Wiederherstellung der Herzfunktion durch … et al, Circ Res 2005 Fernadez-Avilez et al, Circ Res...

69
Cardiac Surgery University of Rostock 7. IGES Kongress zum Fortschritt im Gesundheitswesen von morgen 22. October 2009 Wiederherstellung der Herzfunktion durch Stammzelltherapie Prof. Dr. med. Gustav Steinhoff Director Reference and Translation Center of Cardiac Stem Cell Therapy (RTC) and Department of Cardiac Surgery University of Rostock

Transcript of Wiederherstellung der Herzfunktion durch … et al, Circ Res 2005 Fernadez-Avilez et al, Circ Res...

Cardiac Surgery

University of Rostock

7. IGES Kongress zum Fortschritt im Gesundheitswesen von morgen

22. October 2009

Wiederherstellung der Herzfunktion durch Stammzelltherapie

Prof. Dr. med. Gustav Steinhoff

Director

Reference and Translation Center of Cardiac Stem Cell Therapy (RTC)

and

Department of Cardiac Surgery

University of Rostock

Cardiac Surgery

University of Rostock

asymmetric

replication

symmetric

replication

Adult stem and precursor cells

Cardiac Surgery

University of Rostock

Embryonic stem cell

Wobus, Wallukat & Hescheler, Differentiation 1991

Primitive

mesenchymal cell

SA node-like cell Ventricular

cardiomyocyte

Atrial-like cell

Cardiac Surgery

University of Rostock

Factors for cardiac differentiation of ES-cells

Srivastava et al. Nature 2006

Cardiac Surgery

University of Rostock

Sources of adult stem cells

Engelmann & Franz Curr. Opinion Mol Ther 2006

Cardiac Surgery

University of Rostock

Adult stem cells – bone marrow source

lifelong regeneration potential

Cardiac Surgery

University of Rostock

Cardiac stem cells

Cardiac Surgery

University of Rostock

The impact of stem cells in the future of cardiac therapies

• Stem cells in heart failure treatment

• Stem cells and bridge-to-recovery/ bridge-to-transplant

• Stem cells and immunomodulation after heart

transplantation

• Cellular chimerism and cellular renewal in heart

transplants

• Summary and outlook

Cardiac Surgery

University of Rostock

Ischemic disease Infarction

„myocardial remodeling“

Heart failure

Stemcells for myocardial repair?

application?type of cells? homing?

Valve disease Myocarditis

transplantationmechanical assist device

drugs

differentiation?

Replacement of heart cells by stem cells

Cardiac Surgery

University of Rostock

mod. Dimmeler et al. JCI 2005

directapplication

mobilization

Cardiac Stem Cell Therapy

Cardiac Surgery

University of Rostock

Cell delivery

Mobilization (G-GSF)

Systemic injection

Intracoronary injection

Local implantation

Action

Homing

Extravasation

Stem / Progenitor Cell

Action

SurgeryCardiology

Problems observed

2001: First clinical stem cell application in heart disease (Strauer, Steinhoff)

Strauer, Düsseldorf

Intravascular application MNC BM 3/2001

Steinhoff, Rostock

Intramyocardial application CD133 BMSC 6/2001

Cardiac Surgery

University of Rostock

Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, et al. Bone marrow cells regenerate infarcted myocardium.

Nature. 2001 Apr 5;410(6829):701-5.

[

Cardiac Surgery

University of Rostock

Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, et al. Haematopoietic stem cells do not transdifferentiate

into cardiac myocytes in myocardial infarcts. Nature. 2004 Apr 8;428(6983):664-8.

Cardiac Surgery

University of Rostock

Orlic et al, Nature 2001 Murry et al, Nature 2004 Balsam et al, Nature 2004

Myocardial regeneration by bone marrow stem cells

Fernadez-Avilez et al, Circ Res 2004Kajstura et al, Circ Res 2005

Cardiac Surgery

University of Rostock

Direct injection BMSC:

Tomita et al. & Jia / BMCs

Wang et al. & Chiu / rMSC

Toma et al. & Kessler / hMSC

Orlic et al. & Anversa / Lin -, c-

kit+

Intravenous injection BMSC:

Kocher et al. & Itescu / CD34+

Kuramochi et al. & Ogawa /

CD34+

Ciulla et al. & Rebulla / CD34+

Oh et al. & Schneider / Sca-1+

Bone marrow stem cells integrate in the infarcted heart tissue

Cardiac Surgery

University of Rostock

The paracrine hypothesis replaces the hypothesis of

transdifferentiation

Gnecchi M et al. & Dzau V, FASEB J 20, 661-669 (2006)Grigoropoulos N F, Mathur A. Curr Opinion in Pharmacol. 6:1-7 (2006)

Cardiac Surgery

University of Rostock

Embryonic stem cells

Perez-Terzic, Circ Res. 2003, Hodgson et al, AJP 2004

Cardiac Surgery

University of Rostock

Cardiac Surgery

University of Rostock

True cardiac regeneration with stem-cell therapy will require careful consideration at each step, from isolation of the cells to their stable and safe long-term integration.

Segers & Lee, Nature 451, 937-942(21 February 2008)

Cardiac Surgery

University of Rostock

Cardiac Surgery

University of Rostock

• Acute myocardial infarction (immediately - days)

• Early after myocardial infarction (< 2 weeks)

• Chronic ischemia: Myocardial transition / remodelling

phase (2 weeks – several months)

• Completed remodelling / scar postischemic

cardiomyopathy (>6 months)

Clinical indication – acute/chronic ischemia, post infarction

Cardiac Surgery

University of Rostock

Clinical Studies – Intramyocardial progenitor cell

therapy and coronary bypass surgery

Paris (Menasche et al. 2001) Skeletal myoblasts & CABG

Rostock (Stamm et al. 2003) intracardiac BMSC (CD 133+) & CABG

Milano (Pompilio et al. 2004) intracardiac BMSC (CD 133+) & CABG

Leicester (Galinanes et al. 2004) BMNC & CABG

Pittsburgh (Patel et al. 2005) intracardiac BMSC (CD 34+) & CABG

USA multicenter (Dib et al. 2005) Skeletal Myoblasts & CABG

Düsseldorf (Klein et al. 2005) intracardiac BMSC (CD 133+) & CABG

etc.

Cardiac Surgery

University of Rostock

Phase I Phase II

safe

(n =15)

•safe in follow-up and

functional benefit

•(Phase II / n=20+20 controls)

•safe and stable in long term

(n=35)

• treatment of additional

indications (n=95)

2001 2009 6 months

Rostock experience / overview

PERFECT

Clinical outcome study

Clinical Trial

Different indications for CD133+ cell transplantation (n >120)

Phase III

Cardiac Surgery

University of Rostock

Standardization and training of clinical procedures

Characterization of CD133+ as a cellular product

Chest midline

Chest anterolateral

AC133AC133AC133AC133AC133AC133AC133AC133

100 – 200 ml bone marrow aspirate

CliniMACS separation

BMNC preparation

CD133+ labelling

Cardiac Surgery

University of Rostock

10

20

30

40

50

60

70

preop discharge 6 months 18 months

LV

EF

(%

)

399

476*508* 486*

Results: LVEF Phase-1

* P < 0.012 vs preop; F=6,03 repeated measures ANOVAD. Zurakowski, Boston

Cardiac Surgery

University of Rostock

Results: Change in LVEF Phase-2

-10

-5

0

5

10

15

20

25

30

dif

fere

nc

e in

LV

EF

(%

)

CABG & CD133+ cells CABG

9.7%

3.4%

p=0.0009

Cardiac Surgery

University of Rostock

CABG+cells: Effect of preoperative LV function Phase-1 and 2

change in LVEF following CABG & CD133+ cells

-10

-5

0

5

10

15

20

25

30

diffe

ren

ce in

LV

EF

(%

)

< 35% > 35%preop LVEF

15.4%

6.5%

p=0.003

Cardiac Surgery

University of Rostock

Results: SPECT Perfusion scintigraphy Phase-2

CABG & CD133+ cells

Cardiac Surgery

University of Rostock

preop 6 months 18 months 41 months

LV

ED

V in

ml

0

50

100

150

200

250

300

Stem cell group (n=15)

Controll group (n=11)

*

Left ventricular volume

Cardiac Surgery

University of Rostock

Current status

• A Phase-I clinical feasibility and safety study in 15 CABG patients showed that intramyocardial injection of autologous CD133+ bone marrow cells was not associated with cell-related complications in longterm analysis 1,2.

• In a subsequent Phase-II randomized, controlled, and prospective clinical trial in 40 patients, CABG & intramyocardial injection of CD133+ bone marrow cells resulted in better LV ejection fraction and perfusion than CABG only 3. Longterm safety of the treatment could be confirmed 4.

• Phase-III clinical study investigation (multicentre double-blinded randomized trial) is planned to start in 2009 for definitive clinical introduction in the treatment of chronic ischemia after myocardial infarction.

1 Stamm et al. Autologous bone marrow stem-cell transplantation for myocardial regeneration. Lancet, 361(9351);45-6; 2003

2 Stamm et al. CABG and bone marrow stem cell transplantation after myocardial infarction. Thorac Cardiov Surg, 52(3):152-8; 2004

3 Stamm et al. Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart

disease: safety and efficacy sturdies. J Thorac Cardiov Surg, 133(3):717-25; 2007

4 Yerebakan et al. Safety of intramyocardial stem cell therapy for the ischemic myocardium: Results of the Rostock trial after five year

follow-up. Cell transplantation 2007; 16(9): 935-40.

Cardiac Surgery

University of Rostock

The impact of stem cells in the future of cardiac therapies

• Stem cells in heart failure treatment

• Stem cells and bridge-to-recovery/ bridge-to-transplant

• Stem cells and immunomodulation after heart

transplantation

• Cellular chimerism and cellular renewal in heart

transplants

• Summary and outlook

Cardiac Surgery

University of Rostock

Regenerative options during bridging

• Immunosuppression (MSC-Treg)

- in viral myocarditis

- in systemic inflammation

• Cardiac regeneration:

- skeletal myoblasts

- HSC, CSC, MSC

- pharmacologic (clenbuterol, EPO)

Cardiac Surgery

University of Rostock

LVAD/stem cell therapy

• Combined autologous cellular cardiomyoplasty using skeletal

myoblasts and bone marrow cells for human ischemic cardiomyopathy

with left ventricular assist system implantation: report of a case.

Miyagawa S, Matsumiya G, Funatsu T, Yoshitatsu M, Sekiya N, Fukui

S, et al. Surgery today. 2009;39(2):133-6.

• Safety and feasibility of autologous myoblast transplantation in patients

with ischemic cardiomyopathy: four year follow-up. Dib N, Michler RE,

Pagani FD, Wright S, Kereiakes DJ, Lengerich R, Binkley P, Buchele

D, Anand I, Swingen C, Di Carli MF, Thomas JD, Jaber WA, Opie SR,

Campbell A, McCarthy P, Yeager M, Dilsizian V, Griffith BP, Korn R,

Kreuger SK, Ghazoul M, MacLellan WR, Fonarow G, Eisen HJ,

Dinsmore J, Diethrich E.

Cardiac Surgery

University of Rostock

The impact of stem cells in the future of cardiac therapies

• Stem cells in heart failure treatment

• Stem cells and bridge-to-recovery/ bridge-to-transplant

• Stem cells and immunomodulation after heart

transplantation

• Cellular chimerism and cellular renewal in heart

transplants

• Summary and outlook

Cardiac Surgery

University of Rostock

Potential of stem cells in heart transplant

patients

• Tolerance induction (BM-Chimerism)

• Immunosuppression (MSC, HLA-G)

• Cellular exchange of donor cells by

recipient SC (EC, IC, Cardiomyoc.)

Cardiac Surgery

University of Rostock

Cardiac Surgery

University of Rostock

Cardiac Surgery

University of Rostock

Cardiac Surgery

University of Rostock

Cardiac Surgery

University of Rostock

Cardiac Surgery

University of Rostock

Cardiac Surgery

University of Rostock

Kawai T, Cosimi AB, Spitzer TR, Tolkoff-Rubin N, Suthanthiran M, Saidman SL, et al. HLA-mismatched renal transplantation without

maintenance immunosuppression. The New England journal of medicine. 2008 Jan 24;358(4):353-61.

Cardiac Surgery

University of Rostock

Kawai T, Cosimi AB, Spitzer TR, Tolkoff-Rubin N, Suthanthiran M, Saidman SL, et al. HLA-mismatched renal transplantation without

maintenance immunosuppression. The New England journal of medicine. 2008 Jan 24;358(4):353-61.

Cardiac Surgery

University of Rostock

The impact of stem cells in the future of cardiac therapies

• Stem cells in heart failure treatment

• Stem cells and bridge-to-recovery/ bridge-to-transplant

• Stem cells and immunomodulation after heart

transplantation

• Cellular chimerism and cellular renewal in heart

transplants

• Summary and outlook

Cardiac Surgery

University of Rostock

Exchange of recipient cells in human heart transplants

Cardiac Surgery

University of Rostock

Cardiac Surgery

University of Rostock

Thiele J, Varus E, Wickenhauser C, Kvasnicka HM, Lorenzen J, Gramley

F, et al. Mixed chimerism of cardiomyocytes and vessels after allogeneic

bone marrow and stem-cell transplantation in comparison with cardiac

allografts. Transplantation. 2004 Jun 27;77(12):1902-5.

Cardiac Surgery

University of Rostock

• It has been difficult to establish whether we are limited to the

heart muscle cells we are born with or if cardiomyocytes are

generated also later in life. We have taken advantage of the

integration of carbon-14, generated by nuclear bomb tests during

the Cold War, into DNA to establish the age of cardiomyocytes in

humans. We report that cardiomyocytes renew, with a gradual

decrease from 1% turning over annually at the age of 25 to 0.45%

at the age of 75. Fewer than 50% of cardiomyocytes are

exchanged during a normal life span. The capacity to generate

cardiomyocytes in the adult human heart suggests that it may be

rational to work toward the development of therapeutic strategies

aimed at stimulating this process in cardiac pathologies.

•DOI: 10.1126/science.1164680

•Science 324, 98 (2009);

•Olaf Bergmann, et al.

Turnover after the fallout: Evidence for cardiomyocyte renewal in humans.

Olaf Bergmann, et al. Science 2009; 324: 98-102.

Cardiac Surgery

University of Rostock

Olaf Bergmann, et al. Science 2009; 324: 98-102.

Cardiac Surgery

University of Rostock

Olaf Bergmann, et al. Science 2009; 324: 98-102.

Cardiac Surgery

University of Rostock

Olaf Bergmann, et al. Science 2009; 324: 98-102.

Cardiac Surgery

University of Rostock

Cardiac Surgery

University of Rostock

Cardiac Surgery

University of Rostock

Cardiac Surgery

University of Rostock

The impact of stem cells in the future of cardiac therapies

• Stem cells in heart failure treatment

• Stem cells and bridge-to-recovery/ bridge-to-transplant

• Stem cells and immunomodulation after heart

transplantation

• Cellular chimerism and cellular renewal in heart

transplants

• Summary and outlook

Cardiac Surgery

University of Rostock

Cardiac Surgery

University of Rostock

Nebenwirkungen, WirksamkeitBeleg von Nebenwirkungen + Wirksamkeit

Arzneimittelentwicklung –

Prozessschritte, Zeit und Risiken

57

Klinische Forschung(I) (II) (III)

BehördlichePrüfung

Vorklinische Forschung Markt

Sicherheit /Dosierung

Cardiac Surgery

University of Rostock

KHC Rostock: Rückblick und Vorhaben

58

Klinische Forschung(I) (II) (III)

Behördliche

Prüfung

Vorklinische Forschung

Markt

2009200320011988

!

Cardiac Surgery

University of Rostock

Im letzten Jahr ….

• Genehmigung der Phase-III-Studie PERFECT

• Aufbau der Kooperation mit den Industriepartnern

(Miltenyi Biotec und Bundesdruckerei/D-Trust)

• Förderzusagen von

– BMBF (Mai 2008): klinische Prüfung, Produktion, F&E und

Entwicklung eines elektronischen Dokumentationssystems

– Ministerium für Wirtschaft, Arbeit und Tourismus M-V

(Okt. 2008): F&E und Innovationsmanagement

• Entscheidung für Aufbau eines Referenz- und Translationszentrums für

kardiale Stammzelltherapie an der Universität Rostock (RTC)

59

Cardiac Surgery

University of Rostock

Translationsprozess

• Grundlagenforschung

• Vorklinische Untersuchungen

• Herstellung, Produktion

• Klinische Forschung

• Zulassung/Vermarktung

• Verfügbarkeit für Patienten

(Erstattung)

6060

Modelle

Translation

Klinische Studien

Markt

Cardiac Surgery

University of Rostock61

RTC – Start: Oktober 2008

Cardiac Surgery

University of Rostock

Leitungsteam

Prof. Dr. Gustav Steinhoff

Dr. Gudrun Tiedemann

Dr. Nan Ma

Priv. Doz. Dr. Klaus Wagner

Prof. Dr. Bodo Eckehard Strauer

62

RTC – Team

Projektassistenz

F & E ZentrumTranslations

managementKlinisches Studienzentrum

Cardiac Surgery

University of Rostock63

RTC – Verbund- und Kooperationspartner

Klinische Studie (GCP)Modelle (eCRF)

Herstellung (GMP)

RahmenbedingungenZulassung/Erstattung

Anwendung

Begleitforschung/F&E:Wirkweise/Standardisierung/Sicherheit

Zulassungs-behörden

Kosten-träger ÄrztePolitik

Patient

Entwicklung TrialDoceCRF, Anwendung, Service

D-Trust

URO MHHDHZB

BCRTKHCRTC IMIB

MTY

ATP

Seracell

Cardiac Surgery

University of Rostock

Standardization of cardiac stem cell therapy

•Indication

(ischemia/postinfarction/cardiomyopathy/Htx)

•Safety (arrhythmia, tumor, calcification)

•Dosage/Toxicity

•Standardization of cell preparation

•Efficacy (longterm, quality of life)

•Biodistribution of cells (migration, survival)

•Tumorogenicity

•Mechanism of action (paracrine, cellular)

•Comparison of different stem cell types

•CLINICAL OUTCOME (PE,MACE,QoL)

Cardiac Surgery

University of Rostock

Phase III Studya controlled, prospective, randomized, double blinded multicenter trial

PERFECT

INTRAMYOCARDIAL TRANSPLANTATION OF BONE MARROW STEM CELLS FOR IMPROVEMENT OF POST-INFARCT MYOCARDIAL

REGENERATION IN ADDITION TO CABG SURGERY

Principal investigator: Prof. Dr. G. Steinhoff

Sponsor: Miltenyi-Biotec GmbH

German study centers: Berlin Heart Center

Medical School Hannover

University of Rostock

Approved (Phase III clinical trial) by Paul Ehrlich Institute June 2009

First patient: October 2009

Recruitment: 24 months

Planned final evaluation: 2012

CLINICAL OUTCOME STUDY

Cardiac Surgery

University of Rostock

Objectives:

• Primary objective: To determine whether injection of

autologously-derived bone marrow stem cells yields a functional benefit in

addition to the coronary artery bypass graft (CABG) operation as

determined by left ventricular heart function (LVEF-MRI).

• Secondary objectives: To determine the effects of an injection of

autologously-derived bone marrow stem cells on physical exercise

capacity, cardiac function, safety and quality of life (QoL).

Phase III Studya controlled, prospective, randomized, double blinded multicenter trial

Cardiac Surgery

University of Rostock

Phase III Studya controlled, prospective, randomized, double blinded multicenter trial

142 Patientsestimated drop-out rate 15%,

randomized in an 1:1 ratio, bone marrow

aspiration prior to CABG surgery

71 Patientsto provide 60 evaluable

patientsfor stem cell group200 ml BM harvest

5ml CD133+ cells (1-10x106) suspended in

physiological saline + 10% autologous serumintramyocardially

71 Patientsto provide 60 evaluable

patientsfor placebo group200 ml BM harvest

5ml physiological saline + 10% autologous serum

intramyocardially

Cardiac Surgery

University of Rostock

R&D Partners:

Miltenyi Biotec GmbH

Balshüsemann/Hennemann/Pinkernell

Bergisch-Gladbach/Teterow

D-Trust, Berlin

ATP, Rostock

Helmholtz (GKSS/Teltow)

Clinical Development Partners

Haverich, MH Hannover

Hetzer/Stamm, DHZ Berlin

Management team

Dr..Tiedermann

Ms. Jana Gabriel

Prof. B.E. Strauer

Cardiac Surgery

Andreas Liebold

Alexander Kaminski

Can Yerebakan

Bernd Westphal

Peter Donndorf

Catharina Nesselmann

Ch. Klopsch

Lab/Institute of Regenerative Medicine (RTC/IRMED)

Ma Nan, P. Mark

Wenzhong Li, Ou, Y. Wang

D. Furlani, R. Gäbel, W. Wang

Intenational Partners

NU Singapur,

Beijing/Hefei/Nankai, China

Asahara, CDB/RIKEN, Kobe, Japan

RenkeLiToronto, Kanada;

Capogrossi, IDI, Rome, Italy

Pompilio, Milano, Italy

Department of Cardiac Surgery

University of Rostock

www.cardiac-surgery-rostock.com

www.cardiac-stemcell-therapy.com

This work was supported by the Helmholtz Gemeinschaft, Mecklenburg-Vorpommern (Nachwuchsgruppe

Regenerative Medizin Regulation der Stammzellmigration 0402710), BMBF BioChance PLUS (0313191),

Miltenyi Biotec, Sonderforschungsbereich/Transregio 37, B5, B2 and A4; and BMBF Reference and

Translation Center of Cardiac Stem Cell Therapy (2008-2011).

Cardiac Surgery

University of Rostock

Untertitel

Klinik für Herzchirurige, Universität Rostock, www.herzchirurgie-rostock.de

www.cardiac-stemcell-therapy.com

www.cardiac-surgery-rostock.com

Department of Cardiac Surgery

Medical Faculty

University of Rostock