Résumé · Résumé Prof. Dr. Marc Erhardt married,twochildren...

27
Résumé Prof. Dr. Marc Erhardt married, two children Humboldt University Berlin – Philippstr. 13, 10115 Berlin [email protected] +49 30 2093 49780 www.baktphys.hu-berlin.de Salmo_Lab Academic career 2017– present Associate professor (W2) for Bacterial Physiology – Humboldt University Berlin 2013– 2017 Principal investigator of an independent junior research group – Helmholtz Centre for Infection Research, Braunschweig 2011– 2013 Postdoctoral researcher – Université de Fribourg, Switzerland Awards, major grants and prizes 2020– 2025 European Research Council (ERC) Consolidator Grant BacNanoMachine (1,934M e) 2018 Research prize (Forschungspreis) of the German Association for General and Ap- plied Microbiology (VAAM) 2013– 2017 Helmholtz Young Investigator grant (1,25M e) 2012– 2013 Marie Curie International Incoming fel- lowship 2012 Elisabeth-Gateff-Prize of the German Ge- netics Society 2011 EMBO Long-Term fellowship [declined] 2007– 2010 Boehringer Ingelheim Fonds Ph.D. fellow- ship 2010 DeLill Nasser Award of the Genetics So- ciety of America 2005– 2007 German Academic Scholarship Foun- dation fellowship (Studienstiftung des Deutschen Volkes) Education and PhD 2007– 2011 PhD student – Heidelberg University, Germany; University of Konstanz, Ger- many; University of Utah, USA; Univer- sité de Fribourg, Switzerland 2011 PhD thesis – University of Konstanz, Ger- many [summa cum laude] 2002– 2006 Studies of Biology – Ulm University and University of Konstanz, Germany Five selected publications (46 total) ORCID: 0000-0001-6292-619X 1. J Horstmann, M Lunelli [...] M Kolbe, M Erhardt . Methylation of Salmonella Typhimurium flagella promotes bacterial adhesion and host cell invasion. Nature Communications (2020) vol. 11, 2013 2. I Spöring, VA Martinez [...] Y Dufour, M Erhardt . Hook length of the bacterial flagellum is optimized for maximal stability of the flagellar bundle. PLOS Biology (2018) 16:(9) e2006989 3. FD Fabiani, TT Renault [...] M Hensel, M Erhardt . A flagellum-specific chaperone facilitates assembly of the core type-III export apparatus of the bacterial flagellum. PLOS Biology (2017) 15:(8) e2002267 4. TT Renault, AO Abraham [...] T Minamino, M Erhardt . Bacterial flagella grow through an injection-diffusion mechanism. eLife (2017) 10.7554/eLife.23136 5. K Paul*, M Erhardt* , T Hirano, DF Blair, KT Hughes. Energy source of flagellar type III secre- tion. Nature (2008) 451:(7177) 489–92 [*joint first author] i

Transcript of Résumé · Résumé Prof. Dr. Marc Erhardt married,twochildren...

Page 1: Résumé · Résumé Prof. Dr. Marc Erhardt married,twochildren HumboldtUniversityBerlin–Philippstr.13,10115Berlin Q marc.erhardt@hu-berlin.de Ó +4930209349780

Résumé

Prof. Dr. Marc Erhardt

married, two children

Humboldt University Berlin – Philippstr. 13, 10115 Berlin

Q [email protected] Ó +49 30 2093 49780

� www.baktphys.hu-berlin.de 7 Salmo_Lab

Academic career2017–present

Associate professor (W2) for BacterialPhysiology – Humboldt University Berlin

2013–2017

Principal investigator of an independentjunior research group – Helmholtz Centrefor Infection Research, Braunschweig

2011–2013

Postdoctoral researcher – Université deFribourg, Switzerland

Awards, major grants and prizes2020–2025

European Research Council (ERC)Consolidator Grant BacNanoMachine(1,934M e)

2018 Research prize (Forschungspreis) of theGerman Association for General and Ap-plied Microbiology (VAAM)

2013–2017

Helmholtz Young Investigator grant(1,25M e)

2012–2013

Marie Curie International Incoming fel-lowship

2012 Elisabeth-Gateff-Prize of the German Ge-netics Society

2011 EMBO Long-Term fellowship [declined]

2007–2010

Boehringer Ingelheim Fonds Ph.D. fellow-ship

2010 DeLill Nasser Award of the Genetics So-ciety of America

2005–2007

German Academic Scholarship Foun-dation fellowship (Studienstiftung desDeutschen Volkes)

Education and PhD2007–2011

PhD student – Heidelberg University,Germany; University of Konstanz, Ger-many; University of Utah, USA; Univer-sité de Fribourg, Switzerland

2011 PhD thesis – University of Konstanz, Ger-many [summa cum laude]

2002–2006

Studies of Biology – Ulm University andUniversity of Konstanz, Germany

Five selected publications (46 total)

ORCID: 0000-0001-6292-619X

1. J Horstmann, M Lunelli [...] M Kolbe, M Erhardt.Methylation of Salmonella Typhimurium flagellapromotes bacterial adhesion and host cell invasion.Nature Communications (2020) vol. 11, 2013

2. I Spöring, VA Martinez [...] Y Dufour, M Erhardt.Hook length of the bacterial flagellum is optimizedfor maximal stability of the flagellar bundle. PLOSBiology (2018) 16:(9) e2006989

3. FD Fabiani, TT Renault [...] M Hensel, M Erhardt.A flagellum-specific chaperone facilitates assemblyof the core type-III export apparatus of the bacterialflagellum. PLOS Biology (2017) 15:(8) e2002267

4. TT Renault, AO Abraham [...] T Minamino,M Erhardt. Bacterial flagella grow through aninjection-diffusion mechanism. eLife (2017)10.7554/eLife.23136

5. K Paul*, M Erhardt*, T Hirano, DF Blair, KTHughes. Energy source of flagellar type III secre-tion. Nature (2008) 451:(7177) 489–92 [*jointfirst author]

i

Page 2: Résumé · Résumé Prof. Dr. Marc Erhardt married,twochildren HumboldtUniversityBerlin–Philippstr.13,10115Berlin Q marc.erhardt@hu-berlin.de Ó +4930209349780

CURRICULUM VITAEMarc Erhardt, Prof. Dr.married, two children

Humboldt-Universität zu BerlinInstitute of Biology – Bacterial PhysiologyPhilippstr. 13 - Haus 2210115 BerlinGermanyÓ +49 30 2093 49780Æ +49 176 43331892Q [email protected]

� www.baktphys.hu-berlin.de7 Salmo_Lab

Table of Contents

1 Curriculum vitae 11.1 Academic career . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Education and PhD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3 Awards and prizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.4 Professional qualifications and activities . . . . . . . . . . . . . . . . . . . . . . . . . 51.5 Additional information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.6 Invited talks and selected conference activities . . . . . . . . . . . . . . . . . . . . . . 6

2 Teaching portfolio 92.1 Teaching experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.2 Bachelor’s, Master’s and Doctoral theses . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Major research achievements 15

4 Current and planned research program 17

5 Bibliography 215.1 Original research articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215.2 Review articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245.3 Pre-prints and other publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255.4 Patents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Page 3: Résumé · Résumé Prof. Dr. Marc Erhardt married,twochildren HumboldtUniversityBerlin–Philippstr.13,10115Berlin Q marc.erhardt@hu-berlin.de Ó +4930209349780

1 Curriculum vitae

1.1 Academic career

2017–present Humboldt University Berlin, GermanyAssociate professor (W2) for Bacterial Physiology

2013–2017 Helmholtz Centre for Infection Research, Braunschweig, GermanyPrincipal investigator of an independent junior research groupfunded by a 5-year Helmholtz Young Investigator grant

2011–2012 Département de Médecine, University of Fribourg, SwitzerlandPostdoctoral researcherfunded by a Marie Curie International Incoming fellow-ship

2007–2011 Zentrum für Molekulare Biologie (ZMBH), Heidelberg Universityand University of Konstanz, Germany; University of Utah, USA;University of Fribourg, SwitzerlandPhD studentfunded by a PhD fellowship of the Boehringer IngelheimFonds

2006 University of Utah, USAUndergraduate researcherfunded by a research abroad fellowship of the Studiens-tiftung des Deutschen Volkes

2005–2006 University of Konstanz, GermanyUndergraduate researcher

1.2 Education and PhD

2011 Ph.D. (Dr. rer. nat.) – University of Konstanz, GermanyPh.D. thesis research performed at the Heidelberg University, Germany,University of Utah, USA and University of Fribourg, Switzerlandfinal grade: summa cum laude (excellent )

2002–2006 M. Sc. (Dipl. Biol.) – University of Konstanz, GermanyStudies of Microbiology and Biochemistry at the Ulm University and theUniversity of Konstanz, GermanyDiploma thesis research performed at the University of Utah, USA.final grade: sehr gut (excellent )

1

Page 4: Résumé · Résumé Prof. Dr. Marc Erhardt married,twochildren HumboldtUniversityBerlin–Philippstr.13,10115Berlin Q marc.erhardt@hu-berlin.de Ó +4930209349780

1.3 Awards and prizes

Awards and prizes2020–2020 European Research Council (ERC) Consolidator Grant BacNanoMachine

(1,934M e)

2018 Research prize (Forschungspreis) of the Vereinigung für Allgemeine undAngewandte Mikrobiologie (German Association for General and AppliedMicrobiology)

2013–2017 Helmholtz Young Investigator grant (1,25M e)

2012 Elisabeth-Gateff-Prize of the Gesellschaft für Genetik (German GeneticsSociety) for a distinguished Ph.D. thesis

2010 DeLill Nasser Award for Professional Development in Genetics (GeneticsSociety of America)

2005–2007 Studienstiftung des deutschen Volkes (German National Academic Founda-tion) scholarship

2001 Karl-von-Frisch-Prize for ’Ausgezeichnete Leistungen im Fach Biologie’

2

Page 5: Résumé · Résumé Prof. Dr. Marc Erhardt married,twochildren HumboldtUniversityBerlin–Philippstr.13,10115Berlin Q marc.erhardt@hu-berlin.de Ó +4930209349780

Major grants

Fundingperiod

Funding organization and project description Funding[e]

2020–2025(60 months funding)

European Research Council (ERC) Consolidator Grant no.864971 (BacNanoMachine) of the Horizon 2020 FrameworkProgramme

1,934,950

2020–2025(60 months funding)

VolkswagenStiftung ’Life? – A Fresh Scientific Approach tothe Basic Principles of Life’ consortium grant [in collaboration withHaralampos Hatzikirou (Helmhotz Center Infection Research), Ioannis Mitroulis (Democri-tus University of Thrace, Greece), Nir Friedman, (Weizmann Institute, Israel), MassimoLocati (Milan University, Italy)]

240,000 [totalgrant 1,499,700]

2019–2022(36 months funding)

Deutsche Forschungsgemeinschaft (DFG) research grant no.ER 778/5-1

224,950

2019 Deutsche Forschungsgemeinschaft (DFG) large equipmentgrant no. INST 276/760-1 for the procurement of a super-resolution stimulated emission-depletion (STED) microscope

400,000 [DFGcontribution of atotal of 800,000]

2017–2019(36 months funding)

Deutsche Forschungsgemeinschaft (DFG) research grant no.ER 778/2-1

205,150

2017–2019(24 months funding)

Boehringer Ingelheim Foundation (BIF) Exploration grant 80,000

2013–2017(48 months funding)

European Union’s Seventh Framework Programme MarieCurie Career Integration grant ’SalmoVir’ REA no. 334030

100,000

2013–2017(60 months funding)

Helmholtz Young Investigator grant no. VH-NG-932 of theInitiative and Networking Fund of the HGF and the HZI

1,250,000

2012–2013(24 months funding)

Marie Curie International Incoming Fellowship ’ConoTox’REA no. 300718

184,709

2011 (12 monthsfunding)

EMBO Long-Term Fellowship [declined] 59,480 CHF

2007–2010(36 months funding)

Boehringer Ingelheim Fonds Ph.D. fellowship 65,000

3

Page 6: Résumé · Résumé Prof. Dr. Marc Erhardt married,twochildren HumboldtUniversityBerlin–Philippstr.13,10115Berlin Q marc.erhardt@hu-berlin.de Ó +4930209349780

Minor grants and investment funding

Fundingperiod

Funding organization and project description Funding[e]

2020 National University of Singapore/Berlin University Allianceseed grant funding

25,800

2017+2018 Humboldt University Berlin ERC seed grant funding 50,000

2017 Humboldt University Berlin investment funding 500,000

2017–2018(12 months funding)

Helmholtz Institute for RNA-based Infection Research (HIRI)seed grant

100,000

2014–2015(18 months funding)

HZI Graduate school PhD fellowship 27,000

2013 –2014(18 months funding)

HZI Graduate school PhD fellowship 27,000

2013–2017(48 months funding)

HZI contribution to the Marie Curie Career Integration grant 40,000

2013–2017(60 months funding)

HZI investment funding 120,000

2012 University of Fribourg ’Forschungsfond’ grant 4,910 CHF

2012 Département de Médecine, University of Fribourg intramuralresearch funding

9,000 CHF

2008+2010 Boehringer Ingelheim Fonds travel grant 1,335+1,765

2006 (6 monthsfunding)

Studienstiftung des deutschen Volkes research abroad fellow-ship

4,030

Grants awarded to group members

Fundingperiod

Funding organization and project description Funding[e]

2019–2023(42 months funding)

German Egyptian Research Longterm Scholarship Program(GERLS) fellowship awarded to PhD student Doaa Saleh

42,000

2019 German Academic Exchange Service (DAAD) travel grantawarded to postdoctoral researcher Caroline Kühne

2,000

2018–2019(6 months funding)

Humboldt Research Track Scholarship awarded to Master stu-dent Svenja Hüsing

4,800

2017 HZI Paper-of-the-month prize awarded to Dr. Thibaud Re-nault

2016–2018(36 months funding)

Alexander-von-Humboldt Fellowship awarded to postdoctoralfellow Dr. Thibaud Renault

94,400

2015 Boehringer Ingelheim Fonds travel grant awarded to PhDstudent Imke Spöring for a collaborative project at UmeåUniversity

2,370

2014 Boehringer Ingelheim Fonds travel grant awarded to PhDstudent Julia Deditius for a collaborative project at the Uni-versity of Edinburgh

700

4

Page 7: Résumé · Résumé Prof. Dr. Marc Erhardt married,twochildren HumboldtUniversityBerlin–Philippstr.13,10115Berlin Q marc.erhardt@hu-berlin.de Ó +4930209349780

1.4 Professional qualifications and activities

2020 Organizer of the 4th VAAM discussion meeting ’Microbial Cell Biology 2020’,Berlin

2017–2020 Scientific Advisory Board member, T3S Technologies, Inc., 36 S. WasatchDrive, SMBB Box 3, Salt Lake City, Utah 84112, USA

2014 Organizer of the international North Regio Day on Infection (NoRDI V)meeting at the Helmholtz Centre for Infection Research

2014 Helmholtz Management Academy program ’Leading your group’ for younginvestigator group leaders

2013 Young investigator group leader workshop ’Wirksame Führung’ of theHelmholtz Management Academy

2012 Project manager according to the gene technology act (§15 GenTSV), Uni-versity of Freiburg

1.5 Additional information

Professional affiliationssince 2014 German Association of University Professors and Lecturers (DHV)

since 2014 German Society for Hygiene and Microbiology (DGHM)

since 2014 German Association for General and Applied Microbiology (VAAM)

since 2013 American Society for Microbiology (ASM)

2012–2017 German Genetics Society (GfG)

Peer-review activitiese.g. Agence Nationale de la Recherche (ANR), Biotechnology and Biological Sciences Research Coun-cil (BBSRC), eLife, FEMS Microbiology Reviews, Israel Science Foundation (ISF), mBio, MolecularMicrobiology, National Science Foundation (NSF), Nature Communications, PLoS Genetics, PLoSPathogens, PLoS Biology, Robert-Koch-Institute (RKI), The EMBO Journal

5

Page 8: Résumé · Résumé Prof. Dr. Marc Erhardt married,twochildren HumboldtUniversityBerlin–Philippstr.13,10115Berlin Q marc.erhardt@hu-berlin.de Ó +4930209349780

1.6 Invited talks and selected conference activities

Invited talks2020(forthcoming)

Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA (host:Lionell i Boss i)

2020(forthcoming)

German Centre for Infection Research, Summer School on Infection Research,Bad Harzburg, Germany (host: Sabine Kirchhoff)

2019 University of Potsdam, Germany (host: Carsten Beta)

2019 European Commission, Brussels, Belgium (host: ERC selection committee)

2019 The Hebrew University of Jerusalem, Israel (host: Ilan Rosenshine)

2018 European Commission, Brussels, Belgium (host: ERC selection committee)

2018 GZMB Colloquium University of Göttingen, Göttingen, Germany (host:Fabian M. Commichau)

2018 SFB seminar, University of Marbury, Marburg, Germany (host: Erhard Bremer,SFB 987)

2017 Boehringer Ingelheim, Hannover, Germany (host: Thomas Arnold)

2017 EMBL, Heidelberg, Germany (host: EMBO Young Investigator committee)

2017 Max-Planck-Institute for Infection Biology, Berlin, Germany (host: EmmanuelleCharpentier)

2017 WCMM Minisymposium, Umeå University, Umeå, Sweden (host: WallenbergCentre for Molecular Medic ine)

2017 University of Bristol, Faculty of Biomedical Sciences, Bristol, UK (host: GeorgeBanting)

2016 Manchot Graduate School ’Molecules of Infection’ symposium, Geldern, Ger-many (host: Manchot Graduate School)

2016 Humboldt University Berlin, Berlin, Germany (host: Regine Hengge)

2016 Trinity College Dublin, Ireland (host: Carsten Kröger)

2016 University of Utah, Salt Lake City, USA (host: Kelly Hughes)

2015 IST Austria, Vienna, Austria (host: Călin Guet)

2015 The University of Southern Denmark, Odense, Denmark (host: Ole NørregaardJensen)

2015 Imperial College, London, UK (host: Morgan Beeby)

2015 FOM Institute for Atomic and Molecular Physics (AMOLF), Amsterdam,The Netherlands (host: Tom Shimizu)

2014 International Graduate School GRK 1409, University of Münster, Germany(host: Alexander Schmidt)

2014 Roche Diagnostics Germany, Penzberg, Germany (host: Erhard Fernholz)

2014 University of Göttingen, Institute for Theoretical Physics, Germany (hosts:Claus Heuss inger, Christoph Schmidt)

2014 University of Veterinary Medicine Hannover (host: Pablo Steinberg)

2014 Robert Koch Institute, Wernigerode, Germany (host: Roman Gerlach)

2014 Microbiology Colloquium, Interfaculty Institute of Microbiology and Infec-tion Medicine (IMIT), Eberhard Karls University Tübingen, Germany (host:Samuel Wagner)

2013 Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Depart-ment of Drug Delivery, Saarland University, Saarbrücken, Germany (host:Claus-Michael Lehr)

6

Page 9: Résumé · Résumé Prof. Dr. Marc Erhardt married,twochildren HumboldtUniversityBerlin–Philippstr.13,10115Berlin Q marc.erhardt@hu-berlin.de Ó +4930209349780

2013 SFB seminar, University of Osnabrück, Osnabrück, Germany (host: SFB 944)

2012 University of Bristol, Schools of Cellular & Molecular Medicine, Bristol, UK(host: Ariel Blocker)

2012 Helmholtz Center for Infection Research, Braunschweig, Germany (host: DirkHeinz)

2011 Max-Planck-Institute for Infection Biology, Berlin, Germany (host: MichaelKolbe)

2011 University of Padua, Department of Biomedical Sciences, Padua, Italy (host:Cesare Montecucco)

7

Page 10: Résumé · Résumé Prof. Dr. Marc Erhardt married,twochildren HumboldtUniversityBerlin–Philippstr.13,10115Berlin Q marc.erhardt@hu-berlin.de Ó +4930209349780

Selected conference activities2019 Symposium of the Berlin Institute for Medical Systems Biology, Berlin,

Germany ( invited talk)

2019 Symposium of the German-Israeli Helmholtz Research School ’Frontiers inCell Signaling and Gene Regulation’ (SignGene), Nahsholim, Israel ( invitedtalk)

2019 Symposium on ’Quantitative Bacterial Cell Biology’, Institut Pasteur, Paris,France ( invited talk)

2018 VAAM 3rd Discussion Meeting ’Microbial Cell Biology’, Castle Rauis-chholzhausen, Germany ( invited talk)

2018 FEMS meeting on ’Bacterial protein export’, Leuven, Belgium ( invited talk)

2018 Annual Conference 2018 of the Association for General and Applied Micro-biology (VAAM), Wolfsburg, Germany inv ited talk)

2017 22nd Flagella meeting 2017, Okinawa, Japan ( invited talk)

2017 BLAST XIV (Bacterial Locomotion and Signal Transduction) meeting inNew Orleans, USA ( invited short talk)

2016 5th ASM Conference on Salmonella 2016, Potsdam, Germany ( invited shorttalk)

2016 International Type III Secretion Systems meeting 2016, Tübingen, Germany( invited talk)

2016 Annual Conference 2016 of the Association for General and Applied Micro-biology (VAAM), Jena, Germany inv ited short talk)

2015 67th Annual Meeting of the German Society of Hygiene and Microbiology(DGHM), Münster, Germany ( invited short talk)

2015 6th Congress of European Microbiologists (FEMS 2015), Maastricht, TheNetherlands ( invited short talk)

2015 BLAST XIII (Bacterial Locomotion and Signal Transduction) meeting inTucson, Arizona, USA ( invited short talk)

2014 DGHM/VAAM Symposium ’Microbial Pathogenicity’, Bad Urach, Germany( invited talk)

2012 43rd Annual Meeting of the German Genetics Society, Essen, Germany ( in-v ited talk)

2010 16th Flagella meeting in Gamagori, Aichi, Japan ( invited talk)

2010 Gordon Research Conference, Ventura, California, USA ( invited short talk)

2007 – 2020 GRC ’Sensory Transduction In Microorganisms’ 2020, VAAM 32nd Sympo-sium ’Mechanisms of Gene Regulation’ 2018; DGHM/VAAM Symposiumon ’Microbial Pathogenicity’ 2018; Bacterial Networks (BACNET) 2017;DGHM 2016; 5th ASM Conference on ’Salmonella’ 2016; Gordon ResearchConference (GRC) ’Sensory Transduction In Microorganisms’ 2016; AnnualMeeting of the Nordic Society of Clinical Microbiology and Infectious Dis-eases (NSCMID) 2015; Bacterial Networks (BACNET) 2015; VAAM 2015;7. Sino-German Frontiers of Science Symposium 2014; EMBL Symposium’New Approaches and Concepts in Microbiology’ 2013; 4th ASM Conferenceon ’Salmonella’ 2013; BLAST XII 2013; Mol Micro Meeting 2012; FASEBSummer Research Conference ’Protein folding in the Cell’ 2008; BLAST IX2007

8

Page 11: Résumé · Résumé Prof. Dr. Marc Erhardt married,twochildren HumboldtUniversityBerlin–Philippstr.13,10115Berlin Q marc.erhardt@hu-berlin.de Ó +4930209349780

2 Teaching portfolio

2.1 Teaching experience

As professor for Bacterial Physiology at the Humboldt University Berlin, I am heavily involved inteaching of bacterial genetics and cell biology in the Bachelor’s studies and Master’s studies.In this respect, I am responsible for several modules, each consisting of a lecture series, a seminarseries, and a laboratory course. In particular, I newly developed research-orientated advanced modulesthat focus on microbial cell biology and genetics for the 5th semester Bachelor and Master studies.

In my former position at the Helmholtz Centre for Infection Research, I was involved on a vol-untary basis in teaching microbial pathogenesis and cell biology at the Bachelor’s, Master’s andgraduate (PhD) levels at the Helmholtz Centre for Infection Research and the Technical UniversityBraunschweig both as a lecturer and supervisor of laboratory courses.At the Universities of Konstanz and Fribourg, I also obtained substantial teaching experience in bothBachelor’s and Master’s classes. In particular, I designed and taught as the responsible supervisor a12-weeks ’General Microbiology’ lecture series and several 1-week microbiology laboratory coursesfor 2nd and 3rd year Biology and Biomedicine students at the University of Fribourg.

Since 2012, I supervised or I am currently supervising the theses of 13 Bachelor students, 12 Masterstudents, 8 PhD students and 6 postdoctoral researchers in my laboratories at the University ofFribourg, Helmholtz Centre for Infection Research and Humboldt University Berlin as main respon-sible supervisor. In addition, I acted and I am currently acting as a mentor or member of numerousPhD students’ committees at the Helmholtz Centre for Infection Research and Humboldt UniversityBerlin.

List of lectures and laboratory courses given at the Humboldt University Berlin,Helmholtz Centre for Infection Research, Technical University Braunschweig andUniversity of Fribourg (Switzerland)

Year Course description University

starting2021

Instructor of Advanced Bacterial Genetics (ABG)Course at Cold Spring Harbor Laboratory

Cold Spring HarborLaboratory, USA

since 2018 Lecturer and responsible supervisor of the moduleBio19 lecture series and laboratory course (4 SWS,2nd and 6th semester Bachelor)

Humboldt UniversityBerlin

since 2018 Lecturer of the module Bio9 lecture series (3 SWS,4th semester Bachelor)

Humboldt UniversityBerlin

Continued on next page

9

Page 12: Résumé · Résumé Prof. Dr. Marc Erhardt married,twochildren HumboldtUniversityBerlin–Philippstr.13,10115Berlin Q marc.erhardt@hu-berlin.de Ó +4930209349780

Year Course description University

since 2018 Lecturer and responsible supervisor of the moduleMB-A55 lecture series and practical course (8 SWS,1st semester Master)

Humboldt UniversityBerlin

since 2018 Lecturer and responsible supervisor of the moduleBXY-08 lecture series and practical course (8 SWS,5th semester Bachelor)

Humboldt UniversityBerlin

since 2017 Lecturer of the module B4a lecture series (3 SWS, 1stsemester Bachelor)

Humboldt UniversityBerlin

2015–2016 Lecturer during the MI01 lecture series Principles ofMicrobiology for Bachelor’s students

Technical UniversityBraunschweig

2015 Responsible supervisor of the two-weeks MI01laboratory course Practical course in Microbiology forBachelor’s students

Technical UniversityBraunschweig

2014–2016 Lecturer during the Helmholtz Centre for InfectionResearch Graduate School lecture series MedicalMicrobiology

Helmholtz Centre forInfection Research

2014 Supervisor and lecturer during one-week laboratorycourse module IB24 Molecular Immunology forMaster’s students

Technical UniversityBraunschweig

2013–2017 Lecturer during the IB21 lecture series and two-weeklaboratory course Molecular Infection Biology forMaster’s students

Technical UniversityBraunschweig

2013–2016 Supervisor during two-week laboratory course moduleIB22 Mechanisms of Microbial Pathogenicity forMaster’s students

Technical UniversityBraunschweig

2012 Responsible supervisor and organizer of 1-weekLaboratory course in microbiology for Bachelor’sstudents in biology (BL.0026 ; 1 ECTS)

University of Fribourg

2012 Responsible supervisor and organizer of 1-weekLaboratory course in microbiology for biomedicalstudents (ME.6308 ; 1 ECTS)

University of Fribourg

2012 Responsible supervisor and lecturer of 12-weeksGeneral Microbiology lecture series ME.6307 (3ECTS) for 3rd year Bachelor’s students

University of Fribourg

10

Page 13: Résumé · Résumé Prof. Dr. Marc Erhardt married,twochildren HumboldtUniversityBerlin–Philippstr.13,10115Berlin Q marc.erhardt@hu-berlin.de Ó +4930209349780

2.2 Bachelor’s, Master’s and Doctoral theses

Supervised Bachelor’s theses

Name Thesis title University Year

SophieSilberhorn

tbd Humboldt UniversityBerlin

2020

Kristin Funke tbd Humboldt UniversityBerlin

2020

MarioDelgadillo

tbd Humboldt UniversityBerlin

2020

Gizem-GülSimsek

tbd Humboldt UniversityBerlin

2020

MarlenStaudinger

Charakterisierung vonSuppressormutanten und derenBeteiligung an der Regulation desFlhC-Polyprolinmotives in SalmonellaTyphimurium

Humboldt UniversityBerlin

2019

SebastianBaron

Charakterisierung therapeutischer Toxinefür die Salmonellen-vermittelteTumortherapie

Humboldt UniversityBerlin

2018

NataschaStomberg

Die Funktion des BasalkörperproteinsFliL während der flagellaren Biosynthesein Salmonella Typhimurium

Technical UniversityBraunschweig

2017

Elif Öztel Die Rolle des FlhC Poly-Prolin Motiveswährend der flagellaren Biosynthese inSalmonella Typhimurium

Technical UniversityBraunschweig

2017

Sandra Szefs YifA-abhängige Regulation des flagellarenMaster- Operons flhDC in SalmonellaTyphimurium

Technical UniversityBraunschweig

2016

Svenja Hüsing Protein secretion and assembly of theflagellum of Salmonella Typhimurium

Technical UniversityBraunschweig

2015

Sigrun Maurer Etablierung eines Phagenscreenings zurIdentifizierung vonTransposon-Insertionsstellen inSalmonella Typhimurium

FH Campus Wien,Vienna, Austria

2015

Alina Guse Die Rolle der CRISPR-cas Region in derDarminfektion von Salmonellen

Technical UniversityBraunschweig

2014

KarinBrönnimann

Analysis of flagella gene expression inliving bacteria

University of Fribourg 2012

11

Page 14: Résumé · Résumé Prof. Dr. Marc Erhardt married,twochildren HumboldtUniversityBerlin–Philippstr.13,10115Berlin Q marc.erhardt@hu-berlin.de Ó +4930209349780

Supervised Master’s theses

Name Thesis title University Year

Sarya Derado tbd Humboldt UniversityBerlin & FreieUniversität Berlin

2020

Nelly Schropp Study of the f-like plasmid transfermechanism mediated by conjugative pili

Humboldt UniversityBerlin & FreieUniversität Berlin

2020

ValentinaTovazzi

Characterization of the gene yedF for thevirulence of Enterobacteriaceae

Humboldt UniversityBerlin & Universitat deBarcelona

2020

Ulf van Look Genetic engineering of the flagellar typeIII export apparatus for recombinantprotein purification

Technical UniversityBraunschweig &Humboldt UniversityBerlin

2019

Svenja Hüsing Molecular mechanism of bacterialnanomachines assembly: elongationkinetics of the extracellular appendage ofthe flagellum

Humboldt UniversityBerlin

2018

Ahmed Khalil Construction and characterization ofSalmonella Typhimurium strains fortherapeutic applications

University zu Lübeck 2018

Alina Guse Functional characterization of secretionsubstrate specificity of the type IIIprotein export apparatus of the bacterialflagellum

Technical UniversityBraunschweig

2016

KarenSchindler

Functional analysis of the innermembrane export apparatus of thebacterial flagellum

Technical UniversityBraunschweig

2015

Mona Söhren Characterization of Fluke and its Effecton Virulence of Salmonella

Technical UniversityBraunschweig

2015

Corinne Tobler Genetic and functional characterization ofsmall regulatory RNAs involved inSalmonella virulence

EidgenössischeTechnische HochschuleZürich

2015

LeonieDohmen

Light-powering the flagellar type IIIsecretion system of Salmonella enterica

Technical UniversityBraunschweig

2014

Julia Deditius Effect of the Salmonella virulence masterregulator HilD on flagellar geneexpression and motility

Technical UniversityBraunschweig

2013

12

Page 15: Résumé · Résumé Prof. Dr. Marc Erhardt married,twochildren HumboldtUniversityBerlin–Philippstr.13,10115Berlin Q marc.erhardt@hu-berlin.de Ó +4930209349780

Supervised doctoral theses

Name Thesis title University Year

Doaa Saleh The role of small, non-coding RNAs inpathogenesis of Salmonella entericaserovar Typhimurium

Humboldt UniversityBerlin

since2019

Manuel Halte Coordinated assembly of the bacterialflagellum

Humboldt UniversityBerlin

since2018

Alina Guse Assembly and function of the core typeIII protein export apparatus of thebacterial flagellum

Technical UniversityBraunschweig

since2016

AbilashChakravarthy

In vivo analysis of the bacterialtranscriptional landscape in differentintestinal microbial ecosystems duringinfection with Salmonella Typhimurium

Technical UniversityBraunschweig

2014–2018

JuliaHorstmann[née Deditius]

The Role of Flagella and BacterialMotility in Virulence of Salmonella

Technical UniversityBraunschweig

2013–2017

FlorianFabiani

Functional dissection of a bacterialnanomachine – the mechanisms of proteinexport via the type III secretionapparatus

Technical UniversityBraunschweig

2013–2017

CarolineKühne

Gene regulation dynamics of the flagellarmaster regulatory operon flhDC inSalmonella enterica serovar Typhimurium

Technical UniversityBraunschweig

2013–2017

SebastianFelgner*

Salmonella Typhimurium The ’magicbullet’ against cancer?

University of VeterinaryMedicine Hannover(TiHo)

2013–2016

*co-supervision with Dr. Siegfried Weiss.

13

Page 16: Résumé · Résumé Prof. Dr. Marc Erhardt married,twochildren HumboldtUniversityBerlin–Philippstr.13,10115Berlin Q marc.erhardt@hu-berlin.de Ó +4930209349780

Supervised postdoctoral researchers

Year Name University

since 2018 Dr. Caroline Kühne Humboldt University Berlin

2014–2018 Dr. Thibaud Renault* (joint supervisionwith Emmanuelle Charpentier, MPUSP)

Humboldt University Berlin,Helmholtz Centre for InfectionResearch

2017–2018 Dr. Sebastian Felgner Helmholtz Centre for InfectionResearch

2017 Dr. Julia Horstmann Helmholtz Centre for InfectionResearch

2014–2016 Dr. Fabio Pisano Helmholtz Centre for InfectionResearch

2014–2015 Dr. Ayad Amer Helmholtz Centre for InfectionResearch

*currently independent CNRS researcher at the Institut Européen de Chimie Biologie in Bordeaux

14

Page 17: Résumé · Résumé Prof. Dr. Marc Erhardt married,twochildren HumboldtUniversityBerlin–Philippstr.13,10115Berlin Q marc.erhardt@hu-berlin.de Ó +4930209349780

3 Major research achievements

A major research focus of my laboratory is to elucidate the molecular mechanisms of the type IIIsecretion system (T3SS). The T3SS is a remarkable secretion nanomachine located in the basalbody of the flagellum and related injectisome devices and consists of several membrane-integratedcomponents, a cytoplasmic C-ring and a cytoplasmic ATPase complex.

One of the most significant advance in recent years has been our discovery that the T3SS exportprocess is energized by the means of the proton motive force (pmf) [Paul*, Erhardt* et al. 2008,Nature; *equal contribution]. In a follow-up study, we isolated mutants that bypassed the require-ment for the T3SS-associated ATPase for protein export and restored flagellation of Salmonella.The result that the actual protein export function of T3SSs does not need ATP hydrolysis via theassociated ATPase complex has important implications for the evolution of the bacterial flagellumand T3SSs in general [Erhardt et al. 2014, PLoS Genet.]. Recently, we investigated the membrane-integrated T3SS proteins with the goal to elucidate residues that contribute to the pmf-driven export[Erhardt et al. 2017,Mol. Microbiol.; Ward et al. 2018,Mol. Microbiol.]. We also found that theflagella-specific T3SS integral membrane protein FliO functions as a chaperone to facilitate complexformation of the T3SS secretion pore [Fabiani et al. 2017, PLoS Biol.]. In complementary work,we utilized bacterial genetics to show that the cytoplasmic C-ring components of the flagellar typeIII protein export system are not essential for the export process and that the C-ring functions asan affinity platform that sequesters secretion substrates prior to the export process [Erhardt andHughes 2010, Mol. Microbiol.]. Little is known, however, about the secretion signal that targetssubstrates to the export apparatus. We performed an in-depth analysis of the peptide secretionsignal that targets proteins to the T3SS and found that a multi-component signal comprising anN-terminal peptide stretch, a C-terminal chaperone binding domain and the 5’-untranslated mRNAare needed for an efficient secretion process [Singer et al. 2014, Mol. Microbiol.].

Another major research interest of mine concerns the self-assembly of the bacterial flagellum. Here,we solved a long-standing question of how the bacterial flagellum controls the length of the ex-tracellular hook structure that connects the basal body to the filament. In our work published inMol. Microbiol. and The EMBO Journal, we showed that a molecular ruler protein is intermittentlysecreted throughout the assembly process and controls hook length in a stochastic process [Erhardtet al. 2010 Mol. Microbiol.; Erhardt et al. 2011 EMBO J.]. The costs of motility are significantand thus, assembly of the flagellar structure is subject to strict control. We found that the molecularruler mechanism controlling the length of the flagellar hook structure evolved in order to providethe optimal requirements for efficient motility [Spöring et al. 2018, PLoS Biol.]We also worked on fundamental questions concerning the assembly and function of the flagellarfilament and could show that under certain conditions broken filaments are able to re-grow [Paradiset al. 2017, Sci. Reports]. We further elucidated the molecular mechanism of how bacterial flagellagrow outside the cell with remarkable speed in the absence of any cellular energy source usingsingle-cell microscopic analyses in combination with mathematical modelling. Our flagellum growthmodel is based on simple biophysical parameters where the filament growth rate is driven by both

15

Page 18: Résumé · Résumé Prof. Dr. Marc Erhardt married,twochildren HumboldtUniversityBerlin–Philippstr.13,10115Berlin Q marc.erhardt@hu-berlin.de Ó +4930209349780

hindered diffusion and proton motive force-dependent secretion of subunits [Renault et al. 2017,eLife]. Interestingly, Salmonella harbors two distinct flagellin genes, fliC and fljB, that undergo aphenotypic switch in expression. However, the importance of this switch for virulence of Salmonella isunknown. We found that eukaryotic cell invasion and dissemination in the mouse model greatly variedbetween FliC- and FljB-expressing bacteria [Horstmann et al. 2017, Cell. Microbiol.]. In addition,flagellin is post-translationally methylated in Salmonella. We recently found that methylation ofthe flagellar filament affects the interaction of the flagellated bacteria with hydrophobic host cellsurfaces and thus has a pronounced effect on the pathogenicity of Salmonella [Horstmann et al.,bioRxiv 10.1101/774588, in revision at Nat. Commun.].

In addition to fundamental questions of the assembly process, we strive to understand the globalgene regulatory networks that control spatiotemporal expression of the flagellum and connects thevarious virulence systems in Salmonella. We identified a complex crossregulation network betweena virulence-associated injectisome system and the flagellar system, and characterized several newregulators of the flagellum that ensure the correct spatiotemporal expression of flagella [e.g. Singeret al. 2013, 2014, J. Bact.; Spöring et al. 2018, mBio]. We further discovered a novel, flagellar-dependent factor that mediates specificity of the global Rcs phosphorelay system in regulationof flagellar synthesis [Kühne et al. 2016, Mol. Microbiol.]. This double-negative feedback loopresults in phenotypic heterogeneity of flagellar expression, which indicates that Salmonella uses abet-hedging strategy during infection [Kühne et al., in preparation]. In order to uncover infection-relevant regulatory mechanisms, we performed in vivo transcriptional profiling of Salmonella underdiverse host microbiota conditions in collaboration with Till Strowig at the Helmholtz Centre forInfection Research and determined a conserved transcriptional program used by the pathogen duringhost infection. Interestingly, we found that Salmonella exploits microbial degradation products ofthe host’s diet that allows it to outgrow the competing microbiota [Thiemann, et al. 2017, CellHost & Microbe].

Finally, we aim to exploit the flagellum of Salmonella as a secretory nanomachine in biotechno-logical and medical applications. First, we used a modified type III export machinery to secreterecombinant neuroactive peptides into the culture supernatant in order to facilitate polypeptidepurification [Singer et al. 2012, mBio]. We next used the immunogenic potential of the bacterialflagellum to genetically engineer conditionally attenuated Salmonella bacteria for use in bacterium-mediated tumor therapy [e.g. Frahm et al. 2015, mBio; Felgner et al. 2016, mBio; Felgner et al.2018, OncoImmunol.; Felgner et al. 2019, Int. J. Cancer].

16

Page 19: Résumé · Résumé Prof. Dr. Marc Erhardt married,twochildren HumboldtUniversityBerlin–Philippstr.13,10115Berlin Q marc.erhardt@hu-berlin.de Ó +4930209349780

4 Current and planned research program

Research visionGastrointestinal infections by food-borne Enterobacteriaceae such as Salmonella Ty-phimurium remain a serious health risk. This is evidenced by the inclusion of Salmonellain the list of ’priority pathogens’, which was recently published by the World HealthOrganization (WHO) to highlight urgent public health needs.The zoonotic pathogen employs various virulence factors, including flagella, adhesins andneedle-like injectisome devices, to move towards host cells, adhere and invade host cells.Fundamental research questions in microbiology and microbial pathogenesis concern theregulation, assembly and molecular function of these multi-component molecular machines.Accordingly, my current and future research program has the aim to obtain a holisticunderstanding of the underlying regulatory and assembly principles. Towards this goal,I will combine quantitative single-cell gene analyses, bacterial genetics and genetic re-engineering, biochemical approaches, and biophysical modeling.This integrative approach will allow me to move beyond the classical, descriptive char-acterization of bacterial virulence factors towards a mechanistic understanding of theextraordinarily robust regulation and coordinated assembly of multi-component molecu-lar machines.

Re-constructing the coordinated self-assembly of a bacterial nanomachine

A B

time (h)

leng

th (µ

m)

type III secretion system

chaperone

adapterproteins

flagellin filament cap

flagellinpolymerization

substrateprotein

hook

filament(> 10 µm long)

Fig. 2: Self-assembly of the bacterial flagellum. (A) Schematic depiction of the bacterial flagellum. (B) Continuous in situ immunostaining of the flagellum (in green) to monitor assembly in real-time (left panels). Multi-color labeling reveals the self-assembly dynamics of the flagellar filament (right panels).

Figure 4.1 Self-assembly of the bacterial flagellum. (A) Schematic of the bacterial flagellum. (B) Continuous in situimmunostaining of the flagellum (green) to monitor assembly in real time (left panels). Multi-color filament labeling revealsthe self-assembly dynamics of the flagellum (right panels).

In this ERC-funded project, I will use quantitative single-cell analyses, biochemical and genetic

17

Page 20: Résumé · Résumé Prof. Dr. Marc Erhardt married,twochildren HumboldtUniversityBerlin–Philippstr.13,10115Berlin Q marc.erhardt@hu-berlin.de Ó +4930209349780

engineering tools, in order to deconstruct the assembly of the flagellum in living bacteria and toidentify the underlying rules that govern its biogenesis. My goal is to identify the conditions andconstraints necessary to build, from specific building blocks, complex molecular machines such asthe flagellum.We will combine quantitative, single-cell gene expression analyses and the visualization of the dynamicassembly of individual flagella to test the hypothesis that pulse-like activation and deactivation of keyregulators enables a temporal organization of the flagellar regulatory network. We will then re-buildthe flagellar regulatory network by retaining only the genes and regulatory components that arerequired for flagellum assembly and function. The goal is to identify the minimal genetic regulationrequired for assembly and function. We will further use superresolution, live-cell microscopy andmutagenesis approaches to investigate the sub-cellular targeting mechanism of flagellar buildingblocks. Finally, we aim to understand the molecular mechanism for flagellum growth control, inparticular the mechanism for injection of flagellar building blocks and how the protein secretionmechanism is affected by substrate concentration, targeting efficiency and energy driving proteintranslocation using biochemical and single-cell approaches.Together these studies will allow me to address fundamental open questions related to the biogenesisof complex cellular organelles, and the mechanisms of substrate selectivity and energization duringprotein export and assembly of the flagellum.

Funding:

• European Research Council Consolidator Grant no. 864971 (BacNanoMachine)

References:

• T. T. Renault, A. O. Abraham, T. Bergmiller, G. Paradis, S. Rainville, E. Charpentier, C. C. Guet, Y. Tu, K. Namba, J. P. Keener, T.Minamino, M. Erhardt. Bacterial flagella grow through an injection-diffusion mechanism. eLife (2017) 10.7554/eLife.23136

• B. Barlag, O. Beutel, D. Janning, F. Czarniak, C. P. Richter, R. Kurre, F. Fabiani, M. Erhardt, J. Piehler, M. Hensel. Single moleculesuper-resolution imaging of proteins in living Salmonella enterica using self-labeling enzymes. Scientific Reports (2016) vol. 6p.31601

Molecular mechanisms of type-III protein secretionProtein export via type III secretion systems (T3SS) is essential for the self-assembly of bacterialflagella as well as for construction and function of virulence-associated injectisomes of many Gram-negative pathogens. While isolated components have been studied, purified T3SSs lack their integralmembrane components, and thus mechanistic insights on substrate translocation, export apparatusassembly, and energy transfer to secretion is lacking.The core T3SS is a sophisticated protein secretion machine and is made of five highly conservedproteins (FliPQR FlhBA / SpaPQRS InvA) that form the actual export apparatus at the baseof flagella and injectisomes. We could recently show that productive assembly of the T3SS exportapparatus is essential for the construction of these nanomachines and involves in case of the flagellarT3SS a dedicated membrane-integrated assembly chaperone, FliO. Our results thus suggest thatassembly of the export apparatus is highly regulated and coordinated on multiple levels, includingtranslation initiation, membrane integration, and sub-complex formation.In this project, I will analyze the molecular function of the core components of the T3SS using acombination of genetics and biochemical approaches. Fundamental open mechanistic questions arerelated to the mechanism of substrate translocation and coupling of the proton motive force to theexport process, as well as to the nature of the type-III secretion signal, including the mechanism of

18

Page 21: Résumé · Résumé Prof. Dr. Marc Erhardt married,twochildren HumboldtUniversityBerlin–Philippstr.13,10115Berlin Q marc.erhardt@hu-berlin.de Ó +4930209349780

DFG form 53.01– 05/16 page 2 of 23

hostile environment of infection – is an intricate process that requires a precise orchestration (Diepold and Wagner, 2014).

Assembly of the Fli/SpaP5Q4R1 complex is probably the most critical step in injectisome biogenesis. We showed using a combination of genetics and blue native (BN) PAGE analysis that the SpaP5Q4R1 complex nucleates assembly of the injectisome (Wagner et al., 2010). We further showed that SpaP initially forms a fragile pentamer that is stabilized by one SpaR (Dietsche et al., 2016). Using site-specific in vivo photocrosslinking, we were able to resolve the assembly pathway to proceed through SpaP5 + SpaQ4R1 > SpaP5Q4R1 > SpaP5Q4R1S1 (Fig 1E) (Dietsche et al., 2016). The helical arrangement of Fli/SpaP5Q4R1 in the structure of the core complex supports these findings and further suggests that SpaR is recruited to the SpaP5 complex followed

Figure 1. Model of the export apparatus of type III secretion systems, its structure, assembly, and genetic organization. Homologous components of the export apparatus of flagella and injectisomes are shown in the same shade of red. A. Model of the flagellum. B. Model of the injectisome encoded on Salmonella pathogenicity island 1 (SPI-1). C. Structure of the FliP5Q4R1 complex. Residues interacting with FlhB are indicated as white spheres. D. Cartoon highlighting the helical arrangement of FliP, FliQ, and FliR in the FliP5Q4R1 complex. Structurally corresponding alpha helices are shown for each subunit (one for FliP and FliQ, each, and two for FliR, as it is a structural fusion of FliP and FliQ). E. Model of the assembly of the export apparatus of Salmonella SPI-1 injectisomes. F. Visualization of the genetic organization of export apparatus components of type III secretion systems. Brackets indicate strict conservation of gene order. Blue: FliP signal sequence. IM: inner membrane, OM: outer membrane.

DFG form 53.01– 05/16 page 2 of 23

hostile environment of infection – is an intricate process that requires a precise orchestration (Diepold and Wagner, 2014).

Assembly of the Fli/SpaP5Q4R1 complex is probably the most critical step in injectisome biogenesis. We showed using a combination of genetics and blue native (BN) PAGE analysis that the SpaP5Q4R1 complex nucleates assembly of the injectisome (Wagner et al., 2010). We further showed that SpaP initially forms a fragile pentamer that is stabilized by one SpaR (Dietsche et al., 2016). Using site-specific in vivo photocrosslinking, we were able to resolve the assembly pathway to proceed through SpaP5 + SpaQ4R1 > SpaP5Q4R1 > SpaP5Q4R1S1 (Fig 1E) (Dietsche et al., 2016). The helical arrangement of Fli/SpaP5Q4R1 in the structure of the core complex supports these findings and further suggests that SpaR is recruited to the SpaP5 complex followed

Figure 1. Model of the export apparatus of type III secretion systems, its structure, assembly, and genetic organization. Homologous components of the export apparatus of flagella and injectisomes are shown in the same shade of red. A. Model of the flagellum. B. Model of the injectisome encoded on Salmonella pathogenicity island 1 (SPI-1). C. Structure of the FliP5Q4R1 complex. Residues interacting with FlhB are indicated as white spheres. D. Cartoon highlighting the helical arrangement of FliP, FliQ, and FliR in the FliP5Q4R1 complex. Structurally corresponding alpha helices are shown for each subunit (one for FliP and FliQ, each, and two for FliR, as it is a structural fusion of FliP and FliQ). E. Model of the assembly of the export apparatus of Salmonella SPI-1 injectisomes. F. Visualization of the genetic organization of export apparatus components of type III secretion systems. Brackets indicate strict conservation of gene order. Blue: FliP signal sequence. IM: inner membrane, OM: outer membrane.

DFG form 53.01– 05/16 page 2 of 23

hostile environment of infection – is an intricate process that requires a precise orchestration (Diepold and Wagner, 2014).

Assembly of the Fli/SpaP5Q4R1 complex is probably the most critical step in injectisome biogenesis. We showed using a combination of genetics and blue native (BN) PAGE analysis that the SpaP5Q4R1 complex nucleates assembly of the injectisome (Wagner et al., 2010). We further showed that SpaP initially forms a fragile pentamer that is stabilized by one SpaR (Dietsche et al., 2016). Using site-specific in vivo photocrosslinking, we were able to resolve the assembly pathway to proceed through SpaP5 + SpaQ4R1 > SpaP5Q4R1 > SpaP5Q4R1S1 (Fig 1E) (Dietsche et al., 2016). The helical arrangement of Fli/SpaP5Q4R1 in the structure of the core complex supports these findings and further suggests that SpaR is recruited to the SpaP5 complex followed

Figure 1. Model of the export apparatus of type III secretion systems, its structure, assembly, and genetic organization. Homologous components of the export apparatus of flagella and injectisomes are shown in the same shade of red. A. Model of the flagellum. B. Model of the injectisome encoded on Salmonella pathogenicity island 1 (SPI-1). C. Structure of the FliP5Q4R1 complex. Residues interacting with FlhB are indicated as white spheres. D. Cartoon highlighting the helical arrangement of FliP, FliQ, and FliR in the FliP5Q4R1 complex. Structurally corresponding alpha helices are shown for each subunit (one for FliP and FliQ, each, and two for FliR, as it is a structural fusion of FliP and FliQ). E. Model of the assembly of the export apparatus of Salmonella SPI-1 injectisomes. F. Visualization of the genetic organization of export apparatus components of type III secretion systems. Brackets indicate strict conservation of gene order. Blue: FliP signal sequence. IM: inner membrane, OM: outer membrane.

DFG form 53.01– 05/16 page 4 of 23

Overall, our preliminary results suggest that both signal peptide cleavage of FliP and the interaction with FliO are important to optimize FliP membrane integration and assembly of FliPQR core export apparatus complexes. However, the precise molecular mechanism and why

Figure 2. Preliminary analysis of the role of FliO and the FliP signal peptide for function of the flagellum. A. Top: Motility of a ∆fliO mutant complemented by plasmid-expressed FliP. Bottom: FliP protein is unstable in the absence of FliO. Protein levels of chromosomally expressed epitope-tagged FliP were monitored after arrest of de novo protein synthesis (Fabiani et al., 2017). B. Immunodetection of chromosomal FliP-FLAG from the wt and ∆fliO mutant. Crude membrane extracts were separated by BN PAGE and FliP detected by Western blot. HBB: hook-basal-body complex (Fabiani et al., 2017). C. Schematic overview of FliP signal sequence mutants. TMS1: FliP transmembrane segment 1. D. Hydrophobicity distribution of FliP homologs. ∆G prediction of amino acids 12-17 (relevant for SRP targeting) of 708 FliP homologs containing a signal peptide were analyzed using the SignalP 3.0 server. A value < 1.0 indicates SRP targeting. E. FliP signal peptide mutants affect FliP protein levels and motility. WT: wild type, vc: empty vector control, TCE: total protein stain. F. Protein stability of FliP signal peptide cleavage mutant. FliPpre = precursor FliP; FliP = mature FliP. G. FliP topology analyzed using substituted-cysteine accessibility method. Chromosomal FliPcys-FLAG was detected by Western blot. PEG = spheroplasts treated with PEG-maleimide; SDS = spheroplasts solubilized using SDS treatment. H. Mild overproduction of FliR is toxic. A strain missing the MS-ring (∆fliF) was grown in LB + indicated Na-salicylate to induce episomal fliR expression. The optical density (OD600) was determined in comparison to the empty vector control (vc) after three hours growth.

P5Q4R1B1 P5Q4R1B1A9 +F26

A B

C D

Figure 4.2 Assembly and function of the core T3SS of the flagellum. (A) Model of the flagellum. (B) Left panel: Motilityin the absence of FliO and protein levels of the core component FliP after arrest of de novo protein synthesis. Right panel:Crude membrane extracts of the WT and a mutant deleted for fliO separated by BN PAGE. HBB: hook-basal-body complex.(C) Model of the assembly of the export apparatus. (D) Structure of the core T3SS formed by FliP, FliQ and FliR.

substrate selectivity and how the T3SS discriminates between different substrate classes during thespatiotemporal assembly process of the flagellum.The goal of these studies is to obtain a mechanistic understanding of the molecular quality controlmechanisms that orchestrate assembly of the core components of the T3SS export apparatus.

Funding:

• Deutsche Forschungsgemeinschaft research grant no. ER 778/5-1

• Deutsche Forschungsgemeinschaft research grant no. ER 778/2-1

References:

• F. D. Fabiani, T. T. Renault, B. Peters, T. Dietsche, E. J. C. Galvez, A. Guse, K. Freier, E. Charpentier, T. Strowig, M. Franz-Wachtel, B.Macek, S. Wagner, M. Hensel, M. Erhardt. A flagellum-specific chaperone facilitates assembly of the core type-III export apparatusof the bacterial flagellum. PLOS Biology (2017) vol. 15 (8) e2002267

• M. Erhardt, M. E. Mertens, F. D. Fabiani, K. T. Hughes. ATPase-independent type-III protein secretion in Salmonella enterica.PLOS Genetics (2014) vol. 10 (11) e1004800

• K. Paul, M. Erhardt, T. Hirano, D. F. Blair, K. T. Hughes. Energy source of flagellar type III secretion. Nature (2008) vol. 451 (7177)489–92

Evolutionary optimization and environmental control of bacterial motilityMost bacteria swim in liquid environments by rotating one or several flagella. The flagellum is madeof a long external filament that is connected to a membrane-embedded basal-body by a short linkingstructure, the hook. The length of the hook structure is controlled by a molecular ruler, FliK, andits length is optimized for optimal motility performance.

19

Page 22: Résumé · Résumé Prof. Dr. Marc Erhardt married,twochildren HumboldtUniversityBerlin–Philippstr.13,10115Berlin Q marc.erhardt@hu-berlin.de Ó +4930209349780

0.0

0.2

0.4

0.6

0.8

1.0

1.2

rela

tive

mot

ility

FliK ruler length (amino acids)

TB LT2

363

37740

548

052

057

078

5∆fliHIJ

735

695

620

466

373

335

310

n=8

∆fliHIJ

310 335 363 373

377 405 466 480

520 570 620 695

735 785

TB

microscopy of Ec and Se bacteria grown in a microfluidic device in order to determine the flagellation pattern during cell division under various microenvironmental conditions

(perturbations of the microenvironment will include in particular high and low nutrient contents and chemicals inducing various stresses). We will employ translational fluorescent protein fusions to cytoplasmic components of the flagellum or a cysteine mutant of the flagellar hook in order to image and quantify the number of flagella and follow their distribution during cell division. We have already generated funct ional fusions of GFP variants (superfolderGFP and mNeonGreen) to components of the cytoplasmic ring of the flagellum and established conditions to label the surface-exposed cysteine residue of the flagellar hook with sulfhydryl - specific (maleimide) fluorophores (Fig. 3B). Automated image analysis (Ducret, A. et al. Nat Microbiol 2016) and single cell lineage tracking will enable us to pinpoint the distribution of flagella of single cells of both Ec and Sc bacter ia over mul t ip le generations to train and validate predictions based on LEUP modelling. Tracking cell divisions and generation time of hundreds of individual cells will further allow us to derive fitness costs of producing more or less flagella under given environmental conditions.

Additionally, we will study various regulatory mutants of the flagellar gene expression network to dissect the role of environmental sensing for the distribution and placement of multiple flagella during cell division. In particular, the bistable switch protein RflP has previously been implicated in tuning flagella numbers in response the availability of nutrients (Koirala, S. et al. MBio. 2014). We will compare flagella distribution under various nutrient contents using a ∆rflP mutant with the wildtype in both Se and Ec using the single-cell analyses described above. In complementary experiments, we will manipulate the number of flagella per cell using genetic methods to fine-tune the level of the flagellar master regulator FlhDC. We will modulate the expression levels of flhDC using an anhydrotetracycline-inducible promoter, synthetic promoters of various strengths or using a catalytically dead variant of Cas9 known as dCas9, which can be guided by small RNAs to block transcription of target genes. Using this setup, varying the levels of guide RNA-target complementarity enables controlling gene expression without addition of noise (Vigouroux, A. et al. Mol. Sys. Biol. 2018). Finally, we will perform competition experiments, where Ec and Se bacteria will be grown simultaneously in defined microenvironments of high and low nutrient contents. We will analyze the dynamic changes in the flagellation pattern of the bacteria and employ LEUP modelling to make testable predictions of the single cell phenotypic dynamics. In summary, these single-cell analyses will allow us to describe general principles how and why bacteria such as Ec and Se display different phenotypes (e.g. flagellation pattern) in response to changing environmental conditions. Milestones M5.1 Determine flagellation pattern of Ec and Se under various microenvironmental conditions and validate predictions based on LEUP modelling. M5.2 Dissect the role of environmental sensing using Ec and Se regulatory mutants. M5.3 Employ LEUP modelling to predict phenotypic dynamics during Ec and Se competition.

�12

Fig. 3: Microscopic analysis of flagella number and distribution per bacterial cell. (A) Distribution of flagella per cell under steady-state conditions and exemplary m ic roscopy images o f bac te r i a ( b l ue ) w i t h immunostained flagellar filaments (green). (B) Exemplary microscopy images of fluorescently stained flagellar hooks (top) and bacterial cell bodies (bottom). Automated image analysis performs spot detection and segmentation to identify bacterial cell bodies.

A B

C300 400 500 600 700 800

40

60

80

100

120

140

FliK length [amino acids]

Hoo

k le

ngth

[nm

]

Figure 4.3 Environmental adaptation and evolutionary optimization of motility. (A) Heterogeneous flagellation patternswithin a bacterial population. (B) A secreted molecular ruler, FliK, controls hook length. (C) Evolutionary optimization offlagellar hook length control.

Importantly, the biosynthetic resources required to assemble and operate flagella are significant andthe large external filament is a major antigen recognized by the host’s immune system. Accordingly,complex regulatory systems control flagella synthesis in many bacteria, which, in combination withthe intrinsic noise of gene expression and the stochastic re-distribution of flagella during cell division,result in large fluctuations of flagella length and heterogeneous flagellation patterns within a bacterialpopulation of peritrichously flagellated bacteria. However, it remains to be elucidated how and iffluctuations in the microenvironment (e.g. various available nutrient sources) affect the distributionand placement of flagella within a bacterial population.The goal of this project is to combine genetic engineering with single-cell microscopic tracking tech-niques and mathematical models of chemotactic behavior in order to determine how fluctuations inflagellation pattern and length influence the bacterial motility performance in varying environments.To this end, we will engineer mutant Salmonella bacteria that vary in the localization, length andnumber of flagella and quantify the motility behavior using single-cell tracking in order to iterativelyimprove a mathematical model of the run-and-tumble behavior.These analyses will allow us to describe general principles how and why bacteria display differentphenotypes (e.g. flagellation pattern) in response to changing environmental conditions.

Funding:

• VolkswagenStiftung grant ’Life? – A Fresh Scientific Approach to the Basic Principles of Life’

References:

• I. Spöring, V. A. Martinez, C. Hotz, J. Schwarz-Linek, K. L. Grady, J. M. Nava-Sedeno, T. Vissers, H. M. Singer, M. Rhode, C. Bourquin,H. Hatzikirou, W. C. Poon, Y. Dufour, M. Erhardt. Hook length of the bacterial flagellum is optimized for maximal stability of theflagellar bundle. PLOS Biology (2018) vol. 16 (9) e2006989

• I. Spöring, S. Felgner, M. Preusse, D. Eckweiler, M. Rhode, S. Häussler, S. Weiss, M. Erhardt. Regulation of Flagellum Biosynthesis inResponse to Cell Envelope Stress in Salmonella enterica Serovar Typhimurium. mBio (2018) vol. 9 (3) e00736-17

20

Page 23: Résumé · Résumé Prof. Dr. Marc Erhardt married,twochildren HumboldtUniversityBerlin–Philippstr.13,10115Berlin Q marc.erhardt@hu-berlin.de Ó +4930209349780

5 Bibliography

5.1 Original research articles

([***] highlights the five most important publications)

36. J. A. Horstmann∗, M. Lunelli∗, H. Cazzola, J. Heidemann, C. Kühne, P. Steffen, S. Szefs,C. Rossi, R. K. Lokareddy, C., Wang, L. Lemaire, K. T. Hughes, C. Uetrecht, H. Schlüter,G. A. Grassl, T. E.B. Stradal, Y. Rossez, M. Kolbe, M. Erhardt‡. Methylation of SalmonellaTyphimurium flagella promotes bacterial adhesion and host cell invasion. Nature Communi-cations (2020) vol. 11, 2013 [doi] [pdf] [***]

35. S. Felgner, I. Spöring, V. Pawar, D. Kocijancic, M. Preusse, C. Falk, M. Rhode, S. Häussler,S. Weiss, M. Erhardt. The immunogenic potential of bacterial flagella for Salmonella-mediatedtumor therapy. International Journal of Cancer (2020) 10.1002/ijc.32807 [doi] [pdf]

34. S. Nakamura, Y. Hanaizumi, Y.V. Morimoto, Y. Inoue, M. Erhardt, T. Minamino, K. Namba.Direct observation of speed fluctuations of flagellar motor rotation at extremely low load closeto zero. Molecular Microbiology (2019) vol. 113, 755-765 [doi]

33. I. Bernal, J. Börnicke, J. Heidemann, D. Svergun, J. A. Horstmann, M. Erhardt, A. Tuukkanen,C. Uetrecht, M. Kolbe. Molecular organization of soluble type III secretion system sortingplatform complexes. Journal of Molecular Biology (2019) vol. 431, 3787-803 [doi]

32. I. Spöring∗, V. A. Martinez∗, C. Hotz∗, J. Schwarz-Linek∗, K. L. Grady, J. M. Nava-Sedeno,T. Vissers, H. M. Singer, M. Rhode, C. Bourquin, H. Hatzikirou, W. C. Poon, Y. Dufour,M. Erhardt‡. Hook length of the bacterial flagellum is optimized for maximal stability of theflagellar bundle. PLOS Biology (2018) vol. 16 (9) e2006989 [doi] [pdf] [***]

31. M. Dongre, B. Singh, K. M. Aung, P. Larsson, R. Miftakhova, K. Persson, F. Askarian, M.Johannessen, J. von Hofsten, J. L. Persson, M. Erhardt, S. Tuck, B. E. Uhlin, S. N. Wai.Flagella-mediated secretion of a novel Vibrio cholerae cytotoxin affecting both vertebrate andinvertebrate hosts. Communications Biology (2018) vol. 1 59 [doi] [pdf]

30. I. Spöring∗, S. Felgner∗, M. Preusse, D. Eckweiler, M. Rhode, S. Häussler, S. Weiss,M. Erhardt‡.Regulation of Flagellum Biosynthesis in Response to Cell Envelope Stress in Salmonella entericaSerovar Typhimurium. mBio (2018) vol. 9 (3) e00736-17 [doi] [pdf]

29. E. Ward, T. T. Renault, E. A. Kim, M. Erhardt, K. T. Hughes, D. F. Blair. Type-III SecretionPore Formed by Flagellar Protein FliP. Molecular Microbiology (2018) vol. 107 (1) 94?103[doi]

∗Co-first author‡Corresponding and/or (co)-senior author

21

Page 24: Résumé · Résumé Prof. Dr. Marc Erhardt married,twochildren HumboldtUniversityBerlin–Philippstr.13,10115Berlin Q marc.erhardt@hu-berlin.de Ó +4930209349780

28. S. Felgner∗, D. Kocijancic∗, M. Frahm, U. Heise, K. Zimmermann, M. Erhardt, S. Weiss.Engineered Salmonella enterica serovar Typhimurium overcome limitations of anti-bacterialimmunity in bacteria-mediated tumor therapy. OncoImmunology (2018) vol. 7 (2) e1382791[doi]

27. F. D. Fabiani∗, T. T. Renault∗, B. Peters, T. Dietsche, E. J. C. Galvez, A. Guse, K. Freier,E. Charpentier, T. Strowig, M. Franz-Wachtel, B. Macek, S. Wagner, M. Hensel, M. Erhardt‡.A flagellum-specific chaperone facilitates assembly of the core type-III export apparatus of thebacterial flagellum. PLOS Biology (2017) vol. 15 (8) e2002267 [***; Article recommended by F1000

as ’New finding’, ’Technical advance’ and rated as ’Very good’.] [doi] [pdf]

26. S. Thiemann, N. Smit, T. Schauer, U. Roy, E. J.C. Gàlvez, J. Helmecke, T. Robin Lesker, M.Basic, A. Bleich, A. D. Goodmann, U. Kalinke, R. A. Flavell, M. Erhardt, T. Strowig. En-hancement of IFNγ production in CD4+ T cells by distinct commensals ameliorates Salmonellainduced disease. Cell Host & Microbe (2017) 10.1016/j.chom.2017.05.005 [doi]

25. D. Kocijancic∗, S. Felgner∗, T. Schauer, M. Frahm, U. Heise, K. Zimmermann, M. Erhardt,S. Weiss. Local application of bacteria improves safety of Salmonella-mediated tumor therapyand retains advantages of systemic infection. Oncotarget (2017) 10.18632/oncotarget.18392[doi]

24. G. Paradis∗, F. F. V. Chevance∗,W. Liou, T. T. Renault, K. T. Hughes, S. Rainville,M. Erhardt‡.Variability in bacterial flagella re-growth patterns after breakage. Scientific Reports (2017)10.1038/s41598-017-01302-5 [doi] [pdf]

23. J. Horstmann, E. Zschieschang, T. Truschel, J. de Diego, M. Lunelli, M. Rohde, T. May, T.Strowig, T. Stradal, M. Kolbe, M. Erhardt‡. Flagellin phase-dependent swimming on epithelialcell surfaces contributes to productive Salmonella gut colonization. Cellular Microbiology(2017) 10.1111/cmi.12739 [doi]

22. T. T. Renault, A. O. Abraham, T. Bergmiller, G. Paradis, S. Rainville, E. Charpentier,C. C. Guet, Y. Tu, K. Namba, J. P. Keener, T. Minamino, M. Erhardt‡. Bacterial flagellagrow through an injection-diffusion mechanism. eLife (2017) 10.7554/eLife.23136 [***; Article

recommended by F1000 as ’Good for teaching’, ’New finding’, ’Technical advance’ and rated as ’Exceptional’.] [doi] [pdf]

21. M. Erhardt, P. Wheatley, E. A. Kim, T. Hirano, Y. Zhang, M. K. Sarkar, K. T. Hughes, D.F. Blair. Mechanism of type-III protein secretion: Regulation of FlhA conformation by a func-tionally critical charged-residue cluster. Molecular Microbiology (2017) 10.1111/mmi.13623[doi]

20. S. Felgner, M. Frahm, D. Kocijancic, M. Rohde, D. Eckweiler, A. Bielecka, E. Bueno, F. Cava,W.-R. Abraham, R. Curtiss III, S. Häussler, M. Erhardt‡, S. Weiss. AroA deficient SalmonellaTyphimurium is more than a metabolically attenuated mutant.mBio (2016) vol. 7 (5) e01220–16[doi] [pdf]

19. B. Barlag, O. Beutel, D. Janning, F. Czarniak, C. P. Richter, R. Kurre, F. Fabiani, M. Erhardt,J. Piehler, M. Hensel. Single molecule super-resolution imaging of proteins in living Salmonellaenterica using self-labeling enzymes. Scientific Reports (2016) vol. 6 p.31601 [doi] [pdf]

18. C. Kühne, H. M. Singer, E. Grabisch, L. Codutti, T. Carlomagno, A. Scrima,M. Erhardt‡. RflMmediates target specificity of the RcsCDB phosphorelay system for transcriptional repression

∗Co-first author‡Corresponding and/or (co)-senior author

22

Page 25: Résumé · Résumé Prof. Dr. Marc Erhardt married,twochildren HumboldtUniversityBerlin–Philippstr.13,10115Berlin Q marc.erhardt@hu-berlin.de Ó +4930209349780

of flagellar synthesis in Salmonella enterica. Molecular Microbiology (2016) vol. 101 (5)841–55 [doi]

17. S. Felgner, D. Kocijancic,M. Frahm,R. Curtiss III,M. Erhardt, S. Weiss. Optimizing Salmonellaenterica Serovar Typhimurium for Bacteria-mediated Tumor Therapy. Gut Microbes (2016)vol. 7 (2) 177–77 [doi]

16. J. A. Deditius, S. Felgner, I. Spöring, C. Kühne, M. Frahm, M. Rohde, S. Weiss, M. Erhardt‡.Characterization of novel factors involved in swimming and swarming motility in Salmonellaenterica serovar Typhimurium. PLOS ONE (2015) vol. 10 (8) e0135351 [doi] [pdf]

15. M. Frahm, S. Felgner, D. Kocijancic, M. Rohde, M. Hensel, R. Curtiss III, M. Erhardt, S.Weiss. Efficiency of conditionally attenuated Salmonella Typhimurium in bacteria mediatedtumour therapy. mBio (2015) vol. 6 (2) e00254–15 [doi] [pdf]

14. R. W. Hendrix, C.-C. Ko, D. Jacobs-Sera, G. F. Hatfull, A. M. Kropinski, J. M. Denyes,M. Erhardt, K. T. Hughes, S. R. Casjens. The genome sequence of Salmonella phage Chi.Genome Announcements (2015) vol. 3 (1) e01229–14 [doi] [pdf]

13. M. Erhardt‡, M. E. Mertens, F. D. Fabiani, K. T. Hughes. ATPase-independent type-III proteinsecretion in Salmonella enterica. PLOS Genetics (2014) vol. 10 (11) e1004800 [doi] [pdf]

12. H. M. Singer, M. Erhardt‡, K. T. Hughes. Comparative analysis of the secretion capability ofearly and late flagellar type III secretion substrates. Molecular Microbiology (2014) vol. 93,505–20 [doi]

11. H. M. Singer, C. Kühne, J. A. Deditius, K. T. Hughes, M. Erhardt‡. The Salmonella Spi1virulence regulatory protein HilD directly activates transcription of the flagellar master operonflhDC. Journal of Bacteriology (2014) vol. 196, 1448–57 [doi] [pdf]

10. H. M. Singer, M. Erhardt, K. T. Hughes. RflM functions as a transcriptional repressor in theautogenous control of the Salmonella Flagellar master operon flhDC. Journal of Bacteriology(2013) vol. 195, 4274–82. [doi] [pdf]

9. H. M. Singer, M. Erhardt, A. M. Steiner, M.-M. Zhang, D. Yoshikami, G. Bulaj, B. M. Olivera,K. T. Hughes. Selective purification of recombinant neuroactive peptides using the flagellartype III secretion system. mBio (2012) vol. 29 (3) e00115–12 [doi] [pdf]

8. A. Takaya, M. Erhardt, K. Karata, K. Winterberg, T. Yamamoto, K. T. Hughes. YdiV: a dualfunction protein that targets FlhDC for ClpXP-dependent degradation by promoting releaseof DNA-bound FlhDC complex. Molecular Microbiology (2012) vol. 83 (6) 1268–84 [doi][pdf]

7. M. Erhardt‡, H. M. Singer, D. H. Wee, J. P. Keener, K. T. Hughes. An infrequent molecularruler controls flagellar hook length in Salmonella enterica. The EMBO Journal (2011) vol.30 2948–61 [doi] [pdf]

6. M. Erhardt∗, T. Hirano∗, Y. Su, K. Paul, D. H. Wee, S. Mizuno, S.-I. Aizawa, K. T. Hughes.The role of the FliK molecular ruler in hook-length control in Salmonella enterica. MolecularMicrobiology (2010) vol. 75 (5) 1272–84 [doi] [pdf]

‡Corresponding and/or (co)-senior author∗Co-first author

23

Page 26: Résumé · Résumé Prof. Dr. Marc Erhardt married,twochildren HumboldtUniversityBerlin–Philippstr.13,10115Berlin Q marc.erhardt@hu-berlin.de Ó +4930209349780

5. M. Erhardt‡, K. T. Hughes. C-ring requirement in flagellar type III secretion is bypassed byFlhDC upregulation. Molecular Microbiology (2010) vol. 75 (2) 376–93 [doi] [pdf]

4. A. Koplin, S. Preissler, Y. Ilina, M. Koch, A. Scior, M. Erhardt, E. Deuerling. A dual functionfor chaperones SSB-RAC and the NAC nascent polypeptide-associated complex on ribosomes.Journal of Cell Biology (2010) vol. 189 (1) 57–68 [doi] [pdf]

3. M. Erhardt, R. D. Wegrzyn, E. Deuerling. Extra N-Terminal Residues Have a Profound Effecton the Aggregation Properties of the Potential Yeast Prion Protein Mca1. PLOS ONE (2010)vol. 5 (3) e9929 EP [doi] [pdf]

2. K. Paul∗, M. Erhardt∗, T. Hirano, D. F. Blair, K. T. Hughes. Energy source of flagellar typeIII secretion. Nature (2008) vol. 451 (7177) 489–92 [doi] [***]

1. F. F. V. Chevance, M. Erhardt, C. Lengsfeld, S.-J. Lee,W. Boos. Mlc of Thermus thermophilus:a Glucose-Specific Regulator for a Glucose/Mannose ABC Transporter in the Absence of thePhosphotransferase System. Journal of Bacteriology (2006) vol. 188 (18) 6561–71[doi]

5.2 Review articles

10. C. Kühne, A. Guse, S. Hüsing, M. Erhardt‡. Bacterial Flagella. eLS. John Wiley & SonsLtd, Chichester (2020) 10.1002/9780470015902.a0000301.pub3 [doi]

9. T. T. Renault, A. Guse, M. Erhardt‡. Export Mechanisms and Energy Transduction in Type-IIISecretion Machines. Current Topics in Microbiology and Immunology (2019) [doi]

8. A. Adela Miranda-CasoLuengo, S. C. Kary, M. Erhardt, C. Kröger. Small RNA, big effect:control of flagellin production.Trends in Microbiology (2017) S0966-842X(17)30230-5 [doi]

7. S. Felgner, V. Pawar, D. Kocijancic, M. Erhardt, S. Weiss. Tumour-targeting bacteria-basedcancer therapies for increased specificity and improved outcome. Microbial Biotechnology(2017) vol. 10 1074–1078 [doi]

6. M. Erhardt‡. Energy requirements for protein secretion via the flagellar type-III secretionsystem. Methods in Molecular Biology – Bacterial Protein Secretion Systems (2017)vol. 1615 449–457 [doi]

5. M. Erhardt‡. Fluorescent microscopy techniques to study hook length control and flagella for-mation. Methods in Molecular Biology – The Bacterial Flagellum: Methods andProtocols (2017) vol. 1593 37–46 [doi]

4. M. Erhardt‡. Strategies to block bacterial pathogenesis by interference with motility and chemo-taxis. Current Topics in Microbiology and Immunology (2016) vol. 398 185–205 [doi]

3. M. Erhardt and P. Dersch. Regulatory principles governing Salmonella and Yersinia virulence.Frontiers in Microbiology Review (2015) vol. 6 no. 00949 [doi] [pdf]

2. K. T. Hughes, M. Erhardt‡. Bacterial Flagella. eLS. John Wiley & Sons Ltd, Chichester(2011) 10.1002/9780470015902.a0000301.pub2 [doi]

∗Co-first author‡Corresponding and/or (co)-senior author

24

Page 27: Résumé · Résumé Prof. Dr. Marc Erhardt married,twochildren HumboldtUniversityBerlin–Philippstr.13,10115Berlin Q marc.erhardt@hu-berlin.de Ó +4930209349780

1. M. Erhardt, K. Namba, K. T. Hughes. Bacterial Nanomachines: The Flagellum and Type IIIInjectisome. Cold Spring Harbor Perspectives in Biology (2010) vol. 2 (11) a000299[doi] [pdf]

5.3 Pre-prints and other publications

4. A. Guse, M. Rhode, M. Erhardt‡. Controlling minimal and maximal hook-length of the bacterialflagellum. bioRxiv (2020) 10.1101/2020.03.25.007062 [doi] [pdf]

3. M. Erhardt‡. A tale of a tail - eine kurze Geschichte der Biosynthese von Flagellen. BIOspek-trum (2018) vol. 3, 246-9 [pdf]

2. H. M. Singer and M. Erhardt‡. Regulation, Aufbau und Funktion einer bakteriellen Nanomas-chine. BIOspektrum (2014) vol. 5, 500-2 [doi]

1. M. Erhardt‡. Biosynthese des bakteriellen Flagellums – in vivo Längenmessung im Nanomaßstab.BIOspektrum (2012) vol. 6 p.679 [doi]

5.4 Patents

• S. Felgner, S. Weiss, M. Erhardt, D. Kocijancic. Salmonella and immunogenic compositioncontaining the same as well as its use submitted (EP17168323).

‡Corresponding and/or (co)-senior author

25