Mass Spectroscopic Fragmentation Reactions, XXI [1...

6
This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution 4.0 International License. Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung 4.0 Lizenz. Mass Spectroscopic Fragmentation Reactions, XXI [1] Factors Influencing the Loss of Xylene and Toluene from the Polyene Chain of Carotenoids B. Johannes*, H. Brzezinka, and H. Budzikiewicz Institut für Organische Chemie der Universität Köln Z. Naturforsch. 84b, 300-305 (1979); received November 7, 1978 MS, Analysis, Carotenoids, Polyene Chain By examining suitably substituted analogs of carotenoids the steric and electronic influences governing the elimination of xylene and toluene from the polyene chain have been clarified. Introduction toluene, M-92, and xylene, M-106) from the polyene The molecular ions of carotenoids lose in a chain [2-4] by formal cleavage of the double bonds characteristic manner hydrocarbon moieties ( i.a., (Scheme 1) as shown by deuterium labellings [5-7]. Scheme 1**. In analogy to the thermal degradation [8-12] and by application of the Woodward-Hoffmann-rules [10, 12, 13] the following steps have been suggested (Scheme 2): a) 8 electron conrotatory electrocyclic reaction, b) 6 electron disrotatory electrocyclic reaction, c) opening of the four-membered ring. The relative abundances of [M-92]+ and of [M-106]t depend upon the overall structure of a Requests for reprints should be sent to Prof. Dr. H. Budzikiewicz, Institut für Organische Chemie der Universität, Lehrstuhl II, Greinstraße 4, D-5000 Köln 41. * New address: Staatl. Veterinär-Untersuchungsamt, Eintrachtweg 17, D-3000 Hannover. ** Here and in the following schemes the analogous elimination reactions from the right-hand part of the molecules have been omitted. 0340-5087/79/0200-0300/$ 01.00/0 given carotenoid. Thus, it has been shown by Enzell [14] that the intensity ratio R = I ([M-92] + )/ I([M-106]!) decreases with the number of conjugated double bonds in the chain. Extension of the chromo- phore [12, 15] by a carbonyl group or an aromatic ring results in an activation of the a-double bond (probably by electronic effects [12]) and in a devia- tion from the calculated R values (e.g., a 6-keto group has approximately the same effect as an extension of the unsaturated chain by two C,C- double bonds [15] while a phenyl group amounts to

Transcript of Mass Spectroscopic Fragmentation Reactions, XXI [1...

  • This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution4.0 International License.

    Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschungin Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung derWissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht:Creative Commons Namensnennung 4.0 Lizenz.

    Mass Spectroscopic Fragmentation Reactions, XXI [1] Factors Influencing the Loss of Xylene and Toluene from the Polyene Chain of Carotenoids

    B . J o h a n n e s * , H . B r z e z i n k a , a n d H . B u d z i k i e w i c z

    Institut für Organische Chemie der Universität K ö l n

    Z. Naturforsch. 84b , 300-305 (1979); received N o v e m b e r 7, 1978

    MS, Analysis, Carotenoids, Polyene Chain

    B y examining suitably substituted analogs o f carotenoids the steric and electronic influences governing the elimination of xylene and toluene f r o m the polyene chain have been clarified.

    Introduction t o l u e n e , M - 9 2 , a n d x y l e n e , M - 1 0 6 ) f r o m t h e p o l y e n e T h e m o l e c u l a r i o n s o f c a r o t e n o i d s lose i n a c h a i n [ 2 - 4 ] b y f o r m a l c l e a v a g e o f t h e d o u b l e b o n d s

    c h a r a c t e r i s t i c m a n n e r h y d r o c a r b o n m o i e t i e s ( i .a . , ( S c h e m e 1) a s s h o w n b y d e u t e r i u m l a b e l l i n g s [ 5 - 7 ] .

    Scheme 1**.

    I n a n a l o g y t o t h e t h e r m a l d e g r a d a t i o n [ 8 - 1 2 ] a n d

    b y a p p l i c a t i o n o f t h e W o o d w a r d - H o f f m a n n - r u l e s

    [10, 12 , 1 3 ] t h e f o l l o w i n g s t e p s h a v e b e e n s u g g e s t e d

    ( S c h e m e 2 ) :

    a) 8 e l e c t r o n c o n r o t a t o r y e l e c t r o c y c l i c r e a c t i o n ,

    b) 6 e l e c t r o n d i s r o t a t o r y e l e c t r o c y c l i c r e a c t i o n ,

    c) o p e n i n g o f t h e f o u r - m e m b e r e d r i n g .

    T h e r e l a t i v e a b u n d a n c e s o f [M-92]+ a n d o f

    [ M - 1 0 6 ] t d e p e n d u p o n t h e o v e r a l l s t r u c t u r e o f a

    Requests f o r reprints should be sent to Prof . Dr . H . Budzikiewicz , Institut für Organische Chemie der Universität, Lehrstuhl I I , Greinstraße 4, D-5000 Köln 41. * New address: Staatl. Veterinär-Untersuchungsamt,

    Eintrachtweg 17, D-3000 Hannover. ** Here and in the fol lowing schemes the analogous

    elimination reactions f r o m the right-hand part o f the molecules have been omitted.

    0340-5087/79/0200-0300/$ 01.00/0

    g i v e n c a r o t e n o i d . T h u s , i t h a s b e e n s h o w n b y

    E n z e l l [ 14] t h a t t h e i n t e n s i t y r a t i o R = I ([M-92] + )/

    I ( [ M - 1 0 6 ] ! ) d e c r e a s e s w i t h t h e n u m b e r o f c o n j u g a t e d

    d o u b l e b o n d s i n t h e c h a i n . E x t e n s i o n o f t h e c h r o m o -

    p h o r e [12 , 1 5 ] b y a c a r b o n y l g r o u p or a n a r o m a t i c

    r i n g r e s u l t s i n a n a c t i v a t i o n o f t h e a - d o u b l e b o n d

    ( p r o b a b l y b y e l e c t r o n i c e f f e c t s [12]) a n d i n a d e v i a -

    t i o n f r o m t h e c a l c u l a t e d R v a l u e s (e.g., a 6 - k e t o g r o u p h a s a p p r o x i m a t e l y t h e s a m e e f f e c t a s a n

    e x t e n s i o n o f t h e u n s a t u r a t e d c h a i n b y t w o C ,C-

    d o u b l e b o n d s [ 1 5 ] w h i l e a p h e n y l g r o u p a m o u n t s t o

  • B. Johannes et al. • Mass Spectroscopic Fragmentation Reactions 301

    o n e d o u b l e b o n d ) . S t e r i c i n f l u e n c e s m a y a l s o a l t e r

    t h e v a l u e o f R : 2 ( = 1 , 2 2 - d i m e t h y l - l ) , e.g., s h o w s a b o u t t h e s a m e R a s 3. T h e p r e s e n c e o f t h e t w o

    m e t h y l g r o u p s c o m p e n s a t e s f o r t h e a c t i v a t i n g in-

    fluence o f t h e t w o p h e n y l r i n g s [12] . A s i m i l a r e f f e c t

    h a s b e e n o b s e r v e d w i t h p r e n y l g r o u p s [16] .

    Scheme 3. 1: R = H, 2: R — CH3.

    T o o b t a i n s y s t e m a t i c i n f o r m a t i o n o n t h e c h a i n

    f r a g m e n t a t i o n c o m p o u n d s 5 - 2 4 h a v e b e e n s y n t h e -

    s i z e d . D e u t e r i u m l a b e l l i n g o f t h e c e n t r a l d o u b l e

    b o n d a l l o w s t o d e t e r m i n e t h e o r i g i n e o f t h e e x p e l l e d

    n e u t r a l s ince D s c r a m b l i n g h a s b e e n r e p o r t e d

    [5, 6, 13] n o t t o o c c u r t o a n y m a j o r e x t e n t .

    Results and Discussion

    1. Xylene vs. toluene elimination

    F r a n c i s s u g g e s t s [ 1 2 ] t h a t t h e l o s s o f x y l e n e is

    f a v o r e d o v e r t h a t o f t o l u e n e b y a b o u t o n e o r d e r o f

    m a g n i t u d e b e c a u s e i n t h e r a t e d e t e r m i n i n g first

    c y c l i s a t i o n s t e p ( f o r m a t i o n o f c y c l o o c t a t r i e n e , see

    S c h e m e 2) t h e r e is n o i n t e r f e r e n c e b y a m e t h y l

    g r o u p . F o r t h e loss o f t o l u e n e , h o w e v e r , C - 9

    ( r e a c t i o n (2)) or C - 1 3 ' ( r e a c t i o n (3)) b e c o m e s q u a t e r -

    n a r y . I f t h i s a s s u m p t i o n is c o r r e c t E 1 a n d 3 s h o u l d

    b e h i g h l y f a v o r e d f o r 5 (no m e t h y l a t e i t h e r t e r -

    m i n a l C o f t h e o c t a t e t r a e n e p o r t i o n s i n v o l v e d ) .

    T h i s is c l e a r l y n o t t r u e f o r E l ( E 1 + 2 t o g e t h e r

    y i e l d o n l y 9 % ) .

    Compound

    elimination (E) Me interference fragment M-rel. amount [ % ]

    92

    2 3 4 + — + 92 93 94

    68 23

    Scheme 4

    T h e s e r e s u l t s l e a d t o t h e c o n c l u s i o n t h a t (a) a

    m e t h y l g r o u p a t a t e r m i n a l C o f t h e o c t a t e t r a e n e

    p o r t i o n d o e s r e d u c e t h e e l i m i n a t i o n r a t e (cf. S c h e m e 4, E 2 a n d 4) , (b) t h e b u l k y c y c l o h e x e n y l

    r i n g d r a s t i c a l l y i n t e r f e r e s w i t h t h e e l i m i n a t i o n (see

    S c h e m e 4, E 1), a n d (c) s ince " n o r m a l " c a r o t e n o i d s

    (see S c h e m e 1) d o l o s e x y l e n e i n p r o c e s s 1 , x y l e n e

    m u s t b e l o s t m o r e r e a d i l y t h a n t o l u e n e f o r e n e r g e t i c

    r e a s o n s (cf. re f . [ 12] , p . 1449) . T h e s e c o n c l u s i o n s a r e

    c o n f i r m e d b y t h e f o l l o w i n g r e s u l t s .

    A s e x p e c t e d , a c o m p a r i s o n o f 6 a n d 7 s h o w s t h a t 6

    l o o s e s x y l e n e ( a b o u t 1 0 % o f t h e s u m o f t h e t o l u e n e

    e l i m i n a t i o n s ) w h i l e 7 d o e s n o t s h o w a n y M - 9 2 . I t

    s h o u l d b e n o t e d t h a t t h e r a t i o f o r E 2 a n d 3 i s t h e

    s a m e f o r 6 a n d f o r 7 t h o u g h E 2 s h o u l d b e less

    f a v o r e d f o r 6 ( R = C H 3 ! ) . T h i s c a l l s f o r a n o v e r -

    w h e l m i n g e f f e c t o f t h e b u l k y c y c l o h e x e n e r i n g e v e n

    i f r e m o t e b y o n e e t h y l e n e u n i t .

    Compound 6

    eliminatiom (E) 1 2 3 1 2 3 Me interference — + + — — + fragment M- 106 93 94 92 93 94 rel. amount [ % ] 5 65 30 0 66 34

    Scheme 5. 6: R = CH3, 7: R = H.

    T h e i n f l u e n c e o f t h e t e r m i n a l c y c l o h e x e n e r i n g is

    d e m o n s t r a t e d b y a c o m p a r i s o n o f 8 a n d 9. W h i l e 8

    d o e s n o t g i v e a n y M - 9 3 (r ings a d j a c e n t a n d 1 e t h y -

    l e n e u n i t r e m o t e ) , M - 9 4 ( E 2) is g r e a t l y f a v o r e d

    f o r 9. N e v e r t h e l e s s , t h e s u m o f t h e t o l u e n e e l i m i n a -

    t i o n s f r o m 9 a m o u n t s t o a b o u t 2 % o f t h e i n t e n s i t y

    o f M+ a s c o m p a r e d w i t h a b o u t 2 5 % f o r 6.

  • 302 B. Johannes et al. • Mass Spectroscopic Fragmentat ion React ions 302

    9 : R = H , 10 : R = CH 3 .

    Scheme 6.

    T h e p r e f e r e d l o s s o f x y l e n e a g a i n b e c o m e s o b -

    v i o u s f r o m t h e m a s s s p e c t r u m o f 10, t h e d i m e t h y l

    Compound 8 9 10

    elimination (E) 1 1 2 1 2 Me interference + — + — + + fragment M- 93 93 94 107 94 rel. amount [ % ] 0 21 79 80 20

    h o m o l o g o f 9 ( c o m p a r e M - 9 3 vs. M - 1 0 7 ) . T h e s u m o f x y l e n e a n d t o l u e n e l o s s e s a m o u n t s t o a b o u t 1 0 % o f

    t h e i n t e n s i t y o f M+.

    I t is, t h e r e f o r e , n o t s u r p r i s i n g t h a t loss o f b e n z e n e

    is n o t o b s e r v e d a t a l l a s c a n b e s e e n f r o m t h e m a s s

    s p e c t r u m o f 11. A g a i n , i n s p i t e o f t h e n e i g h b o r i n g c y c l o h e x e n e r i n g l o s s o f x y l e n e is t h e d o m i n a n t

    p r o c e s s f o r 1 2 .

    Scheme 7. 11 : R = H , 12 : R = CH 3 .

    C o m p o u n d 11 12

    elimination (E) 1 2 3 4 5 1 2 3 4 5 Me interference — + + — + — + + f ragment M- 92 78 92 93 94 106 92 106 93 94 rel. amount [ % ] (33) 0 ( 3 3 ) 5 1 16 (76) 4 (76) 9 11

    2. The terminal group

    I t h a s b e n p o i n t e d o u t t h a t a t e r m i n a l c y c l o -

    h e x e n e r i n g r e d u c e s t h e p r o b a b i l i t y o f t o l u e n e

    e l i m i n a t i o n f r o m t h e e n d o f t h e p o l y e n e c h a i n . F o r

    c o m p a r i s o n p u r p o s e s a n u m b e r o f a c y c l i c c o m p o u n d s

    h a s b e e n s y n t h e s i z e d . A g a i n losses f r o m t h e e n d o f

    t h e p o l y e n e c h a i n a r e l e a s t f a v o r a b l e ; t h e i n h i b i t o r y

    i n f l u e n c e o f t h e b u l k y e n d g r o u p s e e m s t o d e c r e a s e

    w i t h t h e d i s t a n c e f r o m t h e c h a i n e n d (14, t h o u g h t h e b a l a n c i n g e f f e c t s o f t h e d i s t a n c e a n d t h e p r e s e n c e o f

    m e t h y l g r o u p s s e e m s t o b e r a t h e r s u b t l e , 14 a n d 15). F r o m 4 t h e o v e r r i d i n g e f f e c t o f t h e n u m b e r o f m e t h y l g r o u p s i n t h e e x p e l l e d m o i e t y c a n b e seen.

    Compound 13 14

    elimination (E) 1 2 1 2 Me interference + + + — f ragment M- 93 94 92 93 rel. amount [ % ] 8 92 7 30

    el imination (E) Me interference f ragment M-rel. a m o u n t [ % ]

    C o m p o u n d 15

    Scheme 8. 1 5

  • B. Johannes et al. • Mass Spectroscopic Fragmentation Reactions 303

    17, 20, 23

    R 18, 21, 24

    3 : R = H , 4 : R = D .

    Scheme 9.

    Compound 4

    elimination (E) 1 Me interference + fragment M- 93 rel. amount [ % ] 9 ( f rom refs. [5] and [14])

    2 3 4 — + +

    106 92 92 75 16

    T h e e x a m p l e s d i s c u s s e d s h o w c l e a r l y t h a t x y l e n e

    is l o s t m u c h m o r e r e a d i l y t h a n t o l u e n e w h i l e

    b e n z e n e is n o t e l i m i n a t e d a t a l l . B u l k y e n d g r o u p s

    i n t e r f e r e s t r o n g l y w i t h t h e r i n g c l o s u r e ( S c h e m e 2,

    s t e p 1 ) ; t h e i r i n f l u e n c e d e c r e a s e s w i t h t h e d i s t a n c e

    f r o m t h e b o n d s i n v o l v e d in t h e c y c l i s a t i o n s t e p .

    M e t h y l g r o u p s a t t h e e n d o f a t e t r a e n e m o i e t y

    i n t e r f e r e w i t h s t e p 1 o f t h e c y c l i s a t i o n a s w e l l , b u t

    t h e i r i n f l u e n c e is less p r o n o u n c e d .

    16, 19, 22

    3. Electronic effects

    T h e p r e s e n c e o f a p h e n y l g r o u p c o n j u g a t e d w i t h

    t h e p o l y e n e c h a i n c l e a r l y f o s t e r s c y c l i s a t i o n in-

    v o l v i n g t h e n e a r e s t d o u b l e b o n d a s s h o w n b y a

    c o m p a r i s o n o f 8 a n d 16 , 9 a n d 1 7 , 7 a n d 1 8 ( T a b l e I ,

    cf. re f . [12]). Prima facie t h e i n f l u e n c e o f t h e e l e c t r o n d o n a t i n g (73-OCH3) a n d w i t h d r a w i n g (7J-NO2) g r o u p s

    is less o b v i o u s . T h e r a t e o f t h e t e r m i n a l c l e a v a g e

    s e e m s t o b e i n f l u e n c e d a s e x p e c t e d ( e n h a n c e m e n t b y

    OCH3, l o w e r i n g b y N 0 2 ) i n t h e ser ies 18, 2 1 a n d 24 ( e l i m i n a t i o n 1) w h i l e t h e e f f e c t is r e v e r s e d f o r

    e l i m i n a t i o n 2. T h i s c o u l d e x p l a i n w h y a p p a r e n t l y n o

    d i f f e r e n c e s a r e o b s e r v e d f o r 1 7 , 20 a n d 2 3 : T h e

    i n f l u e n c e s o f t h e t w o p h e n y l g r o u p s s h o u l d b e

    o p p o s i n g e a c h o t h e r a n d w i t h t h e s h o r t e r c h a i n t h e

    i n f l u e n c e o f t h e s e c o n d e n d g r o u p s h o u l d b e b i g g e r .

    Table I. Toluene Elimination f r om compounds 16-24 . Compound R Fragment

    M-92 M-93 M-94

    16 H 0 0 100 (E 1) 19 N 0 2 0 0 100 22 OCHG 0 0 100 17 H 0 63 (E 1) 37 (E 2) 20 N 0 2 0 71 29 23 OCH 3 0 70 30 18 H 45 (E 1) 34 (E 2) 21 (E 3) 21 N 0 2 29 43 28 24 OCH3 58 21 21

    T h e c o r o l l a r y o f o u r i n v e s t i g a t i o n is t h a t t h e

    c o m p e t i n g r e a c t i o n s r e s u l t i n g i n t h e e l i m i n a t i o n o f

    t o l u e n e a n d x y l e n e f r o m t h e p o l y e n e c h a i n o f

    c a r o t e n o i d s are g o v e r n e d (a) b y t h e p r e f e r e d loss o f

    x y l e n e as c o m p a r e d w i t h t o l u e n e , (b) t h e d i s t a n c e

  • 304 B. Johannes et al. • Mass Spectroscopic Fragmentat ion React ions 304

    f r o m t h e b u l k y e n d g r o u p , (c) t h e i n t e r f e r e n c e o f

    m e t h y l s u b s t i t u e n t s , a n d (d) f o r a r o m a t i c c a r o t e n o i d s

    t h e a c t i v a t i n g i n f l u e n c e o f t h e c o n j u g a t e d b e n z e n e

    r i n g s . C o m p a r i s o n o f R v a l u e s s h o u l d , t h e r e f o r e , b e

    r e s t r i c t e d t o c o m p o u n d s o f s i m i l a r s t r u c t u r e s ince

    a c t i v a t i n g a n d d e s a c t i v a t i n g i n f l u e n c e s g i v e a r a t h e r

    c o m p l e x o v e r a l l p i c t u r e .

    CHO

    Experimental

    M a s s s p e c t r o m e t e r M A T 7 3 1 ( V a r i a n M A T , B r e -m e n ) ; 8 k V , 1 3 - 2 0 o r 100 e V , p r o b e 1 4 0 - 2 6 0 °C, s o u r c e 250 °C.

    T h e c o m p o u n d s w e r e s y n t h e s i z e d b y W i t t i g r e a c t i o n s ( T a b l e I I ) , t h e s t a r t i n g m a t e r i a l s w e r e p r e p a r e d b y p r o c e d u r e s d e s c r i b e d i n t h e l i t e r a t u r e

    Table I I . Synthesis o f Compounds 4—24.

    6 A + 2 C 15 B + 2 J 5 B + 2 C 16 A + 2 K

    11 B + 2 F 17 A + 2 M 12 A + 2 G 18 B + 2 M

    8 D + E ( C H 3 O D / N a O D ) 19 R + 2 0 ( + D a ) 9 A + 2 H 20 R + 2P ( + D 2 ) 7 B + 2 H 21 R + 2 Q ( + D 2 )

    10 A + 2 D 22 A + 2 L 13 A + 2 I 23 A + 2 N 14 A + 2 J 24 B + 2 N ( X = P+(C 6 H 5 ) 3 Br- )

    K: R = H

    L: R = OCH„

    M: R = H

    N: R = OCH„

    W e w i s h t o t h a n k D e u t s c h e F o r s c h u n g s g e m e i n s c h a f t f o r t h e m a s s s p e c t r o m e t e r a n d F o n d s d e r C h e -m i s c h e n I n d u s t r i e f o r f i n a n c i a l a s s i s t e n c e .

  • B. Johannes et al. • Mass Spectroscopic Fragmentation Reactions 305

    [1] 20. Mitt.: H. Budzikiewicz, G. Roth, and E. Vogel, in preparation.

    [2] U. Schwieter, H. R. Bolliger, L. H. Chopard-dit-Jean, G. Englert, M. Kofler, A. König, C. v. Planta, R. Rüegg, W. Vetter, and O. Isler, Chimia 19, 294 (1965).

    [3] C. R. Enzell, G. W. Francis, and S. Liaaen Jensen, Acta Chem. Scand. 23, 727 (1969).

    [4] H. Budzikiewicz, H. Brzezinka, and B. Johannes, Monatsh. Chem. 101, 579 (1970).

    [5] J. E. Johansen, A. Eidem, and S. Liaaen-Jensen, Acta Chem. Scand. B 28, 385 (1974).

    [6] B. Johannes, H. Brzezinka, and H. Budzikiewicz, Org. Mass Spectrom. 9, 1095 (1974).

    [7] H. Kjosen, S. Liaaen-Jensen, and C. R. Enzell, Acta Chem. Scand. 25, 85 (1971).

    [8] F. S. Edmunds and R. A. W. Johnstone, J. Chem. Soc. 1965, 2892.

    [9] U. Schwieter, G. Englert, N. Rigassi, and W. Vetter, Pure Appl. Chem. 20, 365 (1969).

    [10] W. Vetter, G. Englert, N. Rigassi, and U. Schwie-ter in O. Isler (Herausg.): Carotenoids, Kapitel 4, Birkhäuser Verlag, Basel 1971.

    [11] C. R. Enzell and S. Liaaen-Jensen, Acta Chem. Scand. 25, 271 (1971).

    [12] G. W. Francis, Acta Chem. Scand. 26, 1443(1972). [13] H. Kjosen, Dissertation, Trondheim, Norwegen

    1972. [14] C. R. Enzell, G. W. Francis, and S. Liaaen-

    Jensen, Acta Chem. Scand. 22, 1054 (1968). [15] G. W. Francis, Acta Chem. Scand. 23, 2916 (1969). [16] G. W. Francis, S. Norgard, and S. Liaaen-Jensen,

    Acta Chem. Scand. A 28, 244 (1974). [17] H. Brzezinka, B. Johannes, and H. Budzikiewicz,

    Z. Naturforsch. 29 b, 429 (1974). [18] D. E. Loeber, S. W. Rüssel, T. B. Toube, B. C. L.

    Weedon, and J. Diment, J. Chem. Soc. C 1971, 404.

    [19] T. M. Cresp, M. V. Sargent, and P. Vogel, J. Chem. Soc. Perkin I 1974, 37.

    [20] O. Isler, H. Gutmann, H. Lindlar, M. Montavon, R. Rüegg, G. Ryser, and P. Zeller, Helv. Chim. Acta 39, 463 (1956).

    [21] J. D. Surmatis and A. Ofner, J. Org. Chem. 26, 1171 (1961).

    [22] L. Colombi, A. Bosshard, H. Schinz, and C. F. Seidel, Helv. Chim. Acta 34, 265 (1951).

    [23] W. Tagaki, I. Inone, Y. Yano, and T. Okonogi, Tetrahedron Lett. 1974, 2587.