Quantenphysik in Lebens- (und) medizinischen) Wissenschaften Péter Maróti Professor für...

28
Quantenphysik in Lebens- (und) medizinischen) Wissenschaften Péter Maróti Professor für Biophysik, Universität von Szeged, Ungarn. Erscheinungen und Experimente die über die klassischen (Newton’schen) Physik zeigen Lehrbücher: Biophysik für Mediziner (Herausgeber S. Damjanovich, J. Fidy und J. Szöllősi) Medicina, Budapest, 2008. Fercher A.F. Medizinische Physik, Springer, Wien, New York 1992. Haas U. Physik für Pharmazeuten und Mediziner; Wissenschaftliche Verlagsgesellschaft mbH. Suttgart 2002. Maróti P., Laczkó G.: Bevezetés a biofizikába, JATEPress, Szeged 1998 (Ungarisch) P. Maróti, L. Berkes, F. Tölgyesi: Biophysics Problems. A Textbook with Answers.

Transcript of Quantenphysik in Lebens- (und) medizinischen) Wissenschaften Péter Maróti Professor für...

Page 1: Quantenphysik in Lebens- (und) medizinischen) Wissenschaften Péter Maróti Professor für Biophysik, Universität von Szeged, Ungarn. Erscheinungen und Experimente.

Quantenphysik in Lebens- (und) medizinischen) Wissenschaften

Péter MarótiProfessor für Biophysik, Universität von Szeged, Ungarn.

Erscheinungen und Experimente die über die klassischen (Newton’schen) Physik zeigen

Lehrbücher: Biophysik für Mediziner (Herausgeber S. Damjanovich, J. Fidy und J. Szöllősi) Medicina, Budapest, 2008.Fercher A.F. Medizinische Physik, Springer, Wien, New York 1992.Haas U. Physik für Pharmazeuten und Mediziner; Wissenschaftliche Verlagsgesellschaft mbH. Suttgart 2002.Maróti P., Laczkó G.: Bevezetés a biofizikába, JATEPress, Szeged 1998 (Ungarisch)P. Maróti, L. Berkes, F. Tölgyesi: Biophysics Problems. A Textbook with Answers. Akadémiai Kiadó, Budapest 1998 (Englisch).

Page 2: Quantenphysik in Lebens- (und) medizinischen) Wissenschaften Péter Maróti Professor für Biophysik, Universität von Szeged, Ungarn. Erscheinungen und Experimente.

Kritische Experimente die zur Ausbildung der Quantenphysik führten

Ein ganz kleines Loch

Die Wand des Körpers gehalten bei Temperatur T

Experimentelle Verwirklichung des absoluten schwarzen Körpers

Im Körper mit schwarzen Wänden entsteht Gleichgewicht zwischen Absorption und Emission der Strahlung.

Das Loch an dem Reservoir verwirklicht die Bedingungen des (absolut) schwarzen Körpers, weil die Strahlung, die von außen eintritt, praktisch (nach zahlereichen Reflexionen an den schwarzen Wänden) nie austreten wird.

I. Temperaturstrahlung und die UV Katastrophe

Strahlung

Page 3: Quantenphysik in Lebens- (und) medizinischen) Wissenschaften Péter Maróti Professor für Biophysik, Universität von Szeged, Ungarn. Erscheinungen und Experimente.

Temperaturstrahlung

Das Spektrum (die Strahlungsdichte gegen der Wellenlänge) des absoluten schwarzen Strahlers bei verschiedenen Temperaturen gemesst in absoluten Werten (K).

ρ ist die Energiedichte der Strahlung E (J/m3) durch die Einheit der Wellenlänge Δλ (m):

ρ = E/ ΔλSichtbares Bereich

des Spektrums

Page 4: Quantenphysik in Lebens- (und) medizinischen) Wissenschaften Péter Maróti Professor für Biophysik, Universität von Szeged, Ungarn. Erscheinungen und Experimente.

das Rayleigh-Jeans-Gesetz führt zur Katastrophe im UV Spektralbereich.

Die vier Strahlungsgesetze der klassischen Physik aufgestellt am Ende des 19. Jahrhunderts (vor der Quantenphysik): 1. Kirchhoff’sches Gesetz: e/a = E(λ,T),

es ist gültig für alle Körper (also nicht nur für absoluten schwarzen Körper). e: Ausstrahlung (Emission) unda: Absorptionsgrad des Körpers.Für absoluten schwarzen Körper a = 1.

2. Wien’sches Verschiebungsgesetz:

T·λmax= 2896 μm·K (Konstante)

T: absolute Temperatur undλmax: die Wellenlänge der Temperaturstrahlung wo ρ maximal ist.

3. Stefan-Boltzmann-Strahlungsgesetz:

Etotal = σ·T4

Etotal : Gesamtenergie ausgestrahlt per Flächeneinheit undσ = 56,7 nW·m-2·K-4.

4. Rayleigh-Jeans-Gesetz: 48

Tk

λ (nm)

Die erste drei Gesetze sind gültig, aber

ρ (λ

)

Page 5: Quantenphysik in Lebens- (und) medizinischen) Wissenschaften Péter Maróti Professor für Biophysik, Universität von Szeged, Ungarn. Erscheinungen und Experimente.

48

Tk

Die Rayleigh-Jeans Kurve:

1. Die Ultraviolettkatastrophe

Strahlung des schwarzen Körpers: Experiments

Versuche zur (theoretischen) Beschreibung des Spektrums der Temperaturstrahlung

Wellenlänge,

Stra

hlun

gsdi

chte

,

Annahme der klassischen Physik: der lineare Oszillator im strahlenden schwarzen Körper kann alle Größe der Anregungsenergie aufnehmen (und auch abgegen): die Energie kann also beliebig klein (oder groß) sein. Diese Annahme führt aber zur Ultraviolettkatastrophe.

Page 6: Quantenphysik in Lebens- (und) medizinischen) Wissenschaften Péter Maróti Professor für Biophysik, Universität von Szeged, Ungarn. Erscheinungen und Experimente.

118

/4 kThcehc

Die Planck’sche Funktion

Schlußfolgerung: die Energie des elektromagnetischen Oscillators is

gequantelt.

2. Das Planck’sche Strahlungsgesetz

Die Annahme von Planck: die Energie des elektromagnetischen Oscillators kann sich nicht kontinuierlich ändern. Der Oscillator kann nur sehr bestimmte Energiewerte (Quanten) aufnehmen (abgegen):

E = n·hν, wo n = 0, 1, 2, …, ist eine natürliche Zahl,ν (= c/λ) ist die Frequenz der Strahlung undh = 6,626·10-34 J·s ist die sogenannte Planck’sche Größe (Zahl, Konstante).

Stra

hlun

gsdi

chte

,

Wellenlänge,

Strahlung des schwarzen Körpers: Experiments

Page 7: Quantenphysik in Lebens- (und) medizinischen) Wissenschaften Péter Maróti Professor für Biophysik, Universität von Szeged, Ungarn. Erscheinungen und Experimente.

II. Temperatur-Abhängigkeit der spezifischen Wärme des Festkörpers

Die Dulong-Petit Regel: die spezifische (molare) Wärme ist eine Konstante, hängt nicht von der Temperatur (und der Materie) ab.

Mit der Annahme der klassischen Physik: die Energie verteilt sich gleichmäßig unter den Teilchen (Oszillatoren) des Festkörpers. Das ist das Prinzip der Equipartition.

Aber: Abweichungen vom konstanten Wert wurden beobachtet bei niedrigen Temperaturen.

Die Annahmen der Quantenphysik: die Oszillatoren bewegen sich mit einzelner und identischer Frequenz (Einstein) oder mit einer Verteilung der Frequenzen (Debye).

RT

UC

3V

mmV,

kaltwarm

Page 8: Quantenphysik in Lebens- (und) medizinischen) Wissenschaften Péter Maróti Professor für Biophysik, Universität von Szeged, Ungarn. Erscheinungen und Experimente.

Einstein berechnete die molare spezifische Wärme mit der Annahme, daß (nach der Hypothese von Max Planck) die Energiewerte der atomaren Oszillatoren (Schwingungen) gequantelt sind:

Der Ausdruck führt die Temperaturabhängig der spezifischen Wärme ein.

Eine bessere Beschreibung hat P. Debye mit der Annahme einer Verteilung von verschieden Frequenzen erhalten.

1

22 wo,3kTh

kTh

e

ekThffRC

Sclußfolgerung: nicht nur die Energie des elektromagnetischen Feldes, sondern auch die Energie der atomaren Oszillatoren ist gequantelt.

Temperatur-Abhängigkeit der spezifischen Wärme des Festkörpers

Typisches Experiment

Θ: karakteristische Temperatur

Page 9: Quantenphysik in Lebens- (und) medizinischen) Wissenschaften Péter Maróti Professor für Biophysik, Universität von Szeged, Ungarn. Erscheinungen und Experimente.

III. Gequantelte Energieänderungen in Atomen

Aufnahme der Spekrallinien der Emission des Hidrogenatoms

Spektrale Verteilung der Strahlungslinien einiger Gase

Page 10: Quantenphysik in Lebens- (und) medizinischen) Wissenschaften Péter Maróti Professor für Biophysik, Universität von Szeged, Ungarn. Erscheinungen und Experimente.

Mögliche Energiezustände des Hidrogenatoms

Balmer sorozat:

Bin

dung

sene

rgie

Balmer-Reihe:

Reihe

ReiheRei

he

sichtbar nah infrarot fern infrarotWellenlänge

Kop

flini

e

Kop

flini

e

Kop

flini

e

Page 11: Quantenphysik in Lebens- (und) medizinischen) Wissenschaften Péter Maróti Professor für Biophysik, Universität von Szeged, Ungarn. Erscheinungen und Experimente.

Beobachtungen von Balmer: die Frequenzen der Familie der Spektrallinien der Strahlung im sichtbaren und im nahen infraroten Bereich lassen sich mit einem einfachen empirischen Ausdruck beschreiben:

wo RH = 3,29·1015 s-1 ist die Rydberg Konstante des Hidrogenatoms und n = 3, 4, 5,…

Später, auch weitere Linienfamilien wurden in den ultravioletten und infraroten Spektralbereichen entdeckt, die man mit ähnlichen empirischen Ausdrücken beschreiben konnte:

Hier nL und nH sind beliebige ganze Zahle. Die kleinere Zahl karakterisiert die Familiensorte (Lyman, Balmer, Paschen, Pfund,...) und die größere Zahl die Spektrallinie in der Famile.

22H

121

nR

2

H2L

H11

nnR

Empirische Beschreibung der Spektrallinien des Hidrogenatoms

Page 12: Quantenphysik in Lebens- (und) medizinischen) Wissenschaften Péter Maróti Professor für Biophysik, Universität von Szeged, Ungarn. Erscheinungen und Experimente.

Photoelektrischer (Hallwachs) Effekt

Licht

Anode Kathode

Elektrische Stromstärke

(rel. Einheit)

Die verschiedene lichtempfindliche Photokathoden haben verschiedenen Grenzwellenlängen (siehe die Zahle im Klammern). Über dieser Wellenlänge, das Anregungslicht kann kein Photoelektron auslösen.

Page 13: Quantenphysik in Lebens- (und) medizinischen) Wissenschaften Péter Maróti Professor für Biophysik, Universität von Szeged, Ungarn. Erscheinungen und Experimente.

Photoelektrischer (Hallwachs) EffektPhotoelektrische Gleichung von Einstein

hm 2e v

21

Gebundenes Elektron

Freies Elektron

Photoelektron

Kinetische Energy des Photoelektrons

Energie (Austrittsarbeit) zur Befreiung des gebundenen Elektrons im Metal.

Kin

etis

che

Ene

rgie

des

be

freite

n E

lekt

rons

Frequenz, ν

Schwelle der Frequenz

Ene

rgie

Kei

n P

hoto

elek

tron

Page 14: Quantenphysik in Lebens- (und) medizinischen) Wissenschaften Péter Maróti Professor für Biophysik, Universität von Szeged, Ungarn. Erscheinungen und Experimente.

Grundgesetze des photoelektrischen Effekts

h

1) Bedingung des photoelektrischen Effekts: die Energie des Photons muß größer sein als die Austrittsarbeit des Elektrons vom Metal.

Die Schwellefrequenz des Anregungslichtes ist durch die Austrittsarbeit des Elektrons bestimmt.

2) Die kinetische Energie des Photoelektrons hängt von der Farbe (Frequenz) des Lichtes ab und ist unabhängig von der Intensität des Lichtes.

hm 2e v

21

3) Die Intensität des Lichtes bestimmt die Zahl des Photoelektrons.

4) Die Absorption des Anregungslichtes und der Austritt des Photoelektrons sind (praktisch) gleichzeitige Ereignisse. Es ist also nicht erlaubt die Zugabe der akkumulierten Energie von mehreren absorbierten Photonen zu einem Elektron.

Page 15: Quantenphysik in Lebens- (und) medizinischen) Wissenschaften Péter Maróti Professor für Biophysik, Universität von Szeged, Ungarn. Erscheinungen und Experimente.

Franck-Hertz ExperimentDas sollte eine der schönsten und elegantesten Experimente zum Beweis der gequantelten Natur der Energiezustände des Atoms.

Die Wellenlänge des emittierten Lichtes ist

Uech

Bei der ersten Stufe U = 4,9 V, d.h. λ = 253,7 nm

Weil das Elektron bei der bestimmten Spannungen (die den Stufen entsprechen) mit den Hg Atomen unelastisch anstoßt (die Geschwindigkeit des Elektrons verschwindet sich vollständig), die Sprünge in der I - U Charakteristik reflektieren die möglichen (diskreten) Energiewerte des Hg Atoms.

Gitter 1 Gitter 1

Kathode AnodeUV Licht

Page 16: Quantenphysik in Lebens- (und) medizinischen) Wissenschaften Péter Maróti Professor für Biophysik, Universität von Szeged, Ungarn. Erscheinungen und Experimente.

IV. Dualität der Teilchen; Teilchen als WellenDiffraktion der

Davisson-Germer Experiment

Die Elektronen wurden auf eine dünne Metalplatte gerichtet und die durchgehende Elektronen wurden auf einer photographischen Schicht detektiert.

Ein sehr definiertes Diffraktionsbild wurde erhalten wenn die Elektronen zur hochen Geschwindigkeit (zu welchem Wert eine de Broglie-Wellenlänge von 0,50 Å gehört) beschleunigt wurden. Das Diffraktionsbild ist ähnlich zum Diffraktionsbild welches man bei Röntgenstrahlen (Wellenlänge von 0,71 Å) bekommt.

Röntgen Strahlen Elektronen

Page 17: Quantenphysik in Lebens- (und) medizinischen) Wissenschaften Péter Maróti Professor für Biophysik, Universität von Szeged, Ungarn. Erscheinungen und Experimente.

Der Zusammenhang zwischen den Teilchen- und Welleneigenschaften kommt von dem allgemeinen Ausdruck zwischen Masse und Energie von Einstein:

E = mc2.

Nach dem Planck’schen Gesetz: E = h = hc/

Wir können die Definition des Impulses der elektromagnetischen Welle p = mc

mit der Energie zusammenbinden: p = E/c, oder p = h/λ. Nach einfachem Umordnen

vmh

ph

Die Gleichung nach de Broglie

Anwendung zur Bestimmung der Auflösungsgrenze verschiedener Mikroskope:Nach Abbe, δ = 0.61·λ/(n·sinα), wo NA = n·sinα ist die numerische Apertur.

Elektronenmikroskop: wenn v = c/50, (c ist die Lichtgeschwindigkeit), δ ~ λ = 0,12 nm.

Hypothetisches Neutronenmikroskop: weil mNeutron ≈ 2000·mElektron, δNeutron ~ λNeutron ≈ λElektron / 2000 ~ δElektron /2000

Page 18: Quantenphysik in Lebens- (und) medizinischen) Wissenschaften Péter Maróti Professor für Biophysik, Universität von Szeged, Ungarn. Erscheinungen und Experimente.

V. Der quantenmechanische Tunneleffekt

xE

hm

T 2

282exp

Δx

ΔE

1.0T

Gamow’scher Ausdruck für Transmission

Zwei Möglichkeiten der Transmission:

1) Thermische Aktivation (Arrhenius) und

2) Tunneleffekt (Gamow)

Die Temperaturabhängigkeit der zwei Prozesse sind verschieden: die Rate der Transmission

1) hängt stark von der Temperatur ab (Arrhenius),

2) ist unabhängig von der Temperatur (Gamow).

Das Teilchen nähert sich zum Potentialdamm

Dam

m

ΔEk = k0·exp(-ΔE/kBT)

und kann mit niedriger Wahrschein-lichkeit durchgehen.

Ene

rgie

Koordinaten

Page 19: Quantenphysik in Lebens- (und) medizinischen) Wissenschaften Péter Maróti Professor für Biophysik, Universität von Szeged, Ungarn. Erscheinungen und Experimente.

Berechnung der Wahrscheinlichkeit der Transmission durch Tunnel Effekt

Was ist die Wahrscheinlichkeit, daß ein Proton bzw. ein Deuterium von 0,9 eV Energie durch einen Potentialdamm der Höhe von 1,0 eV und Breite von 100 pm passieren kann?

Die Masse des Protons ist m = 1,673·10-27 kg, die Planck’sche Konstante ist h = 6.626·10-34 J·s, die Differenz der Höhe des Dammes und der Energie des Teilchens sind ΔE = 0,1 eV (diese Höhe sollte mit Tunnel Effekt besiegt werden), und die Breite des Dammes beträgt Δx = 100 pm.

Benutzen wir den Gamow’schen Ausdruck:

Folgerungen: 1) die Wahrscheinlichkeit der Transmission via Tunnel Effekt für Proton ist

Tp = 9,56·10-7, was ungefähr 300-mal größer ist als für Deuterium: Td = 3,07·10-9.

2) Dieses Verhältnis wird viel größer sein, wenn der Damm zweimal breiter wird (unter gleichen anderen Bedingungen): Tp/Td = 9·104.

Der Isotop Effekt ist besonders groß bei Hidrogen and Deuterium, deswegen man kann die protolytische Reaktionen mit diesem Method erfolgreich studieren.

xE

hmT 2

282exp

Page 20: Quantenphysik in Lebens- (und) medizinischen) Wissenschaften Péter Maróti Professor für Biophysik, Universität von Szeged, Ungarn. Erscheinungen und Experimente.

Quantum Tunnel Effekt: Tunnelmikroskop (Scanning Tunneling Microscope, STM)

Wenn die Entfernung (d) sehr klein ist, das Elektron springt von einer Elektrode (Taster) auf die andere Elektrode (Oberfläche) mit Hilfe des Tunnel Effekts.

Wenn der Taster sich mit der Oberfläche parallel bewegt, die gemessene Stromstärke (I) gibt Hinweis auf den Abstand zwischen den Elektroden. Auf diese Weise, wir können aus der Änderungen der Stromstärke auf die Unregelmäßigkeiten der Fläche folgern.

Page 21: Quantenphysik in Lebens- (und) medizinischen) Wissenschaften Péter Maróti Professor für Biophysik, Universität von Szeged, Ungarn. Erscheinungen und Experimente.

Die Lage der Kofaktore, Elektron Transfer Routen (Pfeile) und die entsprechende Zeitkonstante in Rb. sphaeroides. P: Bakterioklorofill (BChl) Dimer, B: monomerisches BChl, H: Bakteriofeofitin, Q: Quinon, Fe: Eisen Atom, A: photoaktiver Zweig, B: photoinaktiver Zweig. In der Mitte der Klorin, Kreis zeigt die Lage des Mg Atoms in BChl.

Transfer von Elektronen durch Tunnel Effekt in Reaktionszentrum Protein der photosynthetischen Bakteria

Licht

1/T

k

Thermische Reaktionen

(z.B. QA→QB)

Tunnel Effekt (z.B. P→BA→HA)

Niedrige Temperatur

Hohe Temperatur

Rat

e de

s Tra

nsfe

rs v

on E

lekt

rone

nDie fasteste Anfangsreaktionen des Transfers von Elektron nach Lichtanregung sind nicht thermische sondern Tunnel Reaktionen.

Page 22: Quantenphysik in Lebens- (und) medizinischen) Wissenschaften Péter Maróti Professor für Biophysik, Universität von Szeged, Ungarn. Erscheinungen und Experimente.

VI. Spin und die magnetische Flußdichte (Induktion) Experiment von Einstein und de Haas

jmcqngMnM

2ElektronBarren

N : mechanisches Momentum (Drehmoment)

M : Magnetisierung der Eisenstange (Barren)

Wir suchen Zusammenhang zwischen der Torsionsbewegung und der Magnetisierung des Barrens. Nehmen wir an, daß n Elektronen je mit j Momentum existieren und zur Magnetisierung der Stange beitragen.

0 Njn

NgNmcegN

mcqgM

B

Barren 22

Weil

Mit der Messung der makroskopischen Größen N und MBarren, wir können das giromagnetische Verhältnis, den Lande Faktor g bestimmen: g = 2.

Dieses Ergebnis sagt, daß die ferromagnetische Eigenschaft des Eisenbarrens kann nicht ausschließlich von dem Bahnmoment des Elektrons kommen, sondern das Elektron noch dazu ein eigenes und spezielles magnetisches Momentum, das SPIN haben müsste.

m: die Masse des Elektrons,

q =-e: elementare elektrische Ladung des Elektrons,

c: Lichtgeschwindigkeit,

μB: Bohr Magneton

deswegen

Page 23: Quantenphysik in Lebens- (und) medizinischen) Wissenschaften Péter Maróti Professor für Biophysik, Universität von Szeged, Ungarn. Erscheinungen und Experimente.

Das Experiment zeigte: das Atombündel spaltet sich auf zwei Bündel im inhomogenen magnetischen Feld. Folgerungen:

1) Beweis für Quanteneigenschaften nach Richtung (die physikalische Größ ist gequantelt nach der Orientierung) und

2) Das magnetische Momentum der Atome kann man direkt messen.

Abweichung von Silver (Ag) Bündel im inhomogenen magnetischen Feld:Das Stern-Gerlach Experiment

Spaltung der D Spektrallinie von Sodium (Na) im magnetischen Feld: Der Zeeman Effekt.

Klassische Physik: die Abweichung nach dem Winkel muß kontinuierlich sein.

Quantenphysik:Wir müssen nur zwei, gut getrennte Bündel bekommen.

Der Energiezustand des Elektrons wird auf mehreren und nahe liegenden Zustände im magnetischen Feld aufgespaltet. Der Effekt ist genannt als Zeeman-Spaltung.

Kein magnetisches Feld, keine Spaltung

N

S

Magnetisches Feld, Spaltung der Linien

Page 24: Quantenphysik in Lebens- (und) medizinischen) Wissenschaften Péter Maróti Professor für Biophysik, Universität von Szeged, Ungarn. Erscheinungen und Experimente.

Pauli Prinzip zum Aufbau der Elektronhülle

Aufbau Prinzip der Elektronhülle

Elektronkonfigurationen der ersten 18 Elemente der Periodentafel im Grundzustand

Page 25: Quantenphysik in Lebens- (und) medizinischen) Wissenschaften Péter Maróti Professor für Biophysik, Universität von Szeged, Ungarn. Erscheinungen und Experimente.

Spin (S) – Bahn (L) Kopplung

Parallele Richtung der zwei Komponente

Antiparallele Richtung der zwei Komponente

groß

klein

Bahn

Spin

Gesamt

Page 26: Quantenphysik in Lebens- (und) medizinischen) Wissenschaften Péter Maróti Professor für Biophysik, Universität von Szeged, Ungarn. Erscheinungen und Experimente.

Nicht nur die Elektronen sondern auch andere Teilchen und Atomkerne haben eigenes magnetisches Moment (Spin).

Das giromagnetische Verhältnis γ bestimmt die Energie der elektromagnetischen Strahlung, die das Spin des Atomkerns nach Absorption der Strahlung umkippen kann. Die Energie des Quantums der Strahlung ist gleich der Energiübergang des Atomkerns. Sie sind in Resonanz.

Vorkommen in der Natur

Giro

mag

netis

ches

Ver

hältn

is

Freq

uenz

der

Res

onan

z (b

ei 4

,7 T

mag

netis

cher

Fl

ußdi

chte

)

Ker

nspi

n Q

uant

enza

hl

Magnetische Eigenschaften einiger Atomkerne die biologisch wichtig sind.

Page 27: Quantenphysik in Lebens- (und) medizinischen) Wissenschaften Péter Maróti Professor für Biophysik, Universität von Szeged, Ungarn. Erscheinungen und Experimente.

Hausaufgaben1. Wie groß ist etwa die Auflösungsgrenze des Elektronenmikroskops wo die

Elektronen zum 1% der Lichtgeschwindigkeit beschleunigt sind?

2. Wieviele Photonen emittiert das Nachtglas (1000 nm Wellenlänge und 1 mW Leistung) innerhalb 0,1 s?

3. Zeichnen Sie den Verlauf der Strom-Spannung Charakteristik im Franck-Hertz Experiment auf, wenn die intensivsten Linien des Quecksilberdampfes befinden sich bei den folgenden Wellenlängen (in nm):

184,45, 253,7, 300,0, 312,1 334,0, 365,4, 404,7, 435,8, 546,1 und 579,1.

Page 28: Quantenphysik in Lebens- (und) medizinischen) Wissenschaften Péter Maróti Professor für Biophysik, Universität von Szeged, Ungarn. Erscheinungen und Experimente.

Hausaufgaben4. Berechnen Sie die Wellenlänge des Elektrons nach dem Verlassen den

Beschleuniger von 10 MeV!

5a. Wie groß ist etwa die Temperatur der Oberfläche der Sonne wenn die Wellenlänge des Maximums der Strahlung fällt mit dem Maximum der Empfindlichkeit der Auge zusammen?

5b. Wie groß ist etwa die Temperatur der Oberfläche des Sterns Sirius wenn die intensivste Strahlung fällt auf Wellenlänge von 263,27 nm?

6. Ein Wurm der Masse 5,0 gramm bewegt sich nach dem Prinzip der Rakete. Er emittiert rotes Licht (650 nm) mit 0,1 W Leistung. Zu welcher Geschwindigkeit beschleunigt der Wurm nach 10 Jahren im freien Raum unter permanenten Bedingungen?

7. In einem Röntgen-Photoelektron Experiment, die Röntgen Strahlung mit 150 nm Wellenlänge befreit ein Elektron von der inneren Hülle des Atoms. Das Photoelektron besitzt eine Geschwindigkeit von 2,14·107 m/s. Wie groß ist etwa die Bindungsenergie des Elektrons?