Aspelmeyer

39
Institut für Quantenoptik und Quanteninformation Österreichische Akademie der Wissenschaften or: trying to put « mechanics » back into quantum mechanics ... Schrödinger’s Mirrors Markus Aspelmeyer Institute for Quantum Optics and Quantum Information (IQOQI) Austrian Academy of Sciences Vienna

Transcript of Aspelmeyer

Page 1: Aspelmeyer

Institut für Quantenoptik und QuanteninformationÖsterreichische Akademie der Wissenschaften

or: trying to put « mechanics » back intoquantum mechanics ...

Schrödinger’s Mirrors

Markus AspelmeyerInstitute for Quantum Optics and Quantum Information (IQOQI)Austrian Academy of SciencesVienna

Page 2: Aspelmeyer

WhyWhy thethe quantum ?quantum ?

WhyWhy thethe classicalclassical ??

Schrödinger‘s cat IS alive…

TwoTwo unresolvedunresolved questionsquestions

single-photon source „CLICK“

Page 3: Aspelmeyer

“Lieber Schrödinger!Du bist faktisch der einzige Mensch, mit dem ich michwirklich gern auseinandersetze. [...] Dabei sind wir in derAuffassung des zu erwartenden Weges schärfsteGegensätze.[...]”

Albert Einstein to Erwin Schrödinger, 8.8.1935

Page 4: Aspelmeyer

“Das System sei eine Substanz in einem chemisch labilenGleichgewicht, etwa ein Haufen Schiesspulver, der sichdurch innere Kräfte entzünden kann [...] . Im Anfangcharakterisiert die Ψ-Funktion einen hinreichend genaudefinierten Zustand. Deine Gleichung sorgt aber dafür, dass dies nach Verlauf eines Jahres gar nicht mehr der Fall ist. Die Ψ-Funktion beschreibt dann vielmehr eine Art Gemisch von noch nicht und von bereits explodiertemSystem. Durch keine Interpretationskunst kann diese Ψ-Funktion zu einer adäquaten Beschreibung eineswirklichen Sachverhaltes gemacht werden; in Wahrheit gibtes eben zwischen explodiert und nicht-explodiert keinZwischending[...]” Albert Einstein to Erwin Schrödinger, 8.8.1935

EinsteinEinstein‘‘ss gungun powderpowder & & SchrSchröödingerdinger‘‘ss catcat

Page 5: Aspelmeyer

E. Schrödinger, Naturwissenschaften 23, 52 ff. (1935)

SchrSchröödingerdinger‘‘ss CatCat: : TheThe MeasurementMeasurement ProblemProblem

single-photon source

Schrödinger’s Cat = Entanglement involving macroscopically distinct statesshould be possible for arbitrarily large systemsarbitrarily large systems

Page 6: Aspelmeyer

(c) Oppenheim

““logical necessity

logical necessity””

(Copenhagen(Copenhagen’’s s

golden cut, golden cut,

complexity, ...)?

complexity, ...)?

““standard

standard decoherence

decoherence””(quantum

(quantum darwinismdarwinism)?)?

““new physicsnew physics””(Penrose, GRWP, (Penrose, GRWP,

KarolyhazyKarolyhazy, Diosi, ...)?, Diosi, ...)?

Page 7: Aspelmeyer

Marshall, Simon, Penrose, Bouwmeester, PRL 91, 130401 (2003)

also: A.D. Armour, M.P. Blencowe, and K. Schwab, PRL 88, 148301 (2002.)

R. Penrose, in: Quantum [Un]Speakables, Springer 2001

TestingTesting quantum physics . . . and quantum physics . . . and beyondbeyond

Page 8: Aspelmeyer

A A mechanicalmechanical catcat? ? SchrSchröödingerdinger‘‘ss mirrorsmirrors

Page 9: Aspelmeyer

m, ω

for energy eigenstates (no correspondence principle!)

for coherent states

E. Schrödinger: „Der stetige Übergang von der Micro- zur Makromechanik.“, Die Naturwissenschaften 14, 644 (1926)

MechanicalMechanical Quantum Quantum StatesStates

(quantum) harmonic oscillator

Ground state for

Page 10: Aspelmeyer

ωpump = ωcavity + Δ

m, ωm

ωωcavityωpump

κ

ωωcavity ωpump

κ

beam-splitter (cooling)

squeezer (entanglement)

Why quantum optics ?Why quantum optics ?

full quantum optics toolbox to prepare and control

mechanical quantum statesvia photons

Page 11: Aspelmeyer

Title

Text 1– Text 2

Text 3– Text 4

1619 Johannes Kepler, De cometis

“solar repulsion of comet tails because of mechanical light force (radiation pressure)”

picture: Nature 444, 823 (2006)

Page 12: Aspelmeyer

1873 radiation pressure force predicted by J. C. Maxwell

1901 P. Lebedev, Untersuchungen über die Druckkräfte des Lichtes, Ann. Phys. 6, 433 (1901)F~300 pN

1901 E.F. Nichols, G. F. Hull, A preliminary communication on the pressure of heat and light radiation, Phys. Rev. 13, 307 (1901) F~1 nN

1905 Einstein’s photon hypothesis

optomechanics quantum optics

Mechanical Effects of Light Mechanical Effects of Light –– a brief historya brief history

Page 13: Aspelmeyer

1933 O. Frisch, Experimenteller Nachweis des Einsteinschen Strahlungsrückstoßes, Z. Phys. B 86, 42 (1933)

Laser cooling of atoms

1936 R.A. Beth, Mechanical detection and measurement of the angular momentum of light, Phys. Rev. 50, 115 (1936)

1915 Milikanconfirms photoelectric effect

1923 Compton scattering

optomechanics quantum optics

Mechanical Effects of Light Mechanical Effects of Light –– a brief historya brief history

Page 14: Aspelmeyer

PRL 45, 75 (1980)... and further (independent) works by Braginsky, Meystre, etc.

SQLSQL–– OptomechanicsOptomechanics meetsmeets Quantum OpticsQuantum Optics

LIGO

1960 first laser radiation

1963 quantum optical description of laser by Glauber

shot noise

optomechanics quantum optics

LIGO

Page 15: Aspelmeyer

PRL 45, 75 (1980)... and further (independent) works by Braginsky, Meystre, etc.

SQLSQL–– OptomechanicsOptomechanics meetsmeets Quantum OpticsQuantum Optics

LIGO

1960 first laser radiation

1963 quantum optical description of laser by Glauber

shot noise

optomechanics quantum optics

LIGO

Page 16: Aspelmeyer

((QuantumQuantum--)Opto)Opto--MechanicsMechanics

• intensity dependent displacement of mirror• intensity dependent phase shift of reflected

light (Kerr-like interaction)• Doppler-shift of reflected light due to mirror

movement

1983 Dorsel/Walther: first radiation-pressure based instabilities [PRL 51, 1550] explained by Meystre et al. in 1985 [J. Opt. Soc. Am. B 2, 1830]

Page 17: Aspelmeyer

Idea: optical modification of mechanical properties via gradient and retarded forces(Braginsky, since 1977)

optical spring

Vogel et al. APL 83, 1337 (2003) Sheard et al., PRA 69, 51801 (2004)

Corbitt et al., PRA 74, 21802 (2006) (LIGO), diVirgilo et al. PRA 74, 13813 (2006) (VIRGO)

parametric amplification,damping (cooling)

Karrai 2003, LMU Munich

(Quantum) optics (Quantum) optics –– a toolbox for (quantum) mechanicsa toolbox for (quantum) mechanics

Page 18: Aspelmeyer

Idea: optical modification of mechanical properties via gradient and retarded forces(Braginsky, since 1977)

optical spring

parametric amplification,damping (cooling)

(Quantum) optics (Quantum) optics –– a toolbox for (quantum) mechanicsa toolbox for (quantum) mechanics

Vahala 2005, Caltech

Braginsky et al., PLA 287, 331 (2001)Rokhsari et al., Opt. Exp. 13, 5293 (2005) Kippenberg et al., PRL 95, 033901 (2005)

Arcizet et al., Nature 444, 71 (2006)

Page 19: Aspelmeyer

ωpump = ωcavity + Δ

m, ωm

ωωcavityωpump

κ

ωωcavity ωpump

κ

beam-splitter (cooling)

squeezer (entanglement) κ << ωm

(sideband-resolved regime)

(Quantum) optics (Quantum) optics –– a toolbox for (quantum) mechanicsa toolbox for (quantum) mechanics

Zhang et al., PRA 68, 13808 (2003)

C. Genes, D. Vitali, P. Tombesi, S.Gigan, M. Aspelmeyer, Phys. Rev. A 77, 033804 (2008)

Page 20: Aspelmeyer

Mavalvala (LIGO, MIT)Bouwmeester (UCSB) Aspelmeyer (IQOQI)

Fabry-Perot cavity

Vahala (Caltech)Kippenberg (MPQ)

Toroidal microcavity

Harris (Yale)

dispersively coupled membranSilicon photonicsPainter (Caltech)

Tang (Yale)

Heidman (Paris)

... and many others

OptoOpto--mechanical systems (a few examples)mechanical systems (a few examples)

Painter (Caltech),Tang (Yale)

Page 21: Aspelmeyer
Page 22: Aspelmeyer

Pump power ~ 2 mWDimensions: 520 x 120 x 2.4 μm3

meff = 20 ng (measured)F = 500 (R > 99.6 %)Q = 104

ωm = 2π x 280 kHz

Pump power ~ 2 mWDimensions: 520 x 120 x 2.4 μm3

meff = 20 ng (measured)F = 500 (R > 99.6 %)Q = 104

ωm = 2π x 280 kHz

300 K

8 K

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M.Aspelmeyer, A. Zeilinger, Nature 444, 67 (2006)

Page 23: Aspelmeyer

Karrai (LMU) 2004: first proof-of-concept via photothermal forcesHöhberger et al., Nature 432, 1002 (2004)

Laser-cooling via radiation pressure...Vienna (Aspelmeyer): S. Gigan et al., Nature 444, 67 (2006)

Paris (Heidmann): O. Arcizet et al., Nature 444, 71 (2006) Munich (Kippenberg): Schliesser et al, PRL 97, 243905 (2007)

MIT (Mavalvala): Corbitt et al., PRL 98, 150892 (2007)Yale (Harris): Thompson et al., Nature 452, 72 (2008)

...allows cooling into the quantum ground stateF. Marquardt et al. PPRL 99, 093902 (2007)I. Wilson-Rae et al., PRL 99, 093901 (2007)

C. Genes et al., PRA 77, 033804 (2008)

Laser cooling of mechanical modesLaser cooling of mechanical modes

from Wilson-Rae et al.

Page 24: Aspelmeyer

Homodyne Feedback • S. Mancini, D. Vitali, P. Tombesi, Phys. Rev. Lett. 80, 688 (1998)

• P. F. Cohadon, A. Heidmann, M. Pinard, Phys. Rev. Lett. 83, 1374 (1999)

current status:current status:+ readout at shot-noise limit: 10-19 m/sqrt(Hz)+ lowest <n> observed thus far ~ 104

Arcizet et al., PRL 97, 133601 (2006)Kleckner et al., Nature 444, 75 (2006)

Poggio et al., PRL 99, 17201 (2007)

allows cooling to the quantum ground state

Cohadon et al.

Bouwmeester, UCSB, 2006

Rugar, IBM, 2007

(Quantum) optics (Quantum) optics –– a toolbox for (quantum) mechanicsa toolbox for (quantum) mechanics

Page 25: Aspelmeyer

OptomechanicalOptomechanical EntanglementEntanglement

field-mirror coupling

Entanglement between photon number and mirror positionBose, Jacobs, Knight, PRA 56, 4175 (1997)

Page 26: Aspelmeyer

Free evolution (open system)

Entanglement in an experimental scenario

•M. Paternostro, D. Vitali, S. Gigan, M. S. Kim, C. Brukner, J. Eisert, M. Aspelmeyer, PRL 99, 250401 (2007)

•D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, V. Vedral, A. Zeilinger, M. Aspelmeyer, PRL 98, 030405 (2007)

Entanglement between two mirrors

•M. Pinard, A. Dantan, D. Vitali, O. Arcizet, T. Briant, A. Heidmann, EPL 72, 747 (2005)

•S. Pirandola,D. Vitali, P. Tombesi,S. Lloyd, PRL 97, 150403 (2006)•H. Müller-Ebhardt,H. Rehbein, R. Schnabel, K. Danzmann,Y. Chen,

PRL (2008)and many others...

Pinard et al.

OptomechanicalOptomechanical EntanglementEntanglement

Page 27: Aspelmeyer

Quantum teleportation

•S. Mancini, D. Vitali, P. Tombesi, PRL 90, 137901 (2003)•S. Pirandola,D. Vitali, P. Tombesi,S. Lloyd, PRL 97, 150403 (2006)

Interfacing Nanomechanics with Atomic Ensembles

•C. Genes, D. Vitali, P. Tombesi, PRA 77, 050307 (2008)

•K. Hammerer, M. Aspelmeyer, E.S. Polzik, P. Zoller, arXiv:0804.3005 [quant-ph]

(2008)

TeleportingTeleporting Quantum Quantum StatesStates ontoonto MechanicsMechanics

Page 28: Aspelmeyer

• sideband-resolved regime (κ < ωm)• absence of optical absorption• low-noise optical pump• weak coupling to thermal environment

cryogenic cavitylarge Q

MechanicalMechanical Systems in Systems in thethe quantum quantum regimeregime ––wherewhere areare thethe QUANTUM QUANTUM experimentsexperiments??

Schliesser et al., Nature Physics 4, 415 (2008); κ/ωm = 0.04 Regal et al., Nature Physics 4, 555 (2008); κ/ωm = 0.2

Schwab group (2008); κ/ωm = 0.01

low-absorption Bragg mirrors (LIGO)

Corbitt et al., PRL 98, 150892 (2007)Gröblacher et al., EPL 81, 54003 (2008)

Schwab, Lehnert, Rugar, ... (mostly NEMS or low frequency)

no experiment to date combines all these requirements

Page 29: Aspelmeyer

increase of mechanical Qmirror pad on

high-Q substrate monocrystalline GaAs/GaAlAs

free-standing Bragg mirrors

in collaboration with Schwab group, Cornell and ATFilms

in collaboration with G. Cole, Lawrence Livermore National Lab

Q > 10,000 @ 300 K

Q ~ 5,000 @ 300 K~ 20,000 @ 6 K

κ/ωm ~ 0.2

sideband-resolved

G. Cole, S. Gröblacher, K. Gugler, S. Gigan, M.Aspelmeyer, Appl. Phys. Lett. 92, 261108 (2008)

ωm~ 2π × 2MHzR > 0.9998

κ/ωm ~ 0.1

TowardsTowards quantum quantum optoopto--mechanicsmechanics

Page 30: Aspelmeyer

S. Gröblacher, S. Gigan, H. Böhm, A. Zeilinger, M. Aspelmeyer, Eur. Phys. Lett. 81, 54003 (2008)

TowardsTowards quantum quantum optoopto--mechanicsmechanics

Eur. Phys. Lett. 81, 54003 (2008)

Page 31: Aspelmeyer

S. Gröblacher, S. Gigan, H. Böhm, A. Zeilinger, M. Aspelmeyer, Eur. Phys. Lett. 81, 54003 (2008)

20K

300K

270mK ⟨neff⟩~104

270mK ⟨neff⟩~104

TowardsTowards quantum quantum optoopto--mechanicsmechanics

Eur. Phys. Lett. 81, 54003 (2008)

Page 32: Aspelmeyer

Cornell University ENS Paris UCSB LMU Munich MIT MPQ Garching IBM Research Almaden Yale IQOQI Vienna

(not yet included)•McClelland group (ANU)...

MIT

IBM

LMU

UCSB

Yale

IQOQI ENS

Cornell

IQOQI

MPQ

groundground--state cooling possible in principle (sidestate cooling possible in principle (side--band resolved regime)band resolved regime)

TowardsTowards thethe quantum quantum groundground statestate

JILA JILA

Page 33: Aspelmeyer

single electron-spin detection via magnetic resonanceRugar et al., Nature 430, 329 (2004)

zeptogram-scale mass sensitivityYang et al., NanoLett. 6, 583 (2006)

zeptonewton-scale force sensingMamin & Rugar, APL 79, 3358 (2001)

attometer-scale displacement sensingArcizet et al., Phys. Rev. Lett. 97, 133601(2006)

MicroMicro-- and and NanomechanicalNanomechanical sensingsensing todaytoday ((SeptSept 2008)2008)

towards quantum limits of force- and displacement detection

Rugar 2004

Page 34: Aspelmeyer

MechanicalMechanical HybridsHybrids for Quantum Information?for Quantum Information?

Hybrid?Hybrid?

mechanical modes

photons

charge

magnetic flux

Quantum Information Systems?Quantum Information Systems?

• create quantum entanglement• encode quantum information• extend the lifetime of quantum information• communicate quantum information coherently

atoms

Page 35: Aspelmeyer

MechanicsMechanics coupledcoupled to quantum to quantum systemssystems

single-electron transistor (SET) coupled to NEMSSchwab (Cornell)

qubit

nanomechanics

SSET

nanomechanics coupledto a single atomic point contactLehnert (JILA)Rugar (IBM)

qubit coupled to NEMSLaHaye, Roukes, Echternach (Caltech)Schwab (Cornell)

NV-center electron spin coupled to MEMSRabl, Lukin et al. (Harvard)

Page 36: Aspelmeyer

Current Experiments

1950 1960 1970 1980 1990 2000 2010

1

10

100

1000

10000

100000

nu

mbe

r of p

artic

les

in e

xper

imen

t

Year

E. Schrödinger, August 1952

Page 37: Aspelmeyer

Simon Gröblacher

FlorianBlaser

SylvainGigan(now: ESPCI Paris)

MauroPaternostro(now: QU Belfast)

HannesBöhm(now: EADS, Munich)

Markus Aspelmeyer

Anton Zeilinger

KatharinaGugler

TomaszPaterek(now: Univ. Singapore)

TheThe MirrorMirror--CrewCrew

Alexey Trubarov

Michael Vanner

Garrett Cole

Page 38: Aspelmeyer

Austrian Science Fund (FWF)European Commission

City of ViennaFoundational Questions Institute (FQXI)

The Vienna teamExperiment:Markus Aspelmeyer (PI) Simon Gröblacher, Michael Vanner,Garrett Cole, Alexey Trubarov, Anton ZeilingerTheory:Caslav Brukner, Johannes Kofler

University of Linz (Austria)Dieter Bäuerle

Cornell University (USA)Keith Schwab, Jared Hertzberg

Queen‘s College Belfast (UK)Mauro Paternostro, Myungshik Kim

University of Leeds (UK)Vlatko Vedral

Imperial College (UK)Jens Eisert

University of Camerino (Italy)David Vitali, Paolo Tombesi

IQOQI Innsbruck (Austria)Klemens Hammerer

Quantum Quantum MechanicsMechanics in Viennain Vienna

LIGO Cluster (USA)Greg Harry

Former group members:Mauro PaternostroFlorian BlaserHannes R. BöhmSylvain Gigan Kathrin GuglerTomasz Paterek

Page 39: Aspelmeyer

EU STREP project in the 7th framework program (FP7)Oct 2008 – 2011, 2.3M€

Vienna (Aspelmeyer, Zeilinger)Paris (Heidmann, Cohadon, Briant)Camerino (Tombesi, Vitali)Potsdam (Eisert)Munich, MPQ (Kippenberg)Leiden (Bouwmeester)Imperial College*(Eisert, Knight)

Hiring NOW!...PFC

* affiliated

MINOS: MicroMINOS: Micro-- and and NanoNano--optomechanicaloptomechanical SystemsSystems