 1 = 1

1τ = τ = τ

2τ = 1+τ = 1+τ

3τ = ττ +2 = 12 +τ

4τ = 23 ττ + = 23 +τ

5τ = 34 ττ + = 35 +τ

6τ = 45 ττ + = 58 +τ

...

2+nτ = nn ττ ++1 = 12 ++ + nn aa τ

Die neue Zeile ist jeweils die Summe aus den beiden vorhergehenden.

Die Koeffizienten an in

1−+= nnn aa ττ , ,...}4,3,2{∈n

sind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der

obigen Tabelle folgendermaßen definiert:

nnn aaa += ++ 12

Da –ρ wie τ eine Lösung der Gleichung

12 += xx

ist, muss für sie ebenfalls gelten:

nnn )()()( 12 ρρρ −+−=− ++

1)()( −+−=− nnn aa ρρ , ,...}4,3,2{∈n

7 Vgl. Walser, S.74 (verändert)

Page 7: Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der obigen Tabelle folgendermaßen definiert:

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums?

31

1.4. Geometrische Verfahren zur Konstruktion des Go ldenen Schnittes

Es gibt viele Möglichkeiten, den Goldenen Schnitt zu konstruieren. Konstruktionsver-

fahren, die einzig mit Lineal und Zirkel auskommen, waren in der Vergangenheit, als

man keine so große Auswahl an Hilfsmitteln wie z.B. den Computer hatte wie heute,

von großer Bedeutung. Vier solche Verfahren, mit deren Hilfe der Goldene Schnitt kon-

struiert werden kann, sollen hier präsentiert und bewiesen werden.

1.4.1. „Die klassische Konstuktion“ 8

Dieses Verfahren ist laut Hans Walser das bekannteste. Anleitung:

1 Man zeichne ein rechtwinkliges Dreieck ABC mit den Katheten a = 1 und b = ½

2 Anschließend konstruiere man um den Punkt A einen Kreis mit dem Radius b = ½

3 Man bezeichne daraufhin den inneren Schnittpunkt des Kreises mit der Hypotenu-

se c als Punkt D und den äußeren mit ihrer Verlängerung als Punkt E.

Klassische Konstruktion des Goldenen Schnittes9

Die Strecke BE wird vom Punkt D nach dem Goldenen Schnitt geteilt. Beweis:

ρ=−=−

+=2

15

2

1

2

11

22BD τ=+=+

+=2

15

2

1

2

11

22BE

1=−=−= ρτBDBEDE ττ ==1DE

BE

8 Vgl. Hans Walser: Der Goldene Schnitt, 1993, S.32 9 eigenständig angefertigt mit EUKLID Dynageo 2.2d

Page 8: Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der obigen Tabelle folgendermaßen definiert:

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums?

31

1.4.2. „Die beliebte Konstruktion“ 10

Dieses Verfahren ist „wegen seiner Einfachheit beliebt“11. Anleitung:

Die Schritte 1 und 2 entsprechen den ersten beiden Schritten der „Klassischen Kon-

struktion“. Weiter geht es folgendermaßen:

3 Man bezeichne den Schnittpunkt des Kreises mit der Hypotenuse c als Punkt D

4 Daraufhin zeichne man um den Punkt B einen Kreis mit dem Radius r = BD

5 Anschließend bezeichnet man den Schnittpunkt des Kreises um Punkt B mit der

Kathete a als Punkt S

Die „beliebte“ Konstruktion des Goldenen Schnittes12

Der Punkt S teilt die Strecke BC im Verhältnis des Goldenen Schnittes. Beweis:

ρ=−=−

+==2

15

2

1

2

11

22BDBS 1== aBC

τρ

== 1

BS

BC

10 Vgl. http://de.wikipedia.org/wiki/Goldener_Schnitt 11 Vgl. http://de.wikipedia.org/wiki/Goldener_Schnitt 12 eigenständig angefertigt mit EUKLID Dynageo 2.2d

Page 9: Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der obigen Tabelle folgendermaßen definiert:

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums?

31

1.4.3. Konstruktion des Goldenen Schnittes nach Euk lid 13

Diese Anleitung geht auf den griechischen Mathematiker Euklid (325-270 v.Chr.; →

Kap.4.1.) zurück:

1 Man zeichne ein rechtwinkliges Dreieck ABC mit den Katheten a = 1 und b = ½

2 Anschließend konstruiere man um den Punkt A einen Kreis mit dem Radius r = AB

3 Man bezeichne daraufhin den Schnittpunkt des Kreises um Punkt A mit der Verlän-

gerung von AC als Punkt D

4 Zuletzt konstruiere man um den Punkt C einen Kreis mit dem Radius r = CD und

bezeichne den Schnittpunkt dieses Kreises mit der Strecke BC als Punkt S

Konstruktion des Goldenen Schnittes nach Euklid14

Der Punkt S teilt die Strecke BC nach dem Goldenen Schnitt. Beweis:

2

5== ABAD ρ=−=−=−=2

15

2

1

2

5ACADCD 1=BC

τρ

== 1

CD

BC

13 Vgl. http://de.wikipedia.org/wiki/Goldener_Schnitt 14 eigenständig angefertigt mit EUKLID Dynageo 2.2d

Page 10: Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der obigen Tabelle folgendermaßen definiert:

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums?

31

1.4.4. Das Verfahren mit „äußerer Teilung“ 15

Diese Konstruktion wird so bezeichnet, weil der zu konstruierende Punkt nicht auf der

Ausgangsstrecke liegt. Anleitung:

1 Man zeichne ein gleichschenklig-rechtwinkliges Dreieck ABC mit den Katheten a =

1 und b = 1

2 Anschließend konstruiere man den Mittelpunkt M der Kathete a

3 Man Zeichne um den Punkt M einen Kreis mit dem Radius r = AM

4 Anschließend bezeichne man den Schnittpunkt dieses Kreises mit der Verlänge-

rung von BC als Punkt D

Konstruktion des Goldenen Schnittes mit „äußerer Teilung“16

Der Punkt C teilt die Strecke BD im Verhältnis des Goldenen Schnittes. Beweis:

ρ=−=−=2

1

2

5

2

1BCMACD τ

ρ== 1

CD

BC

15 Vgl. http://de.wikipedia.org/wiki/Goldener_Schnitt 16 eigenständig angefertigt mit EUKLID Dynageo 2.2d

Page 11: Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der obigen Tabelle folgendermaßen definiert:

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums?

31

2. Vorkommen des Goldenen Schnittes in der Mathematik

Die Teilung einer Strecke nach dem Verhältnis des Goldenen Schnittes ist nicht der

einzige Fall in der Mathematik, bei der der Quotient zweier „Objekte“ der Zahl τ bzw. ρ

entspricht. Wie wir gleich feststellen werden, ergeben sich durch Anwendung der Pro-

portionen des Goldenen Schnittes auf geometrische Figuren wie beispielsweise Recht-

ecke, Dreiecke oder Kreise zahlreiche besondere Eigenschaften, die zu einem nicht

geringen Teil zur Popularität der „göttlichen Teilung“ beitragen. Zusätzlich findet man in

der riesigen Welt der Mathematik aber auch Fälle, bei denen die „Göttliche Teilung“

auftaucht, obwohl sie dort nicht bewusst angewandt wurde – so z.B. beim Pentagramm

oder bei der jedem Mathematiker bekannten Reihe der Fibonacci-Zahlen, die wir be-

reits bei der Linealisierung von τ und –ρ angetroffen haben. Mit diesen und weiteren

Fällen befasst sich dieses Kapitel.

2.1. Angewandter Goldener Schnitt

2.1.1. Goldenes Rechteck 17

Man betrachte folgendes Problem: Wie muss man die Seitenlängen eines Rechtecks

wählen, damit nach Abschneiden eines Quadrates von diesem ein weiteres Rechteck

entsteht, das der Ausgangsfigur ähnlich ist? Zur Bestimmung dieses Rechtecks be-

zeichne man seine längere Seite als a und die kürzere als b. Nach Abschneiden eines

Quadrates mit der Seitenlänge b erhält man ein neues Rechteck mit den Seiten a’ = b

und b’ = a-b. Damit die Ähnlichkeit des erhaltenen Rechtecks mit dem Ausgangsrecht-

eck gegeben ist, muss gelten

'

'

b

a

b

a = � ba

b

b

a

−=

Wenn man nun annimmt, dass die Länge des Ausgangsrechtecks a = 1 und seine

Breite b = x betrage, erhält man folgende Gleichung:

x

x

x −=

1

1

Diese Gleichung liefert das positive Ergebnis x1 = ρ (das negative Ergebnis x2= -τ wird

nicht berücksichtigt, weil für die Seitenlänge des Rechtecks nur positive Ergebnisse in

Frage kommen) und somit auch den Beweis, dass ein Rechteck, welches der obigen

Voraussetzung entspricht, ein Goldenes Rechteck ist:

17 Vgl. Walser, S.42 ff.

Page 12: Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der obigen Tabelle folgendermaßen definiert:

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums?

31

τρ

==−

= 1

ba

b

b

a

Goldenes Rechteck18

Wenn man nun von dem erhaltenen Rechteck mit den Seiten a’ und b’ ein Quadrat mit

der Seitenlänge b’ abschneidet, erhält man ein Rechteck, das logischerweise wieder-

um den beiden vorhergegangenen ähnlich ist. Dieser Schritt lässt sich beliebig oft mit

dem gleichen Ergebnis wiederholen; natürlich muss dabei vorausgesetzt werden, dass

das Ausgangsrechteck „golden“ ist:

τ==−−=

−−=

−= ...

32

2

2 ba

ab

ab

ba

ba

b

b

a

Bei spezieller Betrachtung des goldenen Rechtecks mit der Länge a = 1 und der Breite

b = ρ stellt man eine weitere Eigenschaft der Zahl ρ fest (restliche Eigenschaften s.

Kap.1.3.):

Für die Quadrate, die Schritt für Schritt von diesem Rechteck abgeschnitten werden,

ergeben sich, weil die Länge ihrer Seiten bei jedem Schritt um den Faktor ρ abnimmt,

die Seitenlängen ρ, ρ2, ρ3, ρ4, …, ρn. Bei unendlicher Wiederholung dieses Schrittes

summieren sich diese Quadrate zur Fläche des Ausgangsrechtecks mit dem Inhalt A =

ρ auf. Somit gilt für ρ unter anderem:

n⋅⋅⋅⋅⋅ +++++= 242322212 ... ρρρρρρ

2.1.2. Die Goldenen Dreiecke – das spitze und das s tumpfe 19

Allgemein gilt: Goldene Dreiecke sind gleichschenklige Dreiecke, bei denen zwei Sei-

ten im Verhältnis des Goldenen Schnittes zueinander stehen. Es gibt zwei Arten davon

– die spitzen und die stumpfen goldenen Dreiecke.

Das spitze Goldene Dreieck hat den Spitzenwinkel 36° und die Basiswinkel 72°. Bei

der Annahme der Länge 1 für die Schenkel ergibt sich für die Länge der Basis das

18 eigenständig angefertigt mit EUKLID Dynageo 2.2d 19 Vgl. Walser, S.36ff., S.54f.

Page 13: Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der obigen Tabelle folgendermaßen definiert:

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums?

31

Doppelte von sin18°, was ρ entspricht. Somit verhält sich im spitzen Goldenen Dreieck

jeder Schenkel zur Basis wie 1 zur ρ.

Spitzes Goldenes Dreieck20

Dadurch, dass der Spitzenwinkel des spitzen Golden Dreiecks ABC der Hälfte eines

Basiswinkels entspricht, trennt die Winkelhalbierende eines Basiswinkels vom ganzen

Dreieck ein ähnliches Dreieck ABD ab:

Teilung des spitzen Goldenen Dreiecks21

Das übrig bleibende Dreieck ADC ist ebenfalls gleichschenklig; es hat die Basiswinkel

36° und den Spitzenwinkel 108°. Es handelt sich dab ei um das stumpfe Goldene Drei-

eck. Nimmt man bei diesem Dreieck für die Basis eine Länge von 1 an, ergibt sich für

die Länge eines Schenkels der Kehrwert des Doppelten vom cos36° und das ist eben-

falls ρ. Im stumpfen Goldenen Dreieck verhält sich also die Basis zu einem Schenkel

wie 1 zu ρ – der umgekehrte Fall vom spitzen Goldenen Dreieck.

20 eigenständig angefertigt mit EUKLID Dynageo 2.2d 21 Vgl. Anmerkung 20

Page 14: Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der obigen Tabelle folgendermaßen definiert:

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums?

31

Stumpfes Goldenes Dreieck22

Dadurch, dass, wenn von einem spitzen Goldenen Dreieck durch die Winkelhalbieren-

de eines Basiswinkels ein stumpfes Goldenes Dreieck abgeschnitten wird, wiederum

ein spitzes goldenes Dreieck als Rest übrig bleibt, kann ein spitzes Goldenes Dreieck

in unendlich viele stumpfe Goldene Dreiecke zerlegt werden.

Genauso kann wiederum ein stumpfes Goldenes Dreieck in unendlich viele spitze Gol-

dene Dreiecke zerlegt werden, wobei der stumpfe Spitzenwinkel jedes Mal in 36° und

72° aufgeteilt wird:

Teilung des stumpfen Goldenen Dreiecks23

In beiden Fällen besteht bei jedem Zerlegungsschritt zwischen dem Restdreieck und

dem Ausgangsdreieck eine Ähnlichkeit mit dem Ähnlichkeitsfaktor ρ. Dies ist bei der

Zerlegung des spitzen Dreiecks der Fall, weil das Produkt aus der Basis des Restdrei-

ecks BD und ρ mit der Länge der Strecke AB, der Basis des Ausgangsdreiecks, über-

einstimmt:

ABABBD ⋅=⋅°⋅= ρ72cos2

Beim stumpfen Goldenen Dreieck beträgt der Ähnlichkeitsfaktor ρ, weil die Basis des

bei seiner Zerlegung entstehenden Restdreiecks gleichzeitig ein Schenkel des Aus-

gangsdreiecks ist und ein Schenkel des stumpfen Goldenen Dreiecks entspricht dem

Produkt aus seiner Basis und ρ.

Diese beiden Goldenen Dreiecke sind besonders insofern wichtig, dass sie bei der

Bildung des regelmäßigen Fünfecks, des aus den Diagonalen eines regelmäßigen

Fünfecks aufgebauten Pentagramms und des regelmäßigen Zehnecks eine sehr wich-

tige Rolle einnehmen (→ Kap.2.2.1.)

22 eigenständig angefertigt mit EUKLID Dynageo 2.2d 23 Vgl. Anmerkung 22

Page 15: Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der obigen Tabelle folgendermaßen definiert:

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums?

31

2.1.3. Goldener Winkel Ψ 24

Durch Anwendung des Goldenen Schnittes auf den Kreis erhält man den Goldenen

Winkel Ψ (ausgesprochen: „psi“). Dazu subtrahiert man den Quotienten aus 360° und

der Zahl τ von 360°:

°≈°−°=Ψ 5,137360

360τ

Der Goldene Winkel Ψ25

Der durch die Anwendung des Goldenen Winkels Ψ auf den Einheitskreis entstehende

Kreissektor hat die Bogenlänge

)1(2 ρπ −=Ψb

und seine Fläche beträgt

)1( ρπ −=ΨA

2.2. Entdeckt und bewiesen – Vorkommen des Goldenen Schnittes ohne

beabsichtigtes Anwenden

2.2.1. Regelmäßiges Fünfeck – Pentagramm – regelmäß iges Zehneck 26

Kommen wir zu Beginn dieses Unterkapitels zu der geometrischen Figur, an der der

Grieche Hippasos von Metapont vor ungefähr 2500 Jahren erstmalig den Goldenen

Schnitt entdeckte (→ Kap.4.1.) - dem regelmäßigen Fünfeck bzw. dem berüchtigten

Pentagramm, das man erhält, indem man alle Ecken des Fünfecks miteinander verbin-

det:

24 Vgl. http://de.wikipedia.org/wiki/Goldener_Schnitt 25 Grafik eigenständig angefertigt mit EUKLID Dynageo 2.2d 26 Vgl. Walser, S 36 ff.

Page 16: Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der obigen Tabelle folgendermaßen definiert:

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums?

31

Das regelmäßige Fünfeck mit eingeschriebenem Pentagramm 27

In dieser Figur „wimmelt es nur so“ vom Goldenen Schnitt. Es fängt damit an, dass sie

sich auf viele unterschiedliche Weisen in stumpfe (hellgrau) und spitze (dunkelgrau)

Goldene Dreiecke zerlegen lässt (→ Kap.2.1.2.); wenn man alle Diagonalen einzeich-

net, erhält man außerdem eine um 180° gedrehte Kopi e des Ausgangsfünfecks, deren

Kantenlänge im Vergleich zur Ausgangsfigur um den Faktor ρ2 verkleinert ist (schwarz):

Vorschläge zur Zerlegung des regelmäßigen

Fünfecks in Goldene Dreiecke28 Ferner steht die Länge einer Kante des regelmäßigen Fünfecks zu einer seiner Diago-

nalen im Verhältnis des Goldenen Schnittes und jede Diagonale wird von 2 anderen

jeweils nach dem Goldenen Schnitt geschnitten:

Der Goldene Schnitt im regelmäßigen Fünfeck29

27 eigenständig angefertigt mit EUKLID Dynageo 2.2d 28 Vgl. Anmerkung 27 29 Vgl. Anmerkung 27

Page 17: Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der obigen Tabelle folgendermaßen definiert:

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums?

31

Das Verhältnis der Kantenlänge zur Diagonale lässt sich mithilfe des stumpfen Golde-

nen Dreiecks (s. Kap. 2.1.2.) herleiten: Seine Basis entspricht einer Diagonale und

seine Schenkel den Kanten des regelmäßigen Fünfecks.

Dass die Diagonalen sich gegenseitig nach dem Goldenen Schnitt teilen, ist ebenfalls

einfach nachzuweisen: Das mittlere Stück der geteilten Diagonale entspricht der Länge

der Basis eines spitzen Goldenen Dreiecks, die beiden anderen gleich langen Stücke

links und rechts davon entsprechen in ihrer Länge dem Schenkel des gleichen spitzen

Goldenen Dreiecks – also 1.

Auch in dem mit dem regelmäßigen Fünfeck verwandten regelmäßigen Zehneck

kommt der Goldene Schnitt an vielen Stellen vor - angefangen damit, dass es sich aus

zehn spitzen goldenen Dreiecken (ABM, BCM etc.) zusammensetzt:

Das regelmäßige Zehneck – zusammengesetzt aus spitzen goldenen Dreiecken30

Des Weiteren bildet in dieser Figur die Diagonale zwischen zwei Ecken, die zwei weite-

re Ecken einschließen - z.B. zwischen A und D - mit den zu diesen beiden Ecken gehö-

rigen Radien (AM und DM) ein stumpfes Goldenes Dreieck, welches durch die beiden

dazwischen liegenden Radien (BM und BC) wiederum in zwei stumpfe und ein spitzes

Goldenes Dreieck dividiert wird. Die beiden eben erwähnten Radien BM und BC teilen

die Diagonale AD im Verhältnis des Goldenen Schnittes:

ρ==1

2

2

1

DS

DS

AS

AS

30 eigenständig angefertigt mit EUKLID Dynageo 2.2d

Page 18: Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der obigen Tabelle folgendermaßen definiert:

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums?

31

2.2.2. Der Goldene Schnitt im Ikosaeder 31

Ein Beispiel für den Goldenen Schnitt in der dreidimensionalen Geometrie ist das Iko-

saeder. Es gehört zu den platonischen Körpern und ist aufgebaut aus 20 gleichseitigen

Dreiecken:

Das Ikosaeder32

Diese Figur unterliegt den Regeln des Goldenen Schnittes zunächst dadurch, dass sie

auf dem bekanntlich „goldenen“ regelmäßigen Fünfeck (→ Kap.2.2.1.) basiert: Die fünf

Dreiecke, die an jeder Ecke des Ikosaeders zusammentreffen, bilden aus ihren nicht zu

dieser Ecke laufenden Seiten ein regelmäßiges Fünfeck (in der Grafik rot gekenn-

zeichnet).

Aufgrund dieser Tatsache kann man es nicht anders erwarten, als dass der Goldene

Schnitt bei diesem geometrischen Körper auch an weiteren Stellen auftaucht.

So lassen sich zum Beispiel die 12 Ecken des Ikosaeders so verbinden, dass sie drei

gleich große, aufeinander stehende Goldene Rechtecke (→ Kap.2.1.1.) mit gemeinsa-

mem Mittelpunkt bilden:

Goldene Rechtecke im Ikosaeder33

2.2.3. Die Reihe der Fibonacci-Zahlen

2.2.3.1. Der Stammbaum einer Drohne als Beispiel für die Fib onacci-Reihe 34

Man betrachte folgendes extreme Beispiel:

31 Vgl. Walser, S.101 ff. 32 Vgl. Walser, S.101, Abb. 93d), verändert mithilfe von Microsoft Paint 33 Vgl. Walser, S.103, Abb. 96 34 Vgl. Walser, S.77 f.

Page 19: Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der obigen Tabelle folgendermaßen definiert:

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums?

31

Aus einem unbefruchteten Bienen-Ei entsteht eine Drohne (männliche Biene), aus ei-

nem befruchteten Ei - abhängig von der Ernährung - eine Königin oder eine Arbeitsbie-

ne. Demzufolge hat eine Drohne nur ein mütterliches Elternteil, eine weibliche Biene,

also Königin oder Arbeitsbiene, hingegen ein mütterliches und ein väterliches. Aus die-

ser Annahme ergibt sich der Stammbaum einer Drohne:

Stammbaum der Drohne35

In der 1.Generation gibt es nur eine Drohne ( ), in der 2. nur ein Weibchen ( ), wel-

ches als einziger Abkömmling von der Drohne abstammt. Da von einem Weibchen

sowohl eine Drohne, als auch ein weiteres Weibchen abstammen kann, gibt es in der

3. Generation 2 Bienen unterschiedlichen Geschlechts. Ab der 4. Generation ist der

Stammbaum asymmetrisch - es gibt mehr Weibchen als Männchen: Da von jedem

Weibchen in der folgenden Generation immer je eine weibliche und eine männliche

Biene abstammt, von einer Drohne allerdings immer nur ein Weibchen, gibt es in der n-

ten Elterngeneration an Weibchen und an-1 Männchen, wobei an der Summe aus an-1

und an-2 entspricht:

Stammbaum einer Drohne in tabellarischer Form

Elterngeneration n 1 2 3 4 5 6 7 8 9 10 … n

Anzahl der Bienen an 1 1 2 3 5 8 13 21 34 55 … an= an-1+ an-2

35 Vgl. Walser, S.77, Abb. 82

Page 20: Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der obigen Tabelle folgendermaßen definiert:

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums?

31

2.2.3.2.Mathematische Eigenschaften der Fibonacci-R eihe 36

Die Anzahl der im vorherigen Kapitel besprochenen Bienen in Abhängigkeit von der

Generation an entspricht der bereits aus → Kap.1.3.2. bekannten Reihe der Fibonacci-

Zahlen

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …

bei der sich abgesehen von den beiden Startwerten a1 = 1 und a2 = 1 jede Zahl durch

die Summe der beiden vorhergehenden Zahlen zusammensetzt:

nnn aaa += ++ 12 bzw. 21 −− += nnn aaa

Um auf eine explizite Formel für die Fibonacci-Zahlen an zu kommen, mit der man jede

Zahl dieser Reihe auf Anhieb berechnen kann, müssen wir auf die Linealisierung der

Potenzen des Goldenen Schnittes zurückgreifen (→ Kap. 1.3.2.). Dort sind wir den

Fibonacci-Zahlen zum ersten Mal begegnet und haben folgende Beziehungen festge-

stellt:

1−+= nnn aa ττ

1)()( −+−=− nnn aa ρρ

Durch Subtraktion der unteren Gleichung von der oberen:

)()( ρτρτ +=−− nnn a

und Berücksichtigung folgender Beziehung zwischen τ und ρ (→ Kap. 1.3.1.)

5=+ ρτ

ergibt sich für an folgende Abhängigkeit von τ und ρ:

5

)( nn

naρτ −−=

Mithilfe dieser Formel kann jede Fibonacci-Zahl ohne Weiteres berechnet werden.

Lässt man nun das n gegen ∞+ laufen, erhält man, da nτ dann gegen ∞+ und

n)( ρ− gegen 0 strebt, für große n folgende vereinfachte Formel:

5

n

naτ=

Man sieht also bereits hier, dass zwischen der Fibonacci-Reihe und dem Goldenen

Schnitt eine enge Verbindung besteht. Ein weiteres Phänomen, das diese Aussage

weiter verstärkt, entdeckt man bei der Betrachtung des Quotienten zweier aufeinander

folgenden Fibonacci-Zahlen:

36 Vgl. Walser, S. 75 ff.

Page 21: Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der obigen Tabelle folgendermaßen definiert:

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums?

31

11

1

2

1 ==a

a 625,0

8

5

6

5 ==a

a

5,02

1

3

2 ==a

a 615,0

13

8

7

6 ≈=a

a

6,03

2

4

3 ==a

a 619,0

21

13

8

7 ≈=a

a

6,05

3

5

4 ==a

a 6176,0

34

21

9

8 ≈=a

a

Spätestens ab dem Quotienten aus den Zahlen a6 und a7 wird es offensichtlich, dass

sich der Quotient zweier aufeinander folgenden Fibonaccizahlen an-1 und an mit Zu-

nahme der Größe von n immer mehr ρ = 0,618 – der Zahl, die das Teilungsverhältnis

des Goldenen Schnittes beschreibt – annähert. Dies lässt sich durch die Betrachtung

des Grenzwertes dieses Quotienten bestätigen:

lim

∞→n =−

n

n

a

a 1 lim

∞→n ρ

τττ

ρτρτ ===

−−⋅−− −−− 1

)(

5

5

)( 111

n

n

nn

nn

Die Fibonacci-Zahlen sind ein in der Mathematik häufig auftretendes Phänomen, z.B.

im Pascal’schen Dreieck als „Schrägzeilen-Summen“37:

Die Fibonacci-Zahlen als Schrägzeilen-Summen

im Pascal’schen Dreieck38

37 Vgl. Walser, S. 85 ff. 38 Vgl. Walser, S. 87, Abb. 88

Page 22: Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der obigen Tabelle folgendermaßen definiert:

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums?

31

3. Vorkommen des Goldenen Schnittes außerhalb der Math ematik

In den ersten beiden Kapiteln sind viele besondere mathematische Eigenschaften des

als „Goldener Schnitt“ bezeichneten irrationalen Teilungsverhältnisses genannt wor-

den, ohne die es sich nicht so sehr von anderen – insbesondere rationalen – Teilungs-

verhältnissen wie beispielsweise 1 zu 2 oder 9 zu 16 abheben würde.

Nun behaupte ich aber, dass, wenn es ausschließlich bei diesen „rein mathemati-

schen“ Besonderheiten geblieben wäre, der Goldene Schnitt nicht zu der Popularität

gelangt wäre, die er tatsächlich genießt. Meiner Meinung nach hat er seinen Bekannt-

heitsgrad unter anderem auch der Tatsache zu verdanken, dass man ihn nicht nur in

der leblosen Welt der Mathematik, sondern sehr oft auch in „lebendigen“ Gebieten der

Naturwissenschaften wie Biologie – sprich in der Natur – entdeckt hat. Dies veranlass-

te in der Vergangenheit unter anderem den Franziskanermönch Luca Pacioli dazu, den

Goldenen Schnitt als „Göttliche Teilung“ zu bezeichnen (→ Kap. 4.2.) und den Philoso-

phen Adolf Zeising, ihn als die Basis für ein „Naturgesetzt der Ästhetik“ zu beschreiben

(→ Kap. 4.3.).

Auch gibt es Annahmen, dass der menschliche Geist die „göttliche Proportion“ aus

dem Unterbewusstsein heraus anderen Teilungsverhältnissen bevorzugt. Diese An-

nahmen liefern die Erklärung dafür, dass sich in Bauwerken der Antike das Teilungs-

verhältnis des Goldenen Schnittes finden lässt, obgleich es nicht intentional angewen-

det wurde.

In diesem Kapitel sollen einige solche Beispiele aus den Bereichen Biologie, Architek-

tur, Kunst und Musik kurz präsentiert werden. Trotz der Tatsache, dass ich dieses Ka-

pitel aufgrund meiner Schwerpunktsetzung auf „einige kurz präsentierte Beispiele“ be-

schränken werde, sollte es Ihnen, dem Leser, ganz klar sein, dass die Anzahl solcher

Beispiele sehr groß ist – dass der Goldene Schnitt nicht nur an wenigen Stellen, son-

dern nahezu in allen nur erdenklichen Bereichen unseres Lebens vorkommt.

3.1. Der Goldene Schnitt in der Biologie

3.1.1. Goldener Schnitt in der Anatomie 39

Das wohl bekannteste Beispiel für das Vorkommen des Goldenen Schnittes in der Bio-

logie wurde durch den im Kapitel „Historie des Goldenen Schnittes“ (→ Kap.4.3.) näher

beschriebenen Philosophen Adolf Zeising entdeckt: Seinen Nachforschungen zufolge

sollen – um nur zwei seiner Ergebnisse zu nennen – der menschliche Körper in seiner

39 Vgl. http://de.wikipedia.org/wiki/Goldener_Schnitt

Page 23: Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der obigen Tabelle folgendermaßen definiert:

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums?

31

Höhe vom Bauchnabel und der durch diese Teilung entstehende untere Teil davon

wiederum vom Knie im Goldenen Schnitt geteilt sein.

Allerdings basieren diese und alle weiteren Entdeckungen des Goldenen Schnittes am

menschlichen Körper durch den Philosophen nicht auf wissenschaftlichen Grundlagen,

sondern ausschließlich auf Beobachtungen. Ernüchternd sind auch genauere Überprü-

fungen dieser Thesen: die Abweichungen liegen in extremsten Fällen bei bis zu 20

Prozent.

Bei der Vermessung der Teilung meines eigenen Körpers durch den Bauchnabel stellte

ich zu meinem Erstaunen eine Abweichung vom Goldenen Schnitt von nur ungefähr

3% fest.

3.1.2. Goldener Schnitt in der Botanik

In der Botanik wäre zum einen ein Beispiel für den Goldenen Schnitt das Wachstum

einiger Pflanzen, bei denen die Knoten die ganzen Zweige im Verhältnis des Goldenen

Schnittes teilen40:

Die Teilung einer Pflanze im Goldenen Schnitt41

Ein weiteres Beispiel liefern die Blüten einiger Pflanzen wie zum Beispiel die der Son-

neblume oder der Rose: Sortiert man ihre einzelnen Blütenblätter nach ihrer Größe, so

stellt man fest, dass zwei in ihrer Größe „benachbarten“ Blätter (1 und 2, 2 und 3 usw.)

zum Zweck der optimalen Nutzung des Sonnenlichtes immer den Goldenen Winkel Ψ =

137,5° bilden 42:

Anordnung von Blütenblättern im Abstand des

Goldenen Winkels (von oben betrachtet)43

40 Vgl. http://uni-schule.san-ev.de/space/Bayreuth/1024/ 41 Vgl. Anmerkung 40 42 Vgl. http://de.wikipedia.org/wiki/Goldener_Schnitt 43 Vgl. http://de.wikipedia.org/wiki/Goldener_Schnitt

Page 24: Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der obigen Tabelle folgendermaßen definiert:

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums?

31

3.2. Der Goldene Schnitt in der Architektur

In der Architektur gibt es sowohl Fälle, bei denen der Goldene Schnitt bewusst ange-

wendet wurde, als auch welche, bei denen er erst im Nachhinein an den Bauwerken

entdeckt wurde, obwohl er nicht bewusst angewandt worden war. Diese Tatsache

spricht wiederum dafür, dass der Goldene Schnitt dem Menschen im Unterbewusstsein

veranlagt ist.

Für jeden der beiden Fälle möchte ich hier jeweils ein Beispiel bringen:

Die Cheopspyramide44

Die Cheopspyramide wurde ungefähr um 2600 v. Chr. von den Ägyptern erbaut45; d.h.

sie hätten, insofern sie nicht doch entgegen unserer Annahmen den Goldenen Schnitt

schon kannten, bei ihrem Bau noch nicht mit diesem Teilungsverhältnis arbeiten kön-

nen, da dieses erst um 500 v. Chr. von den Griechen entdeckt wurde. Nichtsdestotrotz

findet man in diesem riesigen Bauwerk den Goldenen Schnitt: Die Pyramidenhöhe ver-

hält sich zur Hälfte der Seitenkante nach dem Verhältnis des Goldenen Schnittes.

Ein Beispiel für angewendeten Goldenen Schnitt in der Architektur bildet der aus der

Renaissance stammende Dom Santa Maria del Fiore in Florenz. Die Höhe seiner 1434

fertig gestellten Kuppel46 beträgt genau 144 Bracci47 und die Höhe ihres Ansatzes ge-

nau 89 Bracci, d.h. die Kuppel des Doms verhält sich im Goldenen Schnitt zu ihrem

Ansatz48:

Santa Maria del Fiore (Florenz) 49

44 Vgl. www.lupi.ch/Schools/ weltwunder/cheopspyramide.jpg 45 Vgl. „Cheops“: Microsoft ® Encarta ® Enzyklopädie 2005. © 1993-2004 Microsoft Corporation 46 Vgl. „Florenz“: Microsoft ® Encarta ® Enzyklopädie 2005. © 1993-2004 Microsoft Corporation 47 1 Braccio = 58.4 cm 48 Vgl. http://www.asamnet.de/~hollwecm/section/inhalt.htm 49 Vgl. Anmerkung 46

Page 25: Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der obigen Tabelle folgendermaßen definiert:

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums?

31

3.3. Der Goldene Schnitt in der Kunst

In der bildenden Kunst wurde und wird der Goldene Schnitt oft – mit Erfolg – verwen-

det, um irgendwelche Details im Bild hervorzuheben und um Harmonie in das Bild zu

bringen. Es gibt unzählige Beispiele für die Verwendung der „Göttlichen Teilung“50 in

der Kunst: Zu den berühmtesten davon zählen das Bild zu den menschlichen Proporti-

onen von Vitruv De Divina Proporzione (1509; → Kap.4.2.) und die Mona Lisa (1503-

1506) von Leonardo da Vinci:

„Mona Lisa“ von Da Vinci mit eingeschriebenem

spitzem Goldenem Dreieck51

3.4. Der Goldene Schnitt in der Musik Es mag zwar anfangs unlogisch klingen, aber der Goldene Schnitt lässt sich sogar in

der Musik verwenden. Zum Beispiel verwendete ihn der ungarische Komponist Béla

Bartók bei seinen Kompositionen: Bei seiner „Sonate für zwei Klaviere und ein Schlag-

zeug“ hat der erste Satz eine Länge von 2457 und der zweite eine Länge von 3975

Achtelnoten. Der Quotient dieser beiden Zahlen beträgt ungefähr 1,618, was unter

Vernachlässigung der kleinen Differenz aufgrund ganzer Zahlen ziemlich genau τ ent-

spricht.52

Auch spielt der Goldene Schnitt eine wichtige Rolle beim Bau von Geigen und Flöten:

Da Frequenzen im Verhältnis der Fibonacci-Zahlen als „besonders reizvoll“53 empfun-

den werden, „bürgt der Goldene Schnitt bei ihrem Bau für einen schönen Klang“. Sogar

der berühmte Geigenbauer Stradivari soll angeblich von dem Goldenen Schnitt

Gebrauch gemacht haben.54

50 Bezeichnung des Goldenen Schnittes durch Luca Pacioli (→ Kap. 4.2.) 51 Vgl. „Leonardo Da Vinci“: Encarta 2005; Dreieck ergänzt mit Microsoft Paint 52 Vgl. http://de.wikipedia.org/wiki/Goldener_Schnitt 53 Vgl. http://www.asamnet.de/~hollwecm/section/inhalt.htm 54 Vgl. http://de.wikipedia.org/wiki/Goldener_Schnitt

Page 26: Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der obigen Tabelle folgendermaßen definiert:

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums?

31

4. Die Historie des Goldenen Schnittes 55

Der Goldene Schnitt ist als Phänomen in der Mathematik seit Jahrtausenden bekannt.

Die Faszination, die er auslöste, war nie gering.

In diesem Kapitel werden die wichtigsten historischen Personen von der Antike bis zur

Gegenwart dargestellt, die durch ihre Forschungen und Schriften zur Entwicklung der

Bekanntheit und der Popularität des Goldenen Schnittes beigetragen haben.

4.1. Der Goldene Schnitt in der Antike: Pythagoräer - Euklid 56

Das Teilungsverhältnis des Goldenen Schnittes soll erstmals um 450 v. Chr. durch

Hippasos von Metapont, einem Angehörigen des Geheimbunds der Pythagoräer – den

Nachfolgern des berühmten Pythagoras, entdeckt worden sein, als dieser Untersu-

chungen am regelmäßigen Fünfeck durchführte und entgegengesetzt der Annahme

der Pythagoräer, dass sich alles auf der Welt durch ganze Zahlen bzw. Quotienten

ganzer Zahlen ausdrücken ließe, entdeckte, dass bei einem regelmäßigen Fünfeck das

Verhältnis der Kantenlänge zur Diagonale irrational ist; diese beiden Strecken stehen

nämlich im Verhältnis des Goldenen Schnittes zueinander (→ Kap.2.2.1.). Dabei war

das Fünfeck bzw. das Pentagramm ironischerweise das Symbol der Pythagoräer.

Mit der Entdeckung des Goldenen Schnittes entdeckte Hippasos zugleich die Inkom-

mensurabilität von Strecken, anhand derer er letztlich auch die Existenz irrationaler

Zahlen bewies. Seine Entdeckung bildete also die Widerlegung der Grundannahme

des Pythagoreischen Geheimbundes von der Alleinexistenz rationaler Zahlen. Als An-

gehöriger dieses Bundes durfte der Mathematiker diese Entdeckung nicht öffentlich

verbreiten; als er dies jedoch dennoch tat, soll er Gerüchten zufolge zur Strafe von

seinen Kameraden ertränkt worden sein.

Die erste genaue Beschreibung des Goldenen Schnittes stammt ebenfalls von einem

Griechen - dem Mathematiker Euklid aus der Zeit 325-270 v. Chr.. Er zählt zu den be-

deutendsten Mathematikern seiner Zeit; sein im Original auf Arabisch geschriebenes

Hauptwerk Elemente, eine Abhandlung über Mathematik in 13 Bänden, bildete bis ins

19. Jahrhundert „die Grundlage der Geometrie überhaupt“57. Unter anderem stammt

von ihm der Euklidische Lehrsatz, besser bekannt als der Kathetensatz58.

55 Vgl. http://de.wikipedia.org/wiki/Goldener_Schnitt 56 Vgl. http://de.wikipedia.org/wiki/Goldener_Schnitt 57 Vgl. „Euklid (Mathematiker)“: Encarta 2005 58 Vgl. Großes Lexikon, ISIS Verlag, 1996

Page 27: Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der obigen Tabelle folgendermaßen definiert:

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums?

31

Euklid entdeckte den Goldenen Schnitt bei Untersuchungen an Platonischen Körpern

und – wie auch Hippasos von Metapont – dem regelmäßigen Fünfeck bzw. dem Pen-

tagramm. Seine Bezeichnung für den Goldenen Schnitt wurde folgendermaßen ins

Lateinische übersetzt: „proportio habens medium et duo extrema“, was auf Deutsch

„Teilung im inneren und äußeren Verhältnis“ heißt.

4.2. Der Goldene Schnitt in der Renaissance 59 In der Renaissance beschäftigte sich der Franziskanermönch Luca Pacioli di Borgo

San Sepolcro (1445 - 1514), Mathematik-Dozent an der Universität von Perugia, mit

den Arbeiten Euklids. Er bezeichnete den Goldenen Schnitt als „divina proportio“ – „die

göttliche Teilung“. Dabei bezog er sich auf Platons Identifizierung der Schöpfung mit

den platonischen Körpern, bei deren Konstruktion der Goldene Schnitt als wichtiges

Hilfsmittel fungiert (→ Kap. 2.2.2.). Der Franziskanermönch verfasste das Buch „De

Pivina Proportione“, in dem er sich auf rein mathematischer Basis mit dem Goldenen

Schnitt auseinandersetzt, d.h. ohne darin einen Bezug zur Kunst oder Architektur her-

zustellen. Allerdings verfasste er zur gleichen Zeit auch eine Abhandlung über die

Schriften des römischen Architekten Virtuv aus dem 1. Jahrhundert v. Chr., dessen

architekturtheoretische Werk das einzige ist, das uns aus der Antike überliefert ist60,

und in dem der römische Gelehrte die Proportionen des menschlichen Körpers als

Vorbild für die Architektur darstellt. Der Universalgelehrte Leonardo da Vinci (1451-

1519), der in Mailand 7 Jahre lang Luca Paciolis Schüler gewesen war, illustrierte die-

se Abhandlung. Seine Zeichnung über die menschlichen Proportionen nach Vitruv ist

eines der berühmtesten Kunstwerke der Kunstgeschichte:

Leonardo da Vinci: De Divina Propozione61

59 Vgl. http://de.wikipedia.org/wiki/Goldener_Schnitt 60 Vgl. „Vitruv“: Encarta 2005 61 Vgl. „Leonardo da Vinci“: Encarta 2005

Page 28: Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der obigen Tabelle folgendermaßen definiert:

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums?

31

Die Abweichung des Verhältnisses zwischen der Quadratseite und dem Kreisradius in

diesem Bild vom Goldenen Schnitt beträgt 1,7%, allerdings wird der goldene Schnitt in

dem zum Bild gehörigen Buch überhaupt nicht erwähnt.

In der Renaissance wurde der Goldene Schnitt außerdem erstmals durch Architekten,

Typographen, Maler, Bildhauer und Musiker als das ideale Zahlenverhältnis des Klas-

sizismus verbreitet.62

4.3. Der Goldene Schnitt von der Frühen Neuzeit bis zur Gegenwart 63

Im Jahre 1835 verwendete der Mathematiker Martin Ohm, Bruder des eher bekannten

Physikers Georg Simon Ohm, nach dem die Einheit des elektrischen Widerstandes

benannt ist64, in einem Mathematik-Lehrbuch erstmals die heute noch übliche Bezeich-

nung „Goldener Schnitt“.

Verschiedene Schriftsteller des 19. Jahrhunderts, darunter aber insbesondere der Phi-

losoph Adolf Zeising, behaupteten in ihren Abhandlungen über die Schriften Luca Pa-

ciolis, er habe durch sie in Zusammenarbeit mit Leonardo da Vinci den Goldenen

Schnitt wieder mit der Kunst zusammengebracht und somit dazu beigetragen, dass

diese „göttliche Teilung“65 eine bedeutende Rolle in der Malerei der Renaissance ein-

nahm. Aufgrund seiner Überzeugung, der Goldene Schnitt sei die Basis eines Natur-

gesetzes der Ästhetik, suchte und fand Zeising den Goldenen Schnitt überall. Trotz der

Tatsache, dass er der erste war, der in den Kunst- und Bauwerken der Antike und der

Renaissance den Goldenen Schnitt zu erkennen glaubte, löste der Philosoph mit sei-

nen Schriften über dieses besondere Teilungsverhältnis viel Begeisterung aus.

Im Jahre 1876 führte der Psychologe Gustav Theodor Fechner Experimente mit Test-

personen durch, mithilfe derer er festzustellen versuchte, ob es bei diesen Personen

für Strecken, Rechtecke und Ellipsen, die nach den Proportionen des Goldenen Schnit-

tes aufgeteilt bzw. aufgebaut sind (Goldenes Rechteck etc., → Kap.2.1.), Präferenzen

gibt. Ein positives Ergebnis erhielt er allerdings nur bei dem Goldenen Rechteck: Die-

ses wurde - im Gegensatz zu anderen nach dem Goldenen Schnitt proportionierten

Figuren - im Vergleich zu „nicht goldenen“ Rechtecken bevorzugt. Jüngeren Untersu-

chungen zufolge hängen die Ergebnisse solcher Experimente stark von den Umstän-

den ab, die während des Experiments vorherrschen.

Personen aus dem 20. Jahrhundert, die man mit dem Goldenen Schnitt in Verbindung

bringt, sind zum einen der Rumäne Matila Costiescu Ghyka, der Anfang des Jahrhun-

62 Vgl. www.dirk-behlau.de/pdf/Dirk_ Behlau-MX-Magazin-Der_goldene_Schnitt.pdf 63 Vgl. http://de.wikipedia.org/wiki/Goldener_Schnitt 64 Vgl. „Ohm, Georg Simon“: Encarta 2005 65 Vgl. Anmerkung 50

Page 29: Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der obigen Tabelle folgendermaßen definiert:

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums?

31

derts den Goldenen Schnitt in seinen Schriften als „fundamentales Geheimnis des Uni-

versums“ beschrieb und viele Beispiele für den Goldenen Schnitt in der Natur präsen-

tierte und zum anderen die Kunsthistorikerin Marguerite Neveux, die Ende des Jahr-

hunderts versuchte mithilfe von Röntgenstrahlen in alten Gemälden, in denen sie die

Verwendung des Goldenen Schnittes vermutete, Markierungspunkte für das sonderba-

re Teilungsverhältnis zu entdecken – allerdings ohne Erfolg.

Letztendlich kann man klar erkennen, dass sich der Goldene Schnitt wie ein roter Fa-

den durch die Geschichte zieht und dass es immer Menschen gab, gibt und höchst-

wahrscheinlich auch geben wird, die sich auch in Zukunft mit ihm beschäftigen und

versuchen werden zu beweisen bzw. zu widerlegen, dass der Goldene Schnitt nicht

nur ein Teilungsverhältnis, sondern wie Ghyka schrieb das „fundamentale Geheimnis

des Universums“ ist.

5. Die Popularität des Goldenen Schnittes

Zum Ende der Arbeit möchte noch einmal explizit darauf eingehen, was den Goldenen

Schnitt eigentlich so populär macht.

Sind es die unzähligen mathematischen Besonderheiten, die er im Vergleich zu ande-

ren Teilungsverhältnissen aufweist?

Ist es die Tatsache, dass man ihn abgesehen von der Mathematik auch in der Natur

und in den Proportionen des menschlichen Körpers vorfindet?

Ist es die Feststellung, dass der Goldene Schnitt dem „uns allen gemeinsamen Schön-

heitsempfinden“66 entspricht?

Meiner Meinung nach können all diese Fragen mit „Ja“ beantwortet werden. Diese drei

Faktoren tragen nach meiner Ansicht gleichermaßen dazu bei, dass der Goldene

Schnitt in bestimmten Kreisen einen so hohen Bekanntheits- und Beliebtheitsgrad ge-

nießt. Dabei variiert die Gewichtung dieser Faktoren wahrscheinlich für jeden einzelnen

abhängig davon, wo seine Interessen liegen. So finde ich persönlich – als ein an Ma-

thematik interessierter Mensch – die mathematischen Besonderheiten des Goldenen

Schnittes bewundernswert. Ein Philosoph wie Adolf Zeising oder Matila Costiescu

Ghyka wird bei seiner Suche nach dem „fundamentalen Geheimnis des Universums“

auf den Goldenen Schnitt treffen und wegen seines unzähligen Vorkommens in der

66 Vgl. www.dirk-behlau.de/pdf/Dirk_ Behlau-MX-Magazin-Der_goldene_Schnitt.pdf

Page 30: Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der obigen Tabelle folgendermaßen definiert:

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums?

31

Natur eine Faszination für ihn entwickeln (→ Kap.4.3.) und ein Architekt wird sich für

die Wirkung des Goldenen Schnittes auf sich selbst und seine Klienten begeistern67.

Somit betrachte ich es für logisch, dass es immer Menschen geben wird, die sich für

den Goldenen Schnitt begeistern werden.

Und wer weiß – vielleicht wird sich irgendwann wirklich herausstellen, dass der Golde-

ne Schnitt „der Schlüssel des Lebens“ ist…

Nachwort

Obwohl ich meine Jahresarbeit anfangs nicht aus Begeisterung für den Goldenen

Schnitt geschrieben habe, bin ich doch zufrieden, wenn nicht sogar froh, dieses Thema

gewählt zu haben. Ich fand es von Beginn an interessant und mancherorts sogar faszi-

nierend – trotz der Tatsache, dass die Beschäftigung damit relativ zeitaufwändig war.

Wie bereits im Vorwort angekündigt, habe ich mich bei der Auswahl meiner Themen

und ihrer Ausführung oft beschränken müssen, um nicht den Umfang meiner Arbeit zu

sprengen, aber vermutlich ergeht es jedem so.

Bei meiner Erforschung des Goldenen Schnittes habe ich oft Dinge festgestellt, die mir

so nie in den Sinn gekommen wären. Das langweilige Bild vom Goldenen Schnitt, das

ich aus der Mittelstufe behalten hatte, hat sich durch diese Jahresarbeit sehr verändert.

Ich fand es sehr spannend, die mathematischen Eigenschaften der Zahlen τ und ρ zu

erforschen und festzustellen, wie oft man den Goldenen Schnitt in der wirklichen Welt

tatsächlich wieder findet.

Ich muss eingestehen, dass ich mit der Ansicht des Rumänen Matila Costiescu Ghyka,

dass der Goldene Schnitt das „fundamentale Geheimnis des Universums“ sei, nicht

einverstanden bin. Trotz meiner Begeisterung für dieses sonderbare Teilungsverhältnis

empfinde ich diese Aussage als übertrieben. Wenn ich mir jetzt selbst die Frage stelle,

die im Titel meiner Jahresarbeit steht, stelle ich fest, dass ich zwar nicht mehr definitiv

der Meinung bin, der Goldene Schnitt sei nur ein Teilungsverhältnis, dass ich aber

dennoch noch lange nicht soweit gehe, dieses Phänomen der Mathematik als etwas so

sonderbares zu bezeichnen. Meiner Meinung nach liegt es bei jedem einzelnen selbst,

wie er diese Frage beantwortet, denn die tatsächliche Antwort kennt bislang keiner und

es ist nicht unbedingt abzusehen, dass sie bald jemand beantworten können wird.

67 Vgl. Anmerkung 56

Page 31: Inhaltsverzeichnis Kapitel Seite - fvss.de · PDF filesind die so genannten Fibonacci-Zahlen (→ Kap. 2.4.). Sie werden entsprechend der obigen Tabelle folgendermaßen definiert:

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums?

31

Glossar Koeffizienten Unveränderlicher Faktor einer veränderlichen Größe

platonische Körper

Körper, bei denen alle Seiten gleiche, regelmäßige und flache Vielecke sind: Tetraeder, Würfel, Oktaeder, Dodekaeder, Iko-saeder

inkommensurabel

Nicht mit der gleichen Maßeinheit messbar; inkommensurable Strecken sind die geometrischen Äquivalente der irrationalen Zahlen

Präferenz Vorzug Literaturverzeichnis

Bücher und Lexika:

1. Dr. Schneider, Christoph (Redakteur); Großes Lexikon; ISIS Verlag, 1996 2. © 1993-2004 Microsoft Corporation;

Microsoft ® Encarta ® Enzyklopädie 2005. Alle Rechte vorbehalten.

3. Walser, Hans; Der Goldene Schnitt Stuttgart; Leipzig: Teubner; Zürich: Verl. der Fachvereine, 1993

Internet:

1. http://www.asamnet.de/~hollwecm/section/inhalt.htm, 27.01.05

2. www.dirk-behlau.de/pdf/Dirk_Behlau-MX-Magazin-Der_goldene_Schnitt.pdf,

17.03.05

3. www.lupi.ch/Schools/ weltwunder/cheopspyramide.jpg, 04.05.05

4. http://uni-schule.san-ev.de/space/Bayreuth/1024/, 22.03.05

5. http://de.wikipedia.org/wiki/Goldener_Schnitt, 17.03.05

Erklärung:

Ich versichere hiermit, dass ich diese Facharbeit selbstständig verfasst, keine anderen als die angegebenen Hilfsmittel verwendet habe und dass sämtliche Stellen, die benutz-ten Werken im Wortlaut oder dem Sinne nach entnommen worden sind, mit Quellenan-gaben kenntlich gemacht wurden. Diese Versicherung gilt auch für Zeichnungen, Skiz-zen und bildliche Darstellungen. Heli, den 08.05.2005