Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck and

61
Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck and Institut für Quantenoptik und Quanteninformation Innsbruck FWF SFB QUEST QGATES Industri e Tirol IQI GmbH $ Quantum information processing with trapped ions 1. Basic experimental techniques 2. Robust two-particle entanglement 3. Process tomography of a CNOT gate 4. Teleportation 5. Multi-particle entanglement 6. Outlook Quantum optics VI, 17.5. 2005

description

Quantum information processing with trapped ions. FWF SFB. QUEST QGATES. Industrie Tirol. IQI GmbH. €. $. Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck and Institut für Quantenoptik und Quanteninformation Innsbruck. Basic experimental techniques - PowerPoint PPT Presentation

Transcript of Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck and

Page 1: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

Hartmut Häffner

Institut für Experimentalphysik, Universität Innsbruck andInstitut für Quantenoptik und Quanteninformation Innsbruck

FWF SFB

QUESTQGATES

IndustrieTirol

IQIGmbH

$

Quantum information processingwith trapped ions

1. Basic experimental techniques

2. Robust two-particle entanglement

3. Process tomography of a CNOT gate

4. Teleportation

5. Multi-particle entanglement

6. Outlook Quantum optics VI, 17.5. 2005

Page 2: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

Quantum information offers a completely new view on quantum mechanics: we might “understand” what quantum mechanics is about.

In quantum information you can see natures strange rules at work: do “real“ bizarre Gedanken experiments!

A most fascinating topic is to look at non-local superpositions.

Why quantum information?

Page 3: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

Pentium 4 (2002)

1 atom

1960 1970 1980 1990 2000 2010 2020

year

1910

1510

1110

710

310010

1 atom per bitnum

ber

of a

tom

s pe

r bi

t~ 2017

How many atoms per bit?How many atoms per bit?

faster = smallerfaster = smaller

ENIAC (1947)

Progress in technology …

Page 4: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

S1/2

P1/2

D5/2

qubit

Experimental Setup

Page 5: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

20th century

about the ENIAC:

„Where a calculator on the ENIAC is equipped with 18000 vacuum tubes and weighs 30 tons, computers in the future may have only 1000 tubes and weigh only 1 ½ tons.“

Popular Mechanics, March 1949

The fate of visionaries

Page 6: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

qubit

qubit(quoctet)

Encoding of quantum information requires long-lived atomic states:

microwave transitions

9Be+, 25Mg+, 43Ca+, 87Sr+, 137Ba+, 111Cd+, 171Yb+

optical transitions

Ca+, Sr+, Ba+, Ra+, Yb+, Hg+ etc.

S1/2

P1/2

D5/2

S1/2

P3/2

Qubits with trapped ions

Page 7: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

P1/2 D5/2

=1s

S1/2

40Ca+

P1/2

S1/2

D5/2

Dopplercooling Sideband

cooling

P1/2

S1/2

D5/2

Quantum statemanipulation

P1/2

S1/2

D5/2

Fluorescencedetection

Experimental procedure

1. Initialization in a pure quantum state: laser cooling,optical pumping

3. Quantum state measurement by fluorescence detection

2. Quantum state manipulation on S1/2 – D5/2 qubit transition

50 experiments / s

Repeat experiments100-200 times

One ion : Fluorescence histogram

counts per 2 ms0 20 40 60 80 100 120

0

1

2

3

4

5

6

7

8S1/2 stateD5/2 state

Page 8: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

P1/2 D5/2

=1s

S1/2

40Ca+

Experimental procedure

1. Initialization in a pure quantum state: Laser sideband cooling

3. Quantum state measurement by fluorescence detection

2. Quantum state manipulation on S1/2 – D5/2 transition

P1/2

S1/2

D5/2

Dopplercooling Sideband

cooling

P1/2

S1/2

D5/2

Quantum statemanipulation

P1/2

S1/2

D5/2

Fluorescencedetection

50 experiments / s

Repeat experiments100-200 times

Spatially resolveddetection withCCD camera:

Multiple ions:

Page 9: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

Addressing of individual ions

CCD

Paul trap

Fluorescencedetection

electrooptic deflector

coherentmanipulation of qubits

dichroicbeamsplitter

inter ion distance: ~ 4 µm

addressing waist: ~ 2 µm

< 0.1% intensity on neighbouring ions

-10 -8 -6 -4 -2 0 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Exc

itatio

n

Deflector Voltage (V)

Page 10: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

D-s

tate

po

pul

atio

nAddressing of individual ionsRabi oscillations

Page 11: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

D-s

tate

po

pul

atio

nRabi oscillations

Picture atomic polarization laser phase

Page 12: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

D-s

tate

po

pul

atio

nRabi oscillations

Page 13: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

To prepare the state shiftthe phase of the preparation -pulsewith respect to all other pulses by .

D-s

tate

po

pul

atio

nRabi oscillations

Page 14: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

Coherent manipulationCoherent manipulation

0 10 20 30 40 50 60 700

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

D-s

tate

pop

ulat

ion

Phase switched by /2

Page 15: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

row of qubits in a linear Paul trap forms a quantum register

External degree of freedom: ion motion

Page 16: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

50 µm

External degree of freedom: ion motion

The common motionacts as the quantumbus.

Page 17: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

50 µm

External degree of freedom: ion motion

The common motionacts as the quantumbus.

Page 18: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

harmonic trap

External degree of freedom: ion motion

Page 19: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

harmonic trap

2-level-atom joint energy levels

External degree of freedom: ion motion

Page 20: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

0,S

0,D1,D

1,S

carrier

sideband

D-s

tate

po

pul

atio

n

Coherent manipulationCoherent manipulation

Page 21: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

0,S

0,D1,D

1,S

carrier and blue sidebandRabi oscillations

with Rabi frequencies

carrier

sideband

is the Lamb-Dicke parameter

and

Coherent manipulation

Page 22: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

1. Basic experimental techniques

2. Robust two-particle entanglement

3. Implementation of a CNOT gate

4. Teleportation

5. Multi-particle entanglement

6. Outlook

Page 23: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

… …

Creation of Bell states

Page 24: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

… …

/2, BSB

Creation of Bell states

Page 25: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

… …

/2, BSB

, carrier

Creation of Bell states

Page 26: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

… …

/2, BSB

, BSB

, carrier

Creation of Bell states

Page 27: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

Fluorescencedetection withCCD camera:

Coherent superposition or incoherent mixture ?

What is the relative phase of the superposition ?

SSSDDS

DD SSSDDSDD

Measurement of the density matrix:

Analysis of Bell states

Page 28: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

A measurement yields the z-component of the Bloch vector

=> Diagonal of the density matrix

Rotation around the x- or the y-axis prior tothe measurement yields the phase informationof the qubit.

(a naïve persons point of view)

=> coherences of the density matrix

Obtaining a single qubits density matrix

Page 29: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

Preparation and tomography of Bell states

SSSD

DSDD SSSDDSDD

SSSD

DSDD SSSDDSDD

SSSD

DSDD SSSDDSDD

Fidelity:

Entanglementof formation:

Violation of Bell inequality:

F = 0.91F = 0.91

E(exp) = 0.79

S(exp) = 2.52(6)

> 2

SSSD

DSDD SSSDDSDD

C. Roos et al., Phys. Rev. Lett. 92, 220402 (2004)

Page 30: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

SSSD

DSDD SSSDDSDD

SSSD

DSDD SSSDDSDD

SSSD

DSDD SSSDDSDD

long lived (~ 1000 ms) short lived (1 ms)

Ene

rgy

(see e.g. Kielpinski et al.,Science 291, 1013-1015 (2001)

SSSD

DSDD SSSDDSDD

Ene

rgy

Life

time

limite

d on

ly b

y sp

onta

nteo

us d

ecay

of t

he D

leve

l

Life

time

limite

d on

ly b

y sp

onta

nteo

us d

ecay

of t

he D

leve

l

Life

time

limite

d by

lase

r fre

quen

cy s

tabi

lity

Life

time

limite

d by

lase

r fre

quen

cy s

tabi

lity

Creation of Bell statesDecoherence properties of the Bell states

Page 31: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

Ultra-longlived Bell statesM

inim

um

fid

elity

D5/2

S1/2

Page 32: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

Min

imu

m fi

del

ityUltra-longlived Bell states

Line possible death

Lifetime of entanglement > 20 s

Page 33: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

control

target

1. Basic experimental techniques

2. Robust two-particle entanglement

3. Process tomography of a CNOT gate

4. Teleportation

5. Multi-particle entanglement

6. Outlook

Page 34: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

other gate proposals include: • Cirac & Zoller • Mølmer & Sørensen, Milburn• Jonathan & Plenio & Knight• Geometric phases• Leibfried & Wineland

controlcontrol targettarget

...allows the realization of a universal quantum computer !

control

target

Cirac-Zoller two-ion controlled-NOT operation

Page 35: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

ion 1

motion

ion 2

control qubit

target qubit

SWAP

Cirac-Zoller two-ion controlled-NOT operation

Page 36: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

ion 1

motion

ion 2

control qubit

target qubit

Cirac-Zoller two-ion controlled-NOT operation

Page 37: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

ion 1

motion

ion 2

SWAP-1

control qubit

target qubit

Cirac - Zoller two-ion controlled-NOT operation

F. Schmidt-Kaler et al., Nature 422, 408 (2003)

Page 38: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

ion 1

motion

ion 2

SWAP-1SWAP

Ion 1Ion 1

Ion 2Ion 2

pulse sequence:pulse sequence:

Cirac - Zoller two-ion controlled-NOT operation

control qubitcontrol qubit

target qubittarget qubit

laser frequencypulse lengthoptical phase

Phase gate

Page 39: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

Phase gate

Composite 2π-rotation:

Page 40: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

Example:

CNOT

Mapping between product and Bell basis

Product states Bell states

Ion 1

Ion 2

CNOT

Mapping between Product and Bell basis

Page 41: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

Experimental fidelity of Cirac-Zoller CNOT operation

input

output

F. Schmidt-Kaler et al.,Nature 422, 408 (2003)

Page 42: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

Gate tomography

characterizes gate operation completely

Page 43: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

Process tomography, theory

ideal CNOT gate operation

Page 44: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

Process tomography, experiment

real CNOT gate operation

Page 45: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

1. Basic experimental techniques

2. Robust two-particle entanglement

3. Process tomography of a CNOT gate

4. Teleportation

5. Multi-particle entanglement

6. Outlook

Page 46: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

Alice

Bob

Bell state

unknowninput state

recoverinput state

rotation

classical communication

measurementin Bell basis

Phys. Rev. Lett. 70, 1895 (1993)

Teleportation protocol

Page 47: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

Ion 3

Ion 2

Ion 1

Bell

state

initialize #1, #2, #3

classical communication

conditional rotations

CNOT -- Bell basis

Alice

Bob

Selectiveread out

Implementation of the teleportation protocol

recovered on ion #3

Page 48: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

Protecting qubits from readout

detect quantum state of ion #1 only

D5/2

S1/2

D5/2

S1/2

D5/2

S1/2

D5/2

S1/2

D5/2

S1/2

D5/2

S1/2

ion #1 ion #2 ion #3

Page 49: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

Protecting qubits from readout

detect quantum state of ion #1 onlysuperpositions of ions #2, #3 protected

D5/2

S1/2

D5/2

S1/2

D5/2

S1/2

D5/2

S1/2

D5/2

S1/2

D5/2

S1/2

ion #1 ion #2 ion #3

D D‘ DD‘

Page 50: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

Ion 3

Ion 2

Ion 1

conditional rotations using electronic logic, triggered by PM signal

conditional rotations using electronic logic, triggered by PM signalP

U

U

P

C C C

B

B B B B C

CU P

B

C

C P

spin echo sequencespin echo sequence

full sequence:26 pulses + 2 measurements

full sequence:26 pulses + 2 measurements

B

C

blue sideband pulsesblue sideband pulses

carrier pulsescarrier pulses

P

C

B

B

Teleportation protocol, details

Page 51: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and
Page 52: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

Input test states Output statesInitial Final

TPU U-1

Ion #1 Ion #3

Teleportation procedure, analysisTeleportation procedure, analysis

Page 53: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

Similar results also from Boulder!

Fidelity: 0.83

Classicalthreshold

Quantum teleportation on demand

Page 54: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

Teleportation on demand

no post-selection

it works for all Bell states

only 10 m

Deterministicteleportation

Process tomography of teleportation

Page 55: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

represent input/output states with Bloch spheres:

input sphere

output sphere

Process tomography of the teleportation

Page 56: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

1. Basic experimental techniques

2. Robust two-particle entanglement

3. Process tomography of a CNOT gate

4. Teleportation

5. Multi-particle entanglement

6. Outlook

Page 57: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

Density matrix of W – state

experimental result theoretical expectation

DDDDDS

DSDDSS

SDDSDS

SSDSSS

Fidelity: 85 %

DDDDDS

DSDDSS

SDDSDS

SSDSSS

Page 58: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

Bell statesurvives !

Photon-version: M. Eibl et al., Phys. Rev. Lett. 92, 077901 (2004).

projection of the center ion

Quantum mechanics at work

Page 59: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

1. Basic experimental techniques

2. Robust wo-particle entanglement

3. Process tomography of a CNOT gate

4. Teleportation

5. Multi-particle entanglement

6. Outlook

- optimization of Cirac-Zoller gateachieve 3 - 5 CNOT gate operations

- error correction protocols with three and five qubits

- qubit manipulation in DFS

- implementation with 43Ca+

- test of segmented traps

Page 60: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

Summary

- Robust entanglement (more than 20 s)

- Multi-particle entanglement

- Process tomography of a CNOT

- Process tomography of a

teleportation algorithm

Page 61: Hartmut Häffner Institut für Experimentalphysik, Universität Innsbruck   and

The Innsbruck ion trap group

F. Schmidt-KalerA. Wilson P. Bushev

C. Becher

D. Rotter

G. Lancaster

C. Russo

M. Riebe

T. Körber

T. Deuschle

M. Chwalla

C. Roos M. Bacher

V. SteixnerA. KreuterR. Bhat

R. Blatt

J. Benhelm

W. Hänsel

F. Splatt

H. Häffner

http://heart-c704.uibk.ac.at

Ph.D. positions

available !!!

FWF SFB

QUESTQGATES

IndustrieTirol

IQIGmbH

$