T. Renger M. Sznajder A. Witzke U. Geppert · 2013. 12. 12. · T. Renger1, M. Sznajder1,2, A....

1
T. Renger 1 , M. Sznajder 1,2 , A. Witzke 1 , U. Geppert 1,3 1 DLR InsƟtute for Space Systems, System CondiƟoning, 28359 Bremen, Robert Hooke Str. 7, Germany 2 University of Bremen, FB4, ProdukƟonstechnikMaschinenbau & Verfahrenstechnik, Badgasteiner Str. 1, 28359 Bremen, Germany 3 Kepler InsƟtute of Astronomy, University of Zielona Góra, 65265 Zielona Góra, Lubuska 2, Poland ABSTRACT The DLR InsƟtute of Space Systems in Bremen is commissioning a new facility to study the behavior of materials under complex irradiaƟon and to esƟmate their degradaƟon in a space environment. It is named Complex IrradiaƟon Facility (CIF). With CIF it is possible to irradiate samples simultaneously with three light sources for the simulaƟon of the spectrum of solar electromagneƟc radiaƟon. The light sources are a solar simulator with a Xelamp (wavelength range 2502500nm), a deuteriumUVsource (112400nm), and an argongasjetVUVsimulator. The laƩer enables the irradiaƟon of samples with shorter wavelengths below the limitaƟon of any window material. The VUVsimulator has been validated in the wavelength range between 40 and 400nm at the PTB (Physikalisch Technische Bundesanstalt) in Berlin by calibraƟon which uses synchrotron radiaƟon. In addiƟon to the dierent light sources CIF provides also electron and proton sources. The charged parƟcles are generated in a low energy range from 1 to 10 keV with currents from 1 to 100 nA and in a higher range from 10 to 100 keV with 0.1 to 100 μA. Both parƟcle sources can be operated simultaneously. In order to model temperature variaƟons as appear in free space, the sample can be cooled down to liquid Nitrogen level and heated up to about 450 K by halogen lamps behind the target during irradiaƟon. The complete facility has been manufactured in UHVtechnology with metal sealing. It is free of organic compounds to avoid selfcontaminaƟon. The dierent pumping systems achieve a nal pressure in the 10 10 mbar range (empty sample chamber). Besides the installed radiaƟon sensors, which control the stability of the various radiaƟon sources, and an aƩached mass spectrometer for analyzing the outgassing processes in the chamber, the construcƟon of CIF allows adding other insitu measurement systems to measure parameters that are of the user’s interest. We are currently planning to develop an insitu measurement system in order to determine changes in the opƟcal properƟes of the samples caused by irradiaƟon. ConguraƟon and geometry of the CIF (Figure 1) The vacuum test chamber is connected to a lock chamber. The sample is mounted in a holder and will be transferred by a magneƟcally manipulator into the sample staƟon in the center of the test chamber aŌer vacuuming the lock chamber. The beamline of protons and electrons, the opƟcal path of the solar simulator and the light cone of the VUVsource are arranged in the same level and directed to the target with an angle of 30° to the solar simulator which is located in the middle. The DeuteriumUVsource is mounted above the solar simulator with an angle of 30° to the plane of the other sources. The target mounƟng (Figure 2) allows a rotaƟon of 30° in two direcƟons to get an orthogonal relaƟon in between the surface of the sample and the VUVradiaƟon respecƟvely the beamline of parƟcles. References Gueymard C.A., The sun’s total and spectral irradiance for solar energy applicaƟons and solar radiaƟon models, Solar Energy, 76, 423453, 2004 Verkhovtseva E.T., Yaremenko V.I., Telepnev, Lura F., Gas—jet simulator of solar VUV and soŌ X ray radiaƟon and irradiaƟon eect on some material, Proceedings of the 7th InternaƟonal Symposium on Materials in Space Environment, Toulouse, France (1997) ASTM E490 Standard of Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables Present state and outlook sƟll commissioning aŌer transfer to DLR Bremen procurement of a not ozone free Xenon lamp is in process to compensate the low intensity in the wavelength range between 180 and 250 nm rst results with exsitu measurements of thermo opƟcal properƟes, insitu will follow proton source deck electron source deck in-situ measurement argon- VUV- source solar simulator Technical Parameters Vacuum test chamber Volume: circa 33.5 l (400 mm diameter) Irradiated Zone: 80 mm diameter Vacuum: <10 8 mbar (without VUV) <10 6 mbar (depending on VUV seƫngs) Light Sources Solar Simulator: 250 to 2500 nm (5000 W/m², validated at DLR Berlin) Deuterium UV Source: 112 to 400 nm (1.65 W/m², validated by PTB) ArgonVUVSource: 40 to 200 nm (50 mW/m², validated by PTB) Proton and Electron Source Current at lower Energy Range (1 to 10 keV): 1 to 100 nA Current at higher Energy Range (10 to 100 keV): 0.1 to 100 μA Target Thermal CondiƟoning HeaƟng: Halogen RadiaƟon (500W, 450K) Cooling: Liquid Nitrogen (LN2: 80 K) Measurement and test engineering Insitu Measurement of ReecƟvity and Absorptance (mediumterm strategy) Quadrupole Mass Spectrometer (range: 0512 amu) RadiaƟon, Temperature and Pressure Sensors Faraday cup at the beam line of the proton / electron irradiaƟon system and at the target in the test chamber (cornercups) The spectras of electromagneƟc radiaƟon in comparison to zero air mass solar spectral irradiance The argongasjetVUVsimulator Principle of operaƟon [Verkhovtseva E.T. et al. 1997] The radiaƟon is produced by excited gas atoms which come to the ground state. The excitaƟon occurs by electron bombardment (1keV energy) of a gas jet (98.5% Ar, 0.5% He, 1% Kr), which is injected by a nozzle from top of the VUVchamber into the vacuum (gures 3 and 4). The main part of the gas load is pumped out through an intake port at the boƩom of the chamber by a screw pump. The rest of the gas cloud is frozen out by two baes, which are connected to both stages of the cold head from a commercial cryogenic pump. The alignment of the electron beam is approx. horizontal (+15°). The electrons which pass through the gas jet are caught by the collector at the opposite site of the gun. The intensity can be adjusted by varying the emission current of the electron source and the gas ow. Figure 5 illustrates the size and intensity of the spot qualitaƟvely with dierent seƫngs for the emission current in columns and for the gas ow in rows. Figure 1: schemaƟc overall view of the CIF conguraƟon Figure 2: sample staƟon in the center of the test chamber Figure 3: secƟoning along the light cone (yellow) Figure 4: secƟoning along the electron source (90° relaƟng to Figure 3) Figure 5: picture of the VUVspot with dierent seƫngs for the gas ow (rows) and the emission current (columns) Figure 6: spectral irradiance of the argonVUVsource, the deuterium lamp and the solar simulator in comparison to [ASTM E490] and [Gueymard C.A.] Figure 7: spectral irradiance of the solar simulator with dierent electrical power seƫngs including the transmiƩance of the vacuum window in comparison to [ASTM E490] collector electron source jet nozzle intake port cold head cryogenic bae 1. stage cryogenic bae 2. stage sample holder lN 2 cooler sample heaƟng (halogen lamps) H 2 O cooler

Transcript of T. Renger M. Sznajder A. Witzke U. Geppert · 2013. 12. 12. · T. Renger1, M. Sznajder1,2, A....

  • T.Renger1,M.Sznajder1,2,A.Witzke1,U.Geppert1,31 DLR Ins tute for Space Systems, System Condi oning, 28359 Bremen, Robert Hooke Str. 7, Germany 2 University of Bremen, FB4, Produk onstechnik‐Maschinenbau & Verfahrenstechnik, Badgasteiner Str. 1, 28359 Bremen, Germany 3 Kepler Ins tute of Astronomy, University of Zielona Góra, 65‐265 Zielona Góra, Lubuska 2, Poland 

    ABSTRACT

    The DLR Ins tute of Space Systems in Bremen is commissioning a new facility to study the behavior of materials under complex irradia on and to es mate their degrada on in a space environment. It is named Complex Irradia on Facility  (CIF). With CIF  it  is possible  to  irradiate  samples  simultaneously with  three  light  sources  for  the  simula on of  the  spectrum of  solar electromagne c  radia on. The  light  sources are a  solar  simulator with a Xe‐lamp (wavelength range 250‐2500nm), a deuterium‐UV‐source (112‐400nm), and an argon‐gas‐jet‐VUV‐simulator. The la er enables the irradia on of samples with shorter wavelengths below the limita on of any window material. The VUV‐simulator has been validated  in the wavelength range between 40 and 400nm at the PTB (Physikalisch Technische Bundesanstalt)  in Berlin by calibra on which uses synchrotron radia on.  In addi on to the different  light sources CIF provides also electron and proton sources. The charged par cles are generated in a low energy range from 1 to 10 keV with currents from 1 to 100 nA and in a higher range from 10 to 100 keV with 0.1 to 100 µA. Both par cle sources can be operated simultaneously. In order to model temperature varia ons as appear in free space, the sample can be cooled down to liquid Nitrogen level and heated up to about 450 K by halogen lamps behind the target during irradia on. 

    The complete facility has been manufactured  in UHV‐technology with metal sealing.  It  is free of organic compounds to avoid self‐contamina on. The different pumping systems achieve a final pressure  in the 10‐10 mbar range (empty sample chamber). 

    Besides the installed radia on sensors, which control the stability of the various radia on sources, and an a ached mass spectrometer for analyzing the outgassing processes in the chamber, the construc on of CIF allows adding other  in‐situ measurement systems  to measure parameters  that are of  the user’s  interest. We are currently planning  to develop an  in‐situ measurement system  in order  to determine changes  in  the op cal proper es of  the samples caused by irradia on.

    Configura on and geometry of the CIF (Figure 1) The  vacuum  test  chamber  is  connected  to  a  lock  chamber.  The  sample  is mounted in a holder and will be transferred by a magne cally manipulator into the sample sta on in the center of the test chamber a er vacuuming the lock chamber. 

    The beamline of protons and electrons, the op cal path of the solar simulator and  the  light cone of  the VUV‐source are arranged  in  the same  level and di‐rected to the target with an angle of 30° to the solar simulator which is located in the middle. The Deuterium‐UV‐source is mounted above the solar simulator with an angle of 30° to the plane of the other sources. 

    The target moun ng (Figure 2) allows a rota on of 30° in two direc ons to get an  orthogonal  rela on  in  between  the  surface  of  the  sample  and  the  VUV‐radia on respec vely the beamline of par cles. 

    References

    Gueymard C.A., The sun’s total and spectral irradiance for solar energy applica ons and solar radia on models, Solar Energy, 76, 423‐453, 2004 

     

       

       

    Verkhovtseva E.T., Yaremenko V.I., Telepnev, Lura F., Gas—jet simulator of solar VUV and so  X‐ray radia on and irradia on effect on some material, Proceedings of the 7th Interna onal Symposium on Materials in Space Environment, Toulouse, France (1997) 

     

       

    ASTM E‐490 Standard of Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables   

       

    Present state and outlook s ll commissioning a er transfer to DLR Bremen

    procurement of a not ozone free Xenon lamp is in process to compensate the low intensity in the wavelength range between 180 and 250 nm

    first results with ex‐situ measurements of thermo op cal proper es, in‐situ will follow

    proton source deck

    electron source deck

    in-situ measurement

    argon-VUV-

    sourcesolar

    simulator

    Technical Parameters Vacuum test chamber Volume:          circa 33.5 l (400 mm diameter) Irradiated Zone:      80 mm diameter Vacuum: