Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta...

57
Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling

Transcript of Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta...

Page 1: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

Hartmut Abele, Technische Universität Wien

Bastian MärkischHartmut AbeleCKM2014

Neutron Beta Decay:

Determination of the Weak Axial Vector Coupling

Page 2: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

2

Neutron -decay

lifetime ~ 15 min

-endpoint: Emax = 782 keV

V-A Theory: Vector coupling: gV = GF Vudf1(q2→0)

Axial vector coupling: gA = GF Vud g1(q2→0)

ratio = gA/ gV = -1.276

Standard Model: Vud, , ei= -1

en p e

Standard Model and Neutron Decay

ud us ub

cd cs cb

td ts tb

CKM-Matrix: V V VV V VV V V

d d

s s

b b

Page 3: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

3

Parameters• Strength: GF

• Quark mixing: Vud

• Ratio: = gA/gV

5 41 2 2 2

3 7(1 3 )2ud

Re

F

fV

mG

ch

ObservablesLifetime Correlation A

Correlation B

Correlation C

Correlation a

Correlation D

Correlation N

Correlation Q

Correlation R

Beta Spectrum

Proton Spectrum

Beta Helicity

Electron

Proton

Neutrino

Neutron Spin

A

B

C

a

D

R N

Neutron Alphabet deciphers the SM

High Precision - Low Energy• Hartmut Abele, Atominstitut, TU Wien

RQ

Page 4: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

4

a,A = gA/ gV

A + t Vud from CKM matrix

A + B + t Right Handed Currents (RHC)?

WL WR

Neutron Alphabet deciphers the SM

H. Abele, NIM A 611 (2009) 193–197

Page 5: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

5

D, R ? T-odd CP-violation

CP

See P. Herczeg, Prog. Part. Nucl. Phys. 46 (2001) 413.See P. Herczeg, Prog. Part. Nucl. Phys. 46 (2001) 413.

Candidate models for scalar couplings (at tree-level): Charged Higgs exchange Slepton exchange (R-parity violating super symmetric models) Vector and scalar leptoquark exchange

The only candidate model for tree-level tensor contribution (in renormalizable gauge theories) is: Scalar leptoquark exchange

Courtesy of K. Bodek

Neutron Alphabet deciphers the SM

Page 6: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

6Hartmut Abele, Technische Universität München

Characteristics of Experiments

Using Magnetic Fields

(Dubbers 1980s)

A, B, C

PERKEO I

Method: P. Bopp et al., NIM A 267 (1988) 436.

Page 7: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

7

Why ratio = gA/ gV from Neutrons?

Processes with the same Feynman-Diagram

Courtesy of D. Dubbers

Page 8: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

PERKEO II Spectrometer

8.9.2014 CKM 2014, Vienna - Bastian Märkisch 8

• X-SM crossed polariser geometry: Kreuz et al., NIM A 547, 583 (2005) Neutron polarisation P = 99.7(1)%

• Largely reduced background (Mund et al., PRL 110 (2013))Improved beam line setup and shielding, Overall S:B = 8:1 Beam related background : 1/1700 in signal region (previous:1/200)

3rd run (beta asymmetry), major Improvements:

Magnetic field:

• alignment of neutronspin

• guide e, p onto detectors

• separation into hemispheres

2 x 2 detector

• backscatter suppression

Page 9: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

Error Budget A

9

Page 10: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

10

-1.1900(200), PDG (1960)

-1.2500(200), PDG (1975)

-1.2610(40), PDG (1990)-1.2594(38), Gatchina (1997)

-1.2660(40), M, ILL (1997)

-1.2740(30), PERKEO II (1997)-1.2686(47), Gatchina, ILL (2001)

-1.2739(19), PERKEO II (2002)−1.27590(+409)(−445), UCNA (2011) -1.2756(30), UCNA (2013) -1.2748+13

-14 PERKEO II (2013)

a bit history: l from neutron b-decay

Page 11: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

PERKEO II: Combined Result

8.9.2014 CKM 2014, Vienna - Bastian Märkisch 11

Combine all PERKEO II results:

H. Abele et al., Phys. Lett. B 407, 212 (1997) A = - 0.1189(12)H. Abele et al., PRL 88, 211801 (2002) A = - 0.1189(8)D. Mund et al., PRL 110, 172502 (2013) A = - 0.11972(+53

-65)

Final Perkeo II result:A = - 0.11926(+47

-53) ΔA/A = 4.2 ∙ 10-3

λ = - 1.2748(+13-14) Δ λ / λ = 1.1 ∙ 10-3

Conservative treatment of correlated errors:detector calibration and uniformity, background determination, edge effect, radiative correction

Vud = 0.97449(18)RC(40)tau(80)AVud = 0.97449(18)RC(40)tau(80)A

Vud = 0.97425(8)exp.(10)nucl.dep.(18)RC (superallowed)Vud = 0.97425(8)exp.(10)nucl.dep.(18)RC (superallowed)

Page 12: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

12

-1.1900(200), PDG (1960)

-1.2500(200), PDG (1975)

-1.2610(40), PDG (1990)-1.2594(38), Gatchina (1997)

-1.2660(40), M, ILL (1997)

-1.2740(30), PERKEO II (1997)-1.2686(47), Gatchina, ILL (2001)

-1.2739(19), PERKEO II (2002)−1.27590(+409)(−445), UCNA (2011) -1.2756(30), UCNA (2013) -1.2748+13

-14 PERKEO II (2013)

a bit history: l from neutron b-decay

Page 13: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

13 = l -1.2756(30), UCNA (2013)

UCNA (2013)

Page 14: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

Recent Results: PERKEO Collaboration

14 14

A =-0.1197(6)

APII = 0.1193(5)PII = 1.2748(13)

error: 1×103

Electron Asymmetry A:

PRL 110, 172502 (2013)

Proton Asymmetry C:

Neutrino Asymmetry B:

B = 0.9802(50)Schumann et a.PRL 99, 191803 (2007)

PERKEO II combined:

first precision measurement

C = 0.2377(36)Schumann et al.,PRL 100, 151801 (2008)

Page 15: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

15

Coefficient B,C Proton detector

H. Abele, NIM A 611 (2009) 193–197

C foil ScintillatorProton

Proton detection:• Measure electron energy• Wait for proton• Convert proton into electron signal

Proton detection:• Measure electron energy• Wait for proton• Convert proton into electron signal

n-Spin

Page 16: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

16

M. Schumann: The Neutrino-Asymmetry B

M. Schumann,M. Kreuz, M. Deissenroth,F. Glück,J. Krempel, B. Märkisch,D Mund, A. Petoukhov, T. Soldner, H. Abele, PRL 100, 151801 (2008)

• Electron and Proton in same hemisphere

low dependence on energy calibration and energy resolution higher sensitivity due to larger exp. asymmetry

• Electron and Proton in opposite hemispheres

more statistics since this case occurs for ~78% of the events

Electron Proton

Neutron Spin

Neutrino

Electron

Proton

Neutrino

Neutron Spin

NN

NNBexp

NN

NNBexp

Systematically clean method: Integration over two hemispheres

Page 17: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

17

Coefficient B, Serebrov et al.

H. Abele, TU Wien

Page 18: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

P E R K E O I I IB. Märkisch:Spectrometer PERKEO III

8.9.2014 18

Magnetic field :• alignment of nspin• guide e, p onto detectors

2 x 2 detector

• separation into hemispheres

detector

detector

neutron beam

electron tracks

B = 150 mT

active volume ~2m, 15x15cm²

B = 90 mT

• decay volume 10x longer: ~50.000 events/s in cont. Beam• B = 0.15T

CKM 2014, Vienna - Bastian MärkischB. Maerkisch et al., NIM 611 (2009) 216–218

Page 19: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

P E R K E O I I I

velocity selectorl=5.0Å∆ / = 10%l l

~2m, 150mTbeam dump, enriched 10B

homogeneous fieldContinuous,“monochromatic”neutron beam

chopper (6LiF)@ 94Hz

magnetic field

Pulsed Cold Neutron Beam

8.9.2014 19

electron detector

• Edge-free projection onto detectors: full 2 x 2 p detection without distortions

• Background can be fully measured and subtracted

D. Werder, UHD

• Magnetic mirror effect controlled

Benefits:

CKM 2014, Vienna - Bastian Märkisch

Page 20: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

P E R K E O I I IPulsed Neutron Beam

8.9.2014 CKM 2014, Vienna - Bastian Märkisch 20

time for signalmeasurement

neutrons hitbeam dump

time forbackgroundmeasurement

slopes due tomagnetic mirror

Signal region 300 keV < E < 700 keV

upstreamdownstream

Page 21: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

P E R K E O I I IBackground Subtraction

8.9.2014 21

Time variation of background signal consistent with zero!

Signal region 300 keV < E < 700 keV

Additional background tests:Background monitors (NaI and He), control measurements with blocked beam

Chopper83 Hz

Chopper94 Hz

4101 A

A

CKM 2014, Vienna - Bastian Märkisch

coun

ts (a

.u.)

coun

ts (a

.u.)

Page 22: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

P E R K E O I I IInstallation at PF1B, ILL

8.9.2014 22

One of two trucks

Plastic scintillator

Experimental Zone

96% of data acquired in analysis6 10∙ 8 neutron decay events

Page 23: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

P E R K E O I I IBeta Asymmetry, Chopper 94 Hz

23

Raw Signal + Background Signal, Background Subtracted

Sum and Difference Experimental Asymmetry

preliminary

preliminary

preliminary

preliminary

NN

NNAexp

Page 24: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

P E R K E O I I I

Source Correction ∆A/A (10-4)

Uncertainty ∆A/A (10-4) Predecessor

Neutron beam Polarisation < 10 / 1.4Spin flip efficiency

Background / 7Undetected 1Time variation -1 1

ElectronsMagnetic mirror effect 4Lost backscatter energy 1.4

DetectorDeadtime * -5 2Non-linearity 4 / 4.6Non-uniformity 3Stability * 2Calibration 0.5

Theory Radiative corr. * -1.1 2Total Systematics 12.4 / 3.2Statistics 13.9 / 2.7Total 18.6

Error Budget

24

separate analysis

3109.1 A

A

4108.4

Result (still blinded):separate analysis

2.3x better than Perkeo II

Page 25: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

P E R K E O I I IPERKEO III Team

8.9.2014 25

D. Dubbers, B. Märkisch, H. Mest, C. Roick, D. WerderHeidelberg University

H. Abele, H. Saul, X. Wang

Institut Laue Langevin, GrenobleT. Soldner, A. Petoukhov

TU Vienna, TU Munich

PERKEO III Team, ILL

Page 26: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

Source Correction ∆A/A (10-4)

Uncertainty ∆A/A (10-4) Predecessor

Neutron beam Polarisation < 10 / 1.4Spin flip efficiency

Background / 7Undetected 1Time variation -1 1

ElectronsMagnetic mirror effect 4Lost backscatter energy 1,4

DetectorDeadtime * -5 2Non-linearity 4 / 4.6Non-uniformity 3Stability * 2Calibration 0,5

Theory Radiative corr. * -1,1 2Total Systematics 12,4 / 3.2Statistics 13,9 / 2.7Total 18,6

Error Budget Uni HD Maerkisch et al., ILL: Soldner et al. TU Wien: Wang et al.

26

separate analysis

3109.1 A

A

4108.4

Result:

separate analysis

Factor 4 improvement over PDG 2013 average

Page 27: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

Close to Publication

aCORN @ NISTaSPECT @ Mz, ILL, TUWPERKEO III @ UHD, ILL, TUW: A (B,C not so close)

New InstrumentsNab, PERC

Hartmut Abele, Atominstitut, Vienna University of Technology 27

Page 28: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

R. Feynman

Hartmut Abele, Helmut Leeb, Technische Universität Wien

28

Page 29: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

30

Standard Model of Particle PhysicsInput: Principia: - Gauge principle U(1) x SU(2) x SU(3)- Lorentz invariance : x‘ = Lx- CPT, ...Invariance

Output: - Interactions- Equation of motion Maxwell, Schrödinger, Dirac- Existence of Photons, Gluons, W±, Z0

(carriers of interaction)- Charge conservation (Source of interaction)

Conclusion: SM very successful- e.g. as basis for technology, chemistry, biology, mol.biologie

D. Dubbers 2007

Page 30: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

31

Weak Magnetism form factor f2

Neutron Decay Transition Matrix:

Electron Asymmetry:

f2 Weak Magnetism Form Factor

(SM prediction)

2 % additional Edependence of A

2 21 3

22[ ( ) ( ) ]|2

( )

p

V p f k k if k k nf k

m

Ffi 5 5

GT | (1 ) | ( (1 ) )

2udV p n e

Page 31: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

Beyond SMA search for - right-handed admixtures to the left-handed feature of the Standard model. They

are forbidden in the Standard-Model, but, as a natural consequence of symmetry breaking in the early universe, they should be found in neutron-decay. Signatures are a WR mass with mixing angle z.

- scalar and tensor admixtures gS and gT to the electroweak interaction. gS and gT are also forbidden in the Standard model but supersymmetry contributions to correlation coeffi cients or the Fierz interference term b can approach the 10−3 level.

A precision measurement of - the weak-magnetism form factor f2 prediction of electroweak theory. Such an

experiment would be one of the rare occasions, where a strong test of the underlying structure itself of the Standard model becomes available.

Supersymmetry search in the LHC era: - one could expect small deviations in the low-energy tests, such as deviations from

CKM unitarity, but no effect at the LHC, especially if the supersymmetry spectrum is below one TeV, but the spectrum is compressed, or if some of the superpartners are light and others are heavy (a variant on the “split-SUSY” scenario)

Hartmut Abele, Atominstitut, TU Wien 32

Page 32: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

Participating Institutions:

• IST Braunschweig

• Univ. Heidelberg• ILL

• Univ. Jena

• Univ. Mainz

• Priority Areas• CP-symmetry violation and particle physics in the early universe. • The structure and nature of weak interaction and possible extensions of

the Standard Model. • Tests of gravitation with quantum objects • Charge quantization and the electric neutrality of the neutron.

• New Infrastructure (UCN-Source, cold Neutrons)- * Coordinators first round (S. Paul, H.A. )

DFG/FWF Priority Programme 1491 : Precision experiments in particle- and astrophysics with cold and ultracold neutrons,

• Exzellenzcluster ‚Universe‘ München

• Techn. Univ. München*

• PTB Berlin

• Vienna University of Technology*

Page 33: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

Priority Programme 1491

Research Area A: CP-symmetry violation and particle physics in the early universe- Neutron EDM E = 10-23 eV

Research Area B: The structure and nature of weak interaction and possible extensions of the Standard Model - Neutron b-decay V – A Theory

Research Area C: Test of gravitation with quantum interference - Neutron bound gravitational quantum states

Research Area D: Charge quantization and the electric neutrality of the neutron- Neutron charge

Research Area E: New measuring techniques- Particle detection- Magnetometry- Neutron optics

Page 34: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

Experiment PERC- PERC, a clean, bright and versatile source of neutron decay products

(Maerkisch) - Proton spectroscopy (Heil, Zimmer)- Electron spectroscopy (Abele)- Neutron polarisation + analysis with 10-4 accuracy (Soldner)- design of the beam line for PERC (Soldner, Jericha)- Development of a non-depolarising neutron guide needed for PERC

(Schmidt)

Measurement of the neutron lifetime- O. Zimmer et al.

Measurement of n -> H- S. Paul et al.

Priority area B (first 3 years round):Novel experiments on neutron beta-decay

Page 35: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

SM tests on 10-4 level

Theory- Recalculation of corrections induced by the “weak magnetism”, the

proton recoil and the radiative corrections.- A. Ivanov, M. Pitschmann, and N. Troitskaya, Phys.Rev. D88, 073002 (2013),

1212.0332.

Experiment PERC- High statistic measurements: - Today: High Average Flux: = 2 x 1010 cm-2s-1

- Decay rate of 1 MHz / metre- Thesis C. Klauser (2013) Polarizer P/P = 10-4 , Spin Flipper f/f = 10-4

Hartmut Abele, Atominstitut, Vienna University of Technology 36

Page 36: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

Proton Electron Radiation Channel: B. Maerkisch

D. Dubbers et al., NIM A 596 (2008) 238 and arXiv:0709.4440G. Konrad et al. (for the PERC collaboration), J. Phys.: Conf. Ser. 340 (2012) 012048

=0.5T

cold

Versatile: A, B, C, a, b, κ, …

Sensitivity: • improved by up to 2 orders of magnitude

• high phase space density

Systematics: • 10-4 (for e-)

• precise cuts in dΩe:

Requirements: • no local field minima

• adiabaticity criterion

• B1 homogeneity 10-4 in e/p beam

0 0

sin

sin

B

B

Page 37: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

Superconducting Magnet

8.9.2014 38

Preliminary Magnet Design

L = 11.3m

Precision experiments in particle and astrophysics with cold and ultracold neutronsPriority Programme 1491

6 T

1.5 T

Status:Magnet in productionInstallation in 2016

Physikalisches InstitutUniversität Heidelberg

1220

1 BB

Page 38: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

39

G. Konrad: R x B Spectrometer

Page 39: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

R×B Drift Momentum Spectroscopy

- Small drift distances (cm)

Xiangzun Wang, G. Konrad et al., NIM A (2012), DOI 10.1016/ j.nima.2012.10.071

+ Adiabatic transport of particles+ Low momentum measurements+ Large acceptance of θ0

+ Small corrections for θ0

Last Coil of PERC

Tilted Coils

e-/p+ beam

Detector

Aperture

y

z

x

y

xz

RxBvd qR²B²

B3=0.15T

B2=0.5T

ElectronsProtons

D

1 1(cos )

2 cod

sdT

pD

qBv t

D

RB

α

Page 40: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

Hartmut Abele, Technische Universität München 41

SOURCE OF ERROR COMMENT SIZE OF CORRECT.

SIZE OF ERROR:

non-uniform n-beamfor ΔΦ/Φ = 10 % over 1 cm width

2.5·10−4 5·10−5

other edge effects on e/p-window for worst case at max. energy 4·10−4 1·10−4

magn. mirror effect, contin's n-beam 1.4·10−2 2·10−4

magn. mirror effect, pulsed n-beam for ΔB/B = 10 % over 8 m length 5·10−5 <10−5

non-adiabatic e/p-transport 5·10−5 5·10−5

background from n-guide}is separately measurable

2∙10−3 1·10−4

background from n-beam stop 2·10−4 1·10−5

backscattering off e/p-window 2·10−5 1·10−5

backscattering off e/p-beam dump 5∙10−5 1∙10−5

backscatt. off plastic scintillator}for worst case

2∙10−3 4·10−4

~ same with active e/p-beam dump − 1·10−4

neutron polarisation present status 3·10−4 1·10−4

Dubbers, Baessler, Märkisch, Schumann, Soldner, Zimmer, H.A., arXiv 2007

Page 41: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

PERC Collaboration

B. MärkischU. SchmidtD. DubbersH. MestL. RaffeltC. RoickN. RebrovaC. ZienerR. MaixB. Windelband

H. AbeleE. JerichaG. KonradJ. ErhartC. GösselsbergerX. WangH. FillungerM. HorvathR. Maix

J. KlenkeT. LauerH. SaulK. Lehmann

T. SoldnerO. ZimmerC. Klauser

W. HeilM. Beck

Heidelberg Vienna

FRM II, MunichGrenoble

8.9.2014 42CKM 2014, Vienna - Bastian Märkisch

Page 42: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

Reserva

Hartmut Abele, Atominstitut, Vienna University of Technology 43

Page 43: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

PERKEO II: Polarisation

44

Single Polariser: X-SM Geometry:

New polarisation technique: X-SM (crossed super mirror) polarisers Kreuz et al., NIM A 547, 583 (2005)

New analyser technology: 3He Spin Filters

Average polarisation: 99.7(1)%, spin flip efficiency 100.0(1)%Correction 4 times smaller, uncertainty 3 times smaller

wavelength

8.9.2014 CKM 2014, Vienna - Bastian Märkisch

Page 44: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

PERKEO II: Background

8.9.2014 45

shutter up

shutter down

closed closed

Shutter Down – Shutter Up, Detector 1

• Overall S:B = 8:1 in fit region• Background variation due to changes

of neighbouring instruments: reduced data set (70%)

• Beam-related background determined by extrapolation procedure, Reich al., NIM A 440.

Only 1/1700 of the electron rate in signal region (previous: 1/200)

Page 45: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

PERKEO II: Error Budget

8.9.2014 CKM 2014, Vienna - Bastian Märkisch 46

AA /Mund et al., PRL 110 (2013)

Page 46: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

PERKEO II Result, 2013

8.9.2014 CKM 2014, Vienna - Bastian Märkisch 47

APNN

NNA c

v21

exp

Combined, including corrections:A = −0.11972 (45)stat(+32

-44)sys = −0.11972(+53-65); = −1.2761(+14

-17)

Fit: Adet 1 = −0.11846(64)stat Fit: Adet 2 = −0.12008(64)stat

Difference in results for both detectors in agreement with expectation from magnetic mirror effect.

Page 47: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

PERKEO II: Combined Result

8.9.2014 CKM 2014, Vienna - Bastian Märkisch 48

Combine all PERKEO II results:

H. Abele et al., Phys. Lett. B 407, 212 (1997) A = - 0.1189(12)H. Abele et al., PRL 88, 211801 (2002) A = - 0.1189(8)D. Mund et al., PRL 110, 172502 (2013) A = - 0.11972(+53

-65)

Final Perkeo II result:A = - 0.11926(+47

-53) ΔA/A = 4.2 ∙ 10-3

λ = - 1.2748(+13-14) Δ λ / λ = 1.1 ∙ 10-3

Conservative treatment of correlated errors:detector calibration and uniformity, background determination, edge effect, radiative correction

Page 48: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

49M. Pitschmann, A. Ivanov, Atominstitut, Vienna University of Technology

Page 49: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

50M. Pitschmann, A. Ivanov, Atominstitut, Vienna University of Technology

Page 50: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

51M. Pitschmann, A. Ivanov, Atominstitut, Vienna University of Technology

Page 51: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

52

Page 52: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

53

Page 53: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

54

Page 54: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

Coefficient A

55Hartmut Abele, Vienna University of Technology

Page 55: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

Coefficient C

56Hartmut Abele, Vienna University of Technology

Page 56: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

Error budget B

Page 57: Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.

Error Budget C

58