opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für...

264
METAL OXIDE SUPPORTED CADMIUM SULFIDE FOR PHOTOCATALYTIC SYNTHESIS OF HOMOALLYLAMINES Den Naturwissenschaftlichen Fakultäten der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades vorgelegt von Müge Aldemir aus Izmir, Türkei

Transcript of opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für...

Page 1: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

METAL OXIDE SUPPORTED CADMIUM SULFIDE

FOR

PHOTOCATALYTIC SYNTHESIS OF HOMOALLYLAMINES

Den Naturwissenschaftlichen Fakultäten

der Friedrich-Alexander-Universität Erlangen-Nürnberg

zur

Erlangung des Doktorgrades

vorgelegt von

Müge Aldemir

aus Izmir, Türkei

Page 2: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Als Dissertation genehmigt

von den Naturwissenschaftlichen Fakultäten

der Universität Erlangen-Nürnberg

Tag der mündlichen Prüfung: 16.02.2006

Vorsitzender der Promotionskommission: Prof. Dr. D.-P. Häder

Erstberichterstatter: Prof. Dr. H. Kisch

Zweitberichterstatter: Prof. Dr. D. Guldi

Page 3: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für

Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Anleitung von Herrn Prof. Dr. Horst Kisch durchgeführt.

I gratefully thank my doctoral father Prof. Dr. H. Kisch for offering me the opportunity to

make my Ph. D. in Germany, in the interesting field of semiconductor photocatalysis and

for instructive discussions during my work.

I would like to thank Deutsche Forschungsgemeinschaft for the fellowship within the

Graduiertenkolleg “Homogener und Heterogener Electronentransfer” and Prof. Dr. U.

Nickel for collaboration within the Graduiertenkolleg.

I thank Dr. M. Moll, Dr. S. Y. Shaban, Dr. K. Hein and S. Kasper for the NMR, Dr. C.

Damm for the time resolved photocharge, M. Bachmüller for the mass spectroscopy, S.

Kammerer for the XRD measurements, C. Wronna for the elemental analysis, R. Müller

for TGA and BET measurements, and Dr. G. Frank for the TEM analysis. I am also

thankful to Dr. F. W. Heinemann for the X-ray crystal structure determinations and Dr. J.

Sutter for his assistance regarding computer problems.

To Dr. G. Burgeth and Dr. M. Hopfner who are not only my friends but also my

“teachers”, I am especially thankful for their sincerity, help, encouragement, and for always

reminding me to think optimistic in my hard times.

I am also grateful to S. Sperner and N. Mooren for being always there (in the Organic

Institute) for me and for their friendship.

I am deeply thankful to my sisters in Erlangen; Dr. O. Linnik and Dr. P. Pinto. They have

been tireless helping whenever I needed and there are no words to express my thanks to

them.

I am indebted to my parents who educated me to be self-confident and self-sufficient in any

case in the life, but also made me feel like I am never alone. I thank them for their belief in

me, endless affection and support.

And to my sister, my best friend Bilge. Even so far from, my happiness was bigger; my

sorrow was less whenever I shared with her.

Page 4: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Abbreviations

δ Chemical Shift

λ Wavelength [nm]

ν Frequency

Θ Diffraction Angle (XRD)

τ Lifetime

A Acceptor

BET Brunauer-Emmet-Teller

br Broad

CB Conduction Band

COSY Correlation Spectroscopy

CV Cyclic Voltammetry

d Doublet (NMR), Interplanar Spacing in a Crystal (XRD)

D Donor

DRS Diffuse Reflectance Spectroscopy

E Energy

E° Redox Potential

Ebg Band-gap Energy

EF Fermi Level

nEF* Quasi-Fermi Level of Electrons

pEF* Quasi-Fermi Level of Holes

Eox Oxidation Potential

Ered Reduction Potential

FD Field Desorption (MS)

F(R∞) Kubbelka-Munk Function

FWHM Full-width of XRD Peak at Half-Maximum

h+ Hole in Valence Band

HETCOR Heteronuclear Correlation Spectroscopy

HPLC High Pressure Liquid Chromatography

Page 5: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

HRTEM High Resolution Transmission Electron Microscopy

I Light Intensity

IFET Interfacial Electron Transfer

k Rate Constant

m Multiplet (NMR)

MS Mass Spectroscopy

MV2+ Methylviologen, N,N`-Dimethyl-4,4`-bipyridinium ion

P-EMF Photo-Electromotive Force

RT Room Temperature

s Second; Singlet (NMR)

S Scattering Coefficient

SEMSI Semiconductor Support Interaction

tR Retention Time

tr Triplet (NMR)

TEM Transmission Electron Microscopy

TLC Thin Layer Chromatography

TMS Tetramethylsilane

U Dember Voltage

VB Valence Band

W Width of Depletion Layer

XPS X-ray Photoelectron Spectroscopy

XRD X-ray-Diffractogram

Page 6: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Naming of Photocatalysts

CdS-A Unsupported CdS

Alumina Supported

10N 10% CdS/Al2O3(n) [10% wt of CdS supported on neutral alumina]

prepared in 10% NH3 solution

30N 30% CdS/Al2O3(n) [30% wt of CdS supported on neutral alumina]

prepared in 10% NH3 solution

50N 50% CdS/Al2O3(n) [50% wt of CdS supported on neutral alumina]

prepared in 10% NH3 solution

30N25 30% CdS/Al2O3(n) [30% wt of CdS supported on neutral alumina]

prepared in 25% NH3 solution

10A 10% CdS/Al2O3(a) [10% wt of CdS supported on acidic alumina]

prepared in 10% NH3 solution

30A 30% CdS/Al2O3(a) [30% wt of CdS supported on acidic alumina]

prepared in 10% NH3 solution

30B 30% CdS/Al2O3(b) [30% wt of CdS supported on basic alumina]

prepared in 10% NH3 solution

Silica Supported

10AE 10% CdS/SiO2 [10% wt of CdS supported on Aerosil silica]

prepared in 10% NH3 solution

30AE 30% CdS/SiO2 [30% wt of CdS supported on Aerosil silica]

prepared in 10% NH3 solution

50AE 50% CdS/SiO2 [50% wt of CdS supported on Aerosil silica]

prepared in 10% NH3 solution

30AE25 30% CdS/SiO2 [30% wt of CdS supported on Aerosil silica]

prepared in 25% NH3 solution

Page 7: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Contents I

CONTENTS

CHAPTER 1

1. Introduction 1

1.1. Semiconductor Photocatalysis 2

1.2. Pharmaceutical Importance and Thermal Synthesis of Homoallylamines 5

1.3. Synthesis of Homoallylamines through Semiconductor Photocatalysis 9

1.4. Pharmaceutical Importance of Organic Compounds Bearing Adamantane 13

1.5. Electronic Semiconductor-Support Interaction (SEMSI) 16

1.6. Aim of This Work 18

References 20

CHAPTER 2

2. Al2O3 Supported CdS 24

2.1. General Properties of Al2O3 as a Support Material 24

2.2. Synthesis of CdS/Al2O3 Photocatalysts 26

2.3. Characterization of Photocatalysts 28

2.3.1. Band-gap Energy Measurements by Diffuse Reflectance Spectroscopy 28

2.3.2. Determination of Quasi-Fermi Level of Electrons 34

2.3.2.1. Quasi-Fermi Level Determinations In The Presence of Hole Scavengers 40

2.3.2.2. Investigation of Light Intensity Effect on Quasi-Fermi Level Determinations 48

2.3.2.3. Energetic Position of Band Edges for CdS/Al2O3 Photocatalysts 50

2.3.3. IR Spectra of Al2O3 Supported CdS Powders 51

2.3.4. X-Ray Powder Diffractometry (XRD) 53

Page 8: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Contents II

2.3.5. High Resolution Transmission Electron Microscopy (TEM) 61

2.3.6. Interrogation of a Quantum-Size Effect 63

2.3.7. X-Ray Photoelectron Spectroscopy (XPS) 63

2.3.8. Time Resolved Photocharge (P-EMF) Measurements 68

2.4. Photocatalytic Activity Al2O3 Supported CdS 77

2.4.1. Determination of the Optimum Photocatalyst Amount 77

2.4.2. Photocatalytic Activity Measurements 79

2.5. Comparison of Al2O3 with SiO2 as Support Material for CdS 83

References 89

CHAPTER 3

3. CdS-Photocatalyzed Synthesis of Novel Homoallylamines 92

3.1. Photocatalytic Addition Reactions with N-Cinnamylideneaniline 92

3.1.1. Photocatalytic Addition Reactions of N-Cinnamylideneaniline with

cyclopentene, cyclohexene and α-pinene 92

3.1.1.1. HPLC Analysis 93

3.1.1.2. Mass Spectroscopy 96

3.1.1.3. IR 98

3.1.1.4. NMR 99

3.1.2. Thermodynamic Aspects 112

3.2. Photocatalytic Addition Reactions with N-(1-Adamantyl)-p-X-

benzaldehyde Imine (X: -H, -F, -Cl, -Br, -OCH3) 115

3.2.1. Photocatalytic addition reactions of N-(1-adamantyl)-p-chloro-

benzaldehyde imine with cyclopentene, cyclohexene and α-pinene 115

3.2.1.1. HPLC Analysis 116

3.2.1.2. Mass Spectroscopy 118

3.2.1.3. Structure Determinations by NMR and X-Ray 120

3.2.2. Photocatalytic Addition Reactions of N-(1-Adamantyl)-p-X-benzaldehyde

Imine (X: -H, -F, -Cl, -Br, -OCH3) with Cyclohexene 129

Page 9: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Contents III

3.2.3. Photocatalytic Addition Reactions of N-(1-Adamantyl)-p-X-benzaldehyde

Imine (X: -H, -F, -Cl, -Br, -OCH3) with α-Pinene 135

References 141

CHAPTER 4

4. Summary 142

CHAPTER 5

5. Zusammenfassung 148

CHAPTER 6

6. Experimental Section 155

6.1. General Methods 155

6.1.1. Irradiation Apparatus and Lamps 155

6.1.2. Solvents and substances 158

6.1.3. Spectroscopic and analytical methods 159

6.2. Quasi-Fermi Level Measurements 168

6.2.1. Influence of Hole Scavengers 169

6.2.2. Influence of Light Intensity 169

6.3. Synthesis of CdS Photocatalysts 170

6.3.1. Unsuppoted CdS (CdS-A) 170

6.3.2. SiO2 supported CdS 170

6.3.3. Al2O3 supported CdS 170

6.4. Photocatalytic Activity Measurements 172

6.5. Syntheses 173

6.5.1. Addition reactions with N-Cinnamylideneaniline 173

6.5.1.1. Synthesis of N-cinnamylideneaniline (6) 173

Page 10: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Contents IV

6.5.1.2. Synthesis of N-(1-(cyclopent-2-enyl)-3-phenylallyl)benzenamine (7a) 173

6.5.1.3. Synthesis of N-(1-(cyclohex-2-enyl)-3-phenylallyl)benzenamine (7b) 175

6.5.1.4. Synthesis of N-(1-(4,6,6-trimethylbicyclo[3.1.1]hept-3-en-2-yl)-3-

phenylallyl)benzenamine (7c) 176

6.5.2. Addition reactions with N-Adamantyl-p-X-benzaldehyde imine

(X: -H, -F, -Cl, -Br, -OCH3) 177

6.5.2.1. Synthesis of N-Adamantyl-p-X-benzaldehyde imine 177

6.5.2.2. Addition reactions with N-Adamantyl-p-chloro-benzaldehyde imine 178

6.5.2.2.1. Cyclopentene addition to N-Adamantyl-p-chloro-benzaldehyde imine 178

6.5.2.2.2. Cyclohexene addition to N-Adamantyl-p-chloro-benzaldehyde imine 181

6.5.2.2.3. α-Pinene addition to N-Adamantyl-p-chloro-benzaldehyde imine 182

6.5.2.3. Influence of p-Substituent 183

6.5.2.3.1. Addition reactions of cyclohexene to N-Adamantyl-p-X-benzaldehyde

Imine derivatives (X: -H, -F, -Cl, -Br, -OCH3) 183

6.5.2.3.1.1. Addition of cyclohexene to N-Adamantyl-benzaldehyde imine 183

6.5.2.3.1.2.Addition of cyclohexene to N-Adamantyl-p-fluoro-benzaldehyde imine 184

6.5.2.3.1.3. Addition of cyclohexene to N-Adamantyl-p-chloro-benzaldehyde imine 185

6.5.2.3.1.4. Addition of cyclohexene to N-Adamantyl-p-bromo-benzaldehyde imine 185

6.5.2.3.1.5. Addition of cyclohexene to N-Adamantyl-p-methoxy-benzaldehyde imine 186

6.5.2.3.2. Addition reactions of α-pinene to N-Adamantyl-p-X-benzaldehyde

Imine derivatives (X: -H, -F, -Cl, -Br, -OCH3) 188

6.5.2.3.2.1. Addition of α-pinene to N-Adamantyl-benzaldehyde imine 188

6.5.2.3.2.2.Addition of α-pinene to N-Adamantyl-p-fluoro-benzaldehyde imine 189

6.5.2.3.2.3.Addition of α-pinene to N-Adamantyl-p-chloro-benzaldehyde imine 190

6.5.2.3.2.4. Addition of α-pinene to N-Adamantyl-p-bromo-benzaldehyde imine 190

6.5.2.3.2.5. Addition of α-pinene to N-Adamantyl-p-methoxy-benzaldehyde imine 191

6.6. Crystal Structure Determinations 193

References 253

Page 11: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 1. Introduction 1

CHAPTER 1 1. Introduction

Due to everyday increasing environmental problems, R&D and management of

environmentally friendly chemical processes have become an obligation. According to this

global necessity many scientific and industrial R&D projects have been directed onto the

way of investigation and application of new, clean, efficient chemical technologies in last

decades. Designing of such new methods requires economically appropriate practice of

them as well. Therefore, the basic aim of research studies in this frame is to minimize by-

or waste products and maximize the main product in the most suitable and clean way.

In this respect, heterogeneous phase photocatalysis arises as a favorable process which

competes with the conventional methods. The scientific research activities dealing with

heterogeneous photocatalysis not only suggest environmentally friendly methods but also

induce the development of better and more efficient catalyst preparations upon a better

understanding of the mechanism of photocatalysis. However, due to the utilization of these

materials for maximum economic and environmental benefits, a better clarification must be

elucidated for the relationship between photocatalytic properties and surface chemistry.

From another point of view, using such photocatalysts in synthetic operations is also an

important and attractive branch of present research projects. All this may lead to a cleaner

alternative for known processes and to novel synthetic methods for the production of

otherwise not or more difficult obtainable compounds.

Page 12: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 1. Introduction 2

1.1. Semiconductor Photocatalysis

Semiconductors are particularly useful in photocatalysis because of their favorable

combination of electronic structure, light absorption properties, charge transport

characteristics, and excited-state lifetimes. [1] Their quite good stability under photolysis

conditions without significant degradation [2] is another attractive feature of them.

Semiconductor photocatalysis is initiated when a semiconductor is illuminated with

photons whose energy is equal or greater than the band-gap energy. [3, 4] In the proposed

mechanism of semiconductor photocatalysis, a photocatalytic reaction may proceed via

several steps [1, 5, 6] (Figure 1.1):

1. Adsorption of substrates onto the surface of the semiconductor

2. Excitation of the semiconductor by light of suitable energy and creation of electrons

in the conduction band and of holes in valence band (Eq. 1)

3. Charge trapping (Eq. 2) which must occur much faster than recombination (Eqs.

3,4)

4. Interfacial electron transfer from/to adsorbed substrates (rapid chemical reaction)

and formation of the final products

5. Desorption of the products

The photogenerated electron/hole pairs in a semiconductor can be thought of as strong

reducing and oxidizing surface centers. They can exchange electrons with donors and

acceptors, if their redox potentials lie within the band-gap. In such a case, thermodynamic

feasibility is fulfilled for the interfacial electron transfer. [7]

Page 13: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 1. Introduction 3

h+

e-

e-tr

e-r

h+tr

h+r

CB

VB

AA

DD

ktr

ktr

ke

krc

ketr

krctr

ker

krcr

kox

kred

Figure 1.1: Photophysical and photochemical processes in semiconductor photocatalysis.

CdShv

CdS (h+/e-) Absorption (1)

CdS (h+/e-)ktr

CdS (htr+/etr

-)/(hr+/er

-)

CdS (h+/e-)ke

CdS + hν´

CdS (h+/e-)krc

CdS + ∆T

Charge Trappingat unreactive /reactive (2) surface sites

Radiative (3)

Non-radiative (4)

Recombination

Aad + er-

kredAad -

Dad + hr+

koxDad +

Reduction (5)

Oxidation (6)

IFET

Page 14: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 1. Introduction 4

The diffusion of conduction band electrons and valence band holes from the bulk to the

surface and their trapping occur very rapidly (Figure 1.1, ktr). Transit time for conduction

band electrons (Figure 1.1, kred) have been reported in the range of ps because of their low

effective mass and high mobility. [8] The photogenerated charge carriers can reach the

surface very quickly and become trapped before they recombine. [9] The latter process

usually occurs in µs range. Consequently, the interfacial electron transfer from/to adsorbed

substrates can successfully compete with recombination.

As a consequence of rising interest in semiconductor photocatalysis, publications increased

in recent years. Photo-Kolbe reactions [10, 11], conversion of primary amines to secondary

amines [12, 13], isomerizations [14-16], dimerizations [17, 18], substitutions [19, 20], condensations [21], alkylations [22, 23] and allylations [24] are some examples that can be encountered in the

literature. Research activities to perform organic synthesis through semiconductor

photocatalysis have been depicted [2, 7, 25, 26] over the last years. In only a few cases

semiconductor photocatalyzed organic synthesis of novel compounds has been successfully

achieved on a gram scale. [27-35]

Page 15: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 1. Introduction 5

1.2. Pharmaceutical Importance and Thermal Synthesis of

Homoallylamines

Nitrogen-containing organic molecules are present widely in nature since they are essential

to life by playing a vital role in the metabolism of all living cells [36] and also because of

their biologically active forms such as amino acids or alkaloids. [37] Thus, this crucial role

makes them the most important compounds in synthetic chemistry. [37]

For the synthesis of e.g. amino acids, allylamines are considered as ideal building blocks,

and these compounds are also used as starting materials in important industrial processes. [37] It has been reported that more than 75% of drugs and drug candidates incorporate amine

functionality. [38] Therefore, development of new methods for the synthesis of amines can

be thought as a major objective for synthetic chemists.

The incidence of fungal infections has dramatically increased during the last years. [39]

Fungal infections have debilitating effects on human metabolism and they affect the skin,

keratinous tissues and mucous membranes. [40] Eradication of systemic mycoses and some

forms of dermatomycoses are very difficult and they are the cause of a great mortality in

patients receiving antineoplasic chemotherapy, organ transplants or suffering from

AIDS. [39] Because of the toxicity [40] of many currently available drugs, it has become

necessary to find out alternative more potent and safer antifungal agents. [40]

Allylamines have been recently used to treat superficial mycoses [40] and the anti-fungal

activity of a series of homoallylamines have been determined [39-41] by pointing out the

importance of such structures (Figure 1.2) as alternatives against fungal infections which

are considered as building blocks [42] for drug design.

NH

R

R'

Figure 1.2: General structure of antifungal homoallylamines. [40]

Page 16: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 1. Introduction 6

However, any mutual catalytic method for drug design must fulfill some conditions to be

considered as an efficient route [43]:

1. Substrate purity and its effect on catalyst activity

2. Substrate-to-catalyst ratio and turnover number

3. Ease of isolation of the final product

4. Optical purity of the final product

5. Isolation and recycling of the catalyst

6. Economic viability of the process in comparison with any alternative synthetic

routes.

Although conventional catalytic techniques are of basic importance in producing fine

chemicals and pharmaceuticals, [44] they may cause environmental pollution because of

formation of by-products. Therefore, for an environmentally friendly production method a

further point must be considered. It is the E-factor which is a term defining the quantity of

by-products formed per kg of product. [45] A view of Table 1.1 demonstrates the necessity

and importance of developing new environmentally friendly, efficient production methods

in drug design because of quite high level of E-factor for pharmaceuticals in comparison

with the other industrial sectors. Such a high level of E-factor arises from multi-step

syntheses using stoichiometric reagents that result in accumulation of inorganic salts as by-

products.

Significant efforts are made on development of homogeneous catalytic techniques because

they can be molecularly tuned through ligand and metal modification. Although molecular

tuning of heterogeneous catalysts is more difficult, they have enormous advantages

compared to their homogeneous counterparts in terms of ease of handling, separation,

catalyst recovery, and regeneration that make them industrially attractive. [44]

Industry Sector Amount of Product

E-factor (kg by-product/kg product)

Bulk chemicals 104-106 < 1-5 Fine chemicals 102-104 5-50 Pharmaceuticals 10-103 25-100

Table 1.1: E-factors for various sectors of the chemical industry. [44]

Page 17: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 1. Introduction 7

Recently, many projects tried to develop new synthesis methods in order to obtain

homoallylamines because of their pharmaceutical value. In some work biological or anti-

fungal activity of homoallylamines has been also dealt with. Diastereoselective or

enantioselective synthesis methods are further in the centre of modern research because in

many cases biological action is determined by the optical purity. The synthesis and also

fungistatic effects of homoallylamines acting against dermatophytes has been reported by

Vargas et al.. [40] A series of aldimines had been converted into the N-substituted

unsaturated amines by nucleophilic addition of allylmagnesium bromide to the C=N bond

of these imines. After purification by column chromatography, corresponding isolated

homoallylamine products had been obtained in yields of 12–94%. In another work, various

homoallylamines from aldimines had been prepared in order to evaluate their antifungal

properties against human pathogenic fungi and study the structural requirements for the

antifungal activity. [39] The 4-aryl- or 4-alkyl-4-N-aryl-amino-1-butenes have been obtained

by addition of allylmagnesium bromide to aromatic aldimines. After purification by

column chromatography, products were isolated in yields of 43-98%.

Gallium metal mediated allylation (through sonication) of imines has been presented as

another alternative synthesis method under solvent-free conditions in order to get

homoallylic secondary amines. The isolated yields were in the range of 5-94% except for

N-cinnamylideneanil (0%). [42] The synthesis of optically active homoallylamines, which

are interesting intermediates in the synthesis of biologically active natural products, had

been accomplished by enantioselective allylboration of N-aluminum imines with chirally

modified allylboron reagents in yields of 11-70%. [46] A three-component reaction by using

crotylsilane for the synthesis of homoallylamines from aldehydes showing syn-

diastereoselectivity in the synthesis [47] and also diastereoselective allylation of imines

derived from (R)-phenylglycine amide via allylzinc bromide [48] have been reported. In

addition, the first efficient asymmetric synthesis of an α-trifluoromethylated

homoallylamine based on the (S)-1-amino-2-methoxymethylpyrrolidine (SAMP)- or (R)-1-

amino-2-methoxymethylpyrrolidine (RAMP)-hydrazone method has been published by

Funabiki et al.. [49, 50]

Some methods for synthesis of homoallylamines are summarized in Figure 1.3.

Page 18: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 1. Introduction 8

N

R2 R3

R1

HN

R2

R1

R3

SiMe3

SnBu3

Br

Br

Br

/ TBAF / THF / 4 A MS / reflux

(a), (b) 30-92 %

I. MeSiCl / CH3CN II. NH4F

(c) 63-96 %

I. Mg or Zn / THF / 0.5-2 h II. NaHCO3 (aq)

/ Mg / Et2O / 10 °C

(d) 82-99%

(e) 53-98 %

I. Ga / 12h sonication II. H2O

(f) 0-94 % (0% for N-cinnamylideneanil)

N

R H

Al(i-Bu)2I. Triallylborane / THF / 5h / RT

II. H3O+

III. NH4OH 11-70%

NH2

R

N

R H

CONH2

PhBrZn

THF, 0°C to RT

3 steps

78-84%

NH2

R

N

R2

H

R3

Cp2Zr

R1

CH3

R5R4 H+

R4

R5 HN

R3

R2

R1

Cp: Cyclopentadiene

R H

O

+ R'-NH2 + SiMe3

Lewis acid

syn anti

R

HNR'

+R

HNR'

R: CO2R'; SO2R2

60-96%

16-96%

(g)

(h)

(i)

(j) Figure 1.3: Some literature methods (a)[51], (b)[52], (c)[53], (d)[36], (e)[39], (f)[42], (g)[46], (h)[48],

(i)[37], (j)[47] for homoallylamine synthesis. (R1, R2: Aryl, Alkyl, R3: Aryl, Alkyl or -H)

Page 19: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 1. Introduction 9

1.3. Synthesis of Homoallylamines through Semiconductor

Photocatalysis

In the years of 1996-1997 Kisch et al. presented a different photochemical alternative to all

these conventional synthesis methods of homoallylamines. [30, 32]

According to this method, novel homoallylamines had been synthesized through addition

of cyclopentene to aldimines in 40-80% of yield (Figure 1.4). [30] The hydrodimer of the

imine, that is the dimer of a postulated α-aminobenzyl radical, has been also observed as

by-product.

N

H

Ar2

Ar1MeOH

NAr2

Ar1

HH

Ar2CH-NHAr1

Ar2CH-NHAr1+hν, CdS

1a - d 2a - d 3a - d

+

1a 1b 1c 1dAr1 4-ClC6H4 2,6-Cl2C6H3 4-ClC6H4 4-MeOC6H4

Ar2 4-ClC6H4 C6H5 3,5-Me2C6H3 4-MeC6H4

Figure 1.4: CdS-photocatalyzed linear addition of cyclopentene to Schiff-Bases. [30]

When the aldimine is replaced by a trisubstituted imine like N-phenylbenzophenone imine,

new homoallylamines have been synthesized in yields of 30-75% (Figure 1.5). [32]

Page 20: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 1. Introduction 10

NPh

Ph Ph

R H MeOH NPh

Ph Ph

HR+

hν, CdS

4 a - g 5a - g

R :OO

Me

Me

a b c d

Me MeO

O

e e' f f' g

Figure 1.5: The synthesis of homoallyl amines by CdS-catalyzed linear photoaddition of

olefins and enol/allyl ethers to N-phenylbenzophenone imine. [32]

The CdS-photocatalyzed addition of olefins to imines affords homoallylamines in a one-

step reaction without any detrimental by-product (in the case of ketimine). Working with a

heterogeneous phase catalyst facilitates the work-up process because the catalyst can be

easily removed from the product solution by filtration. This method can be also considered

as economic and environmentally friendly because it is possible to carry out this reaction

with visible light which allows solar production opportunities.

From another point of view, CdS-photocatalyzed addition reactions were the first

achievement of semiconductor-photocatalyzed organic synthesis of novel compounds on a

preparative scale. Mechanistic investigations led to the following.

It was shown that olefin and imine adsorption onto the photocatalyst surface occurs via

hydrogen bonding and Br∅nsted acid sites, respectively. [29, 54, 55] According to the proposed

mechanism, photogenerated charges are transferred to the adsorbed substrate (IFET) which

competes successfully with the charge-recombination as it has been mentioned in Section

1.1. At this step, the conduction band electron and a proton are transferred to the imine and

the hole in the valence band oxidizes the olefinic substrate under concomitant

deprotonation. Thus, an α-amino radical and an ally radical are formed on the surface of

the photocatalyst simultaneously.

Page 21: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 1. Introduction 11

C

N

RAr

Ar

Cd

Cd

Cd

Cd

Cd

Cd

CdCd

S

SS

S

S

S

S

S

S

Cd

Cd

Cd

Cd

Cd

Cd

CdCd

S

SS

S

S

S

S

S

S

h r e r

H

C

HN

R

Ar

Ar

C NH

C N

H

ArArH

ArAr

H

O

O

O

O O

O

O

OH

H

H

H

H

H

H

H

H

H

H

H

HH HH HH HH

H

H

H

H

H

H

H

H

H

H

H

H

HH

HH

HH

HH

HH

HH

HH

HH

HH

C NH

Ar

Ar

R ADHD

R= H

+ H

+ e

C NAr

HR

Ar

HRED

Figure 1.6: Mechanistic proposal for CdS-photocatalyzed C-C coupling reactions between

Schiff bases and olefins (e.g. cyclopentene). [30]

These two intermediates may couple regioselectively to give a C-C heterocoupling product

(AD) as the main product (Figure 1.6). [30, 32] In no cases a C-N heterocoupling product has

been observed. Thus, differently from thermal routes, which usually involve usage of

organometallic intermediates, the reaction is much easier to perform and regioselective to C

atom of C=N double bond. Heterocoupling of the intermediates takes place at the solid-

solution interface as it has been clarified by pressure-dependent experiments. [29, 55] In some

cases (R= H, Figure 1.6), the α-amino radical may also dimerize to give a hydrodimer

(HD). [30] Formation of the reduction product (RED) can be observed depending on the

light intensity since it is a 2e-/2h+ process (Figure 1.6). [31]

According to thermodynamics, the feasibility of the IFET depends on the redox potentials

of adsorbed substrates and band edge positions. Whenever the reduction potential of the

acceptor substrate is below the conduction band edge and the oxidation potential of the

Page 22: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 1. Introduction 12

donor substrate above the valence band edge, interfacial electron transfer between the

reactive e–-h+ pair and substrates is thermodynamically feasible. [26]

The energetic positions of the band edges can be influenced by catalyst preparation

(various preparation methods, surface impurities, using of a support or metal, etc.), pH,

type of solvent and substrate adsorption. [26] In this aspect another important point that must

be noted is the conditions at which the band edges of a semiconductor are given. Since the

band edge locations direct the driving force for the interfacial electron transfer [26], any shift

that may occur in their position will influence the electron transfer rate. Therefore, the

reaction conditions in which the reaction will be carried out such as pH value, type of

solvent may play important role because of their influence on band edge positions of

photocatalyst.

Particle size and specific surface area of a semiconductor photocatalyst have been also

pointed out as important properties that may have influence on photocatalysis by affecting

the charge-recombination rate, which is connected to IFET rate, and determining the

chemoselectivity, respectively. [26]

Page 23: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 1. Introduction 13

1.4. Pharmaceutical Importance of Organic Compounds Bearing

Adamantane

Influenza A is described as a major respiratory tract disease affecting millions of people

each year (approximately 20,000 deaths per year in the United States [56]). It is

characterized by the abrupt onset of constitutional and respiratory signs and symptoms

(e.g., fever, myalgia, headache, severe malaise, nonproductive cough, sore throat and

rhinitis). [57] Amantadine and rimantadine (Figure 1.7) are known as anti-influenza A drugs

that inhibit virus replication at micromolar concentrations. [58-61]

NH2NH2H3C

[1] [2]

Figure 1.7: Structure of amantadine [1] and rimantadine [2].

1-adamantaneamine⋅HCl (amantadine⋅HCl) has been studied in the years of 60’s and its

activity towards influenza A was reported. [62-65] A systematic study of the effect of

structural variations of 1-adamantanamine upon inhibition of influenza A was published in

1970 by Aldrich et al.. [66] In addition, synthesis and activity against influenza A virus of 3-

(2-adamantyl)pyrrolidines (Figure 1.8) were shown. [67]

Page 24: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 1. Introduction 14

N R

R: H, CH3, C2H5, n-C3H7, n-C4H9, CH2CH2NMe2 CH2CH2NEt2, H2CH2CN

Figure 1.8: Structure of 3-(2-adamantyl)pyrrolidines that show antiinfluenza A virus

activity. [67]

Some adamantane derivatives possessing considerable antibacterial activity were found in

the 80’s and 90’s. [68-70] For example 4-(adamant-1-ylmethoxycarbonyl)-N-(5-

carboxypentamethylene) phthalimide or 4-(adamant-1-ylmethoxycarbonyl)-N-(L-alanyl)

phthalimide were tested against Staphylococcus aureus, Bacillus sp., Micrococcus flavus

and Enterococcus faecium. [71]

Parkinson's disease is a disorder of certain nerve cells in a part of the brain (substantia

nigra) that produces dopamine. The brain uses dopamine (chemical messenger, or

neurotransmitter) to direct and control movement. In Parkinson's disease, these dopamine-

producing nerve cells break down, dopamine levels drop, and brain signals directing

movement become abnormal. Amantadine and its modified analogues rimantidine,

tromantidine and memantine received attention as promising drugs also for the treatment of

Parkinson’s disease. [72, 73]

Alzeihmer’s disease (AD) is defined as a neurodegenerative disorder which is

pathologically characterized by the progressive deposit in the brain of a specific form of

amyloid, amyloid-β peptides (Aβ) [74] and memantine (3,5-dimethyl-1-adamantanamine

hydrochloride) were considered as promising compounds also in the way of treatment of

this disease. [75]

Some types of amantadine derivatives were reported by Kolocouris and coworkers [76] to

display little activity against HIV (Human Immunodeficiency Virus, the causative agent of

AIDS [77]) strains.

Page 25: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 1. Introduction 15

Tumor necrosis factor-α (TNF-α) is a cytokine produced mainly by activated

monocyte/macrophages [78, 79] and considered as an attractive target molecule for the

development of biological response modifiers (BRMs). [80] N-(1-adamantyl)phthalimide to

enhance TNF-α production in the 12-O-tetradecanoylphorbol-13-acetate-stimulated human

leukaemia HL-60 cell line [81] and certain novel adamantane heterocyclic derivatives

(adamantylaminopyrimidines and -pyridines) that enhance TNF-α production in murine

melanoma cells transduced with the human TNF-α gene [82] were reported. Of the studied

series of adamantylated heterocycles, 2-adamantylamino-6-methylpyridine and

2-adamantylamino-4-methylpyrimidine were indicated as the most biologically active

compounds to enhance the induction of TNF-α in genetically modified murine melanoma

cells transduced with the gene for human TNF-α. [80]

Recently synthetic investigations, biological activity and practical applications of

heteryladamantanes (adamantyl-substituted heterocycles) were reviewed by Litvinov. [83] In

this review, a wide range of possible practical applications of adamantane and its

derivatives have been mentioned concerning hypoglycemic, antitumor, immunodepressant,

antibacterial and fungistatic, hormonal, analgesic and antipyretic, anti-inflammatory,

cholagogic, antiarhythmic, sedative, antimalarial, and anticholesterase activity, stimulation

of the central nervous system stimulant.

Page 26: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 1. Introduction 16

1.5. Electronic Semiconductor-Support Interaction (SEMSI)

It is known that supporting CdS [84] or TiO2 [85] on silica significantly shifts band edges and

band-gap energy values of the semiconductor. In addition to that, it influences the

photocatalytic properties of the semiconductor [84], and all these changes are generally

ascribed to a modification of the electronic properties of the semiconductor particles

resulting from a semiconductor-support interaction. [84, 85] This interaction is due to the

formation of covalent bonds Cd-O-Si or Ti-O-Si since simple grinding of the two

components does not afford the same result. Accordingly, the preparation method for

CdS/SiO2 consists of stirring a suspension of silica in aqueous CdSO4 solution followed by

filtration and subsequent drying at RT.

For silica supported CdS, a band-gap widening was observed which increases with

decreasing coverage. It has been found that the quasi-Fermi levels are shifted to more

negative values (see Figure 1.9 (a)). Furthermore, the lifetime of charge carriers is

increased by the factor of 5. [84] Therefore, it is not unexpected that the rate of the addition

reaction is increased at least 10 times when CdS is supported onto silica (see Figure 1.9

(b)). Based on these experimental results, it has been concluded that all observed changes

originate from the influence of electronic semiconductor-support interactions (SEMSI)

which is a consequence of the presence of Cd-O-Si bonds. [84, 86]

In the case of silica supported TiO2 an anodic shift of the quasi-Fermi levels and a band-

gap widening are observed. [85] The shift in band edges was identified not only by

photovoltage measurements but also by XPS analysis, and formation of Ti-O-Si linkages

was confirmed by diffuse reflectance infrared Fourier transform spectroscopy. Contrary to

CdS/SiO2, in this case the lifetime of charge carriers is decreased and the photocatalytic

activity becomes therefore much lower. [85]

It is noted that any observed shift in band edge positions and band-gap energy can not arise

from a quantum-size effect since the crystallite size is not smaller than 5-6 nm and does not

differ significantly for various coverages.

Page 27: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 1. Introduction 17

2,5

2,0

1,5

1,0

0,5

0,0

-0,5

CdS-A 50%

Ebg [+0.01 eV]E

(FB)

[V]

VB [+0.02 V]

CB [+0.01 V]

photocatalysts

2.58 2.53 2.49 2.40

1.99 2.12 2.11

2.02

-0.59-0.41-0.38-0.38

12%30%

(a)

(b)

E [V

]

Figure 1.9: Consequences of electronic semiconductor-support interaction for silica

supported CdS. [84, 86]

(a) Variation of band edge positions (+ 0.02 V) with coverage; pH= 7.

CdS-A: unsupported CdS, 12%: 12%CdS/SiO2, 30%: 30%CdS/SiO2, 50%: 50%CdS/SiO2,

(b) Variation of the rate of photocatalytic activity with decreasing coverage (in an addition

reaction between cyclopentene and N-(4-chlorobenzylidene)-4-chloraniline).

A: unsupported CdS, B: 50%CdS/SiO2, C: 30%CdS/SiO2, D: 12%CdS/SiO2.

Page 28: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 1. Introduction 18

1.6. Aim of This Work

Electronic semiconductor-support interaction (SEMSI) is a recently found effect for silica

supported semiconductors which can be considered particularly important since in the case

of CdS it improves the performance of the photocatalyst. This effect leads to a widening of

the band-gap, longer lifetime of light-generated charges, and acceleration of the

photocatalytic reaction.

In view of the fact that silica induced opposite effects on titania, as depicted in the previous

section, it was of interest to find out what will happen when CdS would be supported onto

another oxide like alumina.

Therefore, in the first part of this work CdS powders were supported with alumina, which

is another well known and widely used catalyst support, and the SEMSI effect was

investigated. Characterization studies of these photocatalysts were done to determine their

optical, photoelectrochemical and surface properties. In addition, their photocatalytic

activities were compared through a CdS-photocatalyzed addition reaction between a Schiff

base and cyclopentene.

The second part constitutes semiconductor photocatalyzed organic syntheses. As

mentioned in Section 1.3 the linear addition of cyclic olefins to imines opens a new route

to novel homoallylamines on a gram scale and is much easier than conventional methods to

perform. With particular attention, these reactions proceed chemoselectively through a

radical C-C coupling step.

In first set of synthesis work, in order to investigate the general applicability of the

photocatalytic addition reactions between imines and olefins, such type of synthesis work

was extended to an α,γ-unsaturated imine like N-Cinnamylideneaniline. The investigation

was focused on two aspects. Firstly, finding out whether the addition of the intermediate

allylic carbon radical takes place regioselectively either in the α-position or γ-position to

the imine function. And secondly, to synthesize novel homoallylamine derivatives on a

gram scale.

Page 29: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 1. Introduction 19

Many adamantane derivatives are interesting compounds because of their diverse

biological activity as mentioned briefly in Section 1.4 and the development of new

synthesis methods leading to such derivatives, receives great attention in synthetic and

pharmaceutical chemistry.

In the second set of synthesis work, homoallylamine synthesis studies were conducted by

using adamantane ring containing imine substances. A series of novel homoallylamine

derivatives bearing an adamantyl-ring were synthesized through CdS photocatalyzed C-C

coupling reactions between cyclic olefins (cyclopentene, cyclohexene and α-pinene) and

various N-(1-adamantyl)-benzaldehyde imines.

Page 30: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 1. Introduction 20

References:

[1] N. Serpone, E. Pelizzetti, Editors, Photocatalysis-Fundamentals and Applications,

Wiley Interscience, New York, 1989, p. 650.

[2] M. A. Fox, M. T. Dulay, Chem. Rev. 1993, 93, 341.

[3] J. M. Herrmann, Catalysis Today 1995, 24, 157.

[4] N. Serpone, Sol. Energy Mater. Sol. Cells 1995, 38, 369.

[5] A. J. Bard, J. Phys. Chem. 1982, 86, 172.

[6] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 1995, 95,

69.

[7] M. A. Fox, Topp. Curr. Chem. 1987, 142, 71.

[8] P. V. Kamat, T. W. Ebbesen, N. M. Dimitrijevic, A. J. Nozik, Chem. Phys. Lett.

1989, 157, 384.

[9] R. Memming, Top. Curr. Chem. 1988, 143, 79.

[10] I. Izumi, F.-R. F. Fan, A. J. Bard, J. Phys. Chem. 1981, 85, 218.

[11] T. Sakata, T. Kawai, K. Hashimoto, J. Phys. Chem. 1984, 88, 2344.

[12] S. Nishimoto, B. Ohtani, T. Yoshikawa, T. Kagiya, J. Am. Chem. Soc. 1983, 105,

7180.

[13] S. Yanagida, H. Kizumoto, Y. Ishimaru, C. Pac, H. Sakurai, Chem. Lett. 1985, 141.

[14] H. Ikezawa, C. Kutal, J. Org. Chem 1987, 52, 3299.

[15] P. A. Carson, de Mayo, P., Can. J. Chem. 1987, 65, 976.

[16] T. Shiragami, S. Fukami, C. Pac, Y. Wada, S. Yanagida, Bull. Chem. Soc. Jpn.

1993, 66, 2461.

[17] H. Al-Ekabi, P. De Mayo, Tetrahedron 1986, 42, 6277.

[18] A. M. Draper, M. Ilyas, P. De Mayo, V. Ramamurthy, J. Am. Chem. Soc. 1984,

106, 6222.

[19] C. M. Wang, T. E. Mallouk, in J. Am. Chem. Soc., Vol. 112, 1990, pp. 2016.

[20] A. Maldotti, R. Amadelli, C. Bartocci, V. Carassiti, J. Photochem. Photobiol., A:

Chem. 1990, 53, 263.

[21] W. Dunn, Y. Aikawa, A. J. Bard, J. Am. Chem. Soc. 1981, 103, 6893.

[22] L. Cermenati, M. Mella, A. Albini, Tetrahedron 1998, 54, 2575.

Page 31: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 1. Introduction 21

[23] L. Cermenati, C. Richter, A. Albini, Chem. Commun. 1998, 805.

[24] H. Fujiwara, M. Yamashita, K. Murakoshi, Y. Wada, S. Yanagida, Chem. Lett.

1998, 769.

[25] H. Kisch, Adv. Photochem. 2001, 26, 93.

[26] H. Kisch, J. Prakt. Chem./Chem.-Ztg. 1994, 336, 635.

[27] R. Kuenneth, G. Twardzik, G. Emig, H. Kisch, J. Photochem. Photobiol. A-Chem.

1993, 76, 209.

[28] R. Kuenneth, C. Feldmer, F. Knoch, H. Kisch, Chem. Eur. J. 1995, 1, 441.

[29] A. Reinheimer, R. Van Eldik, H. Kisch, J. Phys. Chem. B 2000, 104, 1014.

[30] W. Schindler, F. Knoch, H. Kisch, Chem. Ber. 1996, 129, 925.

[31] M. Hopfner, H. Weiss, D. Meissner, F. W. Heinemann, H. Kisch, Photochem.

Photobiol. Sci. 2002, 1, 696.

[32] H. Keck, W. Schindler, F. Knoch, H. Kisch, Chem. Eur. J. 1997, 3, 1638.

[33] S. Marinkovic, N. Hoffmann, Chem. Commun., 2001, 1576.

[34] C. Brule, N. Hoffmann, Tetrahedron Lett. 2002, 43, 69.

[35] N. Hoffmann, H. Görner, Chem. Phys. Lett. 2004, 383, 451.

[36] L.-X. Dai, Y-R. Lin, X-L. Hou, Y-G. Zhou, Pure Appl. Chem. 1999, 71, 1033.

[37] J. Barluenga, F. Rodriguez, L. Rodrigo, J. M. Zapico, F. FaEanus, J., Chem. Eur. J.

2004, 10, 109.

[38] G. Liu, O. A., Cogan, J. A. Ellman, J. Am. Chem. Soc. 1997, 119, 9913.

[39] J. M. Urbina, J. C. G. Cortes, A. Palma, S. N. Lopez, S. A. Zacchino, R. D. Enriz,

J. C. Ribas, V. V. Kouznetzov, Bioorg. Med. Chem. 2000, 8, 691.

[40] L. Y. Vargas M., M. V. Castelli, V. V. Kouznetsov, J. M. Urbina, S. N. Lopez, M.

Sortino, R. D. Enriz, J. C. Ribas, S Zacchinob, Bioorg. Med. Chem. 2003, 11, 1531.

[41] V. V. Kuznetsov, E. I. Andreeva, N. S. Prostakov, Khim. Farm. Zh. 1995, 29, 61.

[42] P. C. Andrews, A. C. Peatta, C. L. Raston, Tetrahedron Letters 2004, 45, 243.

[43] W. Stibbs, Business briefing: Future Drug Discovery 2003, 2003.

[44] U. K. Singh, M. A. Vannice, App. Cat. A 2001, 213, 1.

[45] R. A. Sheldon, J. Mol. Catal. A: Chem. 1996, 107, 75.

Page 32: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 1. Introduction 22

[46] K. Watanabe, S. Kuroda, A. Yokoi, K. Ito, S. Itsuno, J. Org. Chem. 1999, 581, 103-

107.

[47] M. Billet, P. Klotz, A. Mann, Tetrahedron Letters 2001, 42, 631.

[48] M. van der Sluis, J. Dalmolen, B. de Lange, B. Kaptein, R. M. Kellogg, Q. B.

Broxterman, Org. Lett. 2001, 3, 3943.

[49] K. Funabiki, M. Nagamori, M. Matsui, D. Enders, Synthesis 2002, 2585.

[50] A. Job, C. F. Janeck, W. Bettray, R. Peters, D. Enders, Tetrahedron 2002, 58, 2253.

[51] M. Kira, T. Hino, H. Sakurai, Chem. Lett. 1991, 277.

[52] A. S. Pilcher, P. De Shong, J. Org. Chem. 1996, 61, 6901.

[53] X. L. Hou, X. L. Zheng, L. X. Dai, Tetrahedron Letters 1998, 39, 6949.

[54] A. Reinheimer, A. Fernandez, H. Kisch, Z. Physik. Chem. 1999, 129.

[55] E. Sümer, PhD. Thesis, Universität Erlangen-Nürnberg 2003.

[56] K.-J. Lui, A. P. Kendal, Am. J. Public Health 1987, 77, 712.

[57] N. J. Cox, K. Subarao, Lancet 1999, 354, 1277.

[58] A. J. Hay, A. J. Wolstenholme, J. J. Skehel, M. H. Smith, EMBO J. 1985, 4, 3021.

[59] A. J. Hay, Semin. Virol., 1992, 3, 21.

[60] L. H. Pinto, L. J. Holsinger, R. A. Lamb, Cell 1992, 69, 517.

[61] K. C. Duff, P. J Gilchrist, A. M. Saxena, J. P. Bradshaw, Virology 1992, 188, 14.

[62] C. E. Hoffmann, R. F. Haff, E. M. Neumayer, Fed. Proc., Fed. Amer. Soc. Exp.

Biol. 1964, 23, 387.

[63] W. L. Davies, R. R. Grunert, R. F. Haff, J. W. McGahen, E. Keumayer, M.

Paulshock, J. C. Watts, T. R. Wood, E. C. Hermann, C. E. Hoffmann, Science 1964,

144, 862.

[64] W. L. Davies, R. R. Grunert, C. E. Hoffmann, J. Immunol., 1965, 96, 1090.

[65] E. M. Neumayer, R. F. Haff, C. E. Hoffmann, Proc. Soc. Ezp. Biol. Med. 1965, 119,

393.

[66] P. E. Aldrich, E. C. Hermann, W. E. Aieier, M. Paulshock, W. W. Prichard, J. A.

Snyder, J. C. Watts, Journal of Medicinal Chemistry 1971, 14, 535.

[67] G. Stamatiou, A. Kolocouris, N. Kolocouris, G. Fytas, G. B. Foscolos, J. Neyts, E.

De Clercq, Bioorg. Med. Chem. Lett. 2001, 11, 2137–2142.

Page 33: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 1. Introduction 23

[68] S. V. Garoufalias, G. Fytas, G. B. Foscolos, A. Chytyroglou, Annales

Pharmaceutique Francaises 1988, 46, 97.

[69] A. Papadaki-Valiraki, S. Papakonstantinou-Garoufalias, P. Makaros, A.

Chytyroglou-Lada, M. Hosoya, J. Balzarini, E. DeClerq, , Farmaco 1993, 48, 1091.

[70] D. Plachta, B. Starosciak, Acta Poloniae Pharmaceutica 1994, 51, 51.

[71] A. Orzeszko, R. Gralewska, B. J. Starooeciak, Z. Kazimierczuk, Acta Biochimica

Polonica 2000, 47, 87.

[72] W. Danysz, G. C. Parsons, J. Kornhuber, W. J. Schmidt, G. Quack, Neurosci.

Biobehav. Rev., 1997, 21, 455.

[73] V. G. Evidente, C. H. Adler, J. N. Caviness, K. Gwinn-Hardy, Clinical

Neuropharmacology, 1999, 22, 30.

[74] E. Varesio, S. Rudaz, K.-H. Krause, J-L. Veuthey, J. Chrom. A, 2002, 974, 135.

[75] K. K. Jain, Expert Opinion in Investigative Drugs, 2000, 9, 1397.

[76] N. Kolocouris, A. Kolocouris, G. B. Foscolos, G. Fytas, J. Neyts, E. Padalko, J.

Balzarini, R. Snoeck, G. Andre, E. DeClercq, J. Med. Chem. 1996, 39, 3307.

[77] J. Vamecq, K. Van derpoorten, J. H. Poupaert, J. Balzarini, E. De Clercq, J. P.

Stables, Pharmacology Letters 1998, 63, 267.

[78] E. A. Carswell, L. J. Old, R. L. Kassel, N. Foire, B. Williamson, Proceed. Nat.

Acad. Sci., USA, 1975, 72, 3666.

[79] D. Mannel, C. Murray, W. Risau, M. Clauss, Immunology Today 1996, 17, 254.

[80] J. K. Maurin, W. Lasek, A. Gorska, T. Switaj, M. Wamil, I. Mlynarczuk, Z.

Kazimierczuk, Anti-Cancer Drug Design 2001, 16, 73.

[81] Y. Shibata, M. Shichita, K. Sasaki, K. Nishimura, Y. Hashimoto, S. Iwasaki, Chem.

Pharma. Bull., 1995, 43, 177.

[82] Z. Kazimierczuk, A. Gorska, T. Switaj, W. Lasek, Bioorg. Med. Chem. Lett., 2001,

11, 1197.

[83] V. P. Litvinov, Chemistry of Heterocyclic Compounds, 2002, 38.

[84] H. Weiß, A. Fernandez, H. Kisch, Angew. Chem. - Int. Ed. 2001, 40, 3825.

[85] M. Gärtner, V. Dremov, P. Müller, H. Kisch, ChemPhysChem 2005, 6, 714.

[86] H. Weiss, PhD. Thesis, Universität Erlangen-Nürnberg 2003.

Page 34: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

24

CHAPTER 2 2. Al2O3 Supported CdS

2.1. General Properties of Al2O3 as a Support Material

It has been reported that supported semiconductors, in thermal catalysis exhibit better

activity than unsupported ones [1] because the support induces a high dispersion of active

ingredients. [2-5] Basic parameters for the selection of a support material are specific surface

area, which is related with the adsorption capacity of the material, the nature of the surface

groups, their acid-base properties, their hydrophilic-hydrophobic balance, and the surface

charge of the support in water. [6] Any minor experimental differences occurring during

catalyst preparation may be of crucial consequence.

In photocatalysis the active ingredients on a supported photocatalyst should be deposited

only on or near the external surface of the support because light cannot penetrate deep

inside a support material. [2]

Alumina, which is a highly insulating metal-oxide [7] is similar in use to silica and available

in acidic, neutral, and basic form. Acidic and neutral grades are typically made by washing

basic alumina with HCl until the desired pH of aqueous slurry is reached. Because of their

thermal and chemical stability aluminum oxides have been widely used as catalyst

support. [8, 9]

In an Al2O3/water system, the OH groups on the solid surface are the most important sites

for surface interactions. These groups can act as acids or bases depending on the pH of the

solution. With decreasing pH, the net positive surface charge increases and with increasing

Page 35: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

25

pH, the charge decreases and becomes negative. It is also known that the adsorption

capacity for acidic alumina is only weakly pH dependent; whereas it is much stronger for

basic alumina. [10]

Some properties of alumina used in this work are given in Table 2.1. (For other

specifications, see Experimental Section 6.1.2) Measured pH values (for 100 g/l)

correspond to their aqueous suspensions at RT.

OH group densities were determined by thermogravimetry, specific surface areas by the

BET method (for details, see Experimental Section 6.1.3.9).

Si

O

H

Si Si

O

Si

O

Al

O

H

Al Al

OOHH

(a) (b) (c)

(d) (e) (f) Figure 2.1: Characteristic surface groups on silica and alumina (a) hydrophilic Si-OH

groups, (b) hydrophobic Si-O-Si, (c) basic Si-O- groups, (d) neutral Al-OH, (e) acidic Al-

OH2+, (f) basic Al-O- groups. [11]

Page 36: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

26

Support Material pH of aqueous

suspensions OH/nm2

Specific Surface Area

[m2g-1]

Al2O3 Aldrich, neutral 6.8 3.8 189

Al2O3 Aldrich, acidic 5.0 6.2 150

Al2O3 Aldrich, basic 10.0 4.3 146

Table 2.1: Specific surface areas, OH group densities, and pH values (for 100 g/l of

concentration) of used neutral, acidic and basic Al2O3 employed in this work.

2.2. Synthesis of CdS/Al2O3 Photocatalysts

Alumina-supported photocatalysts containing 50, 30, and 10 wt% of CdS were prepared by

impregnating Al2O3 (neutral, acidic or basic type) with cadmium sulfate and precipitation

with sodium sulfide in ammonia solution (10% or 25% NH3(aq)). Aluminum oxide was

stirred in aqueous NH3 (10% or 25%) prior to CdSO4 addition. After stirring overnight

Na2S was dissolved in water and added drop wise into the CdSO4/Al2O3 mixture within a

period of 1,5 h. The resulting yellow suspension was stirred for 20 h. After separation by

filtration, the residue was washed with water to constant pH (pH=7), dried over P2O5 in a

vacuum desiccator, and ground in an agate mortar. All powders were prepared, dried, and

stored under nitrogen. Unsupported CdS was prepared according to the same method but

without using a support material.

H2O

HO-[M]

Cd

OH2

H2O

OH2

-O-[M]

OH2OH2

H2O

H3O+

CdO [M]

+

2+

+

- H2O

+

OH2

OH2

OH2H2O

H2O

Figure 2.2: Formation of Cd-O-[M] bonds

Page 37: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

27

As can be seen in Figure 2.2, if the preparation is performed in more basic impregnation

solution, due to the increased concentration of surface [M]-O- ions the equilibrium should

be shifted to the right side and therefore the concentration of Cd-O-M bonds should be

increased.

Listed actual %CdS values in Table 2.2 represent CdS amounts in percentages calculated

from %S which was obtained by elemental analysis. According to actual %CdS values, all

10 wt% supported CdS samples contain about 8-9%, all 30 wt% supported samples about

21-23%, and all 50 wt% supported samples 31-34% of CdS independently from the

preparation method and support properties.

Results of Elemental Analysis Photocatalysts

%S %H %N %C Actual %CdS

10NI 1.760 - 0.028 0.652 7.9

30NI 4.960 - 0.047 0.862 22.3

50NI 7.263 - 0.117 1.097 32.7

10NII 1.731 - - 0.112 7.8

30NII 4.820 - - 0.110 21.7

50NII 7.470 - - - 33.7

10NIII 1.822 - - 0.102 8.2

30NIII 5.082 - 0.015 0.210 22.9

50NIII 6.950 - 0.032 0.152 31.2

30N25 4.894 0.280 0.170 0.130 22.0

30B 4.890 - 0.115 0.074 22.0

10A 1.910 0.510 0.080 0.110 8.6

30A 4.709 - 0.179 0.115 21.0

Table 2.2: Results of elemental analysis for unsupported CdS and Al2O3 supported CdS

powders.

Page 38: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

28

Each preparation step during the photocatalyst preparation plays a very significant role. It

was reported that even the rapid mixing of Cd2+ and S2- solutions may lead to small

particles with a very narrow size distribution. [12]

It is also noted that storage of prepared powders under inert atmosphere is particularly

important otherwise slow oxidation causes formation of CdO at room temperature followed

by adsorption of water to give Cd(OH)2. [13]

2.3. Characterization of Photocatalysts

2.3.1. Band-gap Energy Measurements by Diffuse Reflectance Spectroscopy

Diffuse reflectance spectroscopy is a spectroscopic technique designed for opaque

samples [14] to determine their absorption characteristics. The data analysis can be

performed according to Kubelka-Munk theory.

Kubelka-Munk equation: F(R∞) = (1 - R∞) / 2 (R∞)2 = k / s (2.3.1.1)

k: absorption coefficient, s: scattering coefficient

R: the diffuse reflectance

(I0: the intensity of analyzing light, IR: the diffusely reflected light; R∞ = IR / I0)

Absorption of a photon by a semiconductor promotes electrons from the valence band to

the conduction band. The different electronic states within each band are characterized not

only by their energy, but also their momentum. [15] According to the selection rules for

photon absorption only transitions with zero net momentum change are allowed. [16]

Therefore, the magnitude and energy of the absorption process depend on the band

structure of the semiconductor. In the case of the excitation of an electron from the valence

band to the conduction band, if there is no change in momentum, the absorption probability

is high for this orbitally allowed transition and the semiconductor is called as a "direct band

gap" material, otherwise an "indirect band gap" material. [16]

Page 39: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

29

For a direct semiconductor the square of absorption coefficient is proportional to the energy

difference between the band-gap and incoming light [17] (Eq. 2.3.1.2).

[F(R∞)hν]2 ∝ (hν - Ebg) (2.3.1.2)

From the diffuse reflectance spectra, Kubelka-Munk function is obtained. From this value

the modified function [F(R∞)hν]2 was plotted versus energy (eV) assuming that all CdS

samples are direct [16] semiconductors. The intersection of the extrapolated value of

[F(R∞)hν]2 with the energy axis affords the band-gap energy.

1,6 1,8 2,0 2,2 2,4 2,6 2,8 3,00

10

20

30

40

50dcba

[F(R

∞)h

ν]2

hν / eV

Figure 2.3: Transformed diffuse reflectance spectra of unsupported and Al2O3(n)

supported CdS powders prepared according to the first method (see text).

(a) Unsupported CdS [CdS-A] (Ebg: 2.39 + 0.01 eV), (b) 50% CdS/Al2O3(n) [50NI]

(Ebg: 2.37 + 0.01 eV), (c) 30% CdS/Al2O3(n) [30NI] (Ebg: 2.39 + 0.01 eV), (d) 10%

CdS/Al2O3(n) [10NI] (Ebg: 2.43 + 0.01 eV).

Page 40: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

30

Al2O3(n) supported CdS powders were prepared by two different methods; Method A and

Method B. According to Method A, CdSO4 and Al2O3(n) were stirred together in 10%

NH3(aq) overnight before Na2S addition. Powders obtained by this method are named by

giving the amount of wt% of CdS, the acidity of the support material, suffix “I”.

Different from this, in a second method Al2O3(n) was stirred alone in 10% NH3 (aq) and

CdSO4 was added after 8h to the suspension and subsequently stirred overnight before

Na2S was added. Powders obtained by the second method are named by giving the amount

of wt% of CdS, the acidity of the support material, suffix “II”. Figures 2.3 and 2.4 contain

the corresponding plots from which the band-gap energy has been calculated.

1,6 1,8 2,0 2,2 2,4 2,6 2,8 3,00

25

50

75

100

d

ecb

[F(R

∞)h

ν]2

hν / eV

a

Figure 2.4: Transformed diffuse reflectance spectra of unsupported and Al2O3(n)

supported CdS powders prepared according to the second method (see text).

(a) Unsupported CdS [CdS-A] (Ebg: 2.39 + 0.01 eV), (b) 50% CdS/Al2O3(n) [50NII] (Ebg:

2.42 + 0.01 eV), (c) 30% CdS/Al2O3(n) [30NII] (Ebg: 2.43 + 0.01 eV), (d) 10%

CdS/Al2O3(n) [10NII] (Ebg: 2.45 + 0.01 eV), (e) 30% CdS/Al2O3(n) prepared in 25% NH3

[30NII25] (Ebg: 2.48 + 0.01 eV).

Page 41: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

31

Since a very small band-gap widening was observed (see Table 2.3) with the powders

obtained according to the second method, thereafter all powders were prepared according

to this procedure. 10%, 30% and 50% Al2O3(n) supported CdS powders were prepared

again (suffix “III”) according to the second method to check the reproducibility of the

obtained data. No significant differences were detected (see Table 2.3). 30% CdS/Al2O3

powder (30N25) was prepared by the second method also in more basic solution by using

25% NH3 (aq) instead of 10% to find out a mutual effect of pH. In addition to that, Al2O3(a)

and Al2O3(b) supported CdS powders were prepared to investigate the influence of acidity

and basicity of Al2O3 on the characteristics of supported CdS (Figures 2.5 and 2.6).

1,8 2,0 2,2 2,4 2,6 2,8 3,00

25

50

75

100

125 gfec

[F(R

∞)h

ν]2

hν / eV

a

Figure 2.5: Transformed diffuse reflectance spectra of Al2O3(a) supported CdS powders

and comparison of their band-gap energies with CdS-A, 30NII and 30NII25.

(a) Unsupported CdS [CdS-A] (Ebg: 2.39 + 0.01 eV), (c) 30% CdS/Al2O3(n) [30NII] (Ebg:

2.43 + 0.01 eV), (e) 30% CdS/Al2O3(n) prepared in 25% NH3 [30NII25] (Ebg: 2.48 + 0.01

eV), (f) 30% CdS/Al2O3(a) [30AII] (Ebg: 2.43 + 0.01 eV), (g) 10% CdS/Al2O3(a) [10AII]

(Ebg: 2.46 + 0.01 eV).

Page 42: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

32

In the case of basic alumina supported CdS (30BII) no difference in band-gap energy value

was observed as compared to the unsupported CdS. However, about 40 and 70 meV of

band-gap widening was observed for 30% and 10% acidic alumina supported materials,

respectively.

The results of band-gap energy measurements were presented together in Table 2.3. These

results reveal that the largest band-gap widening (90 meV) belongs to 30NII25 which was

prepared in a more basic impregnation solution. In addition, as mentioned above,

supporting of CdS with the acidic alumina also leads to a slight band-gap widening.

1,8 2,0 2,2 2,4 2,6 2,80

25

50

75

100

cha

[F(R

∞)h

ν]2

hν / eV

Figure 2.6: Transformed diffuse reflectance spectra of Al2O3(b) supported CdS powder

and comparison of its band-gap energy with CdS-A, 30NII.

(a) Unsupported CdS [CdS-A] (Ebg: 2.39 + 0.01 eV), (c) 30% CdS/Al2O3(n) [30NII] (Ebg:

2.43 + 0.01 eV), (h) 30% CdS/Al2O3(b) [30BII] (Ebg: 2.41 + 0.01 eV).

Page 43: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

33

Photocatalyst Ebg

[+ 0.01 eV]

(e)

10NI 2.43

30NI 2.39 (a)

50NI 2.37

10NII 2.45

30NII 2.43 (b)

50NII 2.42

(e) (f)

10NIII 2.46 2.45

30NIII 2.43 2.43 (c)

50NIII 2.41 2.42

(d) 30NII25 2.48 2.49

30BII 2.41 2.38

10AII 2.46 2.46

30AII 2.43 2.44

Table 2.3: Band-gap energies of alumina supported CdS powders. (a) Prepared according

to the first method in 10% NH3(aq) (b) First set of preparations according to the second

method in 10% NH3(aq) (c) Repetition of (b) (d) Prepared according to the second method

in 25% NH3(aq) (e) Measured relative to BaSO4 as standard (f) Measured relative to Al2O3

standard (Al2O3(n) for Al2O3(n) supported powders, Al2O3(b) for Al2O3(b) supported

powder, Al2O3(a) for Al2O3(a) supported powders).

Page 44: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

34

2.3.2. Determination of Quasi-Fermi Level of Electrons

When semiconductor particles are dispersed in an electrolyte, interfacial transfer of mobile

charge carriers between semiconductor and electrolyte generates a “space charge layer”.

The space charge layer is the consequence of formation of a semiconductor-electrolyte

junction. [18] The electric field in this layer promotes the separation of electron-hole pairs

and the direction of the field is usually such that the minority carriers move to the surface. [19] Therefore, for an n-type semiconductor holes will move to the surface while electrons

move to the bulk constituting the charge separation.

Within the space charge layer band edges are bent (upward in the case of an n-type

semiconductor). In the absence of the space charge layer band edges are flat and the

potential of the Fermi level at this situation is called flat-band potential. [20]

If the size of the particles is smaller than the space charge layer width, band bending

becomes negligible [21] (see Figure 2.7). The thickness of the space charge layer depends

primarily on the dopant concentration and in general falls in the range of 100-1000 nm. [21]

Since the CdS powders prepared in our work have particle size around 8-20 nm, the

nonexistence of a space charge layer becomes clear.

For an n-type semiconductor, since the majority charge carriers are electrons, the Fermi

level lies close to the conduction band. Under illumination the Fermi-level splits into two

“quasi-Fermi levels”; nEF* for the electrons and pEF

* for the holes [17, 22] because of

nonequilibrium population in e- and h+ [22] (Figure 2.8). For highly doped semiconductors

the position of the Fermi level is very close to the conduction band edge and in the first

approximation two levels can be taken as equal. [19, 23] Therefore, measuring the quasi-

Fermi level allows the determination of the conduction band edge location of a

semiconductor under illumination. Only the quasi-Fermi level of electrons is easy

measurable for a semiconductor powder by pH-dependent photovoltage measurement. By

adding to this value the band-gap energy one obtains the valence band edge position.

Page 45: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

35

Figure 2.7: Electron and hole transfer at (a) large, (b) small semiconductor particles. [15]

The quasi-Fermi level for electrons (nEF*) was measured for the various photocatalysts.

Since the location of this level depends on the nature of the solvent, on the presence of ions

which adsorb on the semiconductor surface, and on the presence of surface states or surface

charge, the results of measurements must be given for a certain pH value and for the

solvent in which the measurement was carried out. All results of photovoltage

measurements in this work refer for aqueous suspensions at pH=7.

The quasi-Fermi levels for each photocatalyst were determined by photovoltage

measurements according to the method of Roy. [24] The photovoltage is the potential

difference vs. an auxiliary metal electrode (in our work it is a Pt flag) which is attained by

the illuminated semiconductor electrode in contact with a redox solution. [20]

Methylviologen, MV2+, was used as the pH-independent electron acceptor and pH

adjustment was performed by addition of HNO3 or NaOH (for experimental set-up and

procedure see also Experimental Section 6.2).

Page 46: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

36

E

ECB

EVB

nEF*

pEF*

EF

_

+

E 0 E 0 E 0ECB

EVB

nEF*

pEF*

EF

_

+

ECB

EVB

nEF*

pEF*

EF

_

+

pH < pH0 pH = pH0 pH > pH0 Figure 2.8: Shift in band edge positions of the semiconductor during photovoltage

measurements with pH change. E0: redox potential of MV2+/+•, nEF*: quasi-Fermi level of

electrons under illumination, pEF*: quasi-Fermi level of holes under illumination.

At a given pH value the flatband position of the semiconductor is fixed at a certain value.

Upon decreasing the proton concentration, this position is shifted cathodically due to

negative surface charging induced by a decreased deprotonation. [18] However, the redox

potential of MV2+/+• is pH independent. Only when the flatband reaches the potential of

methyl viologen, reduction to the blue MV+• can occur. At this pH value (pH0) the quasi-

Fermi level potential is identical with the MV2+/+• redox potential. Measuring the

photovoltage at the various pH values affords titration curves and from the corresponding

inflection points (pH0) or second derivatives of pH-voltage curves, quasi-Fermi level

values were calculated. A blue color is developed at pH0 due to formation of MV+•. Values

were converted at pH=7 (vs. NHE) assuming that the potential change by 0.032 V [24] when

the pH-value is changed by one unit. Obtained titration curves are given in Figures 2.9-11

and corresponding data are presented in Table 2.4.

Page 47: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

37

Equations for calculating flat band potential of CdS at a required pH value are:

MV2+ + e- MV +

colourless blue

nEF*= EF(MV

2+/ MV

•+) (2.3.2.1)

nEF* = nEF

* (pH=0) - kpH (2.3.2.2)

nEF* (pH=0) – kpH = EF(MV

2+/ MV

•+) (2.3.2.3)

EF(MV2+

/ MV•+)= -0.445 V vs. NHE k = 0.032[24]

nEF* = -0.445 + 0.032(pH0 - 7) (2.3.2.4)

2 4 6 8 10 120

100

200

300

400

500

600

cb

V /

mV

pH

d

Figure 2.9: Dependence of photovoltage (vs. NHE) on pH value of the electrolyte

determined for (d) 10% CdS/Al2O3(n) [10NII], (c) 30% CdS/Al2O3(n) [30NII] and (b)

50% CdS/Al2O3(n) [50NII].

Page 48: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

38

2 4 6 8 10 120

100

200

300

400

500

600

c

ae

V /

mV

pH

Figure 2.10: Dependence of photovoltage (vs. NHE) on pH value of the electrolyte

determined for (e) 30% CdS/Al2O3(n) prepared in 25% NH3 [30NII25], (a) unsupported

CdS [CdS-A] and (c) 30% CdS/Al2O3(n) [30NII].

4 6 8 10 12

200

300

400

500

600

fh

V /

mV

pH

g

Figure 2.11: Dependence of photovoltage (vs. NHE) on pH value of the electrolyte

determined for acidic and basic Al2O3 supported CdS powders. (f) 30% CdS/Al2O3(a)

[30AII], (g) 10% CdS/Al2O3(a) [10AII], (h) 30% CdS/Al2O3(b) [30BII].

Page 49: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

39

Photocatalyst pH0 nEF*

[ + 0.01 V ]

CdS-A 7.89 -0.42

50NII 7.65 -0.42

30NII 8.05 -0.41

10NII 7.91 -0.41

30NII25 9.07 -0.38

10AII 9.50 -0.36

30AII 9.53 -0.36

30BII 9.84 -0.35

Table 2.4: pH0 and quasi-Fermi level values (mean of three independent measurements) of

alumina supported CdS powders at pH=7.

According to this result, while quasi-Fermi level stayed at a quite similar value for neutral

alumina supported powders prepared in 10% NH3, about 30 mV of anodic shift was found

for 30NII25. However, the anodic shift for acidic and basic alumina supported powders is

about 50 mV.

Figure 2.12 shows the dependence of quasi-Fermi level on pH according to Eq. 2.3.2.4.

0 2 4 6 8 10 12

-0,60

-0,45

-0,30

-0,15

nEF*

pH

Figure 2.12: Shift in quasi-Fermi level value per pH unit for 30NII.

Page 50: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

40

2.3.2.1. Quasi-Fermi Level Determinations In The Presence of Hole Scavengers

Photoexcitation of the semiconductor promotes an electron from the valence band to the

conduction band forming an electronic vacancy which is named as “hole” (h+) at the

valence band. For cadmium sulfide, this hole can be identified as an −•S or •SH radical. [12]

Scheme 2.1: Elementary processes during the photovoltage measurements

Photovoltage measurements for CdS powders were performed according to the method of

Roy [24] (for the theory of the method see Section 2.4.2, for experimental set-up and

procedure see also Experimental Section 6.2.1) in the absence of any hole scavenger as

mentioned above. However, the question arises which donor compound neutralizes the

hole. Therefore, quasi-Fermi levels were measured in the presence of hole scavengers like

CH3CO2Na and Na2SO3 by using 50NII (50% CdS/Al2O3(n)).

CdS + hν → CdS (e-CB h+

VB) absorption

CdS (e-CB h+

VB) → CdS recombination

CdS (e-CB h+

VB) + HOAc → CdS (e-CB) + CO2 + CH4 hole reaction

CdS (e-CB) + MV2+ → CdS + MV●+ electron trapping

MV●+ → MV2+ + e- oxidation

at collector (Pt) electrode

CdS + 2 h+VB → Cd2+ + “S“ photocorrosion

Page 51: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

41

Photocatalyst: 50NII

pH0

nEF* (at pH=7)

in the absence of a hole scavenger

(1st measurement)

(2nd measurement)

(3rd measurement)

7.55

7.92

7.65

-0.43

-0.42

-0.42

in the presence of Na2SO3 7.34 -0.43

in the presence of CH3CO2Na 7.05 -0.44

Table 2.5: Results of quasi-Fermi level measurements in the absence and presence of hole

scavengers for 50NII (50% CdS/Al2O3(n)).

Results are listed in Table 2.5. 1st-3rd measurement results were obtained from three

independent experiment in the absence of a hole scavenger in order to check the

reproducibility. The obtained values stay between -0.42 V and -0.44 V in the absence and

presence of hole scavengers. This suggests that using of a hole scavenger does not cause a

significant difference in the quasi-Fermi level. It is noted, however that the blue color of

MV+• is significantly more intense in the case of a hole scavenger.

The fact that the Fermi level measurement is not significantly influenced by the presence of

Na2SO3 or CH3CO2Na indicates that lattice SO32- ions are oxidized to polysulfides or

elemental sulfur. In order to test this hypothesis, attempts were made to identify elemental

sulfur, the expected photocorrosion product in the absence of oxygen. In the presence of

oxygen one expects SO42- formation. Sulfur and sulfate can be determined by XPS analysis

since the binding energy of the S2p electrons is about 161.5 eV for S2-, about 163.5 eV for

S0 and about 168 eV for SO42-. [25]

Determination of S0 by Photoelectron Spectroscopy (XPS)

In order to monitor a mutual S0 formation during photovoltage measurements, two

independent experiments were carried out in the absence of a hole scavenger with 50NII

(50% CdS/Al2O3(n)).

Page 52: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

42

2 4 6 8 10 12

200

300

400

500

600 b

3 6 9 12

-40

0

40

pH0 = 7.65

fII(U

)

pH

V /

mV

pH

a

Figure 2.13: Dependence of photovoltage on pH for 50NII (pH0= 7.65, nEF*: -0.42 V).

Preparation of samples for XPS:

Since it was expected that the XPS peaks corresponding to various sulfur species

mentioned above may overlap, two samples were prepared at early and late stages of the

redox titration.

I. Sample 1: To obtain the first sample the “titration” was stopped at pH 4.8 (pHinitial:

3.57; total irradiation time including voltage stabilization before the measurement:

1,5h) in order to prepare a sample from the beginning of the measurement (Figure

2.14 (a)). The CdS powder was filtered from the suspension carefully without

washing and dried under high vacuum (at RT).

II. Sample 2: In the second measurement the “titration” was stopped at pH 8.7 (pHinitial:

3.52) (Figure 2.14 (b)). After reaching this point, the pH value was kept constant and

irradiation was carried on for additional 4h (total irradiation time including voltage

stabilization before the measurement: 5h). Isolation of sample 2 was performed in the

same way like for sample 1.

Page 53: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

43

3,6 4,0 4,4 4,8

280

290

300

310

320

330

2 3 4 5 6 7 8 9 10 11 12

200

300

400

500

600

V /

mV

pH

V /

mV

pH

a

3 4 5 6 7 8 9

300

350

400

450

500

550

600

2 3 4 5 6 7 8 9 10 11 12

200

300

400

500

600

V /

mV

pH

b

V /

mV

pH

Figure 2.14: Dependence of photovoltage on pH in order to prepare (a) Sample 1 and (b)

Sample 2; 50NII.

Page 54: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

44

XPS Results

All samples were measured without sputtering. Peak fitting was performed with Gaussian

type curves for four XPS peaks of sulfur (2 for S2p1/2 and 2 for S2p3/2, respectively). %GL

means %Gaussian-Lorentzian parameter in the Gaussian-Lorentzian product function used

for peak optimization by XPSPeaks4.1® program. XPS curve fitting for untreated sample is

given in Figure 2.15. The best results were obtained with only two Gaussian type curves

for sulfur S2p1/2 and S2p3/2 locating peaks at about 161.2-162.3 eV which is in accord with

the binding energies for S2p electrons of S2- as reported in the reference [25]. The broad

signal shown in Figure 2.16 belongs to sample 1 which was prepared from the early stage

of the photovoltage measurement. In this case the peak could be fitted with four Gaussian

type curves (2 for S2p1/2 and 2 for S2p3/2). A little shift in peak position (161-162.5 eV)

and difference in peak shape were observed. Curve fitting was performed with four

Gaussian type curves (2 for S2p1/2 and 2 for S2p3/2) for sample 2 obtained from the late

stage of the photovoltage measurement (Figure 2.17). For this sample the peak was

broadened as compared to untreated sample and sample 1, and peak position shifted to

163.0 eV which is close to the literature value of 163.5 eV for S2p electrons of S0. [25] Such

broadening indicates the presence of elemental sulfur in sample after photovoltage

measurement and this suggests that in the absence of any hole scavenger, during the

photovoltage measurement anodic photocorrosion process works producing elemental

sulfur.

From this identification of S0 after photovoltage measurement, it is possible to conclude

that during a photovoltage measurement, in the absence of a hole scavenger (under

nitrogen), created holes upon irradiation are undergone photocorrosion:

CdS + h+ ⎯⎯→ Cd2+ + S−•

S−• + h+ ⎯⎯→ S0

Page 55: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

45

Figure 2.15: XPS curve fitting for untreated sample (before irradiation); 50NII.

Page 56: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

46

Figure 2.16: XPS curve fitting for sample 1 (total irradiation time including voltage

stabilization before the measurement: 1,5h); 50NII.

Page 57: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

47

Figure 2.17: XPS curve fitting for sample 2 (total irradiation time including voltage

stabilization before the measurement: 5h); 50NII.

Page 58: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

48

2.3.2.2. Investigation of Light Intensity Effect on Quasi-Fermi Level Determinations

Bard et al. reported earlier than Roy et al. that the quasi-Fermi level of a semiconductor

powder can be measured by photocurrent determination as a function of pH in the presence

of MV2+•. [26] They observed that the light intensity (irradiation source: 1600 W Xe lamp)

has a significant effect on the photocurrent; the photocurrent change with time (∆i/∆t)

increased linearly with increasing light intensity and they explained this behavior by Eq.

2.3.2.2.1 given below. According to this, the energy level of the electrons under

illumination, depends on the density of charge carriers initially present, no, and the excess

carriers generated by light, ∆n*. The increase of ∆n* with increasing intensity results in a

shift of the quasi-Fermi level of electrons to more negative potentials. They have assumed

that ∆n* is proportional to light intensity and this ratio (∆n*/no) is bigger than 1. Therefore,

the quasi-Fermi level of electrons becomes proportional to intensity.

nEF* = EF + kT ln [1 + (∆n* / n0)] (2.3.2.2.1)

In the case of an assumption that ∆n* is proportional to I and (∆n*/n0) >> 1, Eq. 2.3.2.2.1

can be written as

nEF* = constant + kT lnI (2.3.2.2.2)

In order to investigate if also the photovoltage method of Roy et al. exhibits a light

intensity effect, a series of experiments were performed. All measurements were carried

out with a 400 nm cut-off filter and various neutral density filters (%T: 70-12) to vary the

light intensity. A water bath between lamp and cuvette removed IR radiation. (For

experimental set-up see Experimental Section 6.2.2)

The experiments were performed with the alumina supported sample 50NII. Quasi-Fermi

level values of -0.38 V to -0.40 V were found (Table 2.6). These results show that

changing of the light intensity has no significant effect on the measurements because the

quasi-Fermi level values are within experimental error (Figure 2.18).

Page 59: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

49

The reason why in our photovoltage measurements no significant intensity effect was

observable, may stem from the much lower light intensity (150 W Xe lamp, λ ≥ 400 nm) as

compared to the experimental conditions of the Bard et al. experiments (1600 W Xe lamp).

Therefore, the change in electron concentration (∆n* / n0) is so small that the expected

change in the quasi-Fermi level (Eq. 2.3.2.2.1) can not be detected by the experimental

procedure applied.

Tranparency of filter T%

Light Intensity (I0) W/cm2

ln I0 pH0 nEF* [ ±0.01 V ]

100 0.29 -1.23 8.78 -0.39

70 0.17 -1.77 8.48 -0.40

50 0.13 -2.04 8.83 -0.39

43 0.09 -2.41 8.95 -0.38

35 0.085 -2.47 8.69 -0.39

28 0.08 -2.53 8.55 -0.39

12 0.03 -3.51 8.37 -0.40

Table 2.6: Dependence of pH0 and quasi-Fermi level values on light intensity; 50NII.

3,0 3,5 4,0 4,5 5,0 5,5 6,0

-0,8

-0,6

-0,4

-0,2

nEF*(

pH=7

) [V

vs.

NH

E]

lnI0

Figure 2.18: Plot of quasi-Fermi level values vs. normalized intensity (lnI0) revealing the

absence of any significant effect of change in light intensity; 50NII.

Page 60: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

50

2.3.2.3. Energetic Position of Band Edges for CdS/Al2O3 Photocatalysts

The knowledge of band edge positions is useful and important in photocatalysis because

these levels indicate the thermodynamic limitations for the photocatalytic reactions that can

be carried out with the charge carriers. As mentioned in Chapter 2.3.2, addition of the

band-gap energy to the value of the quasi-Fermi level, assumed to be equal to the

conduction band edge, gives the position of the valence band edge (Figure 2.19). The

values depicted there are the average mean of three independent measurements.

CdS-A 10NII 30NII25 30BII 30AII 10AII

2,5

2,0

1,5

1,0

0,5

0,0

-0,5 ⎯ ⎯ ⎯ ⎯ ⎯ ⎯

⎯ ⎯ ⎯ ⎯ ⎯ ⎯

2.462.432.412.482.452.39

+ 2.07+ 2.06+ 2.04+ 1.97 + 2.10+ 2.10

- 0.36- 0.36- 0.35- 0.38- 0.41- 0.42

Photocatalyst

E(F

B)[V

]

Figure 2.19: Band edge positions (+ 0.02 V) and band-gap energies (+ 0.01 eV) for CdS

photocatalysts at pH=7.

For the neutral alumina supported materials the conduction band edge position does not

change significantly, 60 meV and 90 meV of band-gap energy widening is observed for

10NII and 30NII25, respectively. The larger band-gap energy for 30NII25 may be due to

the increased concentration of surface [Al]-O- ions in more basic impregnation solution

which causes higher concentration of Cd-O-Al bonds (Chapter 2.2, Figure 2.2).

Page 61: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

51

Due to the band-gap widening, as compared to the unsupported CdS, an anodic shift of 70

mV and 130 mV in valence band edge position was observed for 10NII and 30NII25,

respectively.

When the acidic alumina was employed for supported CdS preparation, anodic shifts in

band edge positions (130 mV in valence band of 10AII, 100 mV in valence band 30AII,

and 60 mV in conduction band edge of both) and band-gap energy widening (40 meV for

30AII and 70 meV for 10AII) were observed (Figure 2.19).

In the case of basic alumina supported CdS, whereas the band-gap energy was identical

with the unsupported CdS, 70 mV and 90 mV of anodic shifts were observed in conduction

and valence band edges, respectively.

2.3.3. IR Spectra of Al2O3 Supported CdS Powders

When silica was alkylated before impregnation with cadmium ions, no SEMSI effect has

been observed. [27, 28] From this it is evident that the band-gap shift for silica supported CdS

powders originates from an electronic interaction between CdS and SiO2, which is induced

by formation of [Si]-O-Cd-S bonds through reaction of surface Si(OH) groups with Cd2+

ions. IR spectra show that the intensity of the OH absorption at 1190 cm-1 strongly

decreases. [27, 28] Contrary to this, the IR spectra of alumina supported CdS in KBr do not

show any obvious difference in the corresponding spectral region (very broad and smooth

band, in the range from 400 to 1000 cm-1 [29]). However, IR spectra of 30 wt% neutral

(Figure 2.20) and acidic (Figure 2.21) alumina supported CdS show that absorption bands

of support materials are shifted if CdS was supported with them. On the basis of the present

data no simple explanation can be given.

Page 62: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

52

4000 3500 3000 2500 2000 1500 1000 500

40

45

50

55

60

65

70

75

4000 3500 3000 2500 2000 1500 1000 500

40

50

60

70

80

90

100

586753

1628

3467

T%

cm-1

b

559

a

743

1647

3507T

%

cm-1

Figure 2.20: IR spectra of (a) neutral alumina and (b) 30% neutral alumina supported CdS

[30NII].

4000 3500 3000 2500 2000 1500 1000 500

50

55

60

65

70

75

4000 3500 3000 2500 2000 1500 1000 50070

75

80

85

90

95

578752

11331631

3464

T%

cm-1

b

a

568

753

1628

3441

T%

cm-1

Figure 2.21: IR spectra of (a) acidic alumina and (b) 30% acidic alumina supported CdS

[30AII].

Page 63: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

53

2.3.4. X-Ray Powder Diffractometry (XRD)

Al2O3 supported and unsupported CdS powders were analyzed by XRD (for instrumental

details, see Experimental Section 6.1.3.5) to determine their crystal modification and size

with the help of Scherrer equation (Eqs. 2.3.4.1 and 2.3.4.2). [30-32] Calculated grain size

values have been presented in Table 2.9.

Scherrer Equation:

L =0,9 . λ

FWHM . cosΘ

FWHM: the full width of the diffraction line at half maximum

Θ : the diffraction angle in degrees

λ : wavelength in A° (1.54 A° for copper)

(2.3.4.1)

Grain size = 4/3 L (2.3.4.2)

Measured diffraction angles and corresponding interplanar spacing (d, the distance between

crystal planes) values as calculated according to Bragg’s law (Eq. 2.3.4.3) for n= 1 are also

presented in Table 2.7 for CdS and Table 2.8 for Al2O3.

Bragg’s Law:

λ = wavelength in A° (1.54 A° for copper), n= 1

d = interplanar spacing in A° n λ = 2dsinΘ (2.3.4.3)

X-Ray powder diffractograms of alumina supported and unsupported CdS powders have

been given in the following. Diffraction peaks that marked with “ * ” and “ ο ” signs

indicate CdS and alumina, respectively.

Page 64: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

54

20 40 60 800

10

20 ***

Inte

nsity

2Θ [degrees]

CdS-A

*

Figure 2.22: X-ray powder diffractogram of CdS-A, (*) CdS.

20 40 60 800

10

20

30o

***

Inte

nsity

2Θ [degrees]

50NII

o

Figure 2.23: X-ray powder diffractogram of 50NII, (*) CdS, (°) Al2O3.

Page 65: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

55

20 40 60 800

10

20

30

40

o

o

o

***

Inte

nsity

2Θ [degrees]

30NII

Figure 2.24: X-ray powder diffractogram of 30NII, (*) CdS, (°) Al2O3.

20 40 60 800

10

20

30

40

50

60

o

o

o ***Inte

nsity

2Θ [degrees]

10NII

Figure 2.25: X-ray powder diffractogram of 10NII, (*) CdS, (°) Al2O3.

Page 66: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

56

20 40 60 800

10

20

oo

o

*

*

*

Inte

nsity

2Θ [degrees]

10AII

Figure 2.26: X-ray powder diffractogram of 10AII, (*) CdS, (°) Al2O3.

20 40 60 800

10

20

o oo *

*

* 30AII

Inte

nsity

2Θ [degrees]

Figure 2.27: X-ray powder diffractogram of 30AII, (*) CdS, (°) Al2O3.

Page 67: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

57

20 40 60 800

10

20

30

o o**

*In

tens

ity

30BII

Figure 2.28: X-ray powder diffractogram of 30BII, (*) CdS, (°) Al2O3.

20 40 60 800

10

20

30

oo **

*

Inte

nsity

2Θ [degrees]

30NII25

Figure 2.29: X-ray powder diffractogram of 30NII25, (*) CdS, (°) Al2O3.

Page 68: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

58

Interplanar spacing (d) Values of Photocatalysts

(for diffraction peaks of CdS)

Photocatalysts 2θ 2sinθ d = λ/(2sinθ)

26.8 0.42 3.68

44.1 0.68 2.27 CdS-A

52.2 0.80 1.93

26.7 0.42 3.70

43.9 0.67 2.28

50NII

51.8 0.79 1.95

27.7 0.43 3.57

44.0 0.68 2.27

30NII

52.1 0.79 1.95

27.2 0.42 3.63

43.0 0.66 2.32

10NII

52.2 0.80 1.93

26.6 0.41 3.71

44.0 0.68 2.27

10AII

51.6 0.79 1.95

26.8 0.42 3.63

43.8 0.67 2.28

30AII

52.2 0.80 1.93

26.4 0.41 3.71

43.6 0.67 2.28

30BII

52.5 0.80 1.93

26.6 0.41 3.71

43.8 0.67 2.28

30NII25

52.2 0.80 1.93

Table 2.7: Diffraction angles and corresponding interplanar spacing (d) values calculated

according to Bragg’s law for various diffraction peaks of CdS.

Page 69: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

59

Interplanar spacing (d) Values of Photocatalysts

(for diffraction peaks of Al2O3)

Photocatalysts 2θ 2sinθ d = λ/(2sinθ)

37.1 0.57 2.68 50NII

67.1 1.00 1.53

37.2 0.58 2.67

45.6 0.70 2.20

30NII

67.1 1.00 1.53

37.3 0.58 2.67

45.4 0.70 2.20

10NII

67.0 1.00 1.53

37.6 0.58 2.67

45.6 0.70 2.20

10AII

67.2 1.00 1.53

36.9 0.57 2.68

46.1 0.71 2.17

30AII

67.2 1.00 1.53

38.0 0.59 2.62 30BII

67.1 1.00 1.53

37.2 0.58 2.67 30NII25

67.3 1.00 1.53

Table 2.8: Diffraction angles and corresponding interplanar spacing (d) values calculated

according to Bragg’s law for diffraction peaks of Al2O3.

Page 70: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

60

The 2Θ values of diffraction peaks observed at around 27°, 44° and 52° correspond to

(111), (220), and (311) Bragg reflection planes of cubic CdS, respectively. [33] In addition,

calculated d values also indicate a cubic β-CdS structure in accordance with ASTM-Card

No.-10-454 (d: 1.75, 2.06, 3.36). Therefore, from XRD analyses the cubic structure of CdS

powders was identified without ambiguity.

XRD analysis also identified γ-alumina structure by observation of typical diffraction peaks

of γ-alumina [29, 34] at 37°, 46° and 67°.

The average crystal sizes of CdS powders were calculated according to the Scherrer

equation [30-32] involving FWHM of the dominant (111) peak at about 2θ=26.6°. Taking of

the reflection at 26.6° is reasonable since only this peak does not suffer from the

interference of the reflections from γ-alumina. It is noted that this is a rough estimation.

Photocatalyst FWHM 2θ Particle size (nm)

CdS-A 2.5 26.8 7

50NII 2.4 26.7 8

30NII 2.4 27.7 8

10NII 2.2 27.2 9

10AII 2.5 26.6 8

30AII 2.6 26.8 7

30BII 2.5 26.4 8

30NII25 2.4 26.6 9

Table 2.9: The average crystal sizes of CdS powders obtained from the Scherrer equation.

From the calculated similar sizes of 8-9 nm, it is concluded that any observed band-gap

shift may not arise from a quantum size effect. XRD analysis also showed that cadmium is

present only as CdS on the surface of all photocatalyst powders.

Page 71: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

61

2.3.5. High Resolution TEM

To obtain some information on size, shape, and distribution of Al2O3 and CdS phases, TEM

analyses of CdS powders was perfomed. High resolution transmission electron micrographs

reveal that cubic and amorphous parts of CdS are present having nearly the same average

size of 10-20 nm (Figure 2.31). This agrees well with the values of 8-9 nm obtained from

XRD for the crystalline part.

50NII

Figure 2.30: The electron diffraction patterns of 50NII reveal the presence of the cubic

phase by observation of reflections from the (111), (220), and (311) planes.

Page 72: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

62

/ CdS-A / crystal size: 5-10 nm / 50NII / crystal size: 7-15 nm

/ 30NII / crystal size: 20-30 nm / 10NII / crystal size: >10 nm

Figure 2.31: HRTEM analyses of unsupported and supported CdS (10-50% alumina(n)).

Page 73: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

63

2.3.6. Interrogation of a Quantum-Size Effect

When the crystal size of a semiconductor decreases below a few nm (1-5 nm [35, 36]), band-

gap energy widening is observed. [37, 38] The presence of this effect in our materials can be

excluded since the crystal size of 8-20 nm is larger than the critical size and it does not

change with coverage as identified by XRD and HRTEM analyses.

2.3.7. X-Ray Photoelectron Spectroscopy (XPS)

XPS measurements were performed to determine the atomic species and the atomic

concentration of the CdS samples. Peak fitting was performed with Gaussian type curves

by the help of XPSPeaks4.1® program.

Figure 2.32: XPS peak fitting for S2p peak ([2] S2p1/2 and [1] S2p3/2) of CdS-A.

Page 74: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

64

Figure 2.33: XPS peak fitting for Cd3d peaks ([a] Cd3d3/2 and [b] Cd3d5/2) of CdS-A.

Page 75: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

65

For CdS, the valence band has S2p character whereas the conduction band is associated

with Cd3d. [39] Correspondingly, any change in the binding energy of Cd3d and S2p

electrons must be related with a shift in the level of conduction and valence band edge,

respectively.

Figure 2.34: XPS spectra of (a) Cd3d and (b) S2p in alumina supported and unsupported

CdS powders.

Page 76: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

66

Photocatalyst

Cd3d

[eV]

CB

[V]

S2p

[eV]

VB

[V]

Al2p (a)

[eV]

O1s (b)

[eV]

CdS-A 412.1 ; 405.4 -0.42 162.2 +1.97 - -

10NII 411.7 ; 405.0 -0.41 161.8 +2.04 74.75 531.39

10AII 412.1 ; 405.4 -0.36 162.2 +2.10 75.27 531.95

30NII25 411.9 ; 405.1 -0.38 162.0 +2.10 73.76 530.53

Table 2.10: Binding energies of alumina supported and unsupported CdS powders in

comparison with band edge values. (a)Al2p for Al2O3: 74.34 eV, (b) O1s for Al2O3: 531.03 eV.

As can be seen from Table 2.10, the maximum shift of Cd3d binding energies is 0.4 eV.

Similarly also S2p binding energies exhibit maximum shift of 0.4 eV. For detailed

discussion see Chapter 2.6).

From the data in Table 2.11, the ratio of Cd/Al concentration can be calculated.

Atomic Concentrations Photocatalyst

O S Cd Al

CdS-A 5.21 28.95 63.70 -

10NII 60.74 0.92 1.87 29.69

30NII25 58.74 2.47 5.57 26.66

10AII 58.42 1.87 4.23 28.80

Table 2.11: Atomic concentrations of Cd, S, Al and O in alumina supported and

unsupported CdS samples.

Page 77: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

67

Photocatalysts Atomic Cd/Al Concentration Ratio

10NII [(Cd: 1.87)/(Al:29.69)] = 0.063

30NII25 [(Cd: 5.57)/(Al:26.66)] = 0.209

10AII [(Cd: 4.23)/(Al:28.80)] = 0.145

Table 2.12: Atomic Cd/Al concentration ratios of alumina supported CdS samples.

The quite different Cd/Al ratio for two 10% supported catalysts 10NII and 10AII is

noteworthy (Table 2.12). According to elemental analysis the sample 10NII contains 8%

and 10AII 8.6% of CdS. This demonstrates that different to the overall composition, which

is almost identical for the two samples, the surface composition is quite different. In the

case of the sample prepared with acidic alumina (10AII), the amount of CdS on the surface

is more than two times higher. Therefore it is expected that light absorption by 10AII

should be more efficient than 10NII. The ratio of Cd/S for all catalysts is the same as it was

determined by XPS (Table 2.11).

Page 78: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

68

2.3.8. Time Resolved Photocharge (P-EMF) Measurements

The CdS photocatalysts were also characterized by time resolved photocharge (Photo-

Electromotive Force, P-EMF) measurements.

The principle of P-EMF measurements is based on formation of an inner electric field

between the dark and illuminated side of sample resulting from a spatial charge separation

because of different mobilities of electrons and holes generated by laser pulse exposure. [40]

This temporary potential difference causes a P-EMF (U, Dember-voltage) that can be

measured time-resolved (see Figure 2.36, 2.37, 2.38 and 2.39). From the sign of the

voltage, evidence for n- or p-type semiconductor behavior can be obtained. The life-time

allows conclusions to be made if a volume or surface recombination process is operating.

Charge separation due to diffrernt mobilities

of electrons and holes

Internal electric field

P-EMFCharge separation

due to diffrernt mobilities of electrons and holes

Internal electric field

P-EMF

Figure 2.35: Principle of P-EMF measurement technique.

Sample preparation was performed by dispersing CdS grains within a polymeric binder

(PWB Mowital B30 HH) (for experimental details, see Experimental Section 6.1.3.8). All

measurements are the average of three independent samples. Therefore, the P-EMF

parameters summarized below are the mean values of three measurements.

Heterojunctions may cause internal electric fields. If the lifetime of the charge carriers

generated by the laser flash is sufficiently long, these internal electric fields can alter the P-

EMF signal with increasing number of laser flashes. To avoid such influences only the

signal of the first laser flash was recorded. Under the measurement conditions (Nitrogen

laser flash, λ=337 nm, about 2.7x1013 quanta/flash), all samples exhibit total absorption.

Since the measurements were applied for CdS-A, 50NII, 30NII, 10NII as one set of

measurement and for 30AII, 30NII25, 30NII as another set, the sample 30NII was

included in the second set to make the results from these two sets comparable.

Page 79: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

69

In order to obtain information on the complete decay process, P-EMF measurements were

performed in two time scales; a µs range for the fast, a ms range for the slow decay

processes. For the kinetic evaluation of the P-EMF-signals, a biexponential rate law (Eq.

2.3.8.1) was applied.

( ) ( ) ( )U t U k t U k t= ⋅ − + ⋅ −10

1 20

2exp exp (2.3.8.1)

Moreover, from the experimental curve the maximum P-EMF Umax was determined. The

calculated values of the partial P-EMFs (U10 for surface and U2

0 for bulk in the

photoconducting material) were normalized to Umax by using Eqs. 2.3.8.2 and 2.3.8.3:

U U Umax = +10

20 (2.3.8.2)

U UUU

norm20

10

201

,max

,exp.

,exp

=+

(2.3.8.3)

The sum of the partial P-EMFs (U10 and U2

0) corresponds to the Umax (maximum P-EMF,

Eqs. 2.3.8.1 and 2.3.8.2). Under pulse illumination (t=0, at the beginning of the

measurement), P-EMF reaches a maximum value (U= Umax) followed by a decay, which is

caused by recombination of the generated charge carriers (see Figure 2.36-39). In the case

of both time ranges, k values indicate surface recombination (k1) and bulk recombination

(k2). In another words, measuring of k1 and k2 values gives lifetime (τ) values because of

τ=1/k relation, in the surface and in the bulk of the photoconducting material, respectively.

All investigated CdS samples show P-EMF signals starting with a positive sign indicating

that all samples behave as n-type photoconductors. The type of photoconduction is not

altered by the support materials.

Page 80: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

70

For all samples the P-EMF decay process shows a broad rate distribution which is caused

by a broad trap depth distribution. For that reason the biexponential rate law is only an

approximation for describing the P-EMF decay. But the parameters from the biexponential

rate law can be used for a comparison of the P-EMF decay rate in a given time range. The

P-EMF decay rate constants measured in the µs time range reflect the release of charge

carriers from shallow traps and their recombination, and in the ms time scale the release of

charge carriers from deeper traps and their recombination.

The P-EMF signals of CdS-A and 10-50% CdS/Al2O3(n) are presented in Figures 2.36 and

2.37. Corresponding parameters are summarized in Tables 2.13 and 2.14.

For all samples, Umax values decrease with increasing alumina to CdS ratio. It is known that

coating or mixing of a photoconductive material with a photoelectrically inactive material

decreases the value of Umax. [40, 41] Since in the same direction (of increasing Al2O3/CdS

ratio) the amount of CdS decreases, the voltage decrease may additionally stem from a

diminished light absorption.

The amount of CdS on Al2O3 also influences the P-EMF decay rate. On the µs -time scale

the P-EMF decay rate of 50NII sample is very close to that of unsupported CdS-A. For

30NII and 10NII, the P-EMF decay becomes gradually slower. That means the lifetime of

charge carriers is influenced by interactions between CdS and the neutral Al2O3 support.

Page 81: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

71

0,0 0,5 1,0 1,5 2,0 2,5

0

10

20

30

40

50

60

70

10NII

30NII

50NII CdS-A

Phot

o-EM

F U

/ m

V

time t / µs

Figure 2.36: P-EMF signals of unsupported CdS (CdS-A) and neutral alumina supported

CdS samples recorded up to 2.5 µs after the laser flash (λexc = 337 nm).

SAMPLE Umax [mV] U10 [mV] U2

0 [mV] k1 [x106 s-1] k2 [x104 s-1]

10NII 26.9±1.9 7.6±0.9 19.3±2.1 0.80±0.24 1.87±0.06

30NII 40.5±2.8 6.6±0.8 33.9±3.7 1.16±0.04 1.04±0.03

50NII 46.2±3.2 8.6±1.0 37.6±4.2 1.34±0.04 1.18±0.04

CdS-A 67.3±4.7 26.8±3.0 40.5±4.5 1.32±0.04 1.95±0.06

Table 2.13: Umax values and kinetic parameters of the P-EMF signals shown in Figure

2.36.

Page 82: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

72

0 50 100 150 200-5

0

5

10

15

20

25

30

10NII 30NII 50NII CdS-A

Phot

o-E

MF

U /

mV

time t / ms

Figure 2.37: P-EMF signals of unsupported CdS (CdS-A) and neutral alumina supported

CdS samples recorded up to 200 ms after the laser flash (λexc = 337 nm).

SAMPLE Umax [mV] U10 [mV] U2

0 [mV] k1 [s-1] k2 [s-1]

10NII 11.9±0.9 14.2±1.6 -2.3±0.3 153±1.5 20.4±0.2

30NII 24.1±1.7 31.6±3.5 -7.5±0.9 109±1.1 23.7±0.2

50NII 27.4±1.9 37.6±4.2 -10.2±1.1 98.1±1.0 24.1±0.3

CdS-A 23.4±1.6 34.4±3.8 -11.0±1.2 101±1.0 29.8±0.3

Table 2.14: Umax values and kinetic parameters of the P-EMF signals shown in Figure

2.37.

Page 83: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

73

Although there is no direct evidence that the lifetime of the surface charge carriers

determined by P-EMF is that of the reactive e- - h+ pair, this plausible approximation is

made in the following discussion. Table 2.15 summarizes the corresponding rate constants,

lifetimes and band-gap energies.

Sample k1 [x106 s-1] τ1 [x10-6 s] Ebg [± 0.01 eV]

10NII 0.80±0.24 1.20 2.45

30NII 1.16±0.04 0.86 2.43

50NII 1.34±0.04 0.75 2.42

CdS-A 1.32±0.04 0.76 2.39

Table 2.15: Calculated lifetimes from k values (τ = 1/k) and measured band-gap energy

values for unsupported CdS and CdS supported onto neutral alumina.

From these it can be seen that the increase of band-gap energies with decreasing coverage

is accompanied by a lifetime increase. This larger lifetime should increase electron

exchange rates with adsorbed substrates. The results of photocatalytic activity

measurements are discussed together with the results of P-EMF measurements in Chapter

2.4.2.

The P-EMF signals of three supported samples containing all 30wt% of CdS but have been

prepared under slightly different conditions are presented in Figure 2.38 in µs time range

and Figure 2.39 in ms range. The parameters of the P-EMF signals shown in Figure 2.38

and 2.39 are summarized in Table 2.16 and 2.17.

Page 84: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

74

0 20 40 60 80 100

0

5

10

15

20

25

30NII30AII

Phot

o-E

MF

U /

mV

time t / µs

30NII25

Figure 2.38: P-EMF signals of 30 wt% CdS on Al2O3 samples recorded in the time range

up to 100 µs after the laser flash (λexc = 337 nm).

SAMPLE Umax [mV] U10 [mV] U2

0 [mV] k1 [x105 s-1] k2 [x103 s-1]

30AII 20.2±0.2 6.6±0.1 13.6±0.1 1.74±0.13 3.08±0.09

30NII 22.6±0.2 9.5±0.1 13.1±0.2 1.63±0.08 4.56±0.09

30NII25 23.2±0.1 2.8±0.1 20.3±0.2 1.56±0.01 1.18±0.01

Table 2.16: Umax values and kinetic parameters of the P-EMF signals shown in Figure

2.38.

Page 85: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

75

0 50 100 150 200-3

0

3

6

9

12

15

18

30AII 30NII 30NII25

Phot

o-E

MF

U /

mV

time t / ms

Figure 2.39: P-EMF signals of 30 wt% CdS on Al2O3 samples recorded in the time range

up to 200 ms after the laser flash (λexc = 337 nm).

SAMPLE Umax [mV] U10 [mV] U2

0 [mV] k1 [s-1] k2 [s-1]

30AII 8.9±2.0 13.6±1.9 -4.7±0.9 130±15 41.6±2.0

30NII 9.0±4.7 10.4±5.2 -1.5±0.5 226±20 31.9±2.5

30NII25 17.8±1.5 1991±491 -1973±490 56.4±0.4 55.9±0.4

Table 2.17: Umax values and kinetic parameters of the P-EMF signals shown in Figure

2.39.

Page 86: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

76

The P-EMF of samples on the acidic (30AII) or neutral Al2O3 (30NII) supports decay

faster than that of the CdS sample which was prepared in more basic solution with neutral

Al2O3 (30NII25) (Table 2.16). This means the properties of the support material or

preparation method govern the charge carrier lifetimes.

Band-gap energy values and lifetime values for 30wt% supported CdS powders were listed

in Table 2.18.

Sample k1 [x105 s-1] τ1 [x10-5 s] Ebg [± 0.01 eV]

30AII 1.74±0.13 0.57 2.43

30NII 1.63±0.08 0.61 2.43

30NII25 1.56±0.01 0.64 2.48

Table 2.18: Calculated lifetimes from k values (τ = 1/k) and band-gap energy values for

30wt% CdS on Al2O3(n), and Al2O3(a).

Increasing NH3 concentration from 10% to 25% affords 30NII25 which leads to a larger

band-gap energy (2.48 eV vs. 2.43 eV) whereas the increase in lifetime is not significant.

Different from this, supported 30% CdS onto acidic alumina (30AII) does not influence the

band-gap that decreases the lifetime from 6.1 to 5.7 µs. A similar increase of lifetime with

increasing band-gap energy is observed in the sequence from 50NII over 30NII to 10NII

samples. (The results of photocatalytic activity measurements are discussed together with

the results of P-EMF measurements in the following Section 2.4.2).

Page 87: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

77

2.4. Photocatalytic Activity of Al2O3 Supported CdS

2.4.1. Determination of the Optimum Photocatalyst Amount

Since the absorption properties of the various photocatalysts are not identical because of

their different CdS coverage, first of all it was necessary to eliminate this concentration

effect which may cause a wrong consequence in photocatalytic activity comparisons. To

determine for each catalyst the total amount of material exhibiting the same light

absorption, the KM function was measured at 490 nm by diffuse reflectance spectroscopy

(DRS).

The DRS method was mentioned in Section 2.3.1 as a useful technique for non-transparent

solid materials and it is defined as a type of absorption spectroscopy. [42, 43] According to

literature (see also Section 2.3.1) the logarithm of the KM function is proportional to the

absorption coefficient (k in Eq. 2.4.1.1).

log F(R∞) = log(k) – log(s) (2.4.1.1)

Since the scattering coefficient (s in Eq. 2.4.1.1) very often does not depend substantially

on λ [41], Eq. 2.4.1.1 can be written as

log F(R∞) = log(k) – constant (2.4.1.2)

In order to determine for each catalyst the amount necessary to induce the same KM

function, a series of DRS measurements were performed. KM values at 490 nm were

measured for different concentrations for each photocatalyst by changing its concentration

in BaSO4. After determination of KM values for each dilution, KM values were plotted vs.

catalyst amount (e.g. for 30NII Figure 2.40). Table 2.19 summarizes the amount of

catalysts exhibiting identical KM function. As a first approximation it is assumed that for

all these materials present in this optimum concentration, the amount of light absorbed is

identical.

Page 88: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

78

The corresponding diluent was also used as the baseline standard. Usage of BaSO4 as

diluent can be thought as the counterpart of alumina because as it has been depicted in

Section 2.3.1, using one of these two materials does not have any influence on the

measurement.

In addition, since it was reported in the literature that in the case of some semiconductors,

dilution of the material in weak or non-absorbing standards may cause a blue or in some

cases red shifts in the band-gap energy value. [44] Therefore, for each dilution, band-gap

energy values were also inspected whether if they vary or not. However, after every

dilution step band-gap energy values of powders did not vary by dilution.

0,4 0,6 0,8 1,0 1,2 1,4 1,60,0

0,5

1,0

1,5

2,0

2,5 30NIIslope: 1.76

amount of catalyst [g]

KM

at 4

90 n

m

Figure 2.40: Relation between KM and catalyst concentration for the example of 30NII.

Photocatalyst Amount of Photocatalyst [g]

CdS-A 0.51 50NII 0.77 30NII 0.77 10NII 1.44 30AII 0.77 10AII 0.91

30NII5 0.86

Table 2.19: Amount of photocatalysts (g) exhibiting a KM value of 1.

Page 89: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

79

2.4.2. Photocatalytic Activity Measurements

In order to compare photocatalytic activities of CdS photocatalysts, the addition of

cyclopentene to N-(4-chlorobenzylidene)-4-chloraniline was carried out since many

mechanistic investigation have been previously performed with this system.

C N

H

Ar

Ar

MeOH

C N

H

H

Ar

ArCH

CHAr NHAr

Ar NHAr+

CdS/hν+

C NH

H

Ar

Ar

- H+

H+

er-

hr+

Figure 2.41: CdS-photocatalyzed addition of cyclopentene to N-(4-chlorobenzylidene)-4-

chloraniline. [45] (Ar: 4-ClC6H4)

Photocatalyst Photocatalyst concentration exhibiting KM=1 at 490 nm

[g / 100g of BaSO4]

Photocatalyst concentration taken for rate determination(a)

[g/l] CdS-A 25.5 1.8

50NII 38.5 2.7

30NII 38.5 2.7

10NII 72.0 5.0

30AII 38.5 2.7

10AII 45.5 3.3

30NII25 43.0 3.1

Table 2.20: Amount of photocatalyst exhibiting identical KM values, (a) calculated

according to Table 2.19.

Page 90: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

80

The reaction was carried out in a round cuvette placed on an optical bench under nitrogen

atmosphere with full-light irradiation (for detailed experimental set-up, see Experimental

Section 6.4). Photocatalyst concentration was taken according to determined optimum

catalyst concentration (Table 2.20) as explained in Section 2.4.1. Initial consumption rate

of the imine substrate was determined by HPLC analysis.

CdSA 50N 30A 30N 10N 10A 30N25

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

2,2

Rea

ctio

n R

ate

/ 10-7

mol

l-1s-1

PhotocatalystCdSA 50NII 30AII 30NII 10NII 10AII 30NII25

Figure 2.42: Photocatalytic activities of alumina supported CdS photocatalysts in

comparison with unsupported CdS.

As can be seen from Figure 2.42 in the case of neutral alumina as support, the reaction rate

increases by about 40 and 120% when the coverage is decreased from 50% to 30% and

10%, respectively. When the concentration of ammonia solution was increased from

usually employed 10% to 25%, the reaction rate increased by 440%.

Page 91: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

81

For acidic alumina at 30% loading, the rate is the same as for the neutral supported one but

it increased by 87%.

The variation of reaction rate as a function of coverage correlates with the increased

lifetime of charges as measured by P-EMF (Table 2.21). This increased lifetime may

originate in the band-gap widening of 30, 40, and 60 meV when comparing 50, 30, and

10% coverage with unmodified CdS. In the same sequence the CB edge is not significantly

changed whereas the VB edge is anodically shifted by 30, 50, and 70 mV.

Photocatalyst Ebg

[eV]

CB

[V]

VB

[V]

Lifetime

[10-6 s]

Reaction Rate

[10-7 moll-1s-1]

CdS-A 2.39 -0.42 +1.97 0.76 0.24

50NII 2.42 -0.42 +2.00 0.75 0.25

30NII 2.43 -0.41 +2.02 0.86 0.36

10NII 2.45 -0.41 +2.04 1.20 0.84

Table 2.21: Band edge positions, band-gap energies and lifetime values of unsupported

CdS and 10-50%CdS/Al2O3(n) in comparison with reaction rates.

When the photocatalysts are compared which all contain 30% of CdS, the change again a

correlation between lifetime and reaction rate is observed (Table 2.22).

Photocatalyst

Ebg

[eV]

CB

[V]

VB

[V]

Lifetime

[10-5 s]

Reaction Rate

[10-7 moll-1s-1]

30AII 2.43 -0.36 +2.07 0.57 0.34

30NII 2.43 -0.41 +2.02 0.61 0.36

30NII25 2.48 -0.38 +2.10 0.64 1.97

Table 2.22: Band edge position, band-gap and lifetime values in comparison with reaction

rates of 30wt% Al2O3 supported CdS photocatalysts.

Page 92: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

82

Significant difference in photocatalytic activity between 10AII and 10NII is also

considerable. According to elemental analysis the sample 10NII contains 8% and 10AII

8.6% of CdS. Data presented in Table 2.23 demonstrates that different to the overall

composition, which is almost identical for the two samples, the surface composition is quite

different. In the case of the sample prepared with acidic alumina (10AII), the amount of

CdS on the surface is more than two times higher (0.06 vs. 0.14). Whereas aluminum

amount is almost the same (about 29-30), such a difference in Cd/Al ratio may cause more

efficient light absorption by 10AII than 10NII. Accordingly, quite higher reaction rate for

10AII is reasonable.

Photocatalysts %CdS(a) Atomic Cd/Al

Concentration Ratio(b)

Reaction Rate

[10-7 moll-1s-1]

10NII 7.8 [(Cd: 1.87)/(Al:29.69)]

0.06

0.84

10AII 8.6 [(Cd: 4.23)/(Al:28.80)]

0.14

1.47

Table 2.23: Atomic Cd/Al concentration ratios, %CdS amounts of 10wt% acidic (10AII)

and neutral (10NII) alumina supported CdS samples in comparison with reaction rates.

(a) Obtained from the elemental analysis, (b) Obtained from XPS analysis.

Page 93: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

83

2.5. Comparison of Al2O3 with SiO2 as Support Material for CdS

In thermal heterogeneous catalysis the influence of supports on the catalytic properties of

noble metal particles, may result in an increase in the turnover frequency (TOF) on acidic

supports and a decrease on alkaline supports. [46-50] These changes in catalytic properties

are generally ascribed to a modification of electronic properties of the metal particles

resulting from a metal–support interaction. [46, 51] From all this work three methods have

aroused in order to explain the interaction.

The first method suggests that there is a partial electron transfer between the metal and the

oxide ions of the support. Acidic supports withdraw electron density from the metal,

whereas alkaline supports donate electron density to the metal and changes in catalytic and

spectroscopic properties result from a change in the number of electrons in the valence

orbitals. Briefly, metals are electron deficient on acidic supports and electron rich on

alkaline supports. [47-49, 52]

The second model proposes an interaction between support protons and the metal particles

forming metal–proton adducts. According to this proposal, the delocalized proton over the

metal particle withdraws electron density from the surface atom. [52, 53]

These two models compromise in that they both propose that there is a transfer of electron

density due to the metal–support interaction. However, they differ in that in the former the

transfer is thought to occur between the metal and the support oxide ions, while in the latter

the metal transfers electron density to the support protons. [46] In both cases, the increase in

catalytic activity has attributed to electron deficiency of metal on acidic supports.

Therefore, there is a change in the number of electrons in the valence orbital of the metal

that causes changes in catalytic and also spectroscopic properties of the supported catalyst.

The third method proposes a shift in the metal (Pt in depicted work) valence band (Pt5d)

instead of the transfer of electron density between the metal particle and the support. [46]

According to this expression, the change in the charge density of the support oxide ions

related with the acidity induces a shift in the energy of the metal valence orbitals, rather

than a change in the number of valence electrons. This proposal based on obtained

evidence from near-edge spectra (so called VB spectra) indicating little difference between

various supported metal catalyst. However, the shape resonance of the Pt-H antibonding

Page 94: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

84

orbital was strongly influenced, i.e. the difference in energy between the Fermi level and

antibonding orbital (ERes) was changed, by the acidic or alkaline properties of the support.

The explanation of this observation expressed in the following.

Figure 2.43: Molecular orbital diagram of the bonding and antibonding orbitals for the Pt

valence and the H 1s orbitals with changing support composition. [46]

The energy of the H1s orbital is lower than the energy of the Pt valence orbitals. Since the

energy of the H1s bonding orbital does not change with catalyst composition, the observed

change in the difference between the Fermi level and the antibonding orbital results from a

shift in the energy of the Pt valence orbitals due to the interaction with the support. [46] In

conclusion, the more similar the energy of the Pt and H orbitals the stronger is the bond and

greater is the difference in energy between the Pt-H antibonding orbital and the Fermi level

which means a larger ERes. Larger ERes indicates stronger overlap of the bonding orbitals

and a shift to higher binding energy of the metal valence orbitals (see Figure 2.43).

Page 95: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

85

Based on the EXAFS (extended X-ray absorption fine structure) results [54], it has been also

concluded that the shift in the energy of the valence band orbitals results from an

interaction of the metal with the support oxide ions. According to this, the higher the

negative charge on the oxygen, the smaller is the decrease in energy (lower binding energy)

of the metal valence orbitals. As the electron density of the support oxide deceases or

becomes more acidic, the binding energy of the metal valence orbitals increases. [46]

Electronic semiconductor-support interaction was firstly reported for silica (Grace Typ

432) supported CdS as a novel effect in photocatalysis that originates basically from Cd-O-

Si bonds. [28] It was assumed that the widening therefore increases with increasing density

of surface OH groups. Experimental evidence for this assumption was based on the fact

that a silica support that contained n(OH) = 14.0/nm2 as compared to n(OH) = 10.5/nm2. [27]

In order to get more experimental evidence for these previous observations, two sets of

experiments were performed. In the first one, the recently used silica support (Grace Typ

432) was employed to prepare 30% CdS/SiO2 and the band-gap energy was measured. A

value of 2.53 eV was obtained which is in accord with the recent findings (see also

references [27, 28]). This support has a 308 m2/g specific surface area and the other

(Aerosil) 148 m2/g (Table 2.24). To check whether the specific surface area has a

significant influence on the SEMSI effect, in the second set of experiments a silica support

(Aerosil) was selected that possessed about the same OH density but only half of the

specific surface area.

Surprisingly, this material exhibited a band-gap energy of 2.48 eV (Figure 2.44, 30%

CdS/SiO2 (Aerosil)) which was 50 meV difference as compared with the higher surface

area support. In addition, band-gap widening was rather smaller for Aerosil type silica as

compared to Grace type. Whereas the coverage varies from 50% over 30% to 10%, band-

gap energy values differs as 2.43, 2.48, and 2.50 eV, respectively.

Page 96: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

86

2,1 2,2 2,3 2,4 2,5 2,60

50

100

150

200

dbc a

[F(R

∞)h

ν]2

hν / eV

Figure 2.44: Transformed diffuse reflectance spectra of Aerosil SiO2 supported CdS

powders.

(a) 50% CdS/Al2O3(Aerosil) [50AE] (Ebg: 2.43 + 0.01 eV), (b) 30% CdS/Al2O3(Aerosil)

[30AE] (Ebg: 2.48 + 0.01 eV), (c) 10% CdS/Al2O3(Aerosil) [10AE] (Ebg: 2.50 + 0.01 eV),

(d) 30% CdS/Al2O3(Aerosil) prepared in 25% NH3 [30AE25] (Ebg: 2.52 + 0.01 eV).

Preparation of 30% Aerosil silica supported CdS in the more basic 25% ammonia solution

afforded a larger band-gap material (Figure 2.44); the same effect has been also observed

for alumina supported catalysts. Such an influence of the more basic preparation medium

can be explained as follows. Due to the increased concentration of surface [Si]-O- ions, the

equilibrium (see Chapter 2.2, Figure 2.2) should be shifted to the right side and therefore

the concentration of Cd-O-Si bonds should be increased. In the case of alumina as support

the same influence of a more basic impregnation solution is observed (see Section 2.3.1).

Page 97: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

87

Within the different alumina supported materials such a comparison is not related only with

the OH group density but also with the specific surface area. Whereas the specific surface

areas of acidic alumina (150 m2g-1) and basic alumina (146 m2g-1) are almost identical, the

higher OH group density of the acidic one (see Table 2.24) does not lead to a significant

shift in the band-gap energy. Similarly, in the case of the same OH group densities for

basic and neutral alumina supports, the larger specific surface area of the neutral one does

not have a significant influence (see Table 2.24).

Nevertheless, another question remains: what is the difference between alumina and silica

that leads to a more efficient electronic interaction in the case of silica. As already noted

the difference in OH group densities and specific surface areas (Table 2.24) do not

correlate.

Support Material n(OH)/nm2 Specific Surface Area

[m2g-1]

Ebg [ + 0.01 eV ]

for 30% supported

CdS

SiO2 Grace Typ 432 1.7 308 2.53

SiO2 Aerosil 200 1.6 148 2.48

Al2O3 Aldrich, neutral 3.8 189 2.43

Al2O3 Aldrich, acidic 6.2 150 2.43

Al2O3 Aldrich, basic 4.3 146 2.41

Table 2.24: Specific surface areas, surface OH group densities of Al2O3/SiO2 support

materials and band-gap energies for 30wt% supported CdS.

From the data presented above, one can conclude that increasing the acidity of support

(comparison of the acidic silica with the neutral and the acidic alumina) increases the band-

gap energy and thus indicates a stronger SEMSI effect. Since this effect originates from

Cd-O-M bonds (M: Si or Al), any change of their electronic nature is expected to influence

the position of conduction and valence band edges. It is recalled that the former has Cd

character, the latter S character.

Page 98: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

88

Changes in conduction band edge can be monitored by measuring the quasi-Fermi level of

electrons or the Cd3d binding energy. In the case of silicon which has a higher

electronegativity (1.74) than aluminum (1.47), one expects a decreased electron density on

Cd and therefore a higher Cd3d binding energy. In accord with this the band-gap widening

in the case of silica supported materials is 180 meV as compared to 50 meV for neutral

alumina supported materials. When the influence of various alumina supports is

considered, one does not observe a simple correlation, however (Table 2.25). Whereas the

Cd3d binding energy is almost the same for unsupported CdS and CdS supported by

neutral and acidic alumina, the conduction band edge shifts by 40 to 60 mV anodically. The

similar trend was observed for the valence band and although S2p binding energy values do

not vary significantly, the valence band shifts by 70 to 130 mV (Table 2.25). Since the

semiconductor-support interaction between alumina support and CdS was not so

significant, the slight anodic shifts in band edge positions were observed only by the quasi-

Fermi level determinations. Thereupon, determined changes in binding energy values differ

only in small ranges.

Photocatalyst Cd3d

[eV]

CB

[V]

S2p

[eV]

VB

[V]

CdS-A 412.1 ; 405.4 -0.42 162.2 +1.97

10NII 411.7 ; 405.0 -0.41 161.8 +2.04

10AII 412.1 ; 405.4 -0.36 162.2 +2.10

30NII25 411.9 ; 405.2 -0.38 162.0 +2.10

Table 2.25: Cd3d binding energy values of alumina supported and unsupported CdS

powders in comparison with conduction band level.

Page 99: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

89

References:

[1] N. Sahu, M. K. Arora, S. N. Upadhyay, A. S. K. Sinha, Ind. Eng. Chem. Res. 1998,

37, 4682.

[2] M. K. Arora, A. S. K. Sinha, S. N. Upadhyay, Ind. Eng. Chem. Res. 1998, 37, 1310.

[3] J. Kobayashi, K. Kitaguchi, H. Tsuiki, A. Ueno, J. Chem. Soc. Faraday Trans. 1

1987, 83, 1395.

[4] E. Borgarello, N. Serpone, M. Grätzel, E. Pelizetti, Inorg. Chim. Acta 1986, 112,

197.

[5] E. Borgarello, N. Serpone, M. Grätzel, E. Pelizetti, Int. J. Hydrogen Energy 1985,

10, 737.

[6] H. Van Damme, Photocatalysis - Fundamentals and Applications (Eds.: N.

Serpone, E. Pelizzetti), Wiley Interscience, New York, 1989, pp. 175.

[7] V. E. Henrich, Prog. Surf. Sci. 1995, 50, 77.

[8] D. J. Coster, J. J. Fripiat, M. Muscas, A. Auroux, Langmuir 1995, 11, 2615.

[9] T. Hirai, Y. Bando, I. Komasawa, J. Phys. Chem. B 2002, 106, 8967.

[10] G. M. Forland, T. Rahman,H. Hoiland, K. J. Borve, J. Coll. Int. Sci. 1996, 182, 348.

[11] M. F. Ottaviani, N. J. Turro, S. Jockush, D. A. Tomalia, J. Phys. Chem. B 2003,

107, 2046.

[12] M. A. Fox, M. T. Dulay, Chem. Rev. 1993, 93, 341.

[13] C. Zhengshi, Q. Li, Z. Jin, Science in China (Series B) 1996, 39, 152.

[14] P. V. Kamat, Chem. Rev. 1993, 93, 267.

[15] R. Memming, Top. Curr. Chem. 1994, 169, 105.

[16] N. S. Lewis, M. L. Rosenbluth, Photocatalysis - Fundamentals and Applications

(Eds.: N. Serpone, E. Pelizzetti), Wiley Interscience, New York, 1989, pp. 45.

[17] M. Grätzel, in Photocatalysis - Fundamentals and Applications (Eds.: N. Serpone,

E. Pelizzetti), Wiley Interscience, New York, 1989, pp. 123.

[18] A. J. Nozik, Ann. Rev. Phys. Chem. 1978, 29, 189.

[19] A. J. Bard, J. Phys. Chem. 1982, 86, 172.

[20] C. A. Koval, J. N. Howard, Chem. Rev. 1992, 92, 411.

[21] R. Memming, Top. Curr. Chem. 1988, 143, 79.

Page 100: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

90

[22] D. Duonghong, J. Ramsden, M. Grätzel, J. Am. Chem. Soc. 1982, 104, 2977.

[23] J. M. Bolts, M. S. Wrighton, J. Phys. Chem. 1976, 80, 2641.

[24] A. M. Roy, G. C. De, N. Sasmal, S. S. Bhattacharyya, Int. J. Hydrogen Energy

1995, 20, 627.

[25] D. Meissner, C. Benndorf, R. Memming, Appl. Surf. Sci. 1987, 27, 423.

[26] M. D. Ward, J. R. White, A. J. Bard, J. Am. Chem. Soc. 1983, 105, 27.

[27] H. Weiß, A. Fernandez, H. Kisch, Angew. Chem. - Int. Ed. 2001, 40, 3825.

[28] H. Weiss, PhD. Thesis, Universität Erlangen-Nürnberg 2003.

[29] C. H. Shek, J. K. L. Lai, T. S. Gu, G. M. Lin, Nanostructured Materials 1997, 8,

605.

[30] J. G. Vazquez Luna, A. Zehe, O. Zelaya-Angel, Cryst. Res. Technol. 1999, 34, 949.

[31] P. Debye, P. Scherrer, J. Chem. Soc. 1918, 116, 20.

[32] P. Scherrer, Nachr. Ges. Wiss. Göttingen 1918, 96.

[33] I. O. Oladeji, L. Chow, J. R. Liu, W. K. Chu, A. N. P. Bustamante, C. Fredricksen,

A. F. Schulte, Thin Solid Films 2000, 359, 154.

[34] E. C. DeCanio, J. W. Bruno, V. P. Nero, J. C. Edwards, Journal of Catalysis 1993,

140, 84.

[35] B. Coq, F. Figueras, Coord. Chem. Rev. 1998, 178-180, 1753.

[36] M. A. Fox, Topp. Curr. Chem. 1987, 142, 71.

[37] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 1995, 95,

69.

[38] M. Y. Han, L. M. Gan, W. Huang, C. H. Chew, B. S. Zou, Chemistry Letters 1997,

751.

[39] N. Serpone, E. Pelizzetti, Editors, Photocatalysis, Wiley, New York, 1989 1989,

650.

[40] S. Gablenz, C. Damm, F. W. Müller, G. Israel, M. Rössel, A. Röder, H. Abicht,

Solid State Science 2001, 291.

[41] C. Damm, Private communication.

[42] R. M. Edreva-Kardjieva, Bulg. Chem. Commun. 1992, 25, 166.

[43] G. Kortuem, W. Braun, G. Herzog, Angew. Chem. 1963, 75, 653.

[44] I. E. Wachs, X. Gao, J. Phys. Chem. B 2000, 104, 1261.

Page 101: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 2. Al2O3 supported CdS

91

[45] W. Schindler, F. Knoch, H. Kisch, Chem. Ber. 1996, 129, 925.

[46] J. T. Miller, B. L. Mojet, D. E. Ramaker, D. C. Koningsberger, Catalysis Today

2000, 62, 101.

[47] G. Larsen, G. L. Haller, Catal. Lett. 1989, 3, 103.

[48] A. P. J. Jansen, R. van Santen, J. Phys. Chem. 1990, 94, 6764.

[49] A. de Mallmann, D. Marthomeuf, J. Chim. Phys. 1990, 87, 535.

[50] W.-J. Shen, M. Okumura, Y. Matsumura, M. Haruta, Applied Catalysis A: General

2001, 213, 225.

[51] D. C. Koningsberger, J. de Graaf, B. L. Mojet, D. E. Ramarker, J. T. Miller, Applied

Catalysis A: General 2000, 191.

[52] W. M. H. Sachtler, A. Y. Stakheev, Catal. Today 1992, 12, 283.

[53] S. T. Homeyer, Z. Karpinski, W. M. H. Sachtler, J. Catal. 1990, 123, 60.

[54] D. E. Ramaker, B. L. Mojet, M. T. Garriga Oostenbrink, J. T. Miller, D. C.

Koningsberger, Phys. Chem. Chem. Phys. 1999, 1, 2293.

Page 102: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

92

CHAPTER 3 3. CdS-Photocatalyzed Synthesis of Novel Homoallylamines

3.1. Photocatalytic Addition Reactions with N-Cinnamylideneaniline

3.1.1. Photocatalytic Addition Reactions of N-Cinnamylideneaniline with

cyclopentene, cyclohexene and α-pinene

Ph NPh

R-H

MeOH

Ph NH

Ph

R

Ph NH

Ph

Ph NH

Ph

R

+30% CdS/Al2O3

addition at α-position to the imin function

addition at γ−position to the imin function

R:Me

6 a-c

7a-c 8a-c

a b c

Figure 3.1: CdS-photocatalyzed linear addition of olefins to N-Cinnamylideneaniline

Page 103: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

93

Irradiation of a methanolic solution of N-Cinnamylideneaniline in the presence of 30%

CdS/Al2O3(n) as a photocatalyst and an excess (40 fold) of olefin produces novel

homoallylic secondary amines (Figure 3.1), which are a C-C coupling product between the

α-amino cinnamyl radical generated from the imine and allylic radical formed from olefins.

The reaction was carried out under N2 atmosphere in a Pyrex immersion lamp apparatus

(see Experimental Section 6.1.1, Figure 6.1) equipped with a 100W tungsten halogen

lamp. Reaction progress was followed by HPLC and TLC analysis. After complete

consumption of 6, irradiation was stopped, the catalyst was filtered off, and the solvent was

removed under reduced pressure. Product mixtures were obtained as dark yellow oils in

every case. Purification by preparative column chromatography packed with neutral

alumina provided the addition products as yellow oils in the yields of 48-72%. All work-up

processes including catalyst filtration, solvent evaporation, TLC and preparative column

chromatography steps were performed under N2 because of high air sensitivity of the

compounds. The lowest isolated product yield of 48% belongs to the α-pinene addition

product, due to its decomposition during the irradiation process before complete

consumption of 6 as observed by HPLC.

3.1.1.1. HPLC Analysis

Figure 3.2 illustrates the progress of the reaction between olefins and 6 followed by HPLC.

Appearance of new peaks at 38 and 40.5 minutes for cyclopentene (Figure 3.2 (b)), at 49

and 52 minutes for cyclohexene (Figure 3.2 (c)), and at 47 and 49 minutes for α-pinene

(Figure 3.2 (d)) addition to 6 indicates formation of diastereomeric mixture of 7a, 7b, and

7c, respectively. The peak at around 14 minutes in each chromatogram belongs to 6.

Page 104: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

94

Figure 3.2: HPLC-Analysis of CdS-photocatalzed addition of olefins to 6 (detection at

254 nm, eluent: CH3CN/H2O=70/30 (v/v), for the instrumental set-up see Experimental

Section 6.1.3.12). (a) Before irradiation, (b) Addition of cyclopentene (after 40 h of

irradiation), (c) Addition of cyclohexene (after 20 h of irradiation), (d) Addition of

α-pinene (after 12 h of irradiation).

Page 105: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

95

As already discussed, the consequence of proton coupled IFET is the formation of an

intermediate α-amino cinnamyl radical from 6 and an allylic radical from the olefin.

Hetero-C-C coupling leads to two stereogenic centers in the addition products (Figure 3.3).

NH

H

PhPh

R

R

NH

H

PhPh

R

HN

H Ph

Ph

R

(1S)

(1R)

*

*

Me

Ph NH

Ph

*

*1

2

Ph NH

Ph

*

*1

2

Ph NH

Ph

*

*1

2

(2R)

(2S)

(2S)

(1S, 2R)

(1S, 2S)

(1R, 2R)

(1R, 2S)

(2R)

Figure 3.3: Formation of enantiomeric pairs of two diastereomers assuming attack of R• at

the α-position.

Absence of any sterical hindrance for the cyclopentenyl and cyclohexenyl radicals allows

addition with the same probability from the re- and si-side affording the two diastereomers

in the ratio of 1:1.

However, in the case of α-pinene, since the si-side of the allyl radical is sterically hindered,

addition occurs preferentially from the re-side of the molecule (Figure 3.4). The HPLC-

analysis of the reaction reveals this selectivity with the observed ratio of 3:2.

Page 106: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

96

HN

H

Ph

Ph

re

si

Figure 3.4: Attack of α-amino cinnamyl radical at the α-pinenyl radical.

Addition Product Retention

Time [min]

Peak Area

[x 106]

Ratio of Peak Areas (diastereomer 1/ diastereomer 2)

38.0 9 7a diastereomer 1

diastereomer 2 40.5 10 1:1

49.3 12 7b diastereomer 1

diastereomer 2 52.3 13 1:1

47.2 35 7c diastereomer 1

diastereomer 2 49.4 23 3:2

Table 3.1: HPLC-Analysis data for 7a, 7b and 7c.

3.1.1.2. Mass Spectroscopy

FD-mass spectra of each isolated product show the molecular ion peak of the addition

product as the base peak. [M+] peaks with 100% abundance for 7a, 7b and 7c are at m/z:

275, 290, and 344, respectively. Because of protonation of the nitrogen atom in the

molecule, [M+ + 1] and [M+ + 2] peaks are also appearing in the spectra (Figure 3.5, e.g.

7b Adduct: M+ = 290, M+ + 1 = 291, M+ + 2 = 292). The fragment peak with m/z: 208

indicates the fragmentation to a cyclohexenyl group (see Figure 3.5, [M+ - 82] = 208).

Page 107: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

97

Figure 3.5: FD-MS (2 kV, m/z): 290 [M+] for 7b in CHCl3.

From this observation, one cannot conclude if C-C coupling occurred at the α-position of

the α-aminoradical. In an amine compound cleavage starts from the α-C-C bond (next to

the nitrogen atom) and the largest branch at the α-C atom fragmentizes firstly. [1] However,

as it has been illustrated below in Figure 3.6, in the case of α-addition product, the

cycloolefin fragment cleaves from α-C to give [M+ - 82] = 208 peak, and the fragmentation

from γ-addition product also leads to the same fragment since fragmentation will not be at

the double bound. Therefore the fragmentation pattern may be similar for both α- and γ-

addition products.

N

Ph

H

R

H

Ph

- R

HN

Ph H

Ph

HN

Ph H

Ph

R:Me

N

Ph

H

Ph

R

- R

(a)

(b)

_

Figure 3.6: Fragmentation patterns. (a) For α-addition product, (b) For γ-addition product.

Page 108: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

98

3.1.1.3. IR

IR spectra of the addition products 7a, 7b and 7c were taken in CH2Cl2 under N2. The

spectrum of 7c is presented as an example in Figure 3.7. The new bands at about

3420 cm-1, which correspond to the characteristic ν(N ─ H) vibration bands, reveal the

presence of N-H bonds in the molecule. Aliphatic and aromatic ν(C ─ H) vibrations exhibit

peaks at about 2926, 2868 and 3026 cm-1, respectively. The peaks at 1601-1503 cm-1

correspond to the absorptions of C ═ C bonds of the phenyl rings.

Similar IR bands indicate the analogous structures for all adducts (Table 3.2).

3500 3000 2500 2000 15000

50

100

T %

W avenumber cm-1

Figure 3.7: IR spectrum of 7c.

Vibration bands 7a [cm-1] 7b [cm-1] 7c [cm-1]

ν (N ─ H) 3415 3418 3420 ν (C ─ HAr) 3053 3053 3026 ν (C ─ H) 2986

2851 2986 2860

2926 2868

ν (C ═ C) 1421 1503 1601

1421 1504 1601

1503 1601

Table 3.2: Selected IR data of adducts 7a, 7b and 7c.

Page 109: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

99

3.1.1.4. NMR

Although mass and IR spectroscopy are helpful analysis methods, they are insufficient to

clarify if α- or γ-addition had occurred. Therefore the NMR spectra were recorded and

analyzed in detail. In the case of the diastereomeric mixture of 7a as obtained by

preparative column chromatography, a double set of peaks is observed both for 1H-NMR

and 13C-NMR spectra. However, it was possible to separate one diastereomer (7a') by

preparative HPLC (see Experimental Section 6.5.1.2), the spectrum of which is discussed

in the following.

Figure 3.8: (a) 1H-NMR spectrum of 7a' (400 MHz, in CDCl3), (b) enlarged splitting

patterns for H7 and aromatic H12, H16, H14 (see Table 3.3) protons which come in the

same region (400 MHz, in CDCl3). Signals marked as (*) correspond to the other

diastereomer.

NH1

2

3

4

5

6 7

89 11

1213

1415

16

10

17

21

2019

18

** *

Page 110: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

100

Figure 3.9: COSY spectrum of 7a (400 MHz, in CDCl3).

H9 appears at 3.88-3.91 ppm (Figure 3.8) and it couples with H8 and H17 as indicated by

the corresponding cross peak in COSY spectrum (Figure 3.9). The neighboring peak due to

N-H is observed at 3.70 ppm as a sharp singlet (Figure 3.8) since it does not couple with

H9 (Figure 3.9).

The two olefinic protons H8 and H7 are the most significant for distinguishing the α- and

γ-addition product. H8 couples with H9 and H7 (Figure 3.9) to give a doublet of doublets

at 6.07-6.12 ppm (Figure 3.8). H7 couples with only H8 and appears on the spectra as a

doublet at 6.44-6.47 ppm (Figure 3.8 (b)). The coupling constant between H8 and H7 of

16 Hz suggests that a trans olefin is present (2J7,8: 10 Hz for cis). From the appearance of a

significant roof effect (see Figure 3.8), one can conclude that the double bond is located in

α-position to a phenyl group. [1] This means that the new C-C bond was formed by

coupling of the cyclopentenyl radical with the α-C atom (C9) of the α-amino radical.

Page 111: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

101

The chemical shifts of these two protons also point to the α-addition product since they do

not correspond to the γ-addition product as deduced by simulated 1H-NMR spectra with the

help of the ACD®-NMR predictor program. Chemical shift values are calculated according

to well known formulas considering the substituents at geminal, cis or trans positions

which change the electron density of the surroundings and therefore the chemical shift of

H7 or H8 protons, and presented in Table 3.3. The calculated values are given for H7 and

H8 protons which would have different chemical shifts in the two structures, and also for

aromatic protons H12, H16 (chemically equivalent protons, give doublet at 6.49-6.52 ppm)

and H14 (gives triplet at 6.53-6.59 ppm) which are observed together with H7 around the

same region in the spectrum.

In the case of the α-addition product, H8 has the phenyl group at the cis position whereas it

is the –N(H)R group in the case of the γ-addition product. Therefore, the chemical shift of

H8 increases by the factor if 0.36 if it is present in the α-addition product and decreases by

the factor of 1.26 if it is present in the γ-addition product. The resulting chemical shift

value for the α-addition product (6.06 ppm) fits very well to the measured value (6.07-6.12

ppm). However, the calculated chemical shift for H8 was found as 4.44 ppm which does

not fit to the measured value.

The H7 has a phenyl group at the geminal position increasing its chemical shift value by

the factor of 1.38 in the case of the α-addition product. However, in the case of the

γ-addition product the geminal substituent is the –N(H)R group which increases the

chemical shift of H7 by the factor of 0.80. As a result, the measured chemical shift value

(6.44-6.47 ppm) for H7 also fits very well to the calculated value (6.41 ppm) for the

α-addition product but not with the calculated value for γ-addition product (5.83 ppm).

The two geminal cyclopentenyl protons at C18 are diastereotopic since they are adjacent to

a stereogenic center (C17). This neighboring causes chemically non-equivalence and

therefore gives rise to two multiplets at 1.61-1.69 ppm and 1.91-1.99 ppm (Figure 3.8).

H18 and H18` couple with each other and each of them has a different coupling to vicinal

protons H19 (2H) and H17 (1H) (Figure 3.9) to give complicated multiplet due to their

existence in a cyclic system. H19 protons couple with H18 (2H) and H20 (1H), and appear

in lower field (2.21-2.35 ppm) than the H18 protons because of the adjacent double bond.

Page 112: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

102

Structure Calculated Chemical Shifts

(According to method of Matter, U. E.) [1] [ppm]

δ8 δ8 = 5.25 + Igem+ Icis+ Itrans

δ8 = 5.25 + (-R) + (-Aryl) + (-H) δ8 = 5.25 + 0.45 + 0.36 + 0 = 6.06

(observed δ8 = 6.07-6.12 ppm)

δ7 δ7 = 5.25 + Igem+ Icis+ Itrans

δ7 = 5.25 + (-Aryl) + (-R) + (-H) δ7 = 5.25 + 1.38 + (-0.22) + 0 = 6.41 (observed δ7 = 6.44-6.47 ppm)

δ12,16 δ12,16 = 7.26 + Io+ Im+ Ip

δ12,16 = 7.26 + (-H + -NH-CH3) + (-H) + (-H) δ12,16 = 7.26 + (0 - 0.80) + 0 + 0 = 6.46 (observed δ12,16 = 6.49-6.52 ppm)

NH

1

21

20 19

1817 1615

14

1312

11

10

98

7

65

4

32

7a δ14 δ14 = 7.26 + Io+ Im+ Ip

δ14 = 7.26 + (-H) + (-H) + (-NH-CH3) δ14 = 7.26 + 0 + 0 + (-0.68) = 6.58 (observed δ14 = 6.53-6.59 ppm)

δ8 δ8 = 5.25 + Igem+ Icis+ Itrans

δ8 = 5.25 + (-R) + (-NR2saturated) + (-H) δ8 = 5.25 + 0.45 + (-1.26) + 0 = 4.44 (not observed) N

H

1

2120 19

1817 1615

14

1312

11

10

9 8

7

65

4

32

8a

δ7 δ7 = 5.25 + Igem+ Icis+ Itrans

δ7 = 5.25 + (-NR2saturated) + (-R) + (-H) δ7 = 5.25 + 0.80 + (-0.22) + 0 = 5.83 (not observed)

Table 3.3: Calculated chemical shift values for 7a and 8a.

The proton at C17 absorbs at 3.02 ppm and couples with H18 (2H) and H9 (1H) to give a

broad peak. H20 and H21 protons give characteristic multiplets at 5.61-5.65 ppm and 5.84-

5.86 ppm, respectively. The triplet at 7.01-7.06 ppm corresponds to the aromatic protons

H15 and H13 at the meta-position of the N-phenyl ring. Aromatic protons of the other

phenyl ring are observed as a triplet for H4 at 7.07-7.10 ppm, a triplet for chemically

equivalent H3 and H5 protons at 7.14-7.18 ppm, and a doublet at 7.22-7.25 for ortho-

position H2 and H6, respectively.

Page 113: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

103

Figure 3.10: 13C-NMR spectrum of 7a' (400 MHz, in CDCl3).

Further evidence for the structure of an α-addition product comes from the 13C-NMR

spectra. In the case of 7a, one diastereomer (7a') was isolated and its spectrum is displayed

in Figure 3.10 to simplify the view of the spectrum. In order to make sure the exact

chemical shifts of the signals, the cross peaks were followed in HETCOR spectrum

(Figure 3.11). Especially, the exact chemical shift of indicative signals C9, C17, and C8

and for differentiating α- from γ-addition were found by following the cross peaks in

HETCOR spectrum (Figure 3.11) and they are observed at 58.5, 51.2, and 130.7 ppm,

respectively (Figure 3.10).

Page 114: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

104

Appearance of C9 at 58.5 ppm proves that it is located near the nitrogen atom. This

chemical shift value of C9 fits to the value obtained by a simulated spectrum for the

α-addition product showing the C9 signal at 61.2 ppm. However, the C9 signal in the

simulated spectrum for the γ-addition product appears at 40.9 ppm which is quite different

from the measured value. C17 is also affected by this neighboring of C9 and appears at

lower field as well but does not shift as much as C9. The C17 signal was found in

simulated spectra at 52.9 ppm for the α-addition and 46.5 ppm for the γ-addition product.

The measured chemical shift value of 51.2 ppm fits again to the α-addition product.

Observation of the C8 signal at 130.7 ppm is another evidence for the α-addition product

because it is in agreement with the calculated value for the α-addition (135.1 ppm) but not

for the γ-addition product (110.6 ppm).

The other signals in the spectrum are not so significant because they are observed at the

similar chemical shifts with the calculated values both for α-addition and also the

γ-addition product. However, since all indicative signals fit to the α-addition product, it is

concluded that the C-C coupling has occurred at the α-position.

When the corresponding cross peaks are followed in the HETCOR spectrum (Figure 3.11),

the chemical shifts of the aromatic and olefinic (C21, C20, C7) signals were observed

easier than that in the 13C-NMR spectrum (Figure 3.10). The two close peaks at 130.0 ppm

correspond to C20 and C7. Since their chemical shifts are too close to each other, they can

be seen clearly in the HETCOR spectrum presented in Figure 3.11. The other olefinic

signal C21 was observed at 134.2 ppm. The signals at 26.3 ppm and 32.4 ppm correspond

to C18 and C19, respectively. The aromatic carbons are observed for C12, C16 at the

ortho-position at 113.1 ppm and C14 at the para-position of the N-substituted phenyl ring at

116.9 ppm. The ortho-position carbons of the N-substituted phenyl C13 and C15 were

observed at 129.0 ppm. The other aromatic carbons C2,C6 at 126.3 ppm, C3, C5 at

128.4 ppm and C4 at 127.4 ppm correspond to the ortho-, meta- and para-positions of the

second phenyl ring in the molecule, respectively. The signals at 137.0 ppm and at

147.7 ppm correspond to the aromatic C1 and C11 (Figure 3.10).

Page 115: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

105

18`

18

18

1917

9

N-H

19179

8

8

18`

18

18

1917

9

N-H

19179

8

8

Figure 3.11: HETCOR spectra of 7a' (400 MHz, in CDCl3).

Page 116: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

106

Figure 3.12: 1H-NMR spectrum of 7b (270 MHz, in CDCl3).

In the case of the diastereomeric mixture of 7b a double set of peaks is observed for both 1H-NMR (Figure 3.12) and 13C-NMR (Figure 3.13) spectra and the assignments given

above for the single diastereomer 7a'.

The multiplet at 1.55-1.65 ppm and two adjacent multiplets at 1.85-1.94 ppm correspond to

H19I/II and H18,18’I/II, respectively. H20I/II at 2.09-2.11 ppm and H17I/II at 2.58-2.61

ppm give broad peaks on the spectrum. The singlet of N-H proton (H10I/II) is located at

3.89 ppm near by triplets of H9I at 3.96-3.99 ppm and H9II at 4.02-4.04 ppm. Whereas

H21I at 5.91-5.92 ppm and H21II at 5.96-5.97 ppm are observed as multiplet because of

coupling with H20 and H22 protons, H22I at 5.71-5.74 ppm and H22II at 5.77-5.80 ppm

are observed as doublets since H22 couples only with H21 but not with H17 because of the

dihedral angle of 90° (Karplus equation, 3JHH = Jcos2ϕ - 0.28, ϕ: dihedral angle).

NH1

23

4

56 7

89 11

1213

1415

16

10

17 21

2019

18

22

Page 117: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

107

H8I and H8II are observed as doublets of doublets showing a roof-effect at 6.22-6.25 ppm

and 6.27-6.30 ppm, respectively, because of coupling with H7 and H9 according to

α-addition product. H7I/II because of coupling with H8, appear at 6.61-6.68 ppm as

doublets. Aromatic protons H12,16I/II and H14I/II of the N-substituted phenyl ring are

observed at 6.70-6.71 ppm and 6.73-6.76 ppm, respectively, in the same region as H7.

Meta-position protons H13,15I/II of the N-substituted phenyl ring are observed at 7.19-

7.27 ppm in the same region as H4I/II at 7.28-7.29 ppm, H3,5I/II at 7.31-7.34 ppm and

H2,6I/II at 7.35-7.44 ppm which correspond to para-, meta- and ortho-positions of the

second phenyl ring.

Figure 3.13: 13C-NMR spectrum of 7b (400 MHz, in CDCl3).

The 13C-NMR spectrum of 7b (Figure 3.13) also indicates that α-addition has occurred.

Carbon atoms C19I/II, C18I, C20I/II, and C18II that belong to the cyclohexenyl-ring are

observed at 21.7, 24.8, 25.2, and 26.5 ppm, respectively.

Page 118: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

108

Observation of C17I at 40.8 ppm, C17II at 40.9 ppm, C9I at 58.9 ppm, and C9II at

59.7 ppm because of neighboring to nitrogen atom proves α-addition as it has been

explained above for the cyclopentene addition product. Aromatic carbons of the

N-substituted phenyl ring were observed at 113.0 ppm (C12,16I), 113.4 ppm (C12,16II),

116.8 ppm (C14I), 117.2 ppm (C14II), 128.5 ppm (C13,15I/II) and 147.9 ppm (C11I/II).

While C22I is observed at 126.8 ppm, C22II appears at 128.3 ppm together with C3,5I/II.

Other olefinic carbons are observed at 129.0 ppm for C21I, at 130.5 ppm for C21II, at

131.1 ppm for C7II and at 129.9 ppm for C7I together with C8I/II. Aromatic carbons of the

second phenyl ring at the ortho-positions (C2,6I/II) and para-position (C4I/II) are observed

at 126.3 and 127.2 ppm, respectively. The singlet at 137.0 ppm corresponds to C11I/II. 1H-NMR and 13C-NMR spectra of 7c are presented in Figures 3.14 and 3.15 corresponding

to the diastereomeric mixture of the addition product. In accordance with the interpretation

of the NMR spectra for cyclopentene and cyclohexene addition products, the data indicate

the presence of the α-addition product.

Protons of α-pinenyl-ring appear at 0.89 ppm for H23I/II as singlet, at 1.11 ppm for H19I

and at 1.16 ppm for H19II as multiplets, at 1.39 ppm for H24I/II as singlet, at 1.75 ppm for

H26I/II as singlet, at 2.06 ppm for H20I/II as a multiplet, at 2.20 ppm for H18I/II as a

multiplet, at 2.40 ppm for H17I/II as a broad peak, at 5.32 ppm for H21I and at 5.49 ppm

for H21II as doublets.

The N-H proton appears at 3.84 ppm as a singlet for both diastereomers near by the narrow

triplets of H9I/II at 3.85-3.98 ppm. Olefinic protons H8I at 6.07-6.16 ppm as doublets of

doublets, H8II at 6.19-6.30 ppm as doublets of doublets and H7I/II at 6.57-6.59 ppm by

showing a roof-effect around this region of the spectrum which is an evidence of the

structure for the α-addition product as it was mentioned before. Aromatic protons were

observed as multiplets at 6.64-6.72 ppm for H12,16, H14 I/II, at 7.14-7.27 ppm for H13,15,

H4 I/II and at 7.30-7.43 ppm for H3,5, H2,6 I/II.

Page 119: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

109

Figure 3.14: 1H-NMR spectrum of 7c (270 MHz, in CD2Cl2/CDCl3).

Observation of C17I/II at 47.3 ppm, especially C9I at 58.1 ppm and C9II at 59.0 ppm

indicates the location of added α-pinenyl group by photocatalytic reaction at the α-position

to the amino-function in the structure. The carbon atoms at the α-pinenyl ring were

observed at 20.4 ppm for C24I/II, at 22.9 ppm for C25I/II, at 26.9 ppm for C26I/II, at

27.9 ppm for C23I, at 31.4 ppm for C23II, at 40.6 ppm for C18I/II, at 42.7 ppm for C19I/II,

at 46.5 ppm for C20I/II, at 127.4 ppm for C21I/II and at 131.6 ppm for C22I/II. The

olefinic carbons C7I/II and C8I/II were observed at 130.7 and 131.3 ppm, respectively. The

carbons of the two phenyl ring were observed at 113.2 ppm for C12,16I/II, at 116.9 for

C14I/II, at 126.3 ppm for C2,6I/II, at 128.3 ppm for C3,5I/II, at 129.1 ppm for C13,15I/II,

at 130.2 for C4I/II, at 137.0 ppm for C1I/II, at 146.9 ppm for C11I and at 147.7 ppm for

C11II.

NH1

23

4

5

6 7

89 11

1213

1415

16

10

17

21

20

19

18

22

2624

2325

Page 120: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

110

Figure 3.15: 13C-NMR spectrum of 7c (270 MHz, in CDCl3).

The NMR data for all addition products as explained in Section 3.1.3.4 indicate the

presence of an α-addition product. Selected NMR data are summarized in Table 3.4. The

H8 was observed as doublet of doublets in the cases of 7a' and 7c' at about 6.07-6.16 ppm

and at about 6.22-6.30 ppm in 7b'. The H7 was observed as doublet at 6.44-6.47 ppm in

7a', at 6.57-6.59 ppm in 7c', and at 6.61-6.71 ppm in 7b'. In all cases the narrow triplet at

about 3.85-3.99 ppm corresponds to the H9 and the N-H signal appears as a singlet at about

3.70-3.90 ppm. The H17 was observed at about 2.40-2.60 ppm in 7b' and 7c' whereas it

appears at 3.02 ppm in 7a'. The H18 appears at 1.61-1.69 ppm in 7a', at 1.85-1.94 ppm in

7b', and at 2.20 ppm in 7c'.

Page 121: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

111

The H21 was observed at 5.84-5.86 ppm as multiplet in 7a', and as a doublet at 5.32 ppm

in 7c'. Since in the case of 7b' the H21 does not couple with H17 because of the dihedral

angle of 90°, it was observed as a doublet at 5.71-5.74 ppm.

The C17 signal was observed at 40.8 ppm in 7b', at 47.3 ppm in 7b', and at 51.2 ppm in

7a'. In all cases C9 appears at 58. C7 and C8 signals were observed at about 130 ppm for

all addition products.

Selected NMR Data for 7a', 7b' and 7c'

NH

R

1

7

89

10

11

R:

1718 21

(7a')

R:

1718 21

(7b')

R:

171821

Me

(7c') 1H-NMR, δ [ppm] (CDCl3, 270 MHz)

H8 6.07-6.12 (d) 6.22-6.30 (d) 6.07-6.16 (d)

H7 6.44-6.47 (d) 6.61-6.71 (d) 6.57-6.59 (d)

H9 3.88-3.91 (t) 3.96-3.99 (t) 3.85-3.98 (t)

H10 (N-H) 3.70 (s) 3.89 (s) 3.84 (s)

H17 3.02 (br) 2.58-2.61 (br) 2.40 (br)

H18 1.61-1.69 (m) 1.85-1.94 (m) 2.20 (m)

H21 5.84-5.86 (m) 5.71-5.74 (d) 5.32 (d) 13C-NMR, δ [ppm] (CDCl3, 270 MHz)

C17 51.2 40.8 47.3

C9 58.5 58.9 58.1

C7 130.0 129.9 130.7

C8 130.7 129.9 131.3

Table 3.4: Selected NMR Data for 7a', 7b' and 7c'.

Page 122: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

112

Ph NH

Ph

Ph NH

Ph

Ph NH

Ph

1.50

1.34

1.491.47

1.46

1.49

1.49

1.34

1.46

1.46

(a)

(b)

(c)

α-amino vinyl radical

γ-amino benzyl radical

Figure 3.16: Comparison of radical stabilities for two possible radical. Bond lengths were

estimated with the help of Chem3D® program.

To understand the preferential attack of the allyl radical on the α-amino allyl radical, it is

reasonable to assume that the former act as the electrophile. Since the charge density in the

(Figure 3.16 (b)) is larger at the α-position (Figure 3.16, (a)) than at the γ-position

(Figure 3.16, (c)), attack at the former should be favored. In addition, sterical hindrance at

the γ-position may also direct the attack to the α-position.

3.1.2. Thermodynamic Aspects

The photogenerated electrons and holes in a semiconductor can be thought as reducing and

oxidizing surface centers, respectively. If the reduction potential level of the imine

(electron acceptor) lies below the conduction band edge and the oxidation potential of the

olefin (electron donor) locates at a higher potential level than the valence band edge of the

semiconductor, thermodynamic feasibility is fulfilled for the interfacial electron transfer.

Therefore, thermodynamic feasibility of the addition between olefins and 6 can be clarified

by the comparison of band edge positions of the photocatalyst with redox potentials of the

substrates.

Page 123: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

113

The reduction potential of 6 was determined by cyclic voltammetry measurement in

MeOH. From the first reversible wave in the cathodic region, the first reduction potential of

6 was found as -0.35 V (Figure 3.17). Band edge positions of CdS were determined in H2O

(at pH:7) by photovoltage measurements (see Chapter 2.3.2) and estimated for that in

MeOH according to the reference [2]. Location of band edge positions of CdS/Al2O3 and

redox potentials of 6 and olefins are illustrated in Figure 3.18. From this comparison, since

redox potentials of the substrates locate between the band edges of the semiconductor,

IFET from olefinic substrates and to the imine substrate seems thermodynamically favored.

-800 -400 0 400

-0,003

-0,002

-0,001

0,000

0,001

E [mV]

I [µA

]

-138.9

-564.2

E: -0.35 V

Figure 3.17: Cyclic voltammogram of 6 in MeOH; potential values are relative to NHE

(pH= 7).

Page 124: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

114

2

1

0

-1

R + H+ / RH

in H2O in MeOH

6-0.39

+2.01+

-0.69

+1.71

-0.35

V [NHE]

Figure 3.18: Location of band edge positions of 30% CdS/Al2O3(n) and potentials for

imine reduction and olefin oxidation.

Page 125: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

115

3.2. Photocatalytic Addition Reactions with N-(1-Adamantyl)-p-X-

benzaldehyde Imine (X: -H, -F, -Cl, -Br, -OCH3)

3.2.1. Photocatalytic addition reactions of N-(1-adamantyl)-p-chloro-

benzaldehyde imine with cyclopentene, cyclohexene, and α-pinene.

The photocatalytic addition reactions of cyclopentene, cyclohexene, and α-pinene were

firstly performed with the p-chloro-substituted derivative of N-(1-adamantyl)-benzaldehyde

imine (Figure 3.19). Subsequently, p-fluoro, p-bromo, p-methoxy substituted and

unsubtituted derivatives of the imine substrate were also synthesized and two series of

addition reactions with cyclohexene (see Section 3.2.2) and α-pinene (see Section 3.2.3)

were carried out in order to investigate the influence of p-substitution.

+ R-H

30%CdS/Al2O3 hν

MeOH/CH2Cl2

Ad:

Ar: Cl

R:Me

a b c

N

Ad Ar

HHN

Ad Ar

H

R +HN

Ad Ar

HN

Ad Ar

11 16a-c 20-20'

yield 21-62%

Figure 3.19: CdS-photocatalyzed addition of olefins to N-(1-adamantyl)-p-chloro-

benzaldehyde imine.

Page 126: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

116

All reactions were carried out under N2 atmosphere in a Pyrex immersion lamp apparatus

(see Experimental Section 6.1.1, Figure 6.1) and a 100W tungsten halogen lamp was used

as the irradiation source. The reason for using CH2Cl2/MeOH mixture as solvent is the poor

solubility of the imine substances in MeOH. Reaction progress was followed by HPLC and

TLC analysis. After complete consumption of the imine, irradiation was stopped, the

catalyst was filtered off and the solvent was removed under reduced pressure. The product

mixtures were obtained as yellow oils in every case. Purification by preparative column

chromatography packed with silica provided addition products as light yellow oils in the

yields of 21-62% and hydrodimers as white powders. Crystallization afforded colorless

crystals.

3.2.1.1. HPLC Analysis

HPLC chromatograms for addition products and hydrodimers are presented in Figure 3.20

and corresponding data are listed in Table 3.5.

As discussed in the previous chapter, the addition product is observed as two diastereomers

which consist of enantiomeric pairs. However, in the HPLC chromatograms only in the

case of cyclohexene addition the peaks were clearly separated and it was possible to

determine diastereomeric ratio and retention times of the two diastereomers (Table 3.5).

HPLC analysis of the reaction solution exhibited one hydrodimer peak (20) at retention

time of 22 min in the case of cyclopentene and α-pinene addition. Surprisingly, the HD

isolated from the cyclohexene addition exhibited a peak at 31 min (20′). According to

X-ray structural analysis 20 and 20′ are two diastereomers (Figure 3.24). Upon dissolution

of each of the two crystalline diastereomers and HPLC analysis, it turns out that the peaks

exactly correspond to the peaks obtained from the reacting solution (Figure 3.20). From

these observations, one must conclude that hydrodimer formation is diastereoselective

affording one identical diastereomer (20) in the case of cyclopentene and α-pinene

addition, and the other diastereomer (20′) in the case of cyclohexene addition.

Page 127: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

117

Figure 3.20: HPLC-Analysis of reaction solution (a) and isolated diastereomers 20 and 20'

of hydrodimer of 11 (b) (detection at 230 nm, eluent: CH3CN/CH2Cl2= 90/10 (v/v), for the

instrumental set-up of the HPLC see Experimental Section 6.1.3.12).

HPLC Chromatograms

(a)

20 16a

16b 20′

20 16c

Cyclopentene addition Cyclohexene addition α-Pinene addition

(b)

20 20′

Page 128: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

118

HPLC Data for Addition Products and Hydrodimers

Addition Product [16a-c]

Hydrodimer [20, 20′]

Olefin tR [min] diast1; diast2

diastereomeric ratio

diast1/diast2 tR [min] ratio

16 / 20

Cyclopentene 23.9 - 22.1 1:4

Cyclohexene 16.9; 18.6 5:3 31.4 2:1

α-pinene 24.3 - 21.9 9:5

Table 3.5: HPLC-Data for CdS-photocatalzed addition reaction of olefins to 11 (detection

at 230 nm, eluent: CH3CN/CH2Cl2= 90/10 (v/v)).

3.2.1.2. Mass Spectroscopy

The base peak of aliphatic amine compounds, frequently results from α-C-C cleavage and

the molecular ion peak is usually quite weak or undetectable. [3] Therefore, in the mass

spectra of the addition and hydrodimer products, the molecular ion peak is very weak. The

base peak of m/z = 275 corresponds to the fragment formed by cleavage of cyclopentenyl-,

cyclohexenyl- and α-pinenyl- branch of 16a, 16b and 16c, respectively.

Page 129: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

119

Cyclopentene addition product (16a) / m/z = 343

Cyclohexene addition product (16b) / m/z = 357

α-Pinene addition product (16c) / m/z = 410

Hydrodimer (20) / m/z = 550

Figure 3.21: Mass spectra of 16a-c and hydrodimer products, (FD-MS, in CH2Cl2).

Page 130: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

120

3.2.1.3. Structure Determination by NMR and X-Ray

All NMR spectra correspond to a diastereomeric mixture of the addition products. The

structure of each diastereomer for cyclopentene and cyclohexene addition products were

solved by crystal structure analysis. According to crystallographic data, the addition

products are present as two diastereomers and each diastereomer also consists of two

enantiomeric pairs.

Figure 3.22: 1H-NMR spectrum of 16a (270 MHz, in CDCl3).

Because of the diastereomeric mixture, the aromatic protons of 16a appear at 7.03-7.30

ppm and H19 at 5.70-5.73 ppm as double signals. The diastereotopic H22 protons of the

cyclopentenyl ring were observed at 1.21-1.36 ppm as two adjacent multiplets.

1516

17

1213

1411

18 22

2

6

21

10

9

4

20

58

19

1

7

3

NH

CH

Cl

Page 131: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

121

Protons of adamantyl-ring appear as large multiplet for H2,6,7,10,4,9 at 1.37-1.54 ppm and

as a multiplet at 1.80-1.93 ppm for H8,3,H5.

The protons of the cyclopentenyl ring were observed at 2.25-2.26 ppm, 2.82 ppm, and

5.22-5.25 ppm, respectively. The N-H proton gives a sharp singlet at 3.65 ppm because the

vicinal coupling 3J(CH-NH) is not observed due to rapid proton exchange. H11 was

observed as a doublet at 3.74 ppm because of coupling with H18.

Selected NMR data for 16a-c are presented in Table 3.6.

Selected NMR Data for 16a, 16b and 16c

1516

17

1213

1411

2

610

9

4

58

1

7

3

NH

CH

Cl

RR:

1819

21

22

20

(16a)

R:

19

212220

1823

(16b)

R:

27

19

21

22

20 26

23

25

18

24Me

(16c) 1H-NMR, δ [ppm] (CDCl3, 270 MHz)

H11 3.74 (d) 4.12 (br) 3.73 (s)

H18 2.82 (m) 2.19-2.29 (m) 3.61-3.64 (d)

H19 5.70-5.73 (m) 5.72-5.73 (m) 5.32-5.49 (d)

H20 5.22-5.25 (m) 5.68-5.69 (m) -

N-H 3.65 (s) 4.12 (br) 4.41 (br)

H21 2.25-2.26 (m) 1.78-1.81 (m) 3.67-3.69 (d) 13C-NMR, δ [ppm] (CDCl3, 270 MHz)

C1 41.6 39.9 43.4

C11 53.4 64.0 58.4

C18 51.9 46.0 I, 54.8 II 43.8

C19 128.7 128.6 128.0

C20 128.3 126.7 129.7

Table 3.6: Selected NMR data for 16a-c.

Page 132: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

122

In the case of 16a the H11 proton appears as a doublet at 3.74 ppm, whereas in 16c a

chemical shift of 3.73 ppm is found. The H11 signal of 16c was observed as a singlet

instead of a doublet because it does not couple with H18. The H18 proton couples only

with H19 and appears as a doublet for each diastereomer (see also Chapter 3.2.3, Table

3.11). In the case of 16b, H11 and N-H protons were observed together at 4.12 ppm. The

N-H peak of 16c is a broad signal at 4.41 ppm. For 16a the N-H signal is found at 3.65

ppm.

Crystallization of 16a in CH3CN gave colorless crystals which were subjected to crystal

structure analysis. According to the crystallographic data, 16a forms monoclinic crystals

and the cyclopentene ring is disordered indicating the existence of two diastereomers of

16a within the crystal (Figures 3.23 and 3.24). In addition, the two diastereomers are

present as enantiomeric pairs (Figure 3.31). Fortunately, the different crystals of the two

diastereomers could be separated due to their different crystal form. In Figure 3.29 the

crystal structure of the diastereomers are depicted.

Figure 3.23: Superposition of two diastereomers of 16a.

Page 133: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

123

Figure 3.24: Crystal structure of two diastereomers of 16a.

Diastereomer 1

Diastereomer 2

R

S

S

S

Page 134: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

124

H

NHAdAr *

*

S

S

S

S R

R

R

R

H

ArAdHN *

*

H

ArAdHN *

*

H

NHAdAr *

*

Ad: Ar: Cl

Diastereomer1

Diastereomer2

Enantiomer1 ofDiastereomer1

Enantiomer2 ofDiastereomer1

Enantiomer1 ofDiastereomer2

Enantiomer2 ofDiastereomer2

Figure 3.25: Cyclopentene adduct 16a existing as enantiomeric pairs of two diastereomers.

The cyclohexene addition product crystallized from CHCl3/n-hexan/(CH3)3CCN giving

colourless monoclinic crystals. Similar to the cyclopentene adduct, two diastereomers

consisting of the enantiomeric pairs of (RS, SR) and (SS, RR) diastereomers (Figure 3.26)

are formed.

Page 135: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

125

Figure 3.26: Crystal structure for two diastereomers of 16b.

Diastereomer 1

Diastereomer 2

S

S

S

R

Page 136: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

126

Figure 3.27: Superposition of the disordered parts of the structure 16b.

Structures of hydrodimers were also identified by NMR spectroscopy and X-ray crystal

structure analysis.

Figure 3.28: 1H-NMR spectrum of hydrodimer 20 (270 MHz, in CDCl3).

NH HN

ClCl

5

6

3

2

11

10

87

4

1 1213

149

1615

17 18

252419

2620

2122

23

2728

29

35

3433

36

30

3132

Page 137: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

127

In the 1H-NMR spectrum of hydrodimer 20, the protons of adamantyl rings are observed of

0-87-1.99 ppm (Figure 3.28). The large multiplet includes H18,28, H24,34 (doublet) and

H22,32,20,30,25,35,26,36 (triplet). However, since their chemical sifts are in the same

region (0.87-1.64), they can not be observed separately. A broad peak at 1.89-1.99 ppm

corresponds to H33,29,31,23,19,21 of the adamantyl rings. Two sharp singlets at 3.68 ppm

and 3.81 ppm arise from N-H and H7,8 protons of the hydrodimer, respectively. Aromatic

protons were observed at 7.03-7.34 ppm.

Figure 3.29: 13C-NMR spectrum of hydrodimer 20 (270 MHz, in CDCl3).

The 13C-NMR spectrum of hydrodimer 20 is presented in Figure 3.29. The

C19,21,23,29,31,33 carbon atoms of two adamantyl rings appear all together at 29.5 ppm.

Other carbons that belong to adamantyl rings were observed at 36.5 ppm for

C20,22,26,30,32,36, at 43.8 ppm for C18,24,25,28,34,35 and at 51.0 ppm for C17 and C27

that are in α-position to nitrogen.

The signals at 60.8 ppm and 61.4 ppm correspond to C7 and C8, respectively. Aromatic

carbons were observed at 127.7 ppm for C2,6, 127.8 ppm for C11,13, 128.9 ppm for C3,5,

129.6 ppm for C10,14, 131.6 ppm for C1, 132.3 ppm for C12, 143.6 ppm for C4 and 144.4

ppm for C9.

Page 138: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

128

20′

20

Figure 3.30: Crystal structure for hydrodimer of 11. Structure 20′ indicates product from

cyclohexene addition, structure 20 was obtained from cyclopentene or α-pinene addition

reaction.

Page 139: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

129

1H and 13C NMR spectra examples and interpretations have been depicted in Section 3.2.2

for cyclohexene, in Section 3.2.3 for α-pinene addition products with various substituted

and unsubstituted imine derivatives.

3.2.2. Photocatalytic Addition Reactions of N-(1-Adamantyl)-p-X-

benzaldehyde Imine (X: -H, -F, -Cl, -Br, -OCH3) with Cyclohexene

Photocatalytic addition of cyclohexene was performed with unsubstituted, chloro-, fluoro-,

bromo- and methoxy-substituted derivatives of N-(1-adamantyl)-benzaldehyde imine in

satisfactory to good yields (47-82%). The yields given in Figure 3.31 correspond to

isolated diastereomeric mixture of addition products after column chromatography.

The hydrodimer of the imine was isolated only for the p-chloro derivative in order to

determine its molecular structure. For the bromo-substituted imine, the hydrodimer of 12

could be detected by HPLC but was not isolated since the ratio of addition product /

hydrodimer is very high (ratio: 13:1, see Table 3.7). In the other cases no hydrodimer was

detectable by HPLC analysis.

+30%CdS/Al2O3 hνMeOH/CH2Cl2

Ad:

Ar: X

NAd Ar

HHN

Ad ArH +

HNAd Ar

HNAd Ar

9-13 b 14-18b 20,21

X -H -F -Cl -Br -OCH3 9 10 11 12 13

Addition 14b 15b 16b 17b 18bProduct

Hydrodimer - - 20 21 -

Yield % 59 82 62 79 47

Figure 3.31: CdS-photocatalyzed addition of cyclohexene to unsubstituted and substituted

N-(1-adamantyl)-benzaldehyde imine derivatives.

Page 140: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

130

HPLC data are presented in Table 3.7.

HPLC Data for Cyclohexene Addition Reactions

Addition Product (AD) [14-18b]

Hydrodimer (HD) [20,21]

Ad-N=C(H)C6H4X tR [min]

diast1-diast2

diastereomeric ratio

diast1/diast2 tR [min] ratio

AD/ HD

X: -Cl 16.9 -18.6 5:3 31.4 2:1

X: -F 13.2 – 14.3 9:4 - -

X: -Br 17.3 – 19.0 6:5 41.4 13:1

X: -OCH3 14.8 - - -

X: -H 15.3 – 16.4 1:1 - -

Table 3.7: HPLC-Data for CdS-photocatalzed reaction of cyclohexene with 9-13,

(detection at 230 nm, eluent: CH3CN/CH2Cl2=90/10 (v/v)).

Listed diastereomeric ratios were determined from the HPLC peak areas. However, only in

the case of p-methoxy derivative such determination could not be achieved since the peaks

of two diastereomers could not be separated.

According to HPLC data only in the case of unsubstituted imine derivative the ratio of two

diastereomers was 1:1. For other derivatives one of diastereomers was observed in a higher

concentration. Therefore, one can conclude that the electrophilic attack of the cyclohexenyl

radical occurs preferentially at one side of the α-amino aryl radical.

Page 141: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

131

Figure 3.32: 1H-NMR spectrum of 17b (270 MHz, CDCl3).

The 1H NMR spectrum of 17b is depicted in Figure 3.32 as an example of a cyclohexene

addition product. The region of 0.7-2.0 ppm corresponds to adamantyl ring protons and

H18, H21, H23, H22 of the cyclohexenyl ring. N-H and H11 protons were observed

together as a broad peak at 4.12 ppm for all cyclohexene addition products except in the

case of the p-fluoro-phenyl derivative, which exhibits a singlet for N-H and a doublet for

H11, separately. Olefinic H19 and H20 give two multiplets for all cyclohexene adducts at

around 5.60-5.98 ppm. This differs from the other addition product of olefins and imines in

which case the two signals were separated by 0.1 to 0.3 ppm.

Corresponding 1H NMR data for all cyclohexene addition products have been listed in

Table 3.8.

1516

17

1213

1411

18 23

2

6

22

10

9

4

21

58

20

19

7

3

NH

CH

Br

1

Page 142: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

132

X: -H, -F, -Cl, -Br, -OCH3

1516

17

1213

1411

18 23

2

6

22

10

9

4

21

58

20

19

7

3

NH

CH

X

1

1H-NMR Data for

δ [ppm]

proton -H 14b

-F 15b

-Cl 16b

-Br 17b

-OCH3 18b

H11 4.13 (br)

3.77-3.85 (d)

4.12 (br)

4.14 (br)

4.45 (br)

H18 2.53 (m)

2.13-2.14 (m)

2.19-2.29 (m)

1.75-1.79 (m)

2.03-2.04 (m)

H19 5.93-5.98 (m)

5.73-5.76 (m)

5.72-5.73 (m)

5.61-5.79 (m)

5.89-5.94 (m)

H20 5.66-5.72 (m)

5.65-5.69 (m)

5.68-5.69 (m)

5.61-5.79 (m)

5.68-5.69 (m)

H21 2.27-2.38 (m)

1.64-1.82 (m)

1.78-1.81 (m)

1.23 (m)

1.89-1.98 (m)

H22 1.15 (m)

0.81-0.82 (m)

1.16-1.18 (m)

0.77-0.79 (m)

0.75-0.83 (m)

H23 1.18-1.24 (m)

0.96-1.00 (m)

1.29-1.34 (m)

1.08 (br)

1.14-1.22 (m)

N-H 4.13

4.12 4.12 4.14 4.45

H2,6,7 1.78-2.02 (m)

1.39-1.53 (m)

1.59-1.63 (m)

1.39-1.42 (m)

1.63-1.69 (m)

H8,5,3 2.27-2.38 (m)

1.89 (br)

1.85-1.94 (m)

1.80-1.90 (m)

1.89-1.98 (m)

H10,4,9 1.41-1.76 (m)

1.39-1.53 (m)

1.41-1.56 (m)

1.42-1.54 (m)

1.63-1.69 (m)

Haromatic 7.12-7.32

6.85-7.26 7.14-7.25 7.17-7.38 7.20-7.26

Table 3.8: 1H-NMR data for cyclohexene addition products.

Page 143: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

133

Figure 3.33: 13C-NMR spectrum of 15b (270 MHz, CDCl3).

The 13C-NMR spectrum of 15b is given in Figure 3.33 as an example for cyclohexene

addition products and 13C-NMR data summarized in Table 3.9. The C11 carbon signal for

unsubstituted, p-bromo, and p-chloro derivatives appear at about 65 ppm but for methoxy-

and fluoro-substituted derivatives at 76.5 ppm and 51.2 ppm, respectively. C18 signals

were observed at about 45 ppm for p-chloro and unsubstituted, at around 35 ppm for

p-bromo and p-methoxy and at 53 ppm for fluoro-substituted derivative. The C19 signals

appeares at 129 ppm except for p-methoxy derivative (133.8 ppm). The other olefinic

carbon C20 was observed at 125-127 ppm except for fluoro-phenyl derivative (114.9 ppm).

1516

17

1213

1411

18 23

2

6

22

10

9

4

21

58

20

19

7

3

NH

CH

F

1

Page 144: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

134

X: -H, -F, -Cl, -Br, -OCH3

1516

17

1213

1411

18 23

2

6

22

10

9

4

21

58

20

19

7

3

NH

CH

X

1

13C-NMR Data for

δ [ppm]

carbon -H 14b

-F 15b

-Cl 16b

-Br 17b

-OCH3 18b

C15 127.3 142.9 128.8 129.4 140.7

C16,14 127.6 114.5 126.2 130.5 123.9

C17,13 129.9 128.5 127.8 129.8 133.9

C12 150.6 129.0 129.5 131.2 133.9

C11 65.1 51.2 64.0 65.4 76.5

C18 44.3 52.8 46.0 36.6 34.1

C19 129.6 128.6 128.6 129.8 133.8

C20 127.5 114.9 126.7 128.2 124.4

C21 29.8 29.5 35.4 29.5 22.2

C22 18.8 20.6 19.4 14.1 14.0

C23 24.8 23.4 28.2 18.6 18.3

C1 35.0 43.3 39.9 35.5 25.3

C2,6,7 37.8 43.9 30.9 31.9 26.8

C8,5,3 22.4 29.5 17.8 18.9 18.2

C10,4,9 26.8 36.5 23.8 24.9 25.3

Table 3.9: 13C-NMR data for cyclohexene addition products.

Page 145: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

135

3.2.3. Photocatalytic Addition Reactions of N-(1-Adamantyl)-p-X-

benzaldehyde Imine (X: -H, -F, -Cl, -Br, -OCH3) with α-Pinene

The photocatalytic addition of α-pinene was performed with unsubstituted, chloro-, fluoro-,

bromo- and methoxy-substituted derivatives of N-(1-adamantyl)-benzaldehyde imine in

satisfactory to good yields (21-85%). The given yields in Figure 3.34 correspond to

isolated diastereomeric mixture of addition products after column chromatography.

Hydrodimers of imines were only detected by HPLC but not isolated except the

hydrodimer of 11. The unsubstituted phenyl derivative afforded only the addition product.

Ad:

Ar: X

X -H -F -Cl -Br -OCH3 9 10 11 12 13

Addition 14c 15c 16c 17c 18cProduct

Hydrodimer - 19 20 21 22

Yield % 71 81 21 85 61

+

30%CdS/Al2O3 hν

MeOH/CH2Cl2N

Ad Ar

HHN

Ad Ar

H +HN

Ad Ar

HN

Ad Ar

9-13 c 14-18c 19-22

Me

Figure 3.34: CdS-photocatalyzed addition of α-pinene to N-(1-adamantyl)-benzaldehyde

imine derivatives.

HPLC data are presented in Table 3.10.

Page 146: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

136

HPLC Data for α–Pinene Addition Reactions

Addition Product (AD)

[14-18c] Hydrodimer (HD)

[19-22] Ad-N=C(H)C6H4X tR [min]

diast1-diast2

diastereomeric ratio

diast1/diast2 tR [min] ratio

AD / HD

X: -Cl 24.3 - 21.9 9:5

X: -F 22.1 – 23.4 5:3 19.8 4:5

X: -Br 25.6 - 22.2 2:1

X: -OCH3 22.3 - 18.9 1:2

X: -H 21.9 - - (a)

Table 3.10: HPLC-Data for CdS-photocatalzed addition reaction of α-pinene to 9-13,

(detection at 230 nm, eluent: CH3CN/CH2Cl2=90/10 (v/v)). (a) No hydrodimer was

detectable.

A diastereomeric ratio of 5:3 was determined from HPLC peak areas only for the p-fluoro

phenyl derivative since the peaks of two diastereomers for other derivatives could not be

separated with the used eluent system.

All imines afforded also the hydrodimer product except for the phenyl derivative, as it has

been noted for cyclohexene addition as well. The ratio of addition/hydrodimer was found

higher for chloro-, fluoro- and bromo- substituted derivatives, whereas it decreased to 0.5

for the p-methoxy substituted one. However, none of these hydrodimers was isolated in this

work.

Page 147: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

137

Figure 3.35: 1H-NMR spectrum of 14c (270 MHz, CDCl3).

The 1H-NMR spectrum of 14c is presented in Figure 3.35 as an example for α-pinene

addition products. H25 and H26 methyl protons of the α-pinenyl ring are observed as

singlets at 1.61 ppm and 0.72 ppm, respectively. However, the singlet of methyl group H27

appears together with the multiplet of H4,9,10 protons of the adamantyl ring at around

1.16-1.25 ppm. The H24 diastereotopic protons of the α-pinenyl ring appear as two

adjacent multiplets at 0.85-0.96 ppm. Whereas H3,5,8 protons of the adamantyl ring give

rise to a multiplet at 1.01-1.13 ppm, a broad signal at about 1.45 ppm was observed for

H2,6,7. The H21 and H23 protons of the α-pinenyl ring appear as two broad peaks at 1.84-

1.87 ppm and at 2.06-2.11 ppm, respectively.

Observation of the H18 as a doublet at 3.54-3.57 ppm for one of two diastereomers and at

3.63-3.66 ppm for the other, because of coupling with only H19, also indicates that H18

and H23 do not couple with each other. In addition, because of the coupling of H18 only

with H19, H11 was observed as singlet at 3.73 ppm.

1516

17

1213

1411

18 19

2

6

20

10

9

4

25

58

21

24

7

3

NH

CH1

23

22

26

27

Page 148: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

138

The olefinic H19 proton gives two doublets because of diastereomeric mixture of the

addition product at around 5.04-5.21 ppm. For all α-pinene addition products, the N-H

proton was observed as a broad peak at 4.40 ppm. The multiplet around 7.08-7.31 ppm

corresponds to aromatic protons of 14c. 1H-NMR data for all α-pinene addition products are given in Table 3.11.

Figure 3.36: 13C-NMR spectrum of 17c (270 MHz, CDCl3).

The 13C-NMR spectrum of 17c is given in Figure 3.36 as an example; for all other spectra

see Table 3.12. Apart from aromatic carbons, similar chemical shifts were observed for all

α-pinene addition products and because of diastereomeric mixture some carbon signals

(e.g. C18, C19, C20) are doubled.

1516

17

1213

1411

18 19

2

6

20

10

9

4

25

58

21

24

7

3

NH

CH

Br

1

23

22

26

27

Page 149: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

139

1H-NMR Data for X: -H, -F, -Cl, -Br, -OCH3

1516

17

1213

1411

18 19

2

6

20

10

9

4

25

58

21

24

7

3

NH

CH

X

1

23

22

26

27

δ [ppm]

proton -H 9c

-F 10c

-Cl 11c

-Br 12c

-OCH3 13c

H26 0.72 (s) 0.71 (s) 0.92 (s) 0.78 (s) 0.71 (s) H24

0.85-0.96 (m)

0.84-0.92 (m)

1.08-1.10 (m)

0.90-0.97 (m)

0.89-0.92 (m)

H3,5,8 1.01-1.13 (m)

1.04-1.10 (m)

1.12-1.17 (m)

1.08-1.18 (m)

1.04-1.09 (m)

H4,9,10 (m) H27 (s)

1.16-1.25

1.15-1.26 1.20-1.27

1.22-1.30

1.16-1.27

H2,6,7

1.45 (br)

1.46-1.47 (br)

1.47-1.52 (br)

1.49-1.53 (br)

1.47 (br)

H25 1.61 (s) 1.60 (s) 1.67 (s) 1.65 (s) 1.59 (s) H21 1.84-1.87

(br) 1.84-1.87 (br)

2.06-2.14 (br)

1.92-1.98 (br)

1.84-1.92 (br)

H23 2.06-2.11 (br)

2.06-2.11 (br)

2.17-2.34 (br)

2.08-2.14 (br)

2.05-2.08 (br)

H18I 3.54-3.57 (d)

3.56-3.62 (d)

3.61-3.64 (d)

3.60-3.77 (d)

3.59-3.66 (d)

H18II 3.63-3.66 (d)

3.65-3.71 (d)

3.67-3.69 (d)

3.60-3.77 (d)

3.59-3.66 (d)

H11 3.73 (s) 3.76 (s) 3.73 (s) 3.77 (s) 3.71 (s) N-H 4.37 (br) 4.36 (br) 4.41 (br) 4.42 (br) 4.39 (br) H19I/II

5.04-5.21 (d)

5.14-5.31 (d)

5.32-5.49 (d)

5.20-5.44 (d)

5.14-5.32 (d)

Haromatic 7.08-7.31 6.84-7.21 7.04-7.28 7.08-7.36 6.70-7.21

Table 3.11: 1H-NMR data for α-pinene addition products.

Page 150: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

140

13C-NMR Data for X: -H, -F, -Cl, -Br, -OCH3

1516

17

1213

1411

18 19

2

6

20

10

9

4

25

58

21

24

7

3

NH

CH

X

1

23

22

26

27

δ [ppm]

carbon -H 9c

-F 10c

-Cl 11c

-Br 12c

-OCH3 13c

C25 20.4 20.3 21.7 20.3 20.3 C26,27 23.1 23.0 25.2 23.1 23.0 C3 26.4 26.5 29.4 26.5 26.3 C5,8 27.6 27.6 29.5 27.6 27.7 C4,9,10 29.6 29.6 36.5 29.5 29.9 C24 29.4 29.4 36.4 29.7 29.3 C22 36.6 36.6 38.6 36.4I-36.6II 36.5 C2,6,7 40.5 40.4 43.6 40.5 40.4 C1 41.0 41.0 43.4 41.0 40.9 C18I 42.4 42.4 43.8 42.8 42.7 C18II 43.0 43.1 43.8 43.1 43.0 C23 44.1 43.8 43.8 43.7I-43.9II 43.9 C21 47.4 47.4 51.3 47.1 47.3 C11 58.2 57.5 58.4 60.7 54.9 C19I 118.5 118.5 128.0 118.5 118.4 C19II 119,1 118.8 128.0 118.9 118.4 C15 119.6 163.1 131.5 119.6 157.8 20I 127.7 128.5 129.7 129.2 128.1 20II 127.7 129.6 129.7 129.6 131.8 13,17 127.2 128.9 129.1 130.0 128.5 14,16 127.8 119.6 128.2 130.7 113.1 12 144.2 144.2 132.4 144.4 144.2

Table 3.12: 13C-NMR data for α-pinene addition products.

Page 151: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 3. CdS-Photocatalyzed Synthesis of Homoallylamines

141

References:

[1] M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der Organischen

Chemie, 3. überarbeitete Auflage, Georg Thieme Verlag Stuttgart, New York, 1987.

[2] G. Redmond, D. Fitzmaurice, J. Phys. Chem. 1993, 97, 1426.

[3] R. M. Silverstein, G. C. Bassler, Spectrometric Identification of Organic

Compounds, Second Ed., John Willey & Sons, Inc., New York, 1967.

Page 152: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 4. Summary 142

CHAPTER 4 4. Summary The aim of this work was to investigate the general applicability of the recently reported

CdS catalyzed photoaddition of cyclic olefins to imines. Furthermore, it should be

investigated if the rate accelerating effect of the covalent attachment of CdS onto silica

(SEMSI effect), as previously published, can be extended to various alumina supports.

C NH

Ar

Ar

MeOHC N

H

HAr

ArCH

CHAr NHAr

Ar NHAr+

CdS/hν+

In the first part of the work, the electronic semiconductor-support interaction (SEMSI)

effect was investigated for alumina supported CdS powders. In the case of alumina

supported CdS, very slight band-gap widening (0.02-0.06 eV) and band-edge shift have

been observed (Figure 4.1). The relatively larger band-gap shifts correspond to acidic

alumina supported photocatalysts (30AII and 10AII) and the neutral alumina supported

catalyst prepared in more basic impregnation solution (30NII25). From XRD analyses and

high resolution transmission electron micrographs, the cubic structure of CdS powders was

identified without ambiguity with a crystal size of 8-20 nm.

Since it is known in the literature that the method employed for quasi-Fermi level

measurements is light intensity dependent, corresponding experiments were conducted. It

turned out that under given experimental conditions the obtained values did not depend on

light intensity. In addition, it was found that the absence or presence of a reducing agent

(4.1)

Page 153: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 4. Summary 143

has no significant effect. This suggests that the photoproduced holes oxidized lattice sulfide

to elemental sulfur as evidenced by XPS analysis.

CdS-A 10NII 30NII25 30BII 30AII 10AII

2,5

2,0

1,5

1,0

0,5

0,0

-0,5 ⎯ ⎯ ⎯ ⎯ ⎯ ⎯

⎯ ⎯ ⎯ ⎯ ⎯ ⎯

2.462.432.412.482.452.39

+ 2.07+ 2.06+ 2.04+ 1.97 + 2.10+ 2.10

- 0.36- 0.36- 0.35- 0.38- 0.41- 0.42

Photocatalysts

E(F

B)[V

]

Figure 4.1: Band edge positions (+ 0.02 V) and band-gap energies (+ 0.01 eV) for CdS

photocatalysts at pH=7.

Since band edges do not shift significantly, and the valence and conduction bands have

sulfur and cadmium character, respectively, binding energies differ only very little (0.4 eV)

for both Cd3d and S2p electrons as determined by X-ray photoelectron spectroscopy.

Measurement of the time resolved photovoltage shows that the lifetime of the

photogenerated surface charges increases from 0.76 µs to 1.20 µs when CdS is supported

onto neutral alumina (see Table 4.1). This parallels the increase of the band-gap energy

from 2.39 to 2.45 eV. Similarly, the reaction rate of olefin addition (Eq. 4.1) is increased

approximately by a factor of 4 when the sample 10NII is used instead of unsupported CdS,

and by a factor of about 6 in the case of 30NII25 (Table 4.2).

Page 154: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 4. Summary 144

Photocatalysts Ebg

[eV]

Lifetime

[10-6 s]

Reaction Rate

[10-7 moll-1s-1]

CdS-A 2.39 0.76 0.24

50NII 2.42 0.75 0.25

30NII 2.43 0.86 0.36

10NII 2.45 1.20 0.84

Table 4.1: Band edge positions, band-gap energies and lifetime values of unsupported CdS

and 10-50% CdS/Al2O3(n) in comparison with reaction rates.

Photocatalysts

Ebg

[eV]

Lifetime

[10-5 s]

Reaction Rate

[10-7 moll-1s-1]

30AII 2.43 0.57 0.34

30NII 2.43 0.61 0.36

30NII25 2.48 0.64 1.97

Table 4.2: Band edge position, band-gap and lifetime values in comparison with reaction

rates of 30wt% Al2O3 supported CdS photocatalysts.

In conclusion, it was found that in the case of alumina supported CdS, the SEMSI effect is

not as strong as in the case of silica supported CdS. The reason for this fact can be

explained by the different electronegativity of Al and Si which influences electron density

on the support oxygen atom. The lower electronegativity of Al (1.47) than Si (1.74) causes

a lower change in electron density on oxygen and Cd leading to a smaller shift in band edge

positions.

Page 155: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 4. Summary 145

Ph NPh R-H

MeOH

Ph NH

Ph

R

Ph NH

Ph

Ph NH

PhR

hν+

30% CdS/Al2O3

addition at α-position addition at γ-position

R: Me

isolated yield% 67 72 48

Figure 4.2: Photocatalytic addition reaction between N-Cinnamylideneaniline and

cyclopentene, cyclohexene and α-pinene.

In the second part of this work, novel homoallylamine derivatives were synthesized by

semiconductor photocatalysis.

In first set of synthesis work, in order to investigate general applicability of the

photocatalytic addition reactions between imines and olefins, the known photoaddition

reaction was extended to the α,β-unsaturated imine N-Cinnamylideneaniline, which

contains the nitrogen-terminated conjugated system in an open chain.

Irradiation of 30% CdS/Al2O3(n) in a methanolic solution of N-Cinnamylideneaniline and

an excess of olefin produces corresponding novel homoallylic secondary amines, which are

C-C coupling products between the α-amino cinnamyl radical of the imine and the allylic

radical of the olefin (Figure 4.2). Structures of these new products were identified by

NMR, IR, and MS analysis.

All addition products were regioselectively formed as α-addition products. This is in

accord with the higher electron density at the carbon center in the α-position to nitrogen.

Therefore, the electrophilic attack of the allylic radical should be preferred at this position

and not at the γ-carbon atom. The latter attack should be also disfavored due to the sterical

hindrance.

Page 156: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 4. Summary 146

+

30%CdS/Al2O3 hνMeOH/CH2Cl2

X

HN +

9 - 13 a - c 14a - 18c 19- 22

R-H

X

N

H RH

X

HN

X

NH

X -H -F -Cl -Br -OCH3 9 10 11 12 13

Addition 14b-14c 15b-15c 16a-16c 17b-17c 18b-18cProduct

Hydrodimer - 19 20 21 22

Isolated yield21-85%

R:Me

a b c

Figure 4.3: Photocatalytic addition reaction between N-(1-adamantyl)-benzaldehyde imine

derivatives and cyclopentene, cyclohexene, and α-pinene.

In the second set of synthesis work, semiconductor photocatalyzed syntheses were

progressed to the synthesis of adamantane ring containing novel homoallylamine

derivatives. Adamantane derivatives receive great attention in synthetic and pharmaceutical

chemistry because of their diverse biological activity. Therefore it was of interest

synthesizing novel derivatives through semiconductor photocatalysis.

A series of novel homoallylamine derivatives were synthesized through CdS

photocatalyzed C-C coupling reactions between certain olefins (cyclopentene, cyclohexene

and α-pinene) and various N-(1-adamantyl)-benzaldehyde imines. The novel compounds

were identified by NMR, IR, MS, and some of them by X-ray crystal structure analysis like

16a and 16b. According to x-ray crystal structure analysis, the addition products are

present as enantiomeric pairs of two diastereomers.

Page 157: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 4. Summary 147

Figure 4.4: Crystal structures of 16a and 16b.

In the case of addition reactions of cyclohexene to various p-substituted N-(1-adamantyl)-

benzaldehyde imine derivatives the addition products were isolated in yields of 47-82%.

Whereas the highest yield was obtained from addition to the p-fluoro derivative with 82%,

the lowest yield belongs to the p-methoxy substituted compound with 47%. The

hydrodimer of the imine was observed only for 11 in significant amount and in traces for

12. The hydrodimer formation for 11 is diastereoselective affording one identical

diastereomer in the case of cyclopentene and α-pinene addition, and the other diastereomer

in the case of cyclohexene addition.

The addition of α-pinene was also performed with chloro-, fluoro-, bromo-, methoxy-

substituted and unsubstituted derivatives of N-(1-adamantyl)-benzaldehyde imine in

satisfactory to good yields (21-85%). In this case, the highest yields were obtained for the

p-bromo substituted imine with 85% and for p-fluoro compound with 81%. The

hydrodimers of the imine were detected only by HPLC but not isolated except the

hydrodimer of 11. The unsubstituted derivative of the imine yielded only the addition

product, as it has been noted for the cyclohexene addition as well.

In conclusion, in the synthesis part of this work demonstrates that photoinduced charge

separation could be utilized for new atom economic organic syntheses. Although no

information on biological activity of the novel compounds is available, according to present

knowledge some of them posses promising structural aspects.

16a 16b

Page 158: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 5. Zusammenfassung 148

CHAPTER 5 5. Zusammenfassung Das Ziel dieser Arbeit war es, die allgemeine Anwendbarkeit der kürzlich berichteten CdS

katalysierten Photoaddition von zyklischen Olefinen an Imine zu untersuchen. Weiterhin

wurde der früher untersuchte Effekt der Steigerung der Reaktionsgeschwindigkeit durch

kovalente Bindung von CdS auf Kieselgel (SEMSI Effekt) auf das System CdS-

Aluminiumoxid erweitert.

C NH

Ar

Ar

MeOHC N

H

HAr

ArCH

CHAr NHAr

Ar NHAr+

CdS/hν+

Im ersten Teil dieser Arbeit wurde der elektronische Halbleiter-Träger-Wechselwirkung

(SEMSI) für Aluminiumoxid gestützte CdS-Pulver untersucht. Im Fall des Aluminiumoxid

gestützten CdS wurden eine geringe Vergrößerung der Bandlücke (0.02-0.06 eV) und eine

Verschiebung der Bandkante beobachtet (Abbildung 5.1). Die größeren

Bandlückenverschiebungen wurden bei den von saurem Aluminiumoxid gestützten

Photokatalysatoren (30AII and 10AII) und bei dem von neutralem

Aluminiumoxid gestützten Katalysator, welcher in einer stärker basischen

Imprägnierungslösung hergestellt wurde (30NII25). Durch XRD-Analysen und

hochaufgelöste Transmissionselektronenmikrographie konnte die kubische Struktur der

CdS-Pulver mit einer Kristallgröße von 8-20 nm ohne Zweifel aufgeklärt werden.

(5.1)

Page 159: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 5. Zusammenfassung 149

Da aus der Literatur bekannt ist, daß die für quasi-Fermi Niveau Messungen angewendete

Methode von der Lichtintensität abhängig ist, wurden entsprechende Versuche

durchgeführt. Es zeigte sich, daß unter vorgegebenen experimentellen Bedingungen die

erhaltenen Werte nicht von der Lichtintensität abhängig waren. Zusätzlich wurde

herausgefunden, daß weder die An- noch die Abwesenheit eines Reduktionsmittels einen

signifikaten Effekt hervorrief. Dies läßt vermuten, daß die photoproduzierten Löcher das

Gittersulfid zu elementaren Schwefel oxidieren, wie auch durch XPS Analyse bestätigt

wurde.

CdS-A 10NII 30NII25 30BII 30AII 10AII

2,5

2,0

1,5

1,0

0,5

0,0

-0,5 ⎯ ⎯ ⎯ ⎯ ⎯ ⎯

⎯ ⎯ ⎯ ⎯ ⎯ ⎯

2.462.432.412.482.452.39

+ 2.07+ 2.06+ 2.04+ 1.97 + 2.10+ 2.10

- 0.36- 0.36- 0.35- 0.38- 0.41- 0.42

Photokatalysatoren

E(F

B)[V

]

Abbildung 5.1: Positionen der Bandkanten (+ 0.02 V) und die Bandlückenenergie (+ 0.01

eV) für die CdS-Photokatalysatoren bei pH=7.

Da die Bandkanten sich nicht wesentlich verschieben, und die Valenz- und Leitungsbänder

Schwefel- bzw. Cadmiumcharakter besitzen, unterscheiden sich die durch XPS bestimmten

Bindungsenergien sowohl für Cd3d als auch für S2p Elektronen nur geringfügig (0.4 eV).

Zeitaufgelöste Messungen der Photospannung zeigen, daß die Lebensdauer der

photogenerierten Oberflächenladungen von 0.76 µs auf 1.20 µs steigt, wenn CdS auf

Page 160: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 5. Zusammenfassung 150

neutrales Aluminiumoxid gestützt wird (siehe Tabelle 5.1). Parallel dazu steigt die

Bandlückenenergie von 2.39 auf 2.45 eV. In ähnlicher Weise steigt die

Reaktionsgeschwindigkeit der Olefinaddition (Gl. 5.1) ungefähr auf das Vierfache, wenn

statt ungestütztem CdS die Probe 10NII verwendet wird, und ungefähr auf das Sechsfache

im Fall von 30NII25 (Tabelle 5.2).

Photokatalysatoren Ebg

[eV]

Lebensdauer

[10-6 s]

Reaktionsgeschwindigkeit

[10-7 moll-1s-1]

CdS-A 2.39 0.76 0.24 50NII 2.42 0.75 0.25 30NII 2.43 0.86 0.36 10NII 2.45 1.20 0.84

Tabelle 5.1: Positionen der Bandkanten, Bandlückenenergien, und Lebensdauern für

ungestütztes CdS und 10-50% CdS/Al2O3(n) im Vergleich mit

Reaktionsgeschwindigkeiten.

Photokatalysatoren Ebg

[eV]

Lebensdauer

[10-5 s]

Reaktionsgeschwindigkeit

[10-7 moll-1s-1]

30AII 2.43 0.57 0.34 30NII 2.43 0.61 0.36 30NII25 2.48 0.64 1.97

Tabelle 5.2: Positionen der Bandkanten, Bandlückenenergien, und Lebensdauern für die

30Gew% Al2O3 gestützten Photokatalysatoren im Vergleich mit

Reaktionsgeschwindigkeiten.

Zusammenfassend wurde gefunden, daß im Fall von Aluminiumoxid-gestütztem CdS der

SEMSI Effekt nicht so stark wie bei Kieselgel-gestütztem CdS ist. Der Grund für diese

Tatsache sind die unterschiedlichen Elektronegativitäten von Al und Si, welche die

Elektronendichte am Trägersauerstoffatom beeinflussen. Die niedrigere Elektronegativität

von Al (1.47) gegenüber Si (1.74) verursacht eine geringere Änderung der

Page 161: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 5. Zusammenfassung 151

Elektronendichte an Sauerstoff und Cadmium, welche zu einer geringeren Verschiebung

der Positionen der Bandkanten führt.

Ph NPh R-H

MeOH

Ph NH

Ph

R

Ph NH

Ph

Ph NH

Ph

R

hν+

30% CdS/Al2O3

Addition in α-Position Addition in γ-Position

R: Me

Ausbeute% 67 72 48

Abbildung 5.2: Photokatalytische Additionsreaktion zwischen Zimtsäureanil und

Cyclopenten, Cyclohexen und α-Pinen.

Im zweiten Teil der vorliegenden Arbeit wurden neuartige Homoallylaminderivate über

Halbleiterphotokatalyse synthetisiert.

Im ersten Teil der synthetischen Arbeit wurde diese schon bekante Photoaddition auf das

α,β-ungesättigte Imin Zimtsäureanil erweitert, welches ein stickstoffterminiertes

konjugiertes offenkettiges System enthält, um die allgemeine Anwendbarkeit der

photokatalytischen Additionsreaktionen zwischen Iminen und Olefinen zu untersuchen.

Belichtung einer methanolischen Lösung von Zimtsäureanil in Gegenwart eines

CdS/Al2O3(n) Photokatalysators und eines Überschusses des Olefins erzeugt entsprechende

neuartige homoallylische sekundäre Amine, welches Produkte einer C-C-Kupplung

zwischen dem α-Aminozimtsäureradikal des Imins und des Allylradikals des Olefins sind

(Abbildung 5.2). Die Strukturzuordnung dieser neuen Substanzen erfolgte mittels NMR-,

IR- und MS-Analyse.

Die Addition erfolgte stets regioselektiv zu α-Additionsprodukten. Dies erfolgt in

Übereinstimmung mit der höheren Elektronendichte am Kohlenstoffzentrum in α-Position

zum Stickstoff. Deshalb sollte der elektrophile Angriff des Allylradikals bevorzugt in

Page 162: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 5. Zusammenfassung 152

dieser Position und nicht am γ-Kohlenstoffatom erfolgen. Der letztgenannte Angriff ist

ebenfalls aufgrund sterischer Hinderung benachteiligt.

+

30%CdS/Al2O3 hνMeOH/CH2Cl2

X

HN +

9 - 13 a - c 14a - 18c 19- 22

R-H

X

N

H RH

X

HN

X

NH

X -H -F -Cl -Br -OCH3 9 10 11 12 13

Additions- 14b-14c 15b-15c 16a-16c 17b-17c 18b-18cProdukt

Hydrodimer - 19 20 21 22

Ausbeute21-85%

R:Me

a b c

Abbildung 5.3: Photokatalytische Additionsreaktion zwischen N-(1-Adamantyl)-

benzaldehydiminderivaten und Cyclopenten, Cyclohexen, und α-Pinen.

Im zweiten Teil der synthetischen Arbeit wurden halbleiterphotokatalysierte Synthesen zur

Darstellung von Adamantylaminen weitergeführt. Adamantylamine erlangten in

synthetischer und pharmazeutischer Chemie wegen ihrer vielfältigen biologischen Aktivität

große Aufmerksamkeit. Daher war es von Interesse, neuartige Derivate durch

Halbleiterphotokatalyse zu synthetisieren.

Eine Reihe von neuartigen Homoallylaminderivaten wurde über CdS-photokatalysierte C-

C-Kupplungsreaktionen zwischen bestimmten Olefinen (Cyclopenten, Cyclohexen und α-

Pinen) und verschiedenen N-(1-Adamantyl)-benzaldehydiminen dargestellt. Die

Strukturzuordnung dieser neuen Substanzen erfolgte mittels NMR-, IR- und MS-Analyse,

und bei manchen, wie 16a und 16b, mittels Röntgenstrukturanalyse. Gemäß der

Röntgenstrukturanalyse liegen die Additionsprodukte als Enantiomerenpaare zweier

Diastereomere vor.

Page 163: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 5. Zusammenfassung 153

Abbildung 5.4: Kristallstrukturen von 16a und 16b.

Im Fall der Additionsreaktionen von Cyclohexen an verschiedene p-substituierte N-(1-

Adamantyl)-benzaldehydiminderivate konnten die Additionsprodukte in Ausbeuten von

47-82% isoliert werden. Dabei wurde die höchste Ausbeute bei der Addition an das p-

fluoro-Derivat mit 82% erhalten, und die niedrigste Ausbeute gehörte zu der p-

methoxysubstituierten Verbindung mit 47%. Das Hydrodimer des Imins konnte nur bei 11

in beträchtlichen Mengen beobachtet werden und in Spuren bei 12. Die Bildung des

Hydrodimers von 11 verläuft diastereoselektiv, wobei im Fall der Addition von

Cyclopenten und α-Pinen nur ein identisches Diastereomer und im Fall der Addition von

Cyclohexen nur das andere Diastereomer entsteht.

Die Addition von α-Pinen wurde ebenfalls mit chloro-, fluoro-, bromo-,

methoxysubstituierten und unsubstituierten Derivaten von N-(1-Adamantyl)-

benzaldehydimin mit befriedigenden bis guten Ausbeuten (21-85%) durchgeführt. In

diesem Fall wurden die höchsten Ausbeuten mit dem p-bromsubstituierten Imin mit 85%

und mit dem p-fluorsubstituierten Imin mit 81% erzielt. Die Hydrodimere des Imins

wurden nur mittels HPLC nachgewiesen und mit Ausnahme von 11, nicht isoliert. Das

unsubstituierte Iminderivat ergab nur das Additionsprodukt, wie bei der oben genannten

Addition von Cyclohexen.

16a 16b

Page 164: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 5. Zusammenfassung 154

Zusammenfassend zeigt der synthetische Teil der vorliegenden Arbeit, dass

photoinduzierte Ladungstrennung für neue atomökonömische organische Synthesen

genutzt werden kann. Obwohl die biologische Aktivität dieser Verbindungen noch

unbekannt ist, besitzen einige von ihnen, basierend auf unserem jetzigen Wissenstand,

vielversprechende Strukturmerkmale.

Page 165: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 155

CHAPTER 6 6. Experimental Section

6.1. General Methods

All preparations, synthesis and NMR measurements were carried out under nitrogen

atmosphere by standard Schlenk techniques.

6.1.1. Irradiation Apparatus and Lamps

All preparative irradiations were performed under nitrogen atmosphere in a Pyrex-

immersion lamp apparatus (sample volume: 100-250 ml) with a tungsten-halogen lamp

(100W, 12V, λ>350 nm, Osram) (Figure 6.1). The lamp shaft of the apparatus is made of

quartz glass which is surrounded by a cooling jacket. The suspension was effectively

stirred with a magnetic stirrer and cooled by circulating water through the cooling jacket to

provide a constant temperature during the irradiation. 1 ml samples were taken from the

side fixed neck closed with a tight rubber septum in order to follow the reaction progress,

and after filtering off the catalyst through a micropore-filter (Whatman, Nylon membrane,

diameter: 4 mm, pore-size: 0.45 µm), they were injected to analytical HPLC or TLC

analysis was carried out.

All irradiations to determine photocatalytic activities were carried out in a 15 ml quartz

cylindrical cuvette (Figure 6.2) placed on a scaled optical bench (Figure 6.3) (at a 30 cm

distance from the lamp). Irradiation was performed with an Osram XBO 150W Xenon-arc

lamp (intensity I0 (400-500 nm) = 2.10-6 Einstein.s-1.cm-1).

Page 166: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 156

During the irradiation, the reaction mixture was cooled by water circulation through the

surrounding cooling jacket of cylindrical cuvette.

Quasi-Fermi level determinations were performed in a three necked round bottom Pyrex

flask placed on the optical bench at 30 cm distance from the irradiation source (150 W

XBO lamp). For the light intensity effect investigations, various neutral-density filters of

different transmission were used.

Figure 6.1: Pyrex immersion lamp apparatus

Page 167: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 157

Figure 6.2: Cylindrical quartz cuvette

Figure 6.3: Optical bench

Page 168: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 158

6.1.2. Solvents and substances

All solvent were p.a. grade and deuterated solvents were also degassed before use; samples

for NMR measurements were prepared under nitrogen.

Substances for CdS Preparation:

CdSO4·8/3H2O (Riedel de Haën), Na2S·xH2O (Fluka)

Support Materials:

Aluminum oxide activated, Neutral:

Aldrich, [19,997-4], Typ 507C, Brockmann I (Standard)

Grain size ~ 150 mesh, 58 A°, pH of aqueous suspension: 6.8 (for 100 g/l)

(For OH-group density and specific surface area values see Section 6.1.3.9)

Aluminum oxide activated, Acidic:

Aldrich, [19,996-6], Typ 504C, Brockmann I (Standard)

Grain size ~ 150 mesh, 58 A°, pH of aqueous suspension: 5.0 (for 100 g/l)

(For OH-group density and specific surface area values see Section 6.1.3.9)

Aluminum oxide activated, Basic:

Aldrich, [19,944-3], Typ 5016, Brockmann I (Standard)

Grain size ~ 150 mesh, 58 A°, pH of aqueous suspension: 10.0 (for 100 g/l)

(For OH-group density and specific surface area values see Section 6.1.3.9)

Silica Grace Type 432, Neutral: particle size: 30-60 µm, pore size: 17 nm.

(For OH-group density and specific surface area values see Section 6.1.3.9)

Silica Aerosil 200, Degussa: pH: 3.5-5.5, SiO2 content wt% 99.0–100.5

(For OH-group density and specific surface area values see Section 6.1.3.9)

Olefinic Substances: Cyclopentene (Acros), cyclohexene (Acros), (1S)-(-)-α-pinene

(Acros) were distilled and stored under nitrogen prior to use.

Amines and Aldehydes: Aniline (Merck), 1-Adamantylamine (Aldrich), p-

Fluorobenzaldehyde (Acros), p-Bromobenzaldehyde (Aldrich), p-Chlorobenzaldehyde

(Acros), Benzaldehyde (Acros), Anisaldehyde (Fluka), trans-Cinnamaldehyde (Acros).

Page 169: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 159

6.1.3. Spectroscopic and analytical methods

6.1.3.1. NMR Spectroscopy

All NMR spectra were recorded on JEOL FT-JNM-EX 270 or JEOL FT-JNM-LA 400

spectrometers at RT.

6.1.3.2. Mass Spectroscopy

Mass spectra were recorded on JEOL JMS 700 (EI 70 eV, FD 2 kV).

6.1.3.3. IR Spectroscopy

IR spectra were recorded on Perkin-Elmer 16 PC FT-IR as KBr pellets or in CaF2 cuvettes.

6.1.3.4. Diffuse Reflectance Spectroscopy

Diffuse reflectance spectra were recorded on a Shimadzu UV-3101 PC, UV-Vis-NIR

scanning spectrophotometer equipped with a diffuse reflectance accessory. BaSO4 or Al2O3

were used as reference. For all CdS photocatalyst powders, measured reflectance values

were converted by the instrument software to the Kubbelka-Munk function (F(R∞)) and

transformed to the modified Kubelka-Munk functions for direct semiconductors by help of

the Origin® program.

All DRS measurements were performed with the pure CdS substance in order to determine

band-gap energy values. However, in the case of optimum catalyst amount determinations

for photocatalytic activity measurements, in order to prepare various concentrations, CdS

samples were diluted into BaSO4 and ground finely in a ball mill and reflectance spectra

were recorded for these diluted substances.

6.1.3.5. XRD

XRD measurements were performed using a Huber-diffractometer with Cu-Kα radiation

(λ=1.5048 Å).

Page 170: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 160

6.1.3.6. Transmission Electron Microscopy

The analysis was carried out in the Central Facility for High Resolution Electron

Microscopy of Friedrich-Alexander University Erlangen-Nürnberg

Instrument: Philips CM 30 T/STEM, operated at 300 kV accelerating voltage.

Preparation of samples for TEM:

• Suspending powders in MeOH

• Treatment in an ultrasonic bath for approximately 30 s

• Dropping the suspension on a C-filmed Cu-Net

• Drying under air

Measurement of CdS-grain size:

• Darkfield-illustration with a section of inflection-rings (diffuse, nanocrystalline

powder)

• Assessing of size from final picture-screen (Ring, enlargement)

6.1.3.7. XPS

X-ray photoelectron spectra were measured on a Phi 5600 ESCA spectrometer (pass energy

of 23.50 eV, Al standard, 300.0 W, 45.0°)

6.1.3.8. Photo-EMF Measurements (P-EMF)

Measurements were performed by Dr. Cornelia Damm/Doz. Dr.Israel at Martin-Luther-

Universität Halle-Wittenberg, Institut für Organische Chemie, Merseburg.

Sample preparation:

100 mg of the powder were dispersed in 3 g of a solution of PVB Mowital B 30 HH in 1,2-

Dichlorethane (10 wt% polyvinyl butyrate).The mixture was cast on a hydrophobic glass

slide having a surface area of 26 cm2 and dried in a solvent atmosphere. After drying the

dispersion layer was removed from the glass support and stored in vacuum (5 Torr) at room

temperature for 9h. The dispersion layers contain about 25 wt% of the pigment.

Page 171: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 161

Figure 6.4: Registration of a P-EMF signal from a laser pulse irradiated semiconductor

sample; (1) Sample, (2) Transparent electrode (conducting glass), (3) Metal electrode, (4)

Insulating foil. [1]

Photo-EMF measurements:

From the dispersion layer pieces having a diameter of 1 cm were cut and placed in the

Photo-EMF apparatus. To get information about the whole decay process Photo-EMF

measurements in two time ranges were performed: (1) µs range to record the fast decay

processes, (2) ms range to record the slow decay processes.

Conditions of the Photo-EMF measurements:

Wavelength: 337 nm (Nitrogen laser PNL 100), about 2.7x1013 quanta per flash, samples

have total absorption, Temperature: 25°C.

Page 172: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 162

6.1.3.9. OH-group Densities and Specific Surface Areas

Thermogravimetry (TGA) and BET measurements were carried out in Institute of

Theoretical Chemistry, by R. Müller from the research group of Prof. Dr. Schwieger.

Acidic Al2O3 : Removal of weight from 23.2166 mg between 200 and 1000°C: 0.6103 mg

OH group density: 6.22 OH/nm2, BET: 149 m2 / g

Figure 6.5: TGA data of Al2O3(a).

Page 173: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 163

Basic Al2O3: Removal of weight from 16.4463 mg between 200 and 1000°C: 0.2890 mg

OH group density: 4.28 OH/nm2, BET: 145 m2 / g

Figure 6.6: TGA data of Al2O3(b).

Page 174: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 164

Neutral Al2O3: Removal of weight from 18.7320 mg between 200 and 1000°C: 0.3827 mg

OH group density: 3.83 OH/nm2, BET: 189 m2 / g

Figure 6.7: TGA data of Al2O3(n).

Page 175: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 165

SiO2 Grace432: Removal of weight from 7.7832 mg between 200 and 1000°C: 0.1162 mg

OH group density: 1.72 OH/nm2, BET: 308 m2 / g

Figure 6.8: TGA data of SiO2 Grace Type 432.

Page 176: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 166

SiO2 Aerosil200: Removal of weight from 2.8415 mg between 200 and 1000°C: 0.01967

mg, OH group density: 1.65 OH/nm2, BET: 148 m2 / g

Figure 6.10: Recorded TGA data of SiO2 Aerosil Type 200.

6.1.3.10. Elemental Analysis

Elemental analyses were performed with a Carlo Erba Elemental Analyzer Model 1108 for

CdS samples and with Carlo Erba Elemental Analyzer Model 1106 for all organic

compounds.

Page 177: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 167

6.1.3.11. Cyclic Voltammetry

Cyclic voltammetry measurements were performed with a BAS Epsilon EC instrument

with a standard three-electrode cell under argon atmosphere at RT. The concentration of

imine substance was 10-3M. NBu4PF6 (10-1M) was used as electrolyte. Potentials were

referenced to the NHE.

Three-electrode cell set-up:

Working electrode: glassy carbon ROTEL A

Reference electrode: SCE (Potential values were taken by the saturated KCl system)

Auxiliary electrode: Pt wire

6.1.3.12. HPLC

Analytical: SHIMADZU LC-10ATvp Pump, with FCV-10ALvp solvent mixer unit,

injection unit with 20µl sample loop, Column: SUPELCO Discovery-C18 High-pressure

column, Eluent: corresponding eluent systems were depicted in synthesis section for each

sample. Detector: SPD-M 10Avp Diode Array Detector

Preparative: KNAUER HPLC pump 64, preparative pump head with 1ml sample loop;

Column: Nucleosil 120 C18 (250x32mm, 5µm, Knauer); Eluent: CH3CN/H2O (5/1; v/v);

flow rate: 37 ml/min; Detector: Knauer UV-Vis Filter-Photometer (λ=254 nm).

6.1.3.13. TLC

SiO2: (Fluka) with fluorescence indicator 254 nm, layer thickness: 0.2 mm on aluminium

cards

Al2O3: (Fluka) with fluorescence indicator 254 nm, layer thickness: 0.2 mm on TLC-PET

foils

6.1.3.14. Preparative Column Chromatography

SiO2: (Fluka) Silica gel 60, particle size: 0.04-0.0063 mm, Activity according to

Brockmann and Schodder: 2-3

Al2O3: (Acros), neutral, particle size: 52-200 µm.

Page 178: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 168

6.2. Quasi-Fermi Level Measurements Used materials and devices:

0.01 M, 0.1 M, 1 M and 2 M of NaOH solutions and HNO3 solutions

30 mg of powder

6 mg of Methylviologenedichloride

0.1 M of KNO3 solution (75 ml)

pHmeter, multimeter

light source: XBO 150W lamp

working electrode: platinum plate with a large surface

reference electrode: Ag/AgCl

Figure 6.11: Schematic illustration of photovoltage measurement cell

Experimental method:

30 mg of CdS powder in 75 ml of KNO3 solution were sonicated in a three-necked flask

under vacuum for 15 minutes. Thereafter experimental set up was arranged and the system

kept under N2. Initial pH values of 7.0-7.5 were found for all materials. The pH value of

Page 179: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 169

the suspension was adjusted by dropping HNO3 solution into the suspension for obtaining

pH ≅ 3-3.5 as initial pH value. Thereafter MV2+ was added to the suspension (addition of

MV2+ before acidification may cause an experimental error because at higher pH values

MV2+ is not stable), light source was switched on and “titration” was carried out until

observation of the blue color of MV+•.

6.2.1. Influence of Hole Scavengers

The measurements were carried out as described above except by adding CH3CO2Na or

Na2SO3 to the suspension. Experiments were performed with 50% neutral alumina

supported CdS (50NII).

Investigation of S0 formation: The measurements were carried out as described above for

the absence of a hole scavenger with 50NII. Further details are described in theoretical part

(Chapter 2.3.2.1). The dried CdS powder was pressed into a pellet (200 kp/cm2) and

subjected to XPS analysis.

6.2.2. Influence of Light Intensity

The measurements were carried out in the absence of a hole scavenger as described above.

In all cases a 400 nm cut-off filter was inserted into the light beam. Light intensity was

varied with various neutral density filters (%T: 70, 50, 43, 35, 28, 12). The light intensity

of the 150 W XBO lamp was measured with a Radiant Power/Energy Meter, Model 70260

(Oriel Instruments) by placing the sensor (at λ=250-600 nm) at the distance of 30 cm

(where the cuvette is usually placed) from the lamp. A water filter was also used between

lamp and cuvette for removing IR radiations. The experiments were performed with 50NII.

Page 180: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 170

6.3. Synthesis of CdS Photocatalysts

6.3.1. Unsupported CdS (CdS-A)

CdSO4·8/3H2O were dissolved in aqueous NH3 (10%). Na2S·xH2O were dissolved in water

and added dropwise to the CdSO4 solution within a period of 1,5 h. The resulting yellow

suspension was stirred for 20 h. After separation by suction filtration, the residue was

washed with water to constant pH (pH=7), dried over P2O5 in a vacuum desiccator. After

drying, the powder was ground in an agate mortar and stored under N2 (see Table 6.1).

6.3.2. SiO2 supported CdS

10 g of SiO2 and CdSO4·8/3H2O (5.33 g, 20.8 mmol) were stirred overnight in 150 ml

aqueous NH3 (10%). Na2S·xH2O (5.72 g, 20.8 mmol) were dissolved in 50 ml water and

added dropwise to the CdSO4/ SiO2 mixture within a period of 1,5 h. The resulting yellow

suspension was stirred for 20 h. After separation by suction filtration, the residue was

washed with water to constant pH (pH=7) and dried over P2O5 in a vacuum desiccator.

After drying, the powder was ground in an agate mortar and stored under N2.

6.3.3. Al2O3 supported CdS

Neutral Al2O3 supported CdS powders:

Alumina-supported photocatalysts containing 50, 30, and 10 wt% of CdS were prepared by

impregnating Al2O3 with cadmium sulfate and precipitation with sodium sulfide.

Aluminum oxide (neutral) and CdSO4·8/3H2O were stirred overnight in aqueous NH3

(10%) (Alumina was stirred in ammonia for 8h previously). Na2S was dissolved in water

and added drop wise to the CdSO4/Al2O3 mixture within a period of 1,5 h. The resulting

yellow suspension was stirred for 20 h. After separation by suction filtration, the residue

was washed with water to constant pH (pH=7), dried over P2O5 in a vacuum desiccator.

After drying, the powder was ground in an agate mortar and stored under N2 (see Table

6.1).

Page 181: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 171

Photocatalyst CdSO4 10% NH3 Na2S H2O Al2O3(n)

CdS-A 12.85 g (89.2 mmol)

150 ml 11.15 g (40.61 mmol)

50 ml -

10N 1.77 g (6.92 mmol)

50 ml 1.9 g (6.92 mmol)

20 ml 10 g

30N 5.33 g (20.8 mmol)

150 ml 5.72 g (20.8 mmol)

50 ml 10 g

50N 8.90 g (34.6 mmol)

250 ml 9.53 g (34.6 mmol)

100 ml 10 g

Table 6.1: Amounts of materials employed for preparation of unsupported and neutral

alumina supported CdS powders.

Acidic Al2O3 supported CdS powders:

As described above but employing acidic alumina (Al2O3 10A and Al2O3 30A

corresponding to 10% and 30% alumina) (see Table 6.2).

Basic Al2O3 supported CdS powder:

As described above but employing basic alumina (Al2O3 30B corresponding to 30%

alumina) (see Table 6.2).

Photocatalyst CdSO4 10% NH3 Na2S H2O Al2O3(a)/(b)

10A 1.77 g (6.92 mmol)

50 ml 1.9 g (6.92 mmol)

20 ml 10 g

30A 5.33 g (20.8 mmol)

150 ml 5.72 g (20.8 mmol)

50 ml 10 g

30B 5.33 g (20.8 mmol)

150 ml 5.72 g (20.8 mol)

50 ml 10 g

Table 6.2: The used amounts of materials for preparation of acidic and basic alumina

supported CdS powders.

Neutral Al2O3 supported CdS powders prepared in 25% NH3 solution:

As described above but using 25% NH3 (see Table 6.3)

Page 182: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 172

Photocatalyst CdSO4 25% NH3 Na2S H2O Al2O3(n)

30N25 5.33 g (20.8 mmol)

150 ml 5.72 g (20.8 mmol)

50 ml 10 g

Table 6.3: Amounts of materials employed for preparation of neutral alumina supported

CdS in more basic solution.

6.4. Photocatalytic Activity Measurements

All mechanistic investigations with CdS photocatalysts were performed in a 15 ml quartz

cylindrical cuvette (Figure 6.2) placed on an optical bench (Figure 6.3). During irradiation

(full light) the cuvette was cooled with water to obtain a constant temperature. Prior to

irradiation the reaction mixture was prepared by sonicating 50 mg (0.20 mmol) of N-(4-

chlorobenzylidene)-4-chloraniline, 1 ml (11.4 mmol) of cyclopentene, and various amounts

of CdS (see Table 6.4) in 10 ml of MeOHabs in a Schlenk-tube for 15 min. The suspension

was then transferred under nitrogen to the quartz cuvette with the help of a Pasteur pipette.

A 0.1 ml sample was withdrawn and after filtering off the catalyst through a micropore

filter, the solution was analyzed by analytical HPLC (Eluent: CH3CN/H2O=70/30 (v/v),

flow rate: 0.5 ml/min).

Photocatalyst

Amount of photocatalyst

taken for rate determination

[mg/11ml]

CdS-A 20 50N 30 30N 30 10N 55 30A 30 10A 36 30N25 34

Table 6.4: Photocatalyst amounts of the same Kubelka-Munk function (proportional to

absorbance) at 490 nm (see also Chapter 2.4).

Page 183: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 173

6.5. Syntheses

6.5.1. Addition reactions with N-Cinnamylideneaniline

Ph NPh R-H

MeOHPh N

HPh

R

+ 30% CdS-Al2O3

R:Me

6 a-c 7a-c

a b c

6.5.1.1.Synthesis of N-cinnamylideneaniline (6)

N-cinnamylideneaniline was synthesized from trans-cinnamaldehyde and freshly distilled

aniline in chloroform under nitrogen atmosphere at RT and recrystallized from MeOH.

Elemental Analysis: C15H13N (207.27) Calculated: C 86.92; H 6.32; N 6.76

Found : C 86.48; H 7.07; N 6.94

MS (FD, 2kV, in CHCl3, m/z): 207 [M+]

6.5.1.2.Synthesis of N-(1-(cyclopent-2-enyl)-3-phenylallyl)benzenamine (7a)

NH1

23

4

56 7

89 11

1213

1415

16

10

17 21

2019

18

7a

Page 184: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 174

1 g (4.82 mmol) of 6 and 0.5 g (1.03 mmol CdS) of 30%CdS/Al2O3 (n) were suspended in

absolute MeOH (80 ml) in a Pyrex immersion lamp apparatus by sonication for 15 min

under N2. Cyclopentene (17 ml, 192.8 mmol) was added after sonication and the

suspension was irradiated until the complete consumption of 10 (5 d). The reaction

progress was followed by analytical HPLC (Eluent: CH3CN/H2O=70/30 (v/v), flow-rate:

0.5 ml/min) and TLC analysis. After complete consumption of 6, irradiation was stopped

and the catalyst powder was filtered off from the mixture through a P4-frit system under

N2. Solvent was evaporated at reduced pressure and the addition product was isolated by

preparative column chromatography (packing material; neutral alumina, eluent; n-

hexan/CH2Cl2 (5/2; v/v)) under N2. The obtained diastereomeric mixture of 7a was injected

to the preparative HPLC (Eluent: CH3CN/H2O (5/1; v/v); flow rate: 37 ml/min) to separate

each diastereomer.

Isolated yield of 7a: 873 mg (67 %), diastereomeric mixture, yellow oil.

IR (CH2Cl2, CaF2) cm-1: 3415 (NH), 3053 (CHAr), 2986, 2851 (CH), 1421, 1503, 1601

(C=C). 1H-NMR (270 MHz, CDCl3): δ (ppm) = 1.72-1.80 (m, 1H, H18I/II), 1.99-2.06 (m, 1H,

H18´I/II), 2.33-2.36 (m, 2H, H19I/II), 3.03-3.10 (m, 1H, H17I), 3.11-3.30 (m, 1H, H17I),

3.70 (s, 1H, N-H), 3.84-3.90 (t, 1H, H9I), 3.97-4.04 (t, 1H, H9II), 5.68-5.73 (m, 1H,

H20I/II), 5.86-5.92 (m, 1H, H21I/II), 6.09-6.18 (d of d, 1H, H8I), 6.18-6.27 (d of d, 1H,

H8II), 6.50-6.56 (d, 1H, H7I), 6.57-6.59 (d, 1H, H7I), 6.59-6.06 (d, 2H, H12,16I/II), 6.06-

6.63 (t, 1H, H14I/II), 7.08-7.16 (t, 2H, H15,13I/II), 7.18-7.19 (t, 1H, H4I/II), 7.22-7.29 (t,

2H, H3,5I/II), 7.31-7.34 (d, 2H, H2,6I/II). 13C-NMR (270 MHz, CDCl3): δ (ppm) = 26.3 (C18I), 26.4 (C18II), 32.0 (C19I), 32.4

(C19II), 51.1 (C17I), 51.3 (C17II), 58.3 (C9I), 59.6 (C9II), 113.1 (C12,16I), 113.4

(C12,16II), 116.8 (C14I), 117.0 (C14II), 126.3 (C2,6I/II), 127.1 (C4I), 127.2 (C4II), 128.4

(C3,5I/II), 129.1 (C13,15I/II), 130.0 (C20,7I/II), 130.7 (C8I/II), 134.3 (C21I/II), 137.0

(C1I/II), 147.7 (C11I/II).

Elemental Analysis: C20H21N (275.39) Calculated: C 87.23; H 7.69; N 5.09

Found : C 86.23; H 8.61; N 6.31

MS (FD, 2kV, in CHCl3, m/z): 275 [M+]

Page 185: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 175

6.5.1.3.Synthesis of N-(1-(cyclohex-2-enyl)-3-phenylallyl)benzenamine (7b)

7b

NH1

23

4

56 7

89 11

1213

1415

16

10

17 21

2019

18

22

Analogous to the preparation of 7a but using cyclohexene (20 ml, 192.8 mmol). Irradiation

for 4 d, isolation by column chromatography under N2 (packing material; neutral alumina,

Eluent; n-hexan/CH2Cl2=5/1 (v/v))

Isolated yield of 7b: 1.01 g (72 %), diastereomeric mixture, yellow oil

IR (CH2Cl2, CaF2) cm-1: 3418 (NH), 3053 (CHAr), 2986, 2860 (CH), 1421, 1504, 1601

(C=C). 1H-NMR (270 MHz, CDCl3): δ (ppm) = 1.55-1.65 (m, 2H, H18,18´I/II), 1.85-1.94 (m, 2H,

H19I/II), 2.09-2.11 (br, 2H, H20I/II), 2.58-2.61 (br, 1H, H17I/II), 3.89 (s, 1H, N-H), 3.96-

3.99 (t, 1H, H9I), 4.02-4.04 (t, 1H, H9II), 5.71-5.74 (d, 1H, H22I), 5.77-5.80 (d, 1H,

H22II), 5.91-5.92 (m, 1H, H21I), 5.96-5.97 (m, 1H, H21II), 6.22-6.25 (d, 1H, H8I), 6.27-

6.30 (d, 1H, H8II), 6.61-6.68 (d, 1H, H7I/II), 6.70-6.71 (d, 2H, H12,16I/II), 6.73-6.76 (t,

1H, H14I/II), 7.19-7.27 (t, 2H, H15,13I/II), 7.28-7.29 (t, 1H, H4I/II), 7.31-7.34 (t, 2H,

H3,5I/II), 7.35-7.44 (d, 2H, H2,6I/II). 13C-NMR (400 MHz, CDCl3): δ (ppm) = 21.7 (C19I/II), 24.8 (C18I), 25.2 (C20I/II), 26.5

(C18II), 40.8 (C17I), 40.9 (C17II), 58.9 (C9I), 59.7 (C9II), 113.0 (C12,16I), 113.4

(C12,16II), 116.8 (C14I), 117.2 (C14II), 126.3 (C2,6I/II), 126.8 (C22I), 127.2 (C4I/II),

128.3 (C3,5I/II; C22II), 128.5 (C13,15I/II), 129.0 (C21I), 129.9 (C7I; C8I/II), 130.5

(C21II), 131.1 (C7II), 137.0 (C1I/II), 147.9 (C11I/II).

Elemental Analysis: C21H23N (289.41) Calculated: C 87.15; H 8.01; N 4.84

Found : C 85.74; H 7.71; N 6.67

MS (FD, 2kV, in CHCl3, m/z): 290 [M+]

Page 186: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 176

6.5.1.4.Synthesis of N-(1-(4,6,6-trimethylbicyclo[3.1.1]hept-3-en-2-yl)-3-

phenylallyl)benzenamine (7c)

7c

NH1

23

4

56 7

89 11 12

13

1415

16

10

1721

2019

18

2226

2423

25

Analogous to the preparation of 7a but using α-pinene (23 ml, 192.8 mmol). Irradiation for

2d (since decomposition of the product was observed before consumption of the imine,

irradiation was stopped just before decomposition started), isolation by column

chromatography under N2 (packing material; neutral alumina, eluent; n-hexan/CH2Cl2=3/2

(v/v))

Isolated yield of 7c: 798 mg (48 %), diastereomeric mixture, yellow oil

IR (CH2Cl2, CaF2) cm-1: 3420 (NH), 3026 (CHAr), 2926, 2868 (CH), 1503, 1601 (C=C). 1H-NMR (270 MHz, CDCl3): δ (ppm) = 0.89 (s, 3H, H23I/II), 1.11 (m, 2H, H19I), 1.16 (m,

2H, H19II), 1.39 (s, 3H, H24I/II), 1.75 (s, 3H, H26I/II), 2.06 (m, 1H, H20I/II), 2.20 (m, 2H,

H18,18´I/II), 2.40 (br, 1H, H17I/II), 3.84 (s, 1H, N-H), 3.85-3.98 (t, 1H, H9I/II), 5.32 (d,

1H, H21I), 5.49 (d, 1H, H21II), 6.07-6.16 (d of d, 1H, H8I), 6.19-6.30 (d of d, 1H, H8II),

6.57-6.59 (d, 1H, H7I/II), 6.64-6.72 (m, 3H, H12,16;14I/II), 7.14-7.27 (m, 3H,

H15,13;4I/II), 7.30-7.43 (m, 4H, H3,5; 2,6I/II). 13C-NMR (270 MHz, CDCl3): δ (ppm) = 20.4 (C24), 22.9 (C25), 26.9 (C26), 27.9 (C23I),

31.4 (C23II), 40.6 (C18I/II), 42.7 (C19I/II), 46.5 (C20I/II), 47.3 (C17I/II), 58.1 (C9I), 59.0

(C9II), 113.2 (C12,16I/II), 116.9 (C14I/II), 126.3 (C2,6I/II), 127.4 (C21I/II), 128.3

(C3,5I/II), 129.1 (C13,15I/II), 130.2 (C4I/II), 130.7 (C7I/II), 131.3 (C8I/II), 131.6

(C22I/II), 137.0 (C1I/II), 146.9 (C11I), 147.7 (C11II).

Elemental Analysis: C25H29N (343.5) Calculated: C 87.41; H 8.51; N 4.08

Found : C 87.59; H 8.89; N 4.37

MS (FD, 2kV, in CHCl3, m/z): 344 [M+]

Page 187: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 177

6.5.2. Addition reactions with N-Adamantyl-p-X-benzaldehyde imine

(X: -H, -F, -Cl, -Br, -OCH3)

6.5.2.1. Synthesis of N-Adamantyl-p-X-benzaldehyde imine derivatives

(X: -H, -F, -Cl, -Br, -OCH3)

p-Substituted N-adamantyl-benzaldehyde imine derivatives were synthesized according to

references [2] and [3]. Corresponding aldehydes (4-fluorobenzaldehyde, 4-

chlorobenzaldehyde, 4-bromobenzaldehyde, benzaldehyde, anisilaldehyde) (19.87 mmol)

were added into a solution of 1-adamantylamine (19.87 mmol) in MeOH (aldehyde was

dissolved in MeOH and added into the amine solution slowly dropwise) and the mixture

was heated under reflux for 30 min. After solvent evaporation all imines were

recrystallized from MeOH.

N-Adamantyl- benzaldehyde imine (9)

Elemental Analysis: C17H21N (239) Calculated: C 85.30; H 8.84; N 5.85

Found : C 85.40; H 9.03; N 5.89

MS (FD, 2kV, in CHCl3, m/z): 240 [M++1], for crystal structure data see Section 6.6.1.

N-Adamantyl-p-fluoro-benzaldehyde imine (10)

Elemental Analysis: C17H20FN (257) Calculated: C 79.34; H 7.83; N 5.44

Found : C 80.50; H 8.32; N 5.52

MS (FD, 2kV, in CHCl3, m/z): 258 [M++1], for crystal structure data see Section 6.6.2.

N-Adamantyl-p-chloro-benzaldehyde imine (11)

Elemental Analysis: C17H20ClN (274) Calculated: C 74.57; H 7.36; N 5.12

Found : C 74.46; H 7.61; N 4.93

MS (FD, 2kV, in CHCl3, m/z): 273 [M+-1], for crystal structure data see Section 6.6.3.

Page 188: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 178

N-Adamantyl-p-bromo-benzaldehyde imine (12)

Elemental Analysis: C17H20BrN (317) Calculated: C 64.16; H 6.33; N 4.40

Found : C 64.92; H 7.27; N 4.47

MS (FD, 2kV, in CHCl3, m/z): 318 [M++1], for crystal structure data see Section 6.6.4.

N-Adamantyl-p-methoxy-benzaldehyde imine (13)

Elemental Analysis: C18H23NO (269) Calculated: C 80.26; H 8.61; N 5.20

Found : C 81.01; H 9.18; N 5.28

MS (FD, 2kV, in CHCl3, m/z): 270 [M++1], for crystal structure data see Section 6.6.5.

6.5.2.2. Addition reactions with N-Adamantyl-p-chloro-benzaldehyde imine

R:Me

a b c

+ R-H30%CdS/Al2O3 hνMeOH/CH2Cl2

Ad:

Ar: Cl

NAd Ar

HHN

Ad Ar

HR +

HNAd Ar

HNAd Ar

11 16a-c 20-20'

6.5.2.2.1. Cyclopentene addition to N-Adamantyl-p-chloro-benzaldehyde imine

250 mg (0.9 mmol) of 11 and 250 mg (0.52 mmol CdS) of 30%CdS/Al2O3(n) were

suspended in absolute MeOH (45 ml) in a Pyrex immersion lamp apparatus by sonication

for 15 min under N2. After addition of cyclopentene (10 ml, 113 mmol), absolute CH2Cl2

(45 ml), and 1-2 drops of HOAc, the suspension was irradiated until complete

Page 189: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 179

consumption of 11 (70 h). The reaction progress was followed by analytical HPLC (Eluent:

CH3CN/CH2Cl2=90/10 (v/v), flow-rate: 0.5 ml/min) and TLC analysis.

After complete consumption of 11, irradiation was stopped and the catalyst powder was

filtered off from the mixture through a P4-frit system under N2. Solvent was evaporated at

reduced pressure. The addition product 16a and hydrodimer 20 were isolated by

preparative column chromatography (packing material; silica, eluent; CH2Cl2/n-hexan (5/2;

v/v)) from impurities. 16a and 20 were crystallized from CH3CN/n-pentan and

MeOH/CH3CN solvent mixtures, respectively (for crystal structure data, see Section 6.6.6

for 16a; Section 6.6.8-b for hydrodimer 20).

Isolated yield of 16a: 160 mg (51 %), diastereomeric mixture, light yellow oil.

16a

1516

17

1213

1411

18 22

2

6

21

10

9

4

20

58

19

1

7

3

NH

CH

Cl

IR (CH2Cl2, CaF2) cm-1: 3673 (NH), 2911, 2852 (CH), 1420, 1524, 1604 (C=C). 1H-NMR (270 MHz, CDCl3): δ (ppm) = 1.21-1.36 (m, 2H, H22), 1.37-1.54 (m, 12H,

H2,6,7,10,4,9), 1.80-1.93 (m, 3H, H8,3,H5), 2.25-2.26 (m, 2H, H21), 2.82 (m, 1H, H18),

3.65 (s, 1H, N-H), 3.74 (d, 1H, H11), 5.22-5.25 (m, 1H, H20), 5.70-5.73 (m, 1H, H19),

7.03-7.30 (m, aromatic protons). 13C-NMR (270 MHz, CDCl3): δ (ppm) = 28.9 (C3,5,8), 29.3 (C22), 34.8 (C4,9,10), 36.2

(C21), 40.6 (C2,6,7), 41.6 (C1), 51.9 (C18), 53.4 (C11), 128.3 (C14,16,20), 128.7

(C19,13,17), 131.2 (C15), 138.0 (C12).

Elemental Analysis: C22H28ClN (341,92) Calculated: C 77.28; H 8.25; N 4.10 Found : C 77.05; H 8.95; N 3.88

MS (FD, 2kV, in CH2Cl2, m/z): 343 [M++1], 275 [M+-67]

Page 190: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 180

20

NH HN

ClCl

5

6

3

2

11

10

87

4

112

13

149

1615

17 18

252419

2620

2122

23

27

28

29

35

3433

36

30

3132

IR (CH2Cl2, CaF2) cm-1: 3623 (NH), 2906, 2847 (CH), 1486, 1604 (C=C). 1H-NMR (270 MHz, CDCl3): δ (ppm) = 0.87-1.64 (m, 24H,

H18,28,24,34,22,32,20,30,25,35,26,36), 1.89-1.99 (br, 6H, H33,29,31,23,19,21), 3.68 (s,

2H, N-H), 3.81 (s, 2H, H7,8), 3.74 (d, 1H, H7), 7.03-7.34 (m, 8H, aromatic protons). 13C-NMR (270 MHz, CDCl3): δ (ppm) = 29.5 ppm (C19,21,23,29,31,33), 36.5 ppm

(C20,22,26,30,32,36), 43.8 ppm (C18,24,25,28,34,35), 51.0 ppm (C17,27), 60.8 ppm (C7),

61.4 ppm (C8), 127.7 ppm (C2,6), 127.8 ppm (C11,13), 128.9 ppm (C3,5), 129.6 ppm

(C10,14), 131.6 ppm (C1), 132.3 ppm (C12), 143.6 ppm (C4), 144.4 ppm (C9).

Elemental Analysis: C34H42Cl2N2 (549,62) Calculated: C 74.30; H 7.70; N 5.10 Found : C 74.65; H 7.76; N 5.07

MS (FD, 2kV, in CHCl3, m/z): 550 [M+], 275 [M+-275]

Page 191: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 181

6.5.2.2.2. Cyclohexene addition to N-Adamantyl-p-chloro-benzaldehyde imine

Analogous to 6.5.2.2.1 but using cyclohexene (10 ml, 98.6 mmol). The suspension was

irradiated until complete consumption of 11 (4 d). The reaction progress was followed by

analytical HPLC (Eluent: CH3CN/CH2Cl2=90/10 (v/v), flow-rate: 0.5 ml/min) and TLC

analysis. The addition product 16b and hydrodimer 20′ were isolated by preparative

column chromatography (packing material; silica, eluent; CH2Cl2/n-hexan (5/1; v/v)). 16b

and 20′ were crystallized from CHCl3/n-hexan/(CH3)3CCN solvent mixture (for crystal

structure data, see Section 6.6.7 for 16b; Section 6.6.8-a for hydrodimer 20′; for IR, NMR,

Elemental analysis and MS data of hydrodimer see Section 6.5.2.2.1)

Isolated yield of 16b: 200 mg (62 %), diastereomeric mixture, light yellow oil.

16b

1516

17

1213

14

11

18 23

2

6

22

10

9

4

21

58

20

19

7

3

NH

CH

Cl

1

IR (CH2Cl2, CaF2) cm-1: 3609 (NH), 2928, 2850 (CH), 1447, 1604 (C=C). 1H-NMR (270 MHz, CDCl3): δ (ppm) = 1.16-1.18 (m, 2H, H22), 1.29-1.34 (m, 2H, H23),

1.41-1.56 (m, 6H, H10,4,9), 1.59-1.63 (m, 6H, H2,6,7), 1.78-1.81 (m, 2H, H21), 1.85-1.94

(m, 3H, H8,5,3), 2.19-2.29 (m, 1H, H18), 4.12 (br, 2H, N-H,H11), 5.68-5.69 (m, 1H, H20),

5.72-5.73 (m, 1H, H19), 7.14-7.17 (m, 2H, H17,13), 7.21-7.25 (m, 2H, H16,14). 13C-NMR (270 MHz, CDCl3): δ (ppm) = 17.8 (C8,5,3), 19.4 (C22), 23.8 (C10,4,9), 28.2

(C23), 30.9 (C2,6,7), 35.4 (C21), 39.9 (C1), 46.0 (C18I), 54.8 (C18II), 64.0 (C11), 126.2

(C16,14), 126.7 (C20), 127.8 (C17,13), 128.6 (C19), 128.8 (C15), 129.5 (C12).

Elemental Analysis: C23H30ClN (355,94) Calculated: C 77.61; H 8.50; N 3.94 Found : C 75.55; H 8.37; N 4.12

MS (FD, 2kV, in CH2Cl2, m/z): 357 [M++1], 275 [M+-81]

Page 192: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 182

6.5.2.2.3. α-Pinene addition to N-Adamantyl-p-chloro-benzaldehyde imine

Analogous to 6.5.2.2.1 but using α-pinene (10 ml, 82.8 mmol). The suspension was

irradiated until complete consumption of 11 (3 d). The reaction progress was followed by

analytical HPLC (Eluent: CH3CN/CH2Cl2=90/10 (v/v), flow-rate: 0.5 ml/min) and TLC

analysis. The addition product 16c was isolated by preparative column chromatography

(packing material; silica, eluent; CH2Cl2/n-hexan (5/2; v/v)).

Isolated yield of 16c: 80 mg (21 %), diastereomeric mixture, light yellow oil.

16c

1516

17

1213

1411

18 19

2

6

20

10

9

4

25

58

21

24

7

3

NH

CH

Cl

1

23

22

26

27

IR (CH2Cl2, CaF2) cm-1: 3482 (NH), 2980, 2926 (CH), 1451 (C=C). 1H-NMR (270 MHz, CDCl3): δ (ppm) = 0.92 (s, 3H, H26), 1.08-1.10 (m, 2H, H24), 1.12-

1.17 (m, 3H, H3,5,8), 1.20-1.27 (m, 6H, H4,9,10, s, 3H, H27), 1.47-1.52 (br, 6H, H2,6,7),

1.67 (s, 3H, H25), 2.06-2.14 (br, 1H, H21), 2.17-2.34 (br, 1H, H23), 3.61-3.64 (d, 1H,

H18I), 3.67-3.69 (d, 1H, H18II), 3.73 (s, 1H, H11), 4.41 (br, 1H, N-H), 5.32-5.49 (d, 1H,

H19I/II), 7.04-7.28 (m, aromatic protons). 13C-NMR (270 MHz, CDCl3): δ (ppm) = 21.7 (C25), 25.2 (C26,27), 29.4 (C3), 29.5 (C5,8),

36.4 (C24), 36.5 (C4,9,10), 38.6 (C22), 43.4 (C1), 43.6 (C2,6,7), 43.8 (C18,23), 51.3

(C21), 58.4 (C11), 128.0 (C19I/II), 128.2 (C14,16), 129.1 (C13,17), 129.7 (C20I/II), 131.5

(C15), 132.4 (C12).

Elemental Analysis: C27H36ClN (410,03) Calculated: C 79.09; H 8.85; N 3.42 Found: no reproducible values could be handled

MS (FD, 2kV, in CH2Cl2, m/z): 410 [M+], 275 [M+-135]

Page 193: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 183

6.5.2.3. Influence of p-Substituent

6.5.2.3.1.Addition reactions of cyclohexene to N-Adamantyl-p-X-benzaldehyde imine

derivatives (X: -H, -F, -Cl, -Br, -OCH3)

+30%CdS/Al2O3 hνMeOH/CH2Cl2

Ad:

Ar: X

N

Ad Ar

HHN

Ad Ar

H +HN

Ad Ar

HN

Ad Ar

9-13 b 14-18b 20,21

X -H -F -Cl -Br -OCH3 9 10 11 12 13

Addition 14b 15b 16b 17b 18bProduct

Hydrodimer - - 20 21 -

6.5.2.3.1.1.Addition of cyclohexene to N-Adamantyl-benzaldehyde imine

Analogous to 6.5.2.2.2 but using 9 (250 mg, 1.04 mmol). The suspension was irradiated

until complete consumption of 16 (3 d). The reaction progress was followed by analytical

HPLC (Eluent: CH3CN/CH2Cl2 (90/10; v/v), flow-rate: 0.5 ml/min) and TLC analysis. The

addition product 14b was isolated by preparative column chromatography (packing

material; silica, eluent; CH2Cl2/n-hexan=5/1 (v/v)). No hydrodimer of 9 was observed.

Page 194: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 184

14b

1516

17

1213

1411

18 23

2

6

22

10

9

4

21

58

20

19

7

3

NH

CH1

Isolated yield of 14b: 200 mg (59 %), diastereomeric mixture, light yellow oil.

IR (CH2Cl2, CaF2) cm-1: 3482 (NH), 3050 (CHAr), 2930, 2852 (CH), 1450, 1601 (C=C). 1H-NMR (270 MHz, CDCl3): δ (ppm) = 1.15 (m, 2H, H22), 1.18-1.24 (m, 2H, H23), 1.41-

1.76 (m, 6H, H10,4,9), 1.78-2.02 (m, 6H, H2,6,7), 2.27-2.38 (m, 5H, H21,8,5,3), 2.53 (m,

1H, H18), 4.13 (br, 5H, H11,N-H), 5.66-5.72 (m, 1H, H20), 5.93-5.98 (m, 1H, H19), 6.89-

6.96 (m, 1H, H15), 7.12-7.22 (m, 2H, H17,13), 7.26-7.32 (m, 2H, H16,14). 13C-NMR (270 MHz, CDCl3): δ (ppm) = 18.8 (C22), 22.4 (C8,5,3), 24.8 (C23), 26.8

(C10,4,9), 29.8 (C21), 35.0 (C1), 37.8 (C2,6,7), 44.3 (C18), 65.1 (C11), 127.3 (C15), 127.5

(C20), 127.6 (C16,14), 129.6 (C19), 129.9 (C17,13), 150.6 (C12).

Elemental Analysis: C23H31N (321,5) Calculated: C 85.92; H 9.72; N 4.36 Found : C 86.09; H 10.70; N 4.40

MS (FD, 2kV, in CHCl3, m/z): 323 [M++1], 241 [M+-82]

6.5.2.3.1.2. Addition of cyclohexene to N-Adamantyl-p-fluoro-benzaldehyde imine

Analogous to 6.5.2.2.2 but using 10 (250 mg, 0.97 mmol). The suspension was irradiated

until complete consumption of 10 (4 d). The reaction progress was followed by analytical

HPLC (Eluent: CH3CN/CH2Cl2 (90/10; v/v), flow-rate: 0.5 ml/min) and TLC analysis. The

addition product 15b was isolated by preparative column chromatography (packing

material; silica, eluent; CH2Cl2/n-hexan=5/2 (v/v)). No hydrodimer of 10 was observed.

Page 195: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 185

15b

1516

17

1213

1411

18 23

2

6

22

10

9

4

21

58

20

19

7

3

NH

CH

F

1

Isolated yield of 15b: 270 mg (82 %), diastereomeric mixture, light yellow oil.

IR (CH2Cl2, CaF2) cm-1: 3675 (NH), 2922, 2851 (CH), 1505, 1602 (C=C). 1H-NMR (270 MHz, CDCl3): δ (ppm) = 0.81-0.82 (m, 2H, H22), 0.96-1.00 (m, 2H, H23),

1.39-1.53 (m, 12H, H2,6,7,10,4,9), 1.64-1.82 (m, 2H, H21), 1.89 (br, 3H, H8,5,3), 2.13-

2.14 (m, 1H, H18), 3.77-3.85 (d, 1H, H11), 4.12 (s, 1H, N-H), 5.65-5.69 (m, 1H, H20),

5.73-5.76 (m, 1H, H19), 6.85-7.26 (m, 4H, aromatic). 13C-NMR (270 MHz, CDCl3): δ (ppm) = 20.6 (C22), 23.4 (C23), 29.5 (C21,8,5,3), 36.5

(C10,4,9), 43.3 (C1), 43.9 (C2,6,7), 51.2 (C11I), 52.8 (C18I), 57.2 (C11II), 53.6 (C18II),

114.5 (C16,14), 114.9 (C20), 128.5 (C17,13), 128.6 (C19), 129.0 (C12), 142.9 (C15).

Elemental Analysis: C23H30FN (339,49) Calculated: C 81.37; H 8.91; N 4.13 Found : C 80.09; H 9.29; N 3.11

MS (FD, 2kV, in CHCl3, m/z): 259 [M+-81]

6.5.2.3.1.3.Addition of cyclohexene to N-Adamantyl-p-chloro-benzaldehyde imine

See 6.5.2.2.2.

6.5.2.3.1.4. Addition of cyclohexene to N-Adamantyl-p-bromo-benzaldehyde imine

Analogous to 6.5.2.2.2 but using 12 (250 mg, 0.78 mmol). The suspension was irradiated

until complete consumption of 12 (4 d). The reaction progress was followed by analytical

HPLC (Eluent: CH3CN/CH2Cl2 (90/10; v/v), flow-rate: 0.5 ml/min) and TLC analysis. The

addition product 17b was isolated by preparative column chromatography (packing

material; silica, eluent; CH2Cl2/n-hexan=2/1 (v/v)). Traces of hydrodimer of 12 were

detected by HPLC but couldn’t be isolated from column chromatography.

Page 196: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 186

17b

1516

17

1213

1411

18 23

2

6

22

10

9

4

21

58

20

19

7

3

NH

CH

Br

1

Isolated yield of 17b: 250 mg (79 %), diastereomeric mixture, light yellow oil.

IR (CH2Cl2, CaF2) cm-1: 3566 (NH), 2907, 2849 (CH), 1481, 1457 (C=C). 1H-NMR (270 MHz, CDCl3): δ (ppm) = 0.77-0.79 (m, 2H, H22), 1.08 (br, 2H, H23), 1.23

(2H, m, H21), 1.39-1.42 (m, 6H, H2,6,7), 1.42-1.54 (m, 6H, 10,4,9), 1.75-1.79 (m, 1H,

H18), 1.80-1.90 (m, 3H, 8,5,3), 4.14 (br, 2H, H11,N-H), 5.61-5.79 (m, 2H, H20,19), 7.17-

7.22 (m, 2H, H17,13) 7.33-7.38 (m, 2H, 16,14). 13C-NMR (270 MHz, CDCl3): δ (ppm) = 14.1 (C22), 18.6 (C23), 18.9 (C8,5,3), 24.9

(C10,4,9), 29.5 (C21), 31.9 (C2,6,7), 35.5 (C1), 36.6 (C18), 65.4 (C11), 128.2 (C20), 129.4

(C15), 129.8 (C17,13,19), 130.5 (C16,14), 131.2 (C12).

Elemental Analysis: C23H30BrN (400,4) Calculated: C 68.99; H 7.55; N 3.50

Found : C 68.79; H 7.64; N 3.27

MS (FD, 2kV, in CHCl3, m/z): 319 [M+-81]

6.5.2.3.1.5. Addition of cyclohexene to N-Adamantyl-p-methoxy-benzaldehyde imine

Analogous to 6.5.2.2.2 but using 13 (250 mg, 0.93 mmol). The suspension was irradiated

until complete consumption of 13 (4 d). The reaction progress was followed by analytical

HPLC (Eluent: CH3CN/CH2Cl2 (90/10; v/v), flow-rate: 0.5 ml/min) and TLC analysis. The

addition product 18b was isolated by preparative column chromatography (packing

material; silica, eluent; CH2Cl2/n-hexan=5/1 (v/v)). No hydrodimer of 13 was observed.

Page 197: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 187

18b

1516

17

1213

1411

18 23

2

6

22

10

9

4

21

58

20

19

7

3

NH

CH

O

1

CH324

Isolated yield of 18b: 155 mg (47 %), diastereomeric mixture, light yellow oil.

IR (CH2Cl2, CaF2) cm-1: 3511 (NH), 3029 (CHAr), 2935, 2865 (CH), 1452, 1437 (C=C). 1H-NMR (270 MHz, CDCl3): δ (ppm) = 0.75-0.83 (m, 2H, H22), 1.14-1.22 (m, 2H, H23),

1.63-1.69 (m, 12H, H2,6,7,10,4,9), 1.89-1.98 (m, 5H, H21,8,5,3), 2.03-2.04 (m, 1H, H18),

4.45 (br, 5H, H11,N-H,24), 5.68-5.69 (m, 1H, H20), 5.89-5.94 (m, 1H, H19), 7.20-7.26 (m,

4H, aromatic). 13C-NMR (270 MHz, CDCl3): δ (ppm) = 14.0 (C22), 18.2 (C8,5,3), 18.3 (C23), 22.2 (C21),

25.3 (C1,10,4,9), 26.8 (C2,6,7), 29.6 (C18I), 34.1 (C18II), 75.9 (C24), 76.5 (C11), 123.9

(C16,14), 124.4 (C20), 133.8 (C19), 133.9 (C17,13,12), 140.7 (C15).

Elemental Analysis: C24H33ON (351,52) Calculated: C 82.00; H 9.46; N 3.98

Found: no reproducible values could be handled

MS (FD, 2kV, in CHCl3, m/z): 271 [M+-81]

Page 198: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 188

6.5.2.3.2. Addition reactions of α-pinene to N-Adamantyl-p-X-benzaldehyde imine

derivatives (X: -H, -F, -Cl, -Br, -OCH3)

Ad:

Ar: X

X -H -F -Cl -Br -OCH3 9 10 11 12 13

Addition 14c 15c 16c 17c 18cProduct

Hydrodimer - 19 20 21 22

+

30%CdS/Al2O3 hν

MeOH/CH2Cl2N

Ad Ar

HHN

Ad Ar

H +HN

Ad Ar

HN

Ad Ar

9-16 c 14-18c 19-22

Me

6.5.2.3.2.1.Addition of α-pinene to N-Adamantyl-benzaldehyde imine

Analogous to 6.5.2.2.3 but using 9 (250 mg, 1.04 mmol). The suspension was irradiated

until complete consumption of 9 (3 d). The reaction progress was followed by analytical

HPLC (Eluent: CH3CN/CH2Cl2 =90/10 (v/v), flow-rate: 0.5 ml/min) and TLC analysis.

The addition product 14c was isolated by preparative column chromatography (packing

material; silica, eluent: ethyl acetate).

14c

1516

17

1213

1411

18 19

2

6

20

10

9

4

25

58

21

24

7

3

NH

CH1

2322

26

27

Page 199: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 189

Isolated yield of 14c: 280 mg (71 %), diastereomeric mixture, white powder.

IR (CH2Cl2, CaF2) cm-1: 3479 (NH), 2920 (CH), 1446, 1468 (C=C). 1H-NMR (270 MHz, CDCl3): δ (ppm) = 0.72 (s, 3H, H26), 0.85-0.96 (m, 2H, H24), 1.01-

1.13 (m, 3H, H3,5,8), 1.16-1.25 (m, 6H, H4,9,10, s, 3H, H27), 1.45 (br, 6H, H2,6,7), 1.61

(s, 3H, H25), 1.84-1.87 (br, 1H, H21), 2.06-2.11 (br, 1H, H23), 3.54-3.57 (d, 1H, H18I),

3.63-3.66 (d, 1H, H18II), 3.73 (s, 1H, H11), 4.37 (br, 1H, N-H), 5.04-5.21 (d, 1H,

H19I/II), 7.08-7.31 (m, aromatic protons). 13C-NMR (270 MHz, CDCl3): δ (ppm) = 20.4 (C25), 23.1 (C26,27), 26.4 (C3), 27.6 (C5,8),

29.4 (C24), 29.6 (C4,9,10), 36.6 (C22I/II), 40.5 (C2,6,7), 41.0 (C1), 42.4 (C18I), 43.0

(C18II), 44.1 (C23), 47.4 (C21), 58.2 (C11), 118.5 (C19I), 119.1 (C19II), 119.6 (C15),

127.2 (C13,17), 127.7 (C20I/II), 127.8 (C14,16), 144.2 (C12).

Elemental Analysis: C27H37N (375,6) Calculated: C 86.34; H 9.93; N 3.73

Found : C 86.49; H 10.30; N 3.40

MS (FD, 2kV, in CH2Cl2, m/z): 376 [M+], 241 [M+-135]

6.5.2.3.2.2. Addition of α-pinene to N-Adamantyl-p-fluoro-benzaldehyde imine

Analogous to 6.5.2.2.3 but using 10 (250 mg, 0.97 mmol). The suspension was irradiated

until complete consumption of 10 (4 d). The reaction progress was followed by analytical

HPLC (Eluent: CH3CN/CH2Cl2=90/10 (v/v), flow-rate: 0.5 ml/min) and TLC analysis. The

addition product 15c was isolated by preparative column chromatography (packing

material; silica, eluent: ethyl acetate).

15c

1516

17

1213

1411

18 19

2

6

20

10

9

4

25

58

21

24

7

3

NH

CH

F

1

2322

26

27

Page 200: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 190

Isolated yield of 15c: 310 mg (81 %), diastereomeric mixture, light yellow oil.

IR (CH2Cl2, CaF2) cm-1: 3566 (NH), 2983, 2917, 2848 (CH), 1447, 1506, 1601 (C=C). 1H-NMR (270 MHz, CDCl3): δ (ppm) = 0.71 (s, 3H, H26), 0.84-0.92 (m, 2H, H24), 1.04-

1.10 (m, 3H, H3,5,8), 1.15-1.26 (m, 6H, H4,9,10, s, 3H, H27), 1.46-1.47 (br, 6H, H2,6,7),

1.60 (s, 3H, H25), 1.84-1.87 (br, 1H, H21), 2.06-2.11 (br, 1H, H23), 3.56-3.62 (d, 1H,

H18I), 3.65-3.71 (d, 1H, H18II), 3.76 (s, 1H, H11), 4.36 (br, 1H, N-H), 5.14-5.31 (d, 1H,

H19I/II), 6.84-7.21 (m, aromatic protons). 13C-NMR (270 MHz, CDCl3): δ (ppm) = 20.3 (C25), 23.0 (C26,27), 26.5 (C3), 27.6 (C5,8),

29.4 (C24), 29.6 (C4,9,10), 36.6 (C22), 40.4 (C2,6,7), 41.0 (C1), 42.4 (C18I), 43.1 (C18II),

43.8 (C23), 47.4 (C21), 57.5 (C11), 118.5 (C19I), 118.8 (C19II), 119.6 (C14,16), 128.5

(C20I), 128.9 (C13,17), 129.6 (C20II), 144.2 (C12) , 163.1 (C15).

Elemental Analysis: C27H36FN (393,6) Calculated: C 82.39; H 9.22; N 3.56

Found : C 82.39; H 10.00; N 3.31

MS (FD, 2kV, in CH2Cl2, m/z): 394 [M+], 259 [M+-135]

6.5.2.3.2.3.Addition of α-pinene to N-Adamantyl-p-chloro-benzaldehyde imine

See 6.5.2.2.3.

6.5.2.3.2.4. Addition of α-pinene to N-Adamantyl-p-bromo-benzaldehyde imine

Analogous to 6.5.2.2.5 but using 12 (250 mg, 0.78 mmol). The suspension was irradiated

until complete consumption of 12 (4 d). The reaction progress was followed by analytical

HPLC (Eluent: CH3CN/CH2Cl2=90/10 (v/v), flow-rate: 0.5 ml/min) and TLC analysis.

The addition product 17c was isolated by preparative column chromatography (packing

material; silica, eluent: ethyl acetate).

Page 201: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 191

17c

1516

17

1213

1411

18 19

2

6

20

10

9

4

25

58

21

24

7

3

NH

CH

Br

1

23

22

26

27

Isolated yield of 17c: 305 mg (85 %), diastereomeric mixture, white powder.

IR (CH2Cl2, CaF2) cm-1: 3610 (NH), 3055 (CHAr), 2984, 2917 (CH), 1456, 1558 (C=C). 1H-NMR (270 MHz, CDCl3): δ (ppm) = 0.78 (s, 3H, H26), 0.90-0.97 (m, 2H, H24), 1.08-

1.18 (m, 3H, H3,5,8), 1.22-1.30 (m, 6H, H4,9,10, s, 3H, H27), 1.49-1.53 (br, 6H, H2,6,7),

1.65 (s, 3H, H25), 1.92-1.98 (br, 1H, H21), 2.08-2.14 (br, 1H, H23), 3.60-3.77 (d, 1H,

H18I/II), 3.77 (s, 1H, H11), 4.42 (br, 1H, N-H), 5.20-5.44 (d, 1H, H19I/II), 7.08-7.36 (m,

aromatic protons). 13C-NMR (270 MHz, CDCl3): δ (ppm) = 20.3 (C25), 23.1 (C26,27), 26.5 (C3), 27.6 (C5,8),

29.5 (C4,9,10), 29.7 (C24), 36.4 (C22I), 36.6 (C22II), 40.5 (C2,6,7), 41.0 (C1), 42.8

(C18I), 43.1 (C18II), 43.7 (C23I), 43.9 (C23II), 47.1 (C21), 60.7 (C11), 118.5 (C19I),

118.9 (C19II), 119.6 (C15), 129.2 (C20I), 129.6 (C20II), 130.0 (C13,17), 130.7 (C14,16),

144.4 (C12).

Elemental Analysis: C27H36BrN (454,5) Calculated: C 71.35; H 7.98; N 3.08

Found: no reproducible values could be handled

MS (FD, 2kV, in CH2Cl2, m/z): 455 [M+], 319 [M+-135]

6.5.2.3.2.5. Addition of α-pinene to N-Adamantyl-p-methoxy-benzaldehyde imine

Analogous to 6.5.2.2.3 but using 13 (250 mg, 0.93 mmol). The suspension was irradiated

until complete consumption of 13 (4 d). The reaction progress was followed by analytical

HPLC (Eluent: CH3CN/CH2Cl2 =90/10 (v/v), flow-rate: 0.5 ml/min) and TLC analysis.

The addition product 18c was isolated by preparative column chromatography (packing

material; silica, eluent: ethyl acetate).

Page 202: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 192

18c

1516

17

1213

1411

18 19

2

6

20

10

9

4

25

58

21

24

7

3

NH

CH

O

1

2322

26

27

CH328

Isolated yield of 18c: 230 mg (61 %), diastereomeric mixture, yellow oil.

IR (CH2Cl2, CaF2) cm-1: 3602 (NH), 2919 (CH), 1446, 1508, 1605 (C=C). 1H-NMR (270 MHz, CDCl3): δ (ppm) = 0.71 (s, 3H, H26), 0.89-0.92 (m, 2H, H24), 1.04-

1.09 (m, 3H, H3,5,8), 1.16-1.27 (m, 6H, H4,9,10, s, 3H, H27), 1.47 (br, 6H, H2,6,7), 1.59

(s, 3H, H25), 1.84-1.92 (br, 1H, H21), 2.05-2.08 (br, 1H, H23), 3.59-3.66 (d, 1H, H18I/II),

3.71 (s, 1H, H11), 3.80 (s, 3H, H28) 4.39 (br, 1H, N-H), 5.14-5.32 (d, 1H, H19I/II), 6.70-

7.21 (m, aromatic protons). 13C-NMR (270 MHz, CDCl3): δ (ppm) = 20.3 (C25), 23.0 (C26,27), 26.3 (C3), 27.7 (C5,8),

29.3 (C24), 29.9 (C4,9,10), 36.5 (C22), 40.4 (C2,6,7), 40.9 (C1), 42.7 (C18I), 43.0 (C18II),

43.9 (C23), 47.3 (C21), 54.9 (C11), 55.4 (C28), 113.1 (C14,16), 118.4 (C19I/II), 128.1

(C20I), 128.5 (C13,17), 131.8 (C20II), 144.2 (C12), 157.8 (C15).

Elemental Analysis: C28H39NO (405,6) Calculated: C 82.91; H 9.69; N 3.45

Found: no reproducible values could be handled

MS (FD, 2kV, in CH2Cl2, m/z): 406 [M+], 271 [M+-135]

Page 203: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 193

6.6. Crystal Structure Determinations

All structural data were collected on a Bruker-Nonius Kappa CCD diffractometer using

MoKα irradiation (graphite monochromator, λ=0.71073 A°) at a temperature of 100K.

All structures were solved by direct methods and refined using full-matrix least-squares

procedures on F2 (SHELXTL 6.12).

All non-hydrogen atoms have been refined anisotropically and the positions of all hydrogen

atoms were located in a difference fourier syntheses.

Page 204: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 194

6.6.1. Crystal data and structure refinement for N-Adamantyl-benzaldehyde imine

Empirical formula C17H21N

Formula weight 239.35

Temperature 100(2) K

Wavelength 0.71073 A°

Crystal system, space group Orthorhombic, P2(1)2(1)2(1)

Unit cell dimensions a = 6.4052(4) A° alpha = 90°

b = 7.0492(5) A° beta = 90°

c = 29.396(2) A° gamma = 90°

Volume 1327.3(3) A°3

Z, Calculated density 4, 1.198 Mg/m3

Absorption coefficient 0.069 mm-1

F(000) 520

Crystal size 0.32 x 0.23 x 0.22 mm

Theta range for data collection 2.97 to 27.10°

Limiting indices -8 ≤ h ≤ 8, -8 ≤ k ≤ 8, -37 ≤ l ≤ 37

Reflections collected / unique 10438 / 2689 [R(int) = 0.0560]

Completeness to theta = 27.10 96.8 %

Absorption correction Integration

Max. and min. transmission 0.987 and 0.982

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 2689 / 0 / 227

Goodness-of-fit on F2 1.053

Final R indices [I>2sigma(I)] R1 = 0.0438, wR2 = 0.0880

R indices (all data) R1 = 0.0589, wR2 = 0.0930

Absolute structure parameter 0(4)

Largest diff. peak and hole 0.187 and -0.240 e.A°-3

Page 205: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 195

______________________________________ __________________________

x y z U(eq)

_________________ _______________________________________________

N(1) 1547(2) 9383(2) 1105(1) 16(1)

C(1) 1849(2) 10916(2) 1439(1) 14(1)

C(2) 3840(3) 10444(2) 1710(1) 17(1)

C(3) 4392(3) 12099(2) 2029(1) 16(1)

C(4) 4745(3) 13905(2) 1749(1) 17(1)

C(5) 2761(2) 14394(2) 1482(1) 15(1)

C(6) 2226(3) 12738(2) 1164(1) 15(1)

C(7) 52(3) 11261(2) 1774(1) 13(1)

C(8) 607(3) 12910(2) 2097(1) 14(1)

C(9) 961(3) 14720(2) 1817(1) 16(1)

C(10) 2591(3) 12415(2) 2362(1) 17(1)

C(11) -220(3) 8588(2) 1065(1) 16(1)

C(12) -641(3) 7108(2) 722(1) 15(1)

C(13) 850(3) 6565(2) 401(1) 18(1)

C(14) 372(3) 5181(2) 81(1) 20(1)

C(15) -1576(3) 4329(2) 81(1) 23(1)

C(16) -3061(3) 4858(2) 398(1) 23(1)

C(17) -2604(3) 6239(2) 717(1) 19(1)

____________________________________ ____________________________

Table 6.17: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters

(A2 x 103) for N-Adamantyl-benzaldehyde imine. U(eq) is defined as one third of the trace

of the orthogonalized Uij tensor.

Page 206: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 196

Table 6.18: Bond lengths [A] and angles [°] for N-Adamantyl-benzaldehyde imine.

N(1)-C(11) 1.269(2)

N(1)-C(1) 1.4736(19)

C(1)-C(7) 1.534(2)

C(1)-C(6) 1.537(2)

C(1)-C(2) 1.539(2)

C(2)-C(3) 1.539(2)

C(2)-H(2A) 0.990(18)

C(2)-H(2B) 1.003(18)

C(3)-C(10) 1.529(2)

C(3)-C(4) 1.533(2)

C(3)-H(3) 1.020(19)

C(4)-C(5) 1.533(2)

C(4)-H(4A) 1.039(18)

C(4)-H(4B) 0.964(19)

C(5)-C(6) 1.533(2)

C(5)-C(9) 1.534(2)

C(5)-H(5) 1.018(18)

C(6)-H(6A) 0.984(18)

C(6)-H(6B) 1.019(19)

C(7)-C(8) 1.542(2)

C(7)-H(7A) 1.029(18)

C(7)-H(7B) 1.007(19)

C(8)-C(10) 1.532(2)

C(8)-C(9) 1.535(2)

C(8)-H(8) 0.990(19)

C(9)-H(9A) 1.035(19)

C(9)-H(9B) 0.991(19)

C(10)-H(10A) 1.026(18)

C(10)-H(10B) 1.005(19)

C(11)-C(12) 1.476(2)

C(11)-H(11) 1.011(18)

C(12)-C(13) 1.397(2)

C(12)-C(17) 1.398(2)

C(13)-C(14) 1.389(2)

C(13)-H(13) 1.008(19)

C(14)-C(15) 1.385(3)

C(14)-H(14) 1.011(18)

C(15)-C(16) 1.382(2)

C(15)-H(15) 0.937(17)

C(16)-C(17) 1.383(2)

C(16)-H(16) 0.999(19)

C(17)-H(17) 0.968(19)

C(11)-N(1)-C(1) 120.14(13)

N(1)-C(1)-C(7) 116.47(13)

N(1)-C(1)-C(6) 106.42(11)

C(7)-C(1)-C(6) 108.83(13)

N(1)-C(1)-C(2) 107.14(13)

C(7)-C(1)-C(2) 108.97(13)

C(6)-C(1)-C(2) 108.80(13)

C(3)-C(2)-C(1) 109.97(14)

C(3)-C(2)-H(2A) 112.0(10)

C(1)-C(2)-H(2A) 107.2(11)

Page 207: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 197

C(3)-C(2)-H(2B) 111.7(10)

C(1)-C(2)-H(2B) 109.2(10)

H(2A)-C(2)-H(2B) 106.6(14)

C(10)-C(3)-C(4) 109.50(14)

C(10)-C(3)-C(2) 109.17(14)

C(4)-C(3)-C(2) 109.63(13)

C(10)-C(3)-H(3) 110.4(10)

C(4)-C(3)-H(3) 109.8(10)

C(2)-C(3)-H(3) 108.3(11)

C(3)-C(4)-C(5) 109.88(13)

C(3)-C(4)-H(4A) 108.2(9)

C(5)-C(4)-H(4A) 111.7(10)

C(3)-C(4)-H(4B) 111.8(11)

C(5)-C(4)-H(4B) 110.2(10)

H(4A)-C(4)-H(4B) 104.9(15)

C(6)-C(5)-C(4) 109.04(14)

C(6)-C(5)-C(9) 109.66(14)

C(4)-C(5)-C(9) 109.11(13)

C(6)-C(5)-H(5) 109.6(9)

C(4)-C(5)-H(5) 109.0(10)

C(9)-C(5)-H(5) 110.5(10)

C(5)-C(6)-C(1) 110.58(12)

C(5)-C(6)-H(6A) 109.8(11)

C(1)-C(6)-H(6A) 109.1(11)

C(5)-C(6)-H(6B) 109.2(10)

C(1)-C(6)-H(6B) 108.9(10)

H(6A)-C(6)-H(6B) 109.3(13)

C(1)-C(7)-C(8) 109.92(13)

C(1)-C(7)-H(7A) 109.7(10)

C(8)-C(7)-H(7A) 109.8(9)

C(1)-C(7)-H(7B) 110.0(10)

C(8)-C(7)-H(7B) 111.7(10)

H(7A)-C(7)-H(7B) 105.6(15)

C(10)-C(8)-C(9) 109.89(14)

C(10)-C(8)-C(7) 109.46(14)

C(9)-C(8)-C(7) 109.34(13)

C(10)-C(8)-H(8) 109.7(10)

C(9)-C(8)-H(8) 108.4(11)

C(7)-C(8)-H(8) 110.1(11)

C(5)-C(9)-C(8) 109.31(14)

C(5)-C(9)-H(9A) 108.2(10)

C(8)-C(9)-H(9A) 112.6(9)

C(5)-C(9)-H(9B) 111.6(10)

C(8)-C(9)-H(9B) 111.4(11)

H(9A)-C(9)-H(9B) 103.6(14)

C(3)-C(10)-C(8) 109.40(12)

C(3)-C(10)-H(10A) 109.9(11)

C(8)-C(10)-H(10A) 109.6(11)

C(3)-C(10)-H(10B) 109.2(11)

C(8)-C(10)-H(10B) 108.3(11)

H(10A)-C(10)-H(10B) 110.4(13)

N(1)-C(11)-C(12) 122.54(15)

N(1)-C(11)-H(11) 122.9(9)

C(12)-C(11)-H(11) 114.5(9)

C(13)-C(12)-C(17) 119.15(15)

C(13)-C(12)-C(11) 122.08(15)

Page 208: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 198

C(17)-C(12)-C(11) 118.77(14)

C(14)-C(13)-C(12) 119.98(16)

C(14)-C(13)-H(13) 118.3(11)

C(12)-C(13)-H(13) 121.7(11)

C(15)-C(14)-C(13) 120.17(16)

C(15)-C(14)-H(14) 122.2(10)

C(13)-C(14)-H(14) 117.5(10)

C(16)-C(15)-C(14) 120.23(16)

C(16)-C(15)-H(15) 118.4(11)

C(14)-C(15)-H(15) 121.3(11)

C(15)-C(16)-C(17) 120.06(17)

C(15)-C(16)-H(16) 120.7(10)

C(17)-C(16)-H(16) 119.2(10)

C(16)-C(17)-C(12) 120.42(16)

C(16)-C(17)-H(17) 122.5(11)

C(12)-C(17)-H(17) 116.9(11)

Page 209: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 199

Table 6.19: Torsion angles [°] for N-Adamantyl-benzaldehyde imine.

C(11)-N(1)-C(1)-C(7) 8.9(2)

C(11)-N(1)-C(1)-C(6) -112.60(16)

C(11)-N(1)-C(1)-C(2) 131.14(16)

N(1)-C(1)-C(2)-C(3) 173.63(12)

C(7)-C(1)-C(2)-C(3) -59.56(17)

C(6)-C(1)-C(2)-C(3) 58.96(17)

C(1)-C(2)-C(3)-C(10) 60.45(17)

C(1)-C(2)-C(3)-C(4) -59.49(18)

C(10)-C(3)-C(4)-C(5) -60.05(17)

C(2)-C(3)-C(4)-C(5) 59.70(18)

C(3)-C(4)-C(5)-C(6) -59.61(16)

C(3)-C(4)-C(5)-C(9) 60.13(18)

C(4)-C(5)-C(6)-C(1) 60.01(17)

C(9)-C(5)-C(6)-C(1) -59.40(17)

N(1)-C(1)-C(6)-C(5) -174.75(13)

C(7)-C(1)-C(6)-C(5) 59.00(17)

C(2)-C(1)-C(6)-C(5) -59.61(17)

N(1)-C(1)-C(7)-C(8) -179.62(12)

C(6)-C(1)-C(7)-C(8) -59.39(16)

C(2)-C(1)-C(7)-C(8) 59.11(18)

C(1)-C(7)-C(8)-C(10) -59.85(16)

C(1)-C(7)-C(8)-C(9) 60.58(18)

C(6)-C(5)-C(9)-C(8) 59.51(17)

C(4)-C(5)-C(9)-C(8) -59.86(18)

C(10)-C(8)-C(9)-C(5) 60.06(17)

C(7)-C(8)-C(9)-C(5) -60.11(18)

C(4)-C(3)-C(10)-C(8) 59.48(17)

C(2)-C(3)-C(10)-C(8) -60.55(18)

C(9)-C(8)-C(10)-C(3) -59.80(18)

C(7)-C(8)-C(10)-C(3) 60.30(17)

C(1)-N(1)-C(11)-C(12) 177.09(13)

N(1)-C(11)-C(12)-C(13) -3.8(2)

N(1)-C(11)-C(12)-C(17) 176.82(15)

C(17)-C(12)-C(13)-C(14) 0.1(2)

C(11)-C(12)-C(13)-C(14) -179.22(14)

C(12)-C(13)-C(14)-C(15) -0.4(2)

C(13)-C(14)-C(15)-C(16) 0.3(2)

C(14)-C(15)-C(16)-C(17) -0.1(3)

C(15)-C(16)-C(17)-C(12) -0.1(3)

C(13)-C(12)-C(17)-C(16) 0.1(2)

C(11)-C(12)-C(17)-C(16) 179.48(16)

Page 210: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 200

6.6.2. Crystal data and structure refinement for N-Adamantyl-p-fluoro-

benzaldehyde imine

Empirical formula C17H20FN

Formula weight 257.34

Temperature 100(2) K

Wavelength 0.71073 A

Crystal system, space group Monoclinic, P21/c

Unit cell dimensions a = 6.4759(5) A° alpha = 90°

b = 33.280(2) A° beta = 116.291(6)°

c = 6.8092(3) A° gamma = 90°

Volume 1315.7(2) A3

Z, Calculated density 4, 1.299 Mg/m3

Absorption coefficient 0.085 mm-1

F(000) 552

Crystal size 0.25 x 0.22 x 0.08 mm

Theta range for data collection 3.96 to 26.37°

Limiting indices -8 ≤ h ≤ 8, -41 ≤ k ≤ 41, -8 ≤ l ≤ 8

Reflections collected / unique 21697 / 2630 [R(int) = 0.1045]

Completeness to theta = 26.37 97.8 %

Absorption correction Integration

Max. and min. transmission 0.993 and 0.974

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 2630 / 0 / 232

Goodness-of-fit on F2 R1 = 0.0503, wR2 = 0.1027

R indices (all data) R1 = 0.0770, wR2 = 0.1117

Largest diff. peak and hole 0.242 and -0.208 e.A°-3

Page 211: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 201

_____________ ___________________________________________________

x y z U(eq)

__________________________________ ______________________________

F(1) 5456(2) 1493(1) 9488(2) 22(1)

N(1) 2508(2) 3333(1) 8293(2) 14(1)

C(1) 2297(3) 3774(1) 8288(3) 14(1)

C(2) 1102(3) 3911(1) 5885(3) 16(1)

C(3) 582(3) 4363(1) 5762(3) 17(1)

C(4) -1013(3) 4447(1) 6834(3) 19(1)

C(5) 175(3) 4317(1) 9243(3) 17(1)

C(6) 703(3) 3866(1) 9369(3) 16(1)

C(7) 4540(3) 4011(1) 9471(3) 16(1)

C(8) 4009(3) 4464(1) 9359(3) 18(1)

C(9) 2430(3) 4548(1) 10441(3) 19(1)

C(10) 2823(3) 4596(1) 6963(3) 19(1)

C(11) 4462(3) 3164(1) 9103(3) 14(1)

C(12) 4700(3) 2722(1) 9172(3) 13(1)

C(13) 2806(3) 2472(1) 8709(3) 14(1)

C(14) 3050(3) 2059(1) 8788(3) 15(1)

C(15) 5204(3) 1902(1) 9367(3) 15(1)

C(16) 7121(3) 2134(1) 9855(3) 16(1)

C(17) 6843(3) 2550(1) 9743(3) 15(1)

_______________________________________ _________________________

Table 6.8: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters

(A2 x 103) for N-Adamantyl-p- fluoro-benzaldehyde imine. U(eq) is defined as one third of

the trace of the orthogonalized Uij tensor.

Page 212: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 202

Table 6.9: Bond lengths [A] and angles [°] for N-Adamantyl-p- fluoro-benzaldehyde

imine.

F(1)-C(15) 1.3687(18)

N(1)-C(11) 1.265(2)

N(1)-C(1) 1.4721(19)

C(1)-C(7) 1.532(2)

C(1)-C(2) 1.538(2)

C(1)-C(6) 1.540(2)

C(2)-C(3) 1.537(2)

C(2)-H(2A) 0.98(2)

C(2)-H(2B) 1.01(2)

C(3)-C(10) 1.525(3)

C(3)-C(4) 1.532(2)

C(3)-H(3) 0.99(2)

C(4)-C(5) 1.533(2)

C(4)-H(4A) 1.00(2)

C(4)-H(4B) 0.99(2)

C(5)-C(9) 1.529(2)

C(5)-C(6) 1.534(2)

C(5)-H(5) 0.97(2)

C(6)-H(6A) 1.00(2)

C(6)-H(6B) 1.00(2)

C(7)-C(8) 1.540(2)

C(7)-H(7A) 1.00(2)

C(7)-H(7B) 1.01(2)

C(8)-C(10) 1.528(3)

C(8)-C(9) 1.528(3)

C(8)-H(8) 1.02(2)

C(9)-H(9A) 0.99(2)

C(9)-H(9B) 1.00(2)

C(10)-H(10A) 0.99(2)

C(10)-H(10B) 0.99(2)

C(11)-C(12) 1.480(2)

C(11)-H(11) 0.98(2)

C(12)-C(17) 1.388(2)

C(12)-C(13) 1.396(2)

C(13)-C(14) 1.384(2)

C(13)-H(13) 0.97(2)

C(14)-C(15) 1.373(2)

C(14)-H(14) 0.98(2)

C(15)-C(16) 1.371(2)

C(16)-C(17) 1.394(2)

C(16)-H(16) 0.97(2)

C(17)-H(17) 0.98(2)

C(11)-N(1)-C(1) 121.11(14)

N(1)-C(1)-C(7) 116.53(14)

N(1)-C(1)-C(2) 107.51(13)

C(7)-C(1)-C(2) 108.61(14)

N(1)-C(1)-C(6) 106.16(13)

C(7)-C(1)-C(6) 109.05(14)

C(2)-C(1)-C(6) 108.76(14)

C(3)-C(2)-C(1) 110.12(14)

C(3)-C(2)-H(2A) 110.7(11)

C(1)-C(2)-H(2A) 109.9(12)

Page 213: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 203

C(3)-C(2)-H(2B) 110.3(11)

C(1)-C(2)-H(2B) 108.4(11)

H(2A)-C(2)-H(2B) 107.4(16)

C(10)-C(3)-C(4) 109.54(15)

C(10)-C(3)-C(2) 109.61(15)

C(4)-C(3)-C(2) 109.24(14)

C(10)-C(3)-H(3) 111.5(11)

C(4)-C(3)-H(3) 108.3(11)

C(2)-C(3)-H(3) 108.6(11)

C(3)-C(4)-C(5) 109.49(15)

C(3)-C(4)-H(4A) 112.3(11)

C(5)-C(4)-H(4A) 108.2(11)

C(3)-C(4)-H(4B) 110.6(11)

C(5)-C(4)-H(4B) 108.7(11)

H(4A)-C(4)-H(4B) 107.5(16)

C(9)-C(5)-C(4) 109.68(15)

C(9)-C(5)-C(6) 109.12(15)

C(4)-C(5)-C(6) 109.26(14)

C(9)-C(5)-H(5) 109.8(12)

C(4)-C(5)-H(5) 109.8(12)

C(6)-C(5)-H(5) 109.2(11)

C(5)-C(6)-C(1) 110.37(14)

C(5)-C(6)-H(6A) 110.2(11)

C(1)-C(6)-H(6A) 108.7(11)

C(5)-C(6)-H(6B) 109.6(11)

C(1)-C(6)-H(6B) 110.0(11)

H(6A)-C(6)-H(6B) 107.9(15)

C(1)-C(7)-C(8) 109.85(14)

C(1)-C(7)-H(7A) 109.6(11)

C(8)-C(7)-H(7A) 110.0(11)

C(1)-C(7)-H(7B) 110.1(11)

C(8)-C(7)-H(7B) 109.8(11)

H(7A)-C(7)-H(7B) 107.5(16)

C(10)-C(8)-C(9) 109.52(15)

C(10)-C(8)-C(7) 109.34(14)

C(9)-C(8)-C(7) 109.83(14)

C(10)-C(8)-H(8) 108.9(11)

C(9)-C(8)-H(8) 110.1(11)

C(7)-C(8)-H(8) 109.1(11)

C(8)-C(9)-C(5) 109.53(14)

C(8)-C(9)-H(9A) 110.7(12)

C(5)-C(9)-H(9A) 109.2(11)

C(8)-C(9)-H(9B) 110.3(11)

C(5)-C(9)-H(9B) 110.3(11)

H(9A)-C(9)-H(9B) 106.8(15)

C(3)-C(10)-C(8) 109.54(14)

C(3)-C(10)-H(10A) 110.2(11)

C(8)-C(10)-H(10A) 110.3(11)

C(3)-C(10)-H(10B) 110.3(11)

C(8)-C(10)-H(10B) 109.2(11)

H(10A)-C(10)-H(10B) 107.2(15)

N(1)-C(11)-C(12) 121.69(16)

Page 214: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 204

N(1)-C(11)-H(11) 123.6(11)

C(12)-C(11)-H(11) 114.7(11)

C(17)-C(12)-C(13) 119.18(15)

C(17)-C(12)-C(11) 119.76(15)

C(13)-C(12)-C(11) 121.05(15)

C(14)-C(13)-C(12) 120.60(16)

C(14)-C(13)-H(13) 119.2(11)

C(12)-C(13)-H(13) 120.2(11)

C(15)-C(14)-C(13) 118.14(16)

C(15)-C(14)-H(14) 118.7(12)

C(13)-C(14)-H(14) 123.2(12)

F(1)-C(15)-C(16) 118.22(15)

F(1)-C(15)-C(14) 118.23(15)

C(16)-C(15)-C(14) 123.55(15)

C(15)-C(16)-C(17) 117.63(17)

C(15)-C(16)-H(16) 122.2(11)

C(17)-C(16)-H(16) 120.2(11)

C(12)-C(17)-C(16) 120.90(17)

C(12)-C(17)-H(17) 119.5(11)

C(16)-C(17)-H(17) 119.6(11)

Page 215: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 205

Table 6.10: Torsion angles [°] for N-Adamantyl-p-fluoro-benzaldehyde imine.

C(11)-N(1)-C(1)-C(7) -4.8(2)

C(11)-N(1)-C(1)-C(2) 117.33(17)

C(11)-N(1)-C(1)-C(6) -126.41(16)

N(1)-C(1)-C(2)-C(3) 173.65(14)

C(7)-C(1)-C(2)-C(3) -59.45(18)

C(6)-C(1)-C(2)-C(3) 59.10(18)

C(1)-C(2)-C(3)-C(10) 59.74(19)

C(1)-C(2)-C(3)-C(4) -60.29(19)

C(10)-C(3)-C(4)-C(5) -59.61(18)

C(2)-C(3)-C(4)-C(5) 60.46(19)

C(3)-C(4)-C(5)-C(9) 59.33(18)

C(3)-C(4)-C(5)-C(6) -60.23(18)

C(9)-C(5)-C(6)-C(1) -60.04(19)

C(4)-C(5)-C(6)-C(1) 59.86(19)

N(1)-C(1)-C(6)-C(5) -174.43(14)

C(7)-C(1)-C(6)-C(5) 59.26(18)

C(2)-C(1)-C(6)-C(5) -59.01(18)

N(1)-C(1)-C(7)-C(8) -178.65(14)

C(2)-C(1)-C(7)-C(8) 59.83(18)

C(6)-C(1)-C(7)-C(8) -58.55(18)

C(1)-C(7)-C(8)-C(10) -60.59(19)

C(1)-C(7)-C(8)-C(9) 59.60(19)

C(10)-C(8)-C(9)-C(5) 59.93(18)

.C(7)-C(8)-C(9)-C(5) -60.16(19)

C(4)-C(5)-C(9)-C(8) -59.52(18)

C(6)-C(5)-C(9)-C(8) 60.12(19)

C(4)-C(3)-C(10)-C(8) 60.15(18)

C(2)-C(3)-C(10)-C(8) -59.70(18)

C(9)-C(8)-C(10)-C(3) -60.31(18)

C(7)-C(8)-C(10)-C(3) 60.08(19)

C(1)-N(1)-C(11)-C(12) 178.36(14)

N(1)-C(11)-C(12)-C(17) 169.62(16)

N(1)-C(11)-C(12)-C(13) -11.5(2)

C(17)-C(12)-C(13)-C(14) -0.8(2)

C(11)-C(12)-C(13)-C(14) -179.67(15)

C(12)-C(13)-C(14)-C(15) 1.0(2)

C(13)-C(14)-C(15)-F(1) 178.76(14)

C(13)-C(14)-C(15)-C(16) -0.4(3)

F(1)-C(15)-C(16)-C(17) -179.48(14)

C(14)-C(15)-C(16)-C(17) -0.3(3)

C(13)-C(12)-C(17)-C(16) 0.1(2)

C(11)-C(12)-C(17)-C(16) 178.94(15)

C(15)-C(16)-C(17)-C(12) 0.5(3)

Page 216: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 206

6.6.3. Crystal data and structure refinement for N-Adamantyl-p-chloro-

benzaldehyde imine

Empirical formula C17H20ClN

Formula weight 273.79

Temperature 100(2) K

Wavelength 0.71073 A°

Crystal system, space group Monoclinic, C2/c

Unit cell dimensions a = 27.270(3) A° alpha = 90°

b = 6.4963(3) A° beta = 107.590(8) °

c = 16.418(2) A° gamma = 90°

Volume 2772.5(5) A°3

Z, Calculated density 8, 1.312 Mg/m3

Absorption coefficient 0.261 mm-1

F(000) 1168

Crystal size 0.35 x 0.20 x 0.18 mm

Theta range for data collection 3.90 to 27.88°

Limiting indices -35 ≤ h ≤ 35, -8 ≤ k ≤ 8, -21 ≤ l ≤ 21

Reflections collected / unique 34135 / 3304 [R(int) = 0.0264]

Completeness to theta = 27.88° 99.6 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 1.000 and 0.944

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 3304 / 0 / 232

Goodness-of-fit on F2 1.064

Final R indices [I>2sigma(I)] R1 = 0.0317, wR2 = 0.0803

R indices (all data) R1 = 0.0395, wR2 = 0.0854

Largest diff. peak and hole 0.404 and -0.227 e.A°-3

Page 217: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 207

___ _____________________________________________________________

x y z U(eq)

________________________ ________________________________________

Cl(1) 6370(1) 5437(1) 5399(1) 20(1)

N(1) 4233(1) 8876(2) 6236(1) 14(1)

C(1) 3760(1) 9198(2) 6480(1) 12(1)

C(2) 3839(1) 11208(2) 7003(1) 14(1)

C(3) 3345(1) 11777(2) 7220(1) 14(1)

C(4) 2904(1) 12078(2) 6385(1) 16(1)

C(5) 2817(1) 10072(2) 5866(1) 14(1)

C(6) 3312(1) 9504(2) 5651(1) 14(1)

C(7) 3617(1) 7467(2) 7004(1) 13(1)

C(8) 3123(1) 8031(2) 7222(1) 14(1)

C(9) 2679(1) 8335(2) 6393(1) 16(1)

C(10) 3206(1) 10031(2) 7743(1) 16(1)

C(11) 4481(1) 7199(2) 6427(1) 13(1)

C(12) 4954(1) 6799(2) 6188(1) 13(1)

C(13) 5192(1) 8361(2) 5857(1) 13(1)

C(14) 5623(1) 7952(2) 5600(1) 14(1)

C(15) 5820(1) 5958(2) 5694(1) 14(1)

C(16) 5595(1) 4381(2) 6025(1) 15(1)

C(17) 5160(1) 4816(2) 6273(1) 15(1)

_______________________________________________ _________________

Table 6.5: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters

(A2 x 103) for N-Adamantyl-p-chloro-benzaldehyde imine. U(eq) is defined as one third of

the trace of the orthogonalized Uij tensor.

Page 218: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 208

Table 6.6: Bond lengths [A] and angles [°] for N-Adamantyl-p-chloro-benzaldehyde

imine.

Cl(1)-C(15) 1.7422(12)

N(1)-C(11) 1.2709(16)

N(1)-C(1) 1.4754(14)

C(1)-C(7) 1.5357(16)

C(1)-C(2) 1.5416(16)

C(1)-C(6) 1.5428(16)

C(2)-C(3) 1.5387(16)

C(2)-H(2A) 0.994(18)

C(2)-H(2B) 0.977(18)

C(3)-C(10) 1.5370(17)

C(3)-C(4) 1.5385(17)

C(3)-H(3) 0.978(18)

C(4)-C(5) 1.5357(17)

C(4)-H(4A) 0.981(17)

C(4)-H(4B) 1.007(18)

C(5)-C(9) 1.5360(17)

C(5)-C(6) 1.5391(16)

C(5)-H(5) 0.993(18)

C(6)-H(6A) 0.992(18)

C(6)-H(6B) 0.983(18)

C(7)-C(8) 1.5391(16)

C(7)-H(7A) 0.991(18)

C(7)-H(7B) 1.004(17)

C(8)-C(10) 1.5335(17)

C(8)-C(9) 1.5368(17)

C(8)-H(8) 0.999(18)

C(9)-H(9A) 0.964(17)

C(9)-H(9B) 0.999(18)

C(10)-H(10A) 0.987(18)

C(10)-H(10B) 0.969(18)

C(11)-C(12) 1.4811(16)

C(11)-H(11) 0.983(18)

C(12)-C(17) 1.3957(17)

C(12)-C(13) 1.3995(17)

C(13)-C(14) 1.3888(16)

C(13)-H(13) 0.974(18)

C(14)-C(15) 1.3931(17)

C(14)-H(14) 0.952(18)

C(15)-C(16) 1.3870(18)

C(16)-C(17) 1.3946(17)

C(16)-H(16) 0.975(18)

C(17)-H(17) 0.953(18)

C(11)-N(1)-C(1) 119.87(10)

N(1)-C(1)-C(7) 116.02(9)

N(1)-C(1)-C(2) 106.59(9)

C(7)-C(1)-C(2) 108.94(10)

N(1)-C(1)-C(6) 107.58(9)

C(7)-C(1)-C(6) 108.73(9)

Page 219: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 209

C(2)-C(1)-C(6) 108.79(9)

C(3)-C(2)-C(1) 110.38(9)

C(3)-C(2)-H(2A) 111.2(10)

C(1)-C(2)-H(2A) 108.3(10)

C(3)-C(2)-H(2B) 110.5(10)

C(1)-C(2)-H(2B) 108.5(10)

H(2A)-C(2)-H(2B) 107.7(14)

C(10)-C(3)-C(4) 109.49(10)

C(10)-C(3)-C(2) 109.41(10)

C(4)-C(3)-C(2) 109.07(10)

C(10)-C(3)-H(3) 108.2(10)

C(4)-C(3)-H(3) 110.8(10)

C(2)-C(3)-H(3) 109.8(10)

C(5)-C(4)-C(3) 109.52(10)

C(5)-C(4)-H(4A) 109.9(10)

C(3)-C(4)-H(4A) 110.0(10)

C(5)-C(4)-H(4B) 110.5(10)

C(3)-C(4)-H(4B) 109.5(10)

H(4A)-C(4)-H(4B) 07.4(14)

C(4)-C(5)-C(9) 109.52(10)

C(4)-C(5)-C(6) 109.41(10)

C(9)-C(5)-C(6) 109.50(10)

C(4)-C(5)-H(5) 108.1(10)

C(9)-C(5)-H(5) 111.2(10)

C(6)-C(5)-H(5) 109.1(10)

C(5)-C(6)-C(1) 110.10(9)

C(5)-C(6)-H(6A) 110.5(10)

C(1)-C(6)-H(6A) 110.9(10)

C(5)-C(6)-H(6B) 110.0(10)

C(1)-C(6)-H(6B) 109.3(10)

H(6A)-C(6)-H(6B) 106.0(14)

C(1)-C(7)-C(8) 110.13(9)

C(1)-C(7)-H(7A) 109.2(10)

C(8)-C(7)-H(7A) 109.7(10)

C(1)-C(7)-H(7B) 109.9(10)

C(8)-C(7)-H(7B) 109.4(10)

H(7A)-C(7)-H(7B) 108.5(14)

C(10)-C(8)-C(9) 109.22(10)

C(10)-C(8)-C(7) 109.82(10)

C(9)-C(8)-C(7) 109.57(10)

C(10)-C(8)-H(8) 109.3(10)

C(9)-C(8)-H(8) 109.0(10)

C(7)-C(8)-H(8) 110.0(10)

C(5)-C(9)-C(8) 109.37(10)

C(5)-C(9)-H(9A) 109.2(11)

C(8)-C(9)-H(9A) 109.1(10)

C(5)-C(9)-H(9B) 110.5(10)

C(8)-C(9)-H(9B) 110.2(10)

H(9A)-C(9)-H(9B) 108.4(14)

C(8)-C(10)-C(3) 109.50(10)

C(8)-C(10)-H(10A) 110.8(10)

C(3)-C(10)-H(10A) 110.3(10)

C(8)-C(10)-H(10B) 109.2(10)

C(3)-C(10)-H(10B) 111.1(11)

Page 220: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 210

H(10A)-C(10)-H(10B) 105.9(14)

N(1)-C(11)-C(12) 121.77(11)

N(1)-C(11)-H(11) 122.4(10)

C(12)-C(11)-H(11) 115.8(10)

C(17)-C(12)-C(13) 119.21(11)

C(17)-C(12)-C(11) 119.50(11)

C(13)-C(12)-C(11) 121.28(11)

C(14)-C(13)-C(12) 120.89(11)

C(14)-C(13)-H(13) 120.4(10)

C(12)-C(13)-H(13) 118.7(10)

C(13)-C(14)-C(15) 118.58(11)

C(13)-C(14)-H(14) 121.5(11)

C(15)-C(14)-H(14) 119.8(11)

C(16)-C(15)-C(14) 121.89(11)

C(16)-C(15)-Cl(1) 119.01(9)

C(14)-C(15)-Cl(1) 119.09(9)

C(15)-C(16)-C(17) 118.74(11)

C(15)-C(16)-H(16) 119.8(10)

C(17)-C(16)-H(16) 121.4(10)

C(16)-C(17)-C(12) 120.69(11)

C(16)-C(17)-H(17) 119.5(11)

C(12)-C(17)-H(17) 119.7(11)

Page 221: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 211

Table 6.7: Torsion angles [°] for N-Adamantyl-p-chloro-benzaldehyde imine.

C(11)-N(1)-C(1)-C(7) 3.15(15)

C(11)-N(1)-C(1)-C(2) 124.63(11)

C(11)-N(1)-C(1)-C(6) -118.82(12)

N(1)-C(1)-C(2)-C(3) 175.00(9)

C(7)-C(1)-C(2)-C(3) -59.12(12)

C(6)-C(1)-C(2)-C(3) 59.26(12)

C(1)-C(2)-C(3)-C(10) 59.66(13)

C(1)-C(2)-C(3)-C(4) -60.09(13)

C(10)-C(3)-C(4)-C(5) -59.50(12)

C(2)-C(3)-C(4)-C(5) 60.20(12)

C(3)-C(4)-C(5)-C(9) 59.69(12)

C(3)-C(4)-C(5)-C(6) -60.34(12)

C(4)-C(5)-C(6)-C(1) 60.02(12)

C(9)-C(5)-C(6)-C(1) -60.01(13)

N(1)-C(1)-C(6)-C(5) -174.12(9)

C(7)-C(1)-C(6)-C(5) 59.49(12)

C(2)-C(1)-C(6)-C(5) -59.02(12)

N(1)-C(1)-C(7)-C(8) 179.14(9)

C(2)-C(1)-C(7)-C(8) 58.92(12)

C(6)-C(1)-C(7)-C(8) -59.50(12)

C(1)-C(7)-C(8)-C(10) -59.81(12)

C(1)-C(7)-C(8)-C(9) 60.15(12)

C(4)-C(5)-C(9)-C(8) -60.26(12)

C(6)-C(5)-C(9)-C(8) 59.71(13)

C(10)-C(8)-C(9)-C(5) 60.58(12)

C(7)-C(8)-C(9)-C(5) -59.75(13)

C(9)-C(8)-C(10)-C(3) -60.49(12)

C(7)-C(8)-C(10)-C(3) 59.69(12)

C(4)-C(3)-C(10)-C(8) 60.00(12)

C(2)-C(3)-C(10)-C(8) -59.49(13)

C(1)-N(1)-C(11)-C(12) 179.41(10)

N(1)-C(11)-C(12)-C(17) -168.44(11)

N(1)-C(11)-C(12)-C(13) 9.78(17)

C(17)-C(12)-C(13)-C(14) 1.00(17)

C(11)-C(12)-C(13)-C(14) -177.22(10)

C(12)-C(13)-C(14)-C(15) -1.16(17)

C(13)-C(14)-C(15)-C(16) 0.75(17)

C(13)-C(14)-C(15)-Cl(1) -178.44(9)

C(14)-C(15)-C(16)-C(17) -0.19(18)

Cl(1)-C(15)-C(16)-C(17) 179.00(9)

C(15)-C(16)-C(17)-C(12) 0.03(18)

C(13)-C(12)-C(17)-C(16) -0.43(18)

C(11)-C(12)-C(17)-C(16) 177.83(10)

Page 222: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 212

6.6.4. Crystal data and structure refinement for N-Adamantyl-p-bromo-

benzaldehyde imine

Empirical formula C17H20BrN

Formula weight 318.25

Temperature 100(2) K

Wavelength 0.71073 A°

Crystal system, space group Monoclinic, C2/c

Unit cell dimensions a = 27.680(3) A° alpha = 90 °

b = 6.5071(3) A° beta = 108.150(8) °

c = 16.548(2) A° gamma = 90 °

Volume 2832.3(5) A°3

Z, Calculated density 8, 1.493 Mg/m3

Absorption coefficient 2.889 mm-1

F(000) 1312

Crystal size 0.26 x 0.21 x 0.13 mm

Theta range for data collection 3.87 to 28.69 deg.

Limiting indices -37 ≤ h ≤ 36, -8 ≤ k ≤ 8, -22 ≤ l ≤ 22

Reflections collected / unique 25383 / 3650 [R(int) = 0.0396]

Completeness to theta = 28.69 99.7 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 1.000 and 0.771

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 3650 / 0 / 232

Goodness-of-fit on F2 1.072

Final R indices [I>2sigma(I)] R1 = 0.0268, wR2 = 0.0530

R indices (all data) R1 = 0.0431, wR2 = 0.0570

Largest diff. peak and hole 0.377 and -0.357 e.A°-3

Page 223: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 213

________________________________________________________________ x y z U(eq) ________________________________________________________________ Br(1) 6361(1) 5383(1) 5419(1) 19(1) N(1) 4212(1) 8943(2) 6254(1) 14(1) C(1) 3746(1) 9260(3) 6496(1) 12(1) C(2) 3826(1) 11259(3) 7018(1) 15(1) C(3) 3342(1) 11815(3) 7234(1) 15(1) C(4) 2905(1) 12122(3) 6407(1) 17(1) C(5) 2816(1) 10126(3) 5889(1) 15(1) C(6) 3300(1) 9561(3) 5673(1) 14(1) C(7) 3610(1) 7524(3) 7016(1) 13(1) C(8) 3125(1) 8082(3) 7231(1) 15(1) C(9) 2684(1) 8388(3) 6408(1) 17(1) C(10) 3210(1) 10070(3) 7755(1) 17(1) C(11) 4457(1) 7269(3) 6443(1) 13(1) C(12) 4921(1) 6860(3) 6207(1) 13(1) C(13) 5158(1) 8407(3) 5883(1) 14(1) C(14) 5582(1) 7982(3) 5634(1) 14(1) C(15) 5770(1) 5985(3) 5724(1) 14(1) C(16) 5544(1) 4423(3) 6046(1) 15(1) C(17) 5118(1) 4874(3) 6287(1) 15(1) ________________________________________________________________ Table 6.11: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters

(A2 x 103) for N-Adamantyl-p-bromo-benzaldehyde imine. U(eq) is defined as one third of

the trace of the orthogonalized Uij tensor.

Page 224: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 214

Table 6.12: Bond lengths [A] and angles [°] for N-Adamantyl-p-bromo-benzaldehyde

imine.

Br(1)-C(15) 1.8964(17)

N(1)-C(11) 1.270(2)

N(1)-C(1) 1.479(2)

C(1)-C(7) 1.536(2)

C(1)-C(2) 1.539(3)

C(1)-C(6) 1.540(2)

C(2)-C(3) 1.534(3)

C(2)-H(2A) 0.97(2)

C(2)-H(2B) 1.01(2)

C(3)-C(4) 1.531(3)

C(3)-C(10) 1.537(3)

C(3)-H(3) 0.96(2)

C(4)-C(5) 1.534(3)

C(4)-H(4A) 0.99(2)

C(4)-H(4B) 1.00(2)

C(5)-C(9) 1.532(3)

C(5)-C(6) 1.534(2)

C(5)-H(5) 0.95(2)

C(6)-H(6A) 0.99(2)

C(6)-H(6B) 0.93(2)

C(7)-C(8) 1.538(2)

C(7)-H(7A) 0.96(3)

C(7)-H(7B) 1.05(2)

C(8)-C(9) 1.533(3)

C(8)-C(10) 1.534(3)

C(8)-H(8) 1.01(2)

C(9)-H(9A) 0.97(2)

C(9)-H(9B) 1.00(2)

C(10)-H(10A) 0.99(2)

C(10)-H(10B) 1.04(2)

C(11)-C(12) 1.476(2)

C(11)-H(11) 0.95(2)

C(12)-C(17) 1.393(3)

C(12)-C(13) 1.397(3)

C(13)-C(14) 1.389(3)

C(13)-H(13) 0.95(2)

C(14)-C(15) 1.391(3)

C(14)-H(14) 0.95(2)

C(15)-C(16) 1.385(3)

C(16)-C(17) 1.389(3)

C(16)-H(16) 0.93(3)

C(17)-H(17) 0.96(2)

C(11)-N(1)-C(1) 119.84(16)

N(1)-C(1)-C(7) 115.80(14)

N(1)-C(1)-C(2) 106.54(14)

C(7)-C(1)-C(2) 108.94(15)

N(1)-C(1)-C(6) 107.81(14)

C(7)-C(1)-C(6) 108.62(15)

C(2)-C(1)-C(6) 108.96(15)

C(3)-C(2)-C(1) 110.26(15)

C(3)-C(2)-H(2A) 110.8(14)

C(1)-C(2)-H(2A) 107.2(14)

Page 225: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 215

C(3)-C(2)-H(2B) 108.6(13)

C(1)-C(2)-H(2B) 110.0(13)

H(2A)-C(2)-H(2B) 110.0(19)

C(4)-C(3)-C(2) 109.12(16)

C(4)-C(3)-C(10) 109.78(16)

C(2)-C(3)-C(10) 109.53(15)

C(4)-C(3)-H(3) 109.8(14)

C(2)-C(3)-H(3) 108.6(14)

C(10)-C(3)-H(3) 110.0(14)

C(3)-C(4)-C(5) 109.49(15)

C(3)-C(4)-H(4A) 110.4(13)

C(5)-C(4)-H(4A) 108.8(14)

C(3)-C(4)-H(4B) 112.8(13)

C(5)-C(4)-H(4B) 108.2(13)

H(4A)-C(4)-H(4B) 107.0(19)

C(9)-C(5)-C(6) 109.33(15)

C(9)-C(5)-C(4) 109.66(15)

C(6)-C(5)-C(4) 109.49(16)

C(9)-C(5)-H(5) 109.9(14)

C(6)-C(5)-H(5) 109.8(14)

C(4)-C(5)-H(5) 108.7(14)

C(5)-C(6)-C(1) 110.07(14)

C(5)-C(6)-H(6A) 107.2(13)

C(1)-C(6)-H(6A) 110.5(13)

C(5)-C(6)-H(6B) 108.9(14)

C(1)-C(6)-H(6B) 110.4(15)

H(6A)-C(6)-H(6B) 109.6(19)

C(1)-C(7)-C(8) 109.92(15)

C(1)-C(7)-H(7A) 109.3(14)

C(8)-C(7)-H(7A) 109.1(14)

C(1)-C(7)-H(7B) 108.9(13)

C(8)-C(7)-H(7B) 111.0(13)

H(7A)-C(7)-H(7B) 108.5(19)

C(9)-C(8)-C(10) 109.44(15)

C(9)-C(8)-C(7) 109.60(15)

C(10)-C(8)-C(7) 109.77(15)

C(9)-C(8)-H(8) 109.3(13)

C(10)-C(8)-H(8) 107.5(13)

C(7)-C(8)-H(8) 111.1(13)

C(5)-C(9)-C(8) 109.39(15)

C(5)-C(9)-H(9A) 109.8(14)

C(8)-C(9)-H(9A) 108.9(14)

C(5)-C(9)-H(9B) 107.8(13)

C(8)-C(9)-H(9B) 110.5(13)

H(9A)-C(9)-H(9B) 110.3(19)

C(8)-C(10)-C(3) 109.09(15)

C(8)-C(10)-H(10A) 109.3(14)

C(3)-C(10)-H(10A) 108.6(14)

C(8)-C(10)-H(10B) 111.5(13)

C(3)-C(10)-H(10B) 109.2(13)

H(10A)-C(10)-H(10B) 109.1(18)

N(1)-C(11)-C(12) 122.12(17)

N(1)-C(11)-H(11) 122.7(14)

C(12)-C(11)-H(11) 115.2(14)

C(17)-C(12)-C(13) 119.23(17)

C(17)-C(12)-C(11) 119.27(17)

Page 226: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 216

C(13)-C(12)-C(11) 121.48(17)

C(14)-C(13)-C(12) 120.83(17)

C(14)-C(13)-H(13) 119.9(14)

C(12)-C(13)-H(13) 119.2(14)

C(13)-C(14)-C(15) 118.50(17)

C(13)-C(14)-H(14) 122.0(14)

C(15)-C(14)-H(14) 119.4(14)

C(16)-C(15)-C(14) 121.87(17)

C(16)-C(15)-Br(1) 118.82(14)

C(14)-C(15)-Br(1) 119.30(14)

C(15)-C(16)-C(17) 118.84(18)

C(15)-C(16)-H(16) 118.7(14)

C(17)-C(16)-H(16) 122.5(14)

C(16)-C(17)-C(12) 120.73(18)

C(16)-C(17)-H(17) 119.4(14)

C(12)-C(17)-H(17) 119.8(14)

Page 227: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 217

Table 6.13: Torsion angles [°] for N-Adamantyl-p-bromo-benzaldehyde imine.

C(11)-N(1)-C(1)-C(7) 3.3(2)

C(11)-N(1)-C(1)-C(2) 124.63(18)

C(11)-N(1)-C(1)-C(6) -118.54(18)

N(1)-C(1)-C(2)-C(3) 175.15(15)

C(7)-C(1)-C(2)-C(3) -59.3(2)

C(6)-C(1)-C(2)-C(3) 59.08(19)

C(1)-C(2)-C(3)-C(4) -60.2(2)

C(1)-C(2)-C(3)-C(10) 60.0(2)

C(2)-C(3)-C(4)-C(5) 60.5(2)

C(10)-C(3)-C(4)-C(5) -59.57(19)

C(3)-C(4)-C(5)-C(9) 59.53(19)

C(3)-C(4)-C(5)-C(6) -60.42(19)

C(9)-C(5)-C(6)-C(1) -60.4(2)

C(4)-C(5)-C(6)-C(1) 59.7(2)

N(1)-C(1)-C(6)-C(5) -173.95(15)

C(7)-C(1)-C(6)-C(5) 59.9(2)

C(2)-C(1)-C(6)-C(5) -58.7(2)

N(1)-C(1)-C(7)-C(8) 179.11(15)

C(2)-C(1)-C(7)-C(8) 59.09(19)

C(6)-C(1)-C(7)-C(8) -59.47(19)

C(1)-C(7)-C(8)-C(9) 60.1(2)

C(1)-C(7)-C(8)-C(10) -60.2(2)

C(6)-C(5)-C(9)-C(8) 60.0(2)

C(4)-C(5)-C(9)-C(8) -60.02(19)

C(10)-C(8)-C(9)-C(5) 60.52(19)

C(7)-C(8)-C(9)-C(5) -59.9(2)

C(9)-C(8)-C(10)-C(3) -60.31(19)

C(7)-C(8)-C(10)-C(3) 60.02(19)

C(4)-C(3)-C(10)-C(8) 59.96(19)

C(2)-C(3)-C(10)-C(8) -59.8(2)

C(1)-N(1)-C(11)-C(12) 179.16(16)

N(1)-C(11)-C(12)-C(17) -168.05(18)

N(1)-C(11)-C(12)-C(13) 10.2(3)

C(17)-C(12)-C(13)-C(14) 0.7(3)

C(11)-C(12)-C(13)-C(14) -177.54(17)

C(12)-C(13)-C(14)-C(15) -0.8(3)

C(13)-C(14)-C(15)-C(16) 0.6(3)

C(13)-C(14)-C(15)-Br(1) -178.17(13)

C(14)-C(15)-C(16)-C(17) -0.3(3)

Br(1)-C(15)-C(16)-C(17) 178.54(13)

C(15)-C(16)-C(17)-C(12) 0.1(3)

C(13)-C(12)-C(17)-C(16) -0.3(3)

C(11)-C(12)-C(17)-C(16) 177.96(17)

Page 228: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 218

6.6.5. Crystal data and structure refinement for N-Adamantyl-p-methoxy-

benzaldehyde imine

Empirical formula C18H23NO

Formula weight 269.37

Temperature 100(2) K

Wavelength 0.71073 A°

Crystal system, space group Monoclinic, P2 1

Unit cell dimensions a = 6.7598(4) A° alpha = 90°

b = 6.7421(2) A° beta = 93.646(4) °

c = 15.7289(5) A° gamma = 90°

Volume 715.40(5) A3

Z, Calculated density 2, 1.251 Mg/m3

Absorption coefficient 0.076 mm-1

F(000) 292

Crystal size 0.33 x 0.24 x 0.18 mm

Theta range for data collection 3.36 to 27.87°

Limiting indices -8 ≤ h≤ 8, -8 ≤ k ≤ 8, -20 ≤ l ≤ 20

Reflections collected / unique 18633 / 3395 [R(int) = 0.0282]

Completeness to theta = 27.87 99.7 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 1.000 and 0.944

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 3395 / 1 / 251

Goodness-of-fit on F2 1.049

Final R indices [I>2sigma(I)] R1 = 0.0375, wR2 = 0.0963

R indices (all data) R1 = 0.0434, wR2 = 0.0991

Absolute structure parameter 0.0(15)

Largest diff. peak and hole 0.270 and -0.215 e.A°-3

Page 229: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 219

________________________________________________________________

x y z U(eq)

________________________________________________________________

O(1) 5254(1) 318(2) 8216(1) 18(1)

N(1) 9507(2) 242(2) 12043(1) 16(1)

C(1) 11067(2) 342(2) 12747(1) 14(1)

C(2) 10711(3) 2225(2) 13272(1) 18(1)

C(3) 12190(3) 2299(2) 14056(1) 19(1)

C(4) 11900(2) 469(3) 14615(1) 20(1)

C(5) 12276(3) -1413(2) 14101(1) 18(1)

C(6) 10811(3) -1484(2) 13315(1) 17(1)

C(7) 13214(2) 383(3) 12472(1) 15(1)

C(8) 14682(2) 451(3) 13257(1) 17(1)

C(9) 14403(3) -1380(2) 13811(1) 20(1)

C(10) 14316(3) 2330(2) 13770(1) 19(1)

C(11) 9990(2) 551(2) 11292(1) 14(1)

C(12) 8608(2) 478(2) 10527(1) 14(1)

C(13) 6618(2) -55(2) 10522(1) 16(1)

C(14) 5429(2) -145(2) 9768(1) 16(1)

C(15) 6245(2) 318(2) 9000(1) 14(1)

C(16) 8239(2) 834(2) 8995(1) 16(1)

C(17) 9393(2) 912(2) 9747(1) 16(1)

C(18) 3168(2) -9(3) 8169(1) 23(1)

________________________________________________________________

Table 6.14: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters

(A2 x 103) for N-Adamantyl-p-methoxy-benzaldehyde imine. U(eq) is defined as one third

of the trace of the orthogonalized Uij tensor.

Page 230: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 220

Table 6.15: Bond lengths [A] and angles [°] for N-Adamantyl-p-methoxy-benzaldehyde

imine.

O(1)-C(15) 1.3642(13)

O(1)-C(18) 1.4246(17)

N(1)-C(11) 1.2637(17)

N(1)-C(1) 1.4817(15)

C(1)-C(6) 1.537(2)

C(1)-C(7) 1.5406(16)

C(1)-C(2) 1.542(2)

C(2)-C(3) 1.539(2)

C(2)-H(2A) 0.98(3)

C(2)-H(2B) 1.02(3)

C(3)-C(10) 1.533(2)

C(3)-C(4) 1.534(2)

C(3)-H(3) 1.01(3)

C(4)-C(5) 1.534(2)

C(4)-H(4A) 0.98(2)

C(4)-H(4B) 1.02(2)

C(5)-C(6) 1.534(2)

C(5)-C(9) 1.536(2)

C(5)-H(5) 0.99(3)

C(6)-H(6A) 0.98(3)

C(6)-H(6B) 1.00(2)

C(7)-C(8) 1.5345(16)

C(7)-H(7A) 0.99(3)

C(7)-H(7B) 1.01(3)

C(8)-C(9) 1.530(2)

C(8)-C(10) 1.531(2)

C(8)-H(8) 0.99(2)

C(9)-H(9A) 1.02(2)

C(9)-H(9B) 0.98(3)

C(10)-H(10A) 0.98(3)

C(10)-H(10B) 0.99(3)

C(11)-C(12) 1.4761(16)

C(11)-H(11) 0.98(2)

C(12)-C(13) 1.3920(18)

C(12)-C(17) 1.3984(18)

C(13)-C(14) 1.3908(19)

C(13)-H(13) 0.96(2)

C(14)-C(15) 1.3960(17)

C(14)-H(14) 0.95(2)

C(15)-C(16) 1.3929(18)

C(16)-C(17) 1.3755(19)

C(16)-H(16) 0.95(2)

C(17)-H(17) 0.98(2)

C(18)-H(18A) 0.99(2)

C(18)-H(18B) 0.96(2)

C(18)-H(18C) 1.01(2)

C(15)-O(1)-C(18) 118.36(10)

C(11)-N(1)-C(1) 118.53(10)

N(1)-C(1)-C(6) 107.29(12)

N(1)-C(1)-C(7) 115.43(9)

C(6)-C(1)-C(7) 108.72(12)

N(1)-C(1)-C(2) 108.01(12)

C(6)-C(1)-C(2) 108.74(10)

C(7)-C(1)-C(2) 108.50(12)

Page 231: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 221

C(3)-C(2)-C(1) 109.89(12)

C(3)-C(2)-H(2A) 111.1(15)

C(1)-C(2)-H(2A) 108.0(15)

C(3)-C(2)-H(2B) 110.0(14)

C(1)-C(2)-H(2B) 108.4(15)

H(2A)-C(2)-H(2B) 109(2)

C(10)-C(3)-C(4) 109.57(13)

C(10)-C(3)-C(2) 109.77(15)

C(4)-C(3)-C(2) 109.50(13)

C(10)-C(3)-H(3) 108.8(15)

C(4)-C(3)-H(3) 109.7(15)

C(2)-C(3)-H(3) 109.5(14)

C(5)-C(4)-C(3) 109.35(10)

C(5)-C(4)-H(4A) 110.7(15)

C(3)-C(4)-H(4A) 110.0(15)

C(5)-C(4)-H(4B) 108.8(14)

C(3)-C(4)-H(4B) 109.9(14)

H(4A)-C(4)-H(4B) 108.1(15)

C(4)-C(5)-C(6) 109.30(13)

C(4)-C(5)-C(9) 109.50(13)

C(6)-C(5)-C(9) 109.26(14)

C(4)-C(5)-H(5) 111.3(15)

C(6)-C(5)-H(5) 110.9(15)

C(9)-C(5)-H(5) 106.5(15)

C(5)-C(6)-C(1) 110.64(12)

C(5)-C(6)-H(6A) 110.2(16)

C(1)-C(6)-H(6A) 110.5(14)

C(5)-C(6)-H(6B) 111.5(14)

C(1)-C(6)-H(6B) 109.5(15)

H(6A)-C(6)-H(6B) 104(2)

C(8)-C(7)-C(1) 110.32(9)

C(8)-C(7)-H(7A) 111.1(14)

C(1)-C(7)-H(7A) 107.7(15)

C(8)-C(7)-H(7B) 106.6(14)

C(1)-C(7)-H(7B) 112.6(15)

H(7A)-C(7)-H(7B) 108.6(15)

C(9)-C(8)-C(10) 109.65(10)

C(9)-C(8)-C(7) 109.74(13)

C(10)-C(8)-C(7) 109.33(13)

C(9)-C(8)-H(8) 111.8(14)

C(10)-C(8)-H(8) 108.8(15)

C(7)-C(8)-H(8) 107.5(11)

C(8)-C(9)-C(5) 109.44(13)

C(8)-C(9)-H(9A) 108.6(15)

C(5)-C(9)-H(9A) 109.1(15)

C(8)-C(9)-H(9B) 110.2(15)

C(5)-C(9)-H(9B) 111.1(15)

H(9A)-C(9)-H(9B) 108(2)

C(8)-C(10)-C(3) 109.24(12)

C(8)-C(10)-H(10A) 109.5(15)

C(3)-C(10)-H(10A) 109.6(16)

C(8)-C(10)-H(10B) 109.8(15)

C(3)-C(10)-H(10B) 110.3(15)

H(10A)-C(10)-H(10B) 108(2)

N(1)-C(11)-C(12) 124.66(11)

N(1)-C(11)-H(11) 124.2(12)

Page 232: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 222

C(12)-C(11)-H(11) 111.1(11)

C(13)-C(12)-C(17) 118.05(11)

C(13)-C(12)-C(11) 125.05(11)

C(17)-C(12)-C(11) 116.86(11)

C(14)-C(13)-C(12) 121.42(12)

C(14)-C(13)-H(13) 118.3(13)

C(12)-C(13)-H(13) 120.3(13)

C(13)-C(14)-C(15) 119.36(12)

C(13)-C(14)-H(14) 120.3(13)

C(15)-C(14)-H(14) 120.4(13)

O(1)-C(15)-C(16) 114.53(10)

O(1)-C(15)-C(14) 125.74(11)

C(16)-C(15)-C(14) 119.73(11)

C(17)-C(16)-C(15) 120.09(12)

C(17)-C(16)-H(16) 121.4(14)

C(15)-C(16)-H(16) 118.5(13)

C(16)-C(17)-C(12) 121.34(12)

C(16)-C(17)-H(17) 120.2(12)

C(12)-C(17)-H(17) 118.4(12)

O(1)-C(18)-H(18A) 112.0(13)

O(1)-C(18)-H(18B) 104.2(12)

H(18A)-C(18)-H(18B) 109(2)

O(1)-C(18)-H(18C) 109.2(12)

H(18A)-C(18)-H(18C) 108.0(18)

H(18B)-C(18)-H(18C) 114.7(18)

Page 233: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 223

Table 6.16: Torsion angles [°] for N-Adamantyl-p-methoxy-benzaldehyde imine.

C(11)-N(1)-C(1)-C(6) -133.68(15)

C(11)-N(1)-C(1)-C(7) -12.3(2)

C(11)-N(1)-C(1)-C(2) 109.26(15)

N(1)-C(1)-C(2)-C(3) 175.13(12)

C(6)-C(1)-C(2)-C(3) 59.01(15)

C(7)-C(1)-C(2)-C(3) -59.08(17)

C(1)-C(2)-C(3)-C(10) 60.04(17)

C(1)-C(2)-C(3)-C(4) -60.28(18)

C(10)-C(3)-C(4)-C(5) -60.05(15)

C(2)-C(3)-C(4)-C(5) 60.40(15)

C(3)-C(4)-C(5)-C(6) -59.90(15)

C(3)-C(4)-C(5)-C(9) 59.75(15)

C(4)-C(5)-C(6)-C(1) 59.87(17)

C(9)-C(5)-C(6)-C(1) -59.94(17)

N(1)-C(1)-C(6)-C(5) -175.67(12)

C(7)-C(1)-C(6)-C(5) 58.85(16)

C(2)-C(1)-C(6)-C(5) -59.09(15)

N(1)-C(1)-C(7)-C(8) -179.06(14)

C(6)-C(1)-C(7)-C(8) -58.49(17)

C(2)-C(1)-C(7)-C(8) 59.61(16)

C(1)-C(7)-C(8)-C(9) 59.74(17)

C(1)-C(7)-C(8)-C(10) -60.56(17)

C(10)-C(8)-C(9)-C(5) 60.12(15)

C(7)-C(8)-C(9)-C(5) -59.98(16)

C(4)-C(5)-C(9)-C(8) -59.82(17)

C(6)-C(5)-C(9)-C(8) 59.86(17)

C(9)-C(8)-C(10)-C(3) -60.26(15)

C(7)-C(8)-C(10)-C(3) 60.09(16)

C(4)-C(3)-C(10)-C(8) 60.19(17)

C(2)-C(3)-C(10)-C(8) -60.09(16)

C(1)-N(1)-C(11)-C(12) 179.19(14)

N(1)-C(11)-C(12)-C(13) -4.0(2)

N(1)-C(11)-C(12)-C(17) 178.34(15)

C(17)-C(12)-C(13)-C(14) -0.4(2)

C(11)-C(12)-C(13)-C(14) -178.00(14)

C(12)-C(13)-C(14)-C(15) -0.3(2)

C(18)-O(1)-C(15)-C(16) -174.19(14)

C(18)-O(1)-C(15)-C(14) 5.9(2)

C(13)-C(14)-C(15)-O(1) -179.11(14)

C(13)-C(14)-C(15)-C(16) 1.0(2)

O(1)-C(15)-C(16)-C(17) 179.18(13)

C(14)-C(15)-C(16)-C(17) -0.9(2)

C(15)-C(16)-C(17)-C(12) 0.1(2)

C(13)-C(12)-C(17)-C(16) 0.5(2)

C(11)-C(12)-C(17)-C(16) 178.29(13)

Page 234: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 224

6.6.6. Crystal data and structure refinement for 16a

Empirical formula C22H28ClN

Formula weight 341.90

Temperature 100(2) K

Wavelength 0.71073 A°

Crystal system, space group Monoclinic, P21/c

Unit cell dimensions a = 9.253(1) A° alpha = 90°

b = 15.603(1) A° beta = 91.06(1)°

c = 12.500(1) A° gamma = 90°

Volume 1804.4(3) A3

Z, Calculated density 4, 1.259 Mg/m3

Absorption coefficient 0.215 mm-1

F(000) 736

Crystal size 0.25 x 0.23 x 0.20 mm

Theta range for data collection 3.06 to 26.37 °

Limiting indices -11 ≤ h ≤ 11, -19 ≤ k ≤ 19, -15 ≤ l ≤ 15

Reflections collected / unique 34333 / 3687 [R(int) = 0.0456]

Completeness to theta = 26.37 99.8 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 1.000 and 0.948

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 3687 / 13 / 254

Goodness-of-fit on F2 1.136

Final R indices [I>2sigma(I)] R1 = 0.0417, wR2 = 0.0910

R indices (all data) R1 = 0.0555, wR2 = 0.0968

Largest diff. peak and hole 0.246 and -0.250 e.A°-3

Page 235: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 225

_______________________ _______________________________________ x y z U(eq) _ _______________________________________________________________ Cl(1) 8670(1) 794(1) 4134(1) 34(1) N(1) 5350(2) 1335(1) -627(1) 20(1) C(1) 4537(2) 2137(1) -454(1) 18(1) C(2) 5025(2) 2880(1) -1172(1) 25(1) C(3) 4066(2) 3670(1) -1003(2) 29(1) C(4) 2496(2) 3446(1) -1290(2) 29(1) C(5) 1988(2) 2716(1) -564(2) 26(1) C(6) 2947(2) 1929(1) -722(2) 24(1) C(7) 4637(2) 2425(1) 717(1) 23(1) C(8) 3680(2) 3217(1) 883(1) 28(1) C(9) 2105(2) 3004(1) 607(2) 29(1) C(10) 4191(2) 3947(1) 166(2) 32(1) C(11) 6931(2) 1356(1) -495(1) 22(1) C(12) 7374(2) 1216(1) 669(1) 20(1) C(13) 8441(2) 1719(1) 1156(1) 23(1) C(14) 8849(2) 1592(1) 2219(1) 25(1) C(15) 8182(2) 954(1) 2792(1) 23(1) C(16) 7125(2) 440(1) 2326(1) 24(1) C(17) 6731(2) 573(1) 1267(1) 22(1) C(18) 7583(2) 658(2) -1216(2) 34(1) C(19) 7154(10) 681(6) -2408(4) 29(2) C(20) 8266(9) 957(6) -2930(7) 27(2) C(21) 9656(13) 1015(10) -2277(9) 31(3) C(22) 9229(5) 538(5) -1254(9) 28(2) C(19') 7296(10) 968(6) -2396(5) 24(2) C(20') 8715(9) 859(6) -3014(9) 23(2) C(21') 9784(14) 867(10) -2112(10) 28(2) C(22') 9243(7) 805(7) -1159(9) 25(2) _______________________________________________________________ Table 6.20: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters

(A2 x 103) for 16a. U(eq) is defined as one third of the trace of the orthogonalized Uij

tensor.

Page 236: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 226

Table 6.21: Bond lengths [A] and angles [°] for 16a.

Cl(1)-C(15) 1.7463(17)

N(1)-C(11) 1.469(2)

N(1)-C(1) 1.478(2)

N(1)-H(1) 0.9398

C(1)-C(7) 1.532(2)

C(1)-C(6) 1.537(2)

C(1)-C(2) 1.539(2)

C(2)-C(3) 1.537(3)

C(2)-H(2A) 0.9900

C(2)-H(2B) 0.9900

C(3)-C(10) 1.526(3)

C(3)-C(4) 1.530(3)

C(3)-H(3A) 1.0000

C(4)-C(5) 1.536(3)

C(4)-H(4A) 0.9900

C(4)-H(4B) 0.9900

C(5)-C(6) 1.530(3)

C(5)-C(9) 1.533(3)

C(5)-H(5A) 1.0000

C(6)-H(6A) 0.9900

C(6)-H(6B) 0.9900

C(7)-C(8) 1.537(2)

C(7)-H(7A) 0.9900

C(7)-H(7B) 0.9900

C(8)-C(9) 1.528(3)

C(8)-C(10) 1.529(3)

C(8)-H(8A) 1.0000

C(9)-H(9A) 0.9900

C(9)-H(9B) 0.9900

C(10)-H(10A) 0.9900

C(10)-H(10B) 0.9900

C(11)-C(12) 1.519(2)

C(11)-C(18) 1.544(3)

C(11)-H(11A) 1.0000

C(12)-C(17) 1.392(2)

C(12)-C(13) 1.393(2)

C(13)-C(14) 1.388(2)

C(13)-H(13A) 0.9500

C(14)-C(15) 1.379(3)

C(14)-H(14A) 0.9500

C(15)-C(16) 1.385(2)

C(16)-C(17) 1.381(2)

C(16)-H(16A) 0.9500

C(17)-H(17A) 0.9500

C(18)-C(19) 1.535(4)

C(18)-C(22) 1.537(4)

C(18)-C(22') 1.554(7)

C(18)-C(19') 1.569(6)

C(18)-H(18A) 1.0000

C(18)-H(18B) 1.0000

Page 237: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 227

C(19)-C(20) 1.301(8)

C(19)-H(19A) 0.9500

C(20)-C(21) 1.514(7)

C(20)-H(20A) 0.9500

C(21)-C(22) 1.537(8)

C(21)-H(21A) 0.9900

C(21)-H(21B) 0.9900

C(22)-H(22A) 0.9900

C(22)-H(22B) 0.9900

C(19')-C(20') 1.546(11)

C(19')-H(19B) 0.9900

C(19')-H(19C) 0.9900

C(20')-C(21') 1.487(9)

C(20')-H(20B) 0.9900

C(20')-H(20C) 0.9900

C(21')-C(22') 1.305(12)

C(21')-H(21C) 0.9500

C(22')-H(22C) 0.9500

C(11)-N(1)-C(1) 118.26(13)

C(11)-N(1)-H(1) 106.6

C(1)-N(1)-H(1) 105.1

N(1)-C(1)-C(7) 111.48(13)

N(1)-C(1)-C(6) 106.10(13)

C(7)-C(1)-C(6) 108.11(14)

N(1)-C(1)-C(2) 113.38(13)

C(7)-C(1)-C(2) 108.85(14)

C(6)-C(1)-C(2) 108.74(14)

C(3)-C(2)-C(1) 110.38(14)

C(3)-C(2)-H(2A) 109.6

C(1)-C(2)-H(2A) 109.6

C(3)-C(2)-H(2B) 109.6

C(1)-C(2)-H(2B) 109.6

H(2A)-C(2)-H(2B) 108.1

C(10)-C(3)-C(4) 110.15(16)

C(10)-C(3)-C(2) 108.96(15)

C(4)-C(3)-C(2) 109.42(16)

C(10)-C(3)-H(3A) 109.4

C(4)-C(3)-H(3A) 109.4

C(2)-C(3)-H(3A) 109.4

C(3)-C(4)-C(5) 109.28(15)

C(3)-C(4)-H(4A) 109.8

C(5)-C(4)-H(4A) 109.8

C(3)-C(4)-H(4B) 109.8

C(5)-C(4)-H(4B) 109.8

H(4A)-C(4)-H(4B) 108.3

C(6)-C(5)-C(9) 109.20(15)

C(6)-C(5)-C(4) 109.54(15)

C(9)-C(5)-C(4) 109.21(16)

C(6)-C(5)-H(5A) 109.6

C(9)-C(5)-H(5A) 109.6

C(4)-C(5)-H(5A) 109.6

C(5)-C(6)-C(1) 110.94(14)

C(5)-C(6)-H(6A) 109.5

C(1)-C(6)-H(6A) 109.5

C(5)-C(6)-H(6B) 109.5

C(1)-C(6)-H(6B) 109.5

Page 238: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 228

H(6A)-C(6)-H(6B) 108.0

C(1)-C(7)-C(8) 109.90(14)

C(1)-C(7)-H(7A) 109.7

C(8)-C(7)-H(7A) 109.7

C(1)-C(7)-H(7B) 109.7

C(8)-C(7)-H(7B) 109.7

H(7A)-C(7)-H(7B) 108.2

C(9)-C(8)-C(10) 109.50(16)

C(9)-C(8)-C(7) 110.10(15)

C(10)-C(8)-C(7) 109.53(15)

C(9)-C(8)-H(8A) 109.2

C(10)-C(8)-H(8A) 109.2

C(7)-C(8)-H(8A) 109.2

C(8)-C(9)-C(5) 109.23(15)

C(8)-C(9)-H(9A) 109.8

C(5)-C(9)-H(9A) 109.8

C(8)-C(9)-H(9B) 109.8

C(5)-C(9)-H(9B) 109.8

H(9A)-C(9)-H(9B) 108.3

C(3)-C(10)-C(8) 109.38(15)

C(3)-C(10)-H(10A) 109.8

C(8)-C(10)-H(10A) 109.8

C(3)-C(10)-H(10B) 109.8

C(8)-C(10)-H(10B) 109.8

H(10A)-C(10)-H(10B) 108.2

N(1)-C(11)-C(12) 110.81(14)

N(1)-C(11)-C(18) 108.52(14)

C(12)-C(11)-C(18) 110.90(14)

N(1)-C(11)-H(11A) 108.9

C(12)-C(11)-H(11A) 108.9

C(18)-C(11)-H(11A) 108.9

C(17)-C(12)-C(13) 118.51(16)

C(17)-C(12)-C(11) 120.50(15)

C(13)-C(12)-C(11) 120.99(15)

C(14)-C(13)-C(12) 121.09(16)

C(14)-C(13)-H(13A) 119.5

C(12)-C(13)-H(13A) 119.5

C(15)-C(14)-C(13) 118.94(16)

C(15)-C(14)-H(14A) 120.5

C(13)-C(14)-H(14A) 120.5

C(14)-C(15)-C(16) 121.21(16)

C(14)-C(15)-Cl(1) 119.49(14)

C(16)-C(15)-Cl(1) 119.30(14)

C(17)-C(16)-C(15) 119.23(16)

C(17)-C(16)-H(16A) 120.4

C(15)-C(16)-H(16A) 120.4

C(16)-C(17)-C(12) 121.01(16)

C(16)-C(17)-H(17A) 119.5

C(12)-C(17)-H(17A) 119.5

C(19)-C(18)-C(22) 102.2(5)

C(19)-C(18)-C(11) 117.0(4)

C(22)-C(18)-C(11) 120.1(4)

C(19)-C(18)-C(22') 106.2(6)

C(22)-C(18)-C(22') 16.1(4)

C(11)-C(18)-C(22') 105.4(4)

C(19)-C(18)-C(19') 17.2(3)

Page 239: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 229

C(22)-C(18)-C(19') 99.2(6)

C(11)-C(18)-C(19') 105.7(4)

C(22')-C(18)-C(19') 98.5(5)

C(19)-C(18)-H(18A) 105.4

C(22)-C(18)-H(18A) 105.4

C(11)-C(18)-H(18A) 105.4

C(22')-C(18)-H(18A) 118.1

C(19')-C(18)-H(18A) 122.2

C(19)-C(18)-H(18B) 98.0

C(22)-C(18)-H(18B) 100.9

C(11)-C(18)-H(18B) 115.2

C(22')-C(18)-H(18B) 115.2

C(19')-C(18)-H(18B) 115.2

H(18A)-C(18)-H(18B) 10.0

C(20)-C(19)-C(18) 107.6(6)

C(20)-C(19)-H(19A) 126.2

C(18)-C(19)-H(19A) 126.2

C(19)-C(20)-C(21) 114.9(8)

C(19)-C(20)-H(20A) 122.5

C(21)-C(20)-H(20A) 122.5

C(20)-C(21)-C(22) 101.0(9)

C(20)-C(21)-H(21A) 111.6

C(22)-C(21)-H(21A) 111.6

C(20)-C(21)-H(21B) 111.6

C(22)-C(21)-H(21B) 111.6

H(21A)-C(21)-H(21B) 109.4

C(18)-C(22)-C(21) 103.7(7)

C(18)-C(22)-H(22A) 111.0

C(21)-C(22)-H(22A) 111.0

C(18)-C(22)-H(22B) 111.0

C(21)-C(22)-H(22B) 111.0

H(22A)-C(22)-H(22B) 109.0

C(20')-C(19')-C(18) 107.8(7)

C(20')-C(19')-H(19B) 110.1

C(18)-C(19')-H(19B) 110.1

C(20')-C(19')-H(19C) 110.1

C(18)-C(19')-H(19C) 110.1

H(19B)-C(19')-H(19C) 108.5

C(21')-C(20')-C(19') 100.3(10)

C(21')-C(20')-H(20B) 111.7

C(19')-C(20')-H(20B) 111.7

C(21')-C(20')-H(20C) 111.7

C(19')-C(20')-H(20C) 111.7

H(20B)-C(20')-H(20C) 109.5

C(22')-C(21')-C(20') 115.5(11)

C(22')-C(21')-H(21C) 122.2

C(20')-C(21')-H(21C) 122.2

C(21')-C(22')-C(18) 111.4(9)

C(21')-C(22')-H(22C) 124.3

C(18)-C(22')-H(22C) 124.3

Page 240: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 230

Table 6.22: Torsion angles [°] for 16a.

C(11)-N(1)-C(1)-C(7) -66.29(18)

C(11)-N(1)-C(1)-C(6) 176.25(14)

C(11)-N(1)-C(1)-C(2) 56.96(19)

N(1)-C(1)-C(2)-C(3) 176.15(14)

C(7)-C(1)-C(2)-C(3) -59.16(19)

C(6)-C(1)-C(2)-C(3) 58.40(19)

C(1)-C(2)-C(3)-C(10) 60.2(2)

C(1)-C(2)-C(3)-C(4) -60.28(19)

C(10)-C(3)-C(4)-C(5) -59.41(19)

C(2)-C(3)-C(4)-C(5) 60.34(19)

C(3)-C(4)-C(5)-C(6) -59.83(19)

C(3)-C(4)-C(5)-C(9) 59.72(19)

C(9)-C(5)-C(6)-C(1) -60.22(19)

C(4)-C(5)-C(6)-C(1) 59.33(19)

N(1)-C(1)-C(6)-C(5) 179.57(14)

C(7)-C(1)-C(6)-C(5) 59.88(18)

C(2)-C(1)-C(6)-C(5) -58.15(18)

N(1)-C(1)-C(7)-C(8) -175.44(14)

C(6)-C(1)-C(7)-C(8) -59.20(18)

C(2)-C(1)-C(7)-C(8) 58.76(18)

C(1)-C(7)-C(8)-C(9) 60.35(19)

C(1)-C(7)-C(8)-C(10) -60.11(19)

C(10)-C(8)-C(9)-C(5) 60.84(19)

C(7)-C(8)-C(9)-C(5) -59.64(19)

C(6)-C(5)-C(9)-C(8) 59.1(2)

C(4)-C(5)-C(9)-C(8) -60.64(19)

C(4)-C(3)-C(10)-C(8) 59.5(2)

C(2)-C(3)-C(10)-C(8) -60.5(2)

C(9)-C(8)-C(10)-C(3) -60.0(2)

C(7)-C(8)-C(10)-C(3) 60.8(2)

C(1)-N(1)-C(11)-C(12) 85.98(17)

C(1)-N(1)-C(11)-C(18) -152.03(15)

N(1)-C(11)-C(12)-C(17) 45.0(2)

C(18)-C(11)-C(12)-C(17) -75.6(2)

N(1)-C(11)-C(12)-C(13) -135.84(16)

C(18)-C(11)-C(12)-C(13) 103.57(19)

C(17)-C(12)-C(13)-C(14) -0.8(3)

C(11)-C(12)-C(13)-C(14) -179.97(16)

C(12)-C(13)-C(14)-C(15) 0.3(3)

C(13)-C(14)-C(15)-C(16) 0.2(3)

C(13)-C(14)-C(15)-Cl(1) -179.35(14)

C(14)-C(15)-C(16)-C(17) -0.2(3)

Cl(1)-C(15)-C(16)-C(17) 179.40(14)

C(15)-C(16)-C(17)-C(12) -0.4(3)

C(13)-C(12)-C(17)-C(16) 0.8(3)

C(11)-C(12)-C(17)-C(16) -179.97(16)

N(1)-C(11)-C(18)-C(19) 54.4(4)

C(12)-C(11)-C(18)-C(19) 176.4(4)

N(1)-C(11)-C(18)-C(22) 179.2(5)

C(12)-C(11)-C(18)-C(22) -58.9(5)

N(1)-C(11)-C(18)-C(22') 172.1(5)

C(12)-C(11)-C(18)-C(22') -66.0(5)

N(1)-C(11)-C(18)-C(19') 68.4(4)

C(12)-C(11)-C(18)-C(19') -169.6(4)

Page 241: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 231

C(22)-C(18)-C(19)-C(20) -26.6(10)

C(11)-C(18)-C(19)-C(20) 106.7(8)

C(22')-C(18)-C(19)-C(20) -10.5(11)

C(19')-C(18)-C(19)-C(20) 54.8(19)

C(18)-C(19)-C(20)-C(21) 10.1(13)

C(19)-C(20)-C(21)-C(22) 10.7(13)

C(19)-C(18)-C(22)-C(21) 32.2(9)

C(11)-C(18)-C(22)-C(21) -99.2(8)

C(22')-C(18)-C(22)-C(21) -74(3)

C(19')-C(18)-C(22)-C(21) 15.0(9)

C(20)-C(21)-C(22)-C(18) -26.3(10)

C(19)-C(18)-C(19')-C(20') -93(2)

C(22)-C(18)-C(19')-C(20') 8.6(8)

C(11)-C(18)-C(19')-C(20') 133.6(6)

C(22')-C(18)-C(19')-C(20') 24.9(9)

C(18)-C(19')-C(20')-C(21') -22.8(9)

C(19')-C(20')-C(21')-C(22') 11.5(14)

C(20')-C(21')-C(22')-C(18) 4.9(16)

C(19)-C(18)-C(22')-C(21') -2.7(13)

C(22)-C(18)-C(22')-C(21') 75(3)

C(11)-C(18)-C(22')-C(21') -127.4(10)

C(19')-C(18)-C(22')-C(21') -18.5(13)

Figure 6.12: Crystal packing of 16a viewed along the crystallographic a-axis.

Page 242: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 232

6.6.7. Crystal data and structure refinement 16b

Empirical formula C23H30ClN

Formula weight 355.93

Temperature 100(2) K

Wavelength 0.71073 A°

Crystal system, space group Monoclinic, P21/c

Unit cell dimensions a = 9.6458(8) A° alpha = 90°

b = 15.645(2) A° beta = 91.295(6) °

c = 12.6055(7) A° gamma = 90 °

Volume 1901.8(3) A3

Z, Calculated density 4, 1.243 Mg/m3

Absorption coefficient 0.206 mm-1

F(000) 768

Crystal size 0.28 x 0.12 x 0.10 mm

Theta range for data collection 3.49 to 27.10 °

Limiting indices -12 ≤ h ≤ 12, -20 ≤ k ≤ 20, -16 ≤ l ≤ 16

Reflections collected / unique 47950 / 4184 [R(int) = 0.0611]

Completeness to theta = 27.10 99.8 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 1.000 and 0.938

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 4184 / 163 / 320

Goodness-of-fit on F2 1.070

Final R indices [I>2sigma(I)] R1 = 0.0468, wR2 = 0.1023

R indices (all data) R1 = 0.0663, wR2 = 0.1100

Largest diff. peak and hole 0.375 and -0.325 e.A°-3

Page 243: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 233

Table 6.23: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters

(A2 x 103) for 16b. U(eq) is defined as one third of the trace of the orthogonalized Uij

tensor.

___________________________ _____________________________________ x y z U(eq) _______________________________ _________________________________ Cl(1) 8566(1) 1054(1) 9437(1) 32(1) N(1) 5102(2) 1281(1) 4762(1) 21(1) C(1) 4332(2) 2097(1) 4740(2) 19(1) C(2) 4513(2) 2536(1) 3666(2) 26(1) C(3) 3639(2) 3360(2) 3609(2) 33(1) C(4) 2110(3) 3135(2) 3723(2) 32(1) C(5) 1906(2) 2698(2) 4800(2) 30(1) C(6) 2794(2) 1884(1) 4866(2) 28(1) C(7) 4769(2) 2721(2) 5631(2) 25(1) C(8) 3892(2) 3537(2) 5565(2) 34(1) C(9) 2357(2) 3317(2) 5688(2) 34(1) C(10) 4098(3) 3966(2) 4495(2) 39(1) C(11) 6624(2) 1325(1) 4849(1) 22(1) C(12) 7156(2) 1250(1) 5993(1) 19(1) C(13) 8021(2) 1867(1) 6447(1) 23(1) C(14) 8474(2) 1811(1) 7500(1) 24(1) C(15) 8044(2) 1126(1) 8102(1) 22(1) C(16) 7202(2) 494(1) 7671(1) 23(1) C(17) 6765(2) 559(1) 6616(1) 22(1) C(18) 7325(2) 663(1) 4129(1) 27(1) C(19) 6799(4) 814(2) 2971(3) 21(1) C(20) 7538(5) 844(3) 2169(4) 28(1) C(21) 9131(11) 636(6) 2219(9) 30(1) C(22) 9538(4) 267(3) 3290(2) 41(1) C(23) 8847(12) 744(9) 4186(7) 34(2) C(19') 6771(14) 469(8) 3069(10) 37(2) C(20') 7710(14) 546(9) 2213(10) 41(2) C(21') 9050(30) 784(16) 2190(20) 32(2) C(22') 9721(7) 824(6) 3309(5) 26(2) C(23') 9000(30) 780(20) 4131(19) 35(3) N(1') 6223(14) 2097(7) 4390(12) 23(4) C(1') 4787(15) 2372(10) 4501(13) 17(5) C(2') 3723(16) 1869(11) 3850(14) 26(5) C(3') 2314(17) 2339(11) 3916(14) 29(5)

Page 244: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 234

C(4') 1890(20) 2360(15) 5062(15) 30(7) C(5') 2962(19) 2886(12) 5733(15) 34(6) C(6') 4359(18) 2398(13) 5674(12) 16(5) C(7') 4948(17) 3287(10) 4074(16) 29(5) C(8') 3580(17) 3742(11) 4130(14) 15(4) C(9') 3120(30) 3773(12) 5288(15) 37(6) C(10') 2510(20) 3234(13) 3495(18) 26(8) ________________ ________________________________________________ Table 6.24: Bond lengths [A] and angles [°] for 16b.

Cl(1)-C(15) 1.7496(17)

N(1)-C(11) 1.471(2)

N(1)-C(1) 1.477(2)

N(1)-H(1A) 0.95(2)

N(1)-H(11B) 0.7078

C(1)-C(2) 1.532(3)

C(1)-C(6) 1.533(3)

C(1)-C(7) 1.540(3)

C(2)-C(3) 1.542(3)

C(2)-H(2A) 0.9900

C(2)-H(2B) 0.9900

C(3)-C(10) 1.523(4)

C(3)-C(4) 1.527(4)

C(3)-H(3A) 1.0000

C(4)-C(5) 1.537(4)

C(4)-H(4A) 0.9900

C(4)-H(4B) 0.9900

C(5)-C(9) 1.535(3)

C(5)-C(6) 1.536(3)

C(5)-H(5A) 1.0000

C(6)-H(6A) 0.9900

C(6)-H(6B) 0.9900

C(7)-C(8) 1.532(3)

C(7)-H(7A) 0.9900

C(7)-H(7B) 0.9900

C(8)-C(10) 1.524(4)

C(8)-C(9) 1.531(3)

C(8)-H(8A) 1.0000

C(9)-H(9A) 0.9900

C(9)-H(9B) 0.9900

C(10)-H(10A) 0.9900

C(10)-H(10B) 0.9900

C(11)-N(1') 1.392(9)

C(11)-C(12) 1.524(2)

C(11)-C(18) 1.543(2)

C(11)-H(11A) 1.0000

C(11)-H(11B) 1.0000

C(12)-C(13) 1.390(3)

Page 245: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 235

C(12)-C(17) 1.393(2)

C(13)-C(14) 1.391(2)

C(13)-H(13A) 0.9500

C(14)-C(15) 1.382(3)

C(14)-H(14A) 0.9500

C(15)-C(16) 1.383(3)

C(16)-C(17) 1.390(2)

C(16)-H(16A) 0.9500

C(17)-H(17A) 0.9500

C(18)-C(19') 1.460(13)

C(18)-C(23) 1.474(12)

C(18)-C(19) 1.552(5)

C(18)-C(23') 1.63(3)

C(18)-H(18A) 1.0000

C(18)-H(18B) 1.0000

C(19)-C(20) 1.252(6)

C(19)-H(19A) 0.9500

C(20)-C(21) 1.571(12)

C(20)-H(20A) 0.9500

C(21)-C(22) 1.513(11)

C(21)-H(21A) 0.9900

C(21)-H(21B) 0.9900

C(22)-C(23) 1.520(9)

C(22)-H(22A) 0.9900

C(22)-H(22B) 0.9900

C(23)-H(23A) 0.9900

C(23)-H(23B) 0.9900

C(19')-C(20') 1.430(14)

C(19')-H(19B) 0.9900

C(19')-H(19C) 0.9900

C(20')-C(21') 1.34(3)

C(20')-H(20B) 0.9900

C(20')-H(20C) 0.9900

C(21')-C(22') 1.55(3)

C(21')-H(21C) 0.9900

C(21')-H(21D) 0.9900

C(22')-C(23') 1.261(18)

C(22')-H(22C) 0.9500

C(23')-H(23C) 0.9500

N(1')-C(1') 1.460(15)

N(1')-H(1'A) 0.8800

C(1')-C(2') 1.520(16)

C(1')-C(7') 1.538(17)

C(1')-C(6') 1.544(16)

C(2')-C(3') 1.549(16)

C(2')-H(2'A) 0.9900

C(2')-H(2'B) 0.9900

C(3')-C(4') 1.509(17)

C(3')-C(10') 1.510(17)

C(3')-H(3'A) 1.0000

C(4')-C(5') 1.554(18)

C(4')-H(4'A) 0.9900

C(4')-H(4'B) 0.9900

C(5')-C(9') 1.507(17)

C(5')-C(6') 1.551(17)

C(5')-H(5'A) 1.0000

Page 246: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 236

C(6')-H(6'A) 0.9900

C(6')-H(6'B) 0.9900

C(7')-C(8') 1.503(16)

C(7')-H(7'A) 0.9900

C(7')-H(7'B) 0.9900

C(8')-C(10') 1.520(18)

C(8')-C(9') 1.535(17)

C(8')-H(8'A) 1.0000

C(9')-H(9'A) 0.9900

C(9')-H(9'B) 0.9900

C(10')-H(10C) 0.9900

C(10')-H(10D) 0.9900

C(11)-N(1)-C(1) 117.49(16)

C(11)-N(1)-H(1A) 107.0(14)

C(1)-N(1)-H(1A) 109.6(13)

C(11)-N(1)-H(11B) 36.9

C(1)-N(1)-H(11B) 149.4

H(1A)-N(1)-H(11B) 75.9

N(1)-C(1)-C(2) 109.70(15)

N(1)-C(1)-C(6) 107.30(17)

C(2)-C(1)-C(6) 108.59(16)

N(1)-C(1)-C(7) 113.90(16)

C(2)-C(1)-C(7) 109.03(19)

C(6)-C(1)-C(7) 108.18(17)

C(1)-C(2)-C(3) 110.07(16)

C(1)-C(2)-H(2A) 109.6

C(3)-C(2)-H(2A) 109.6

C(1)-C(2)-H(2B) 109.6

C(3)-C(2)-H(2B) 109.6

H(2A)-C(2)-H(2B) 108.2

C(10)-C(3)-C(4) 109.9(2)

C(10)-C(3)-C(2) 109.69(18)

C(4)-C(3)-C(2) 109.3(2)

C(10)-C(3)-H(3A) 109.3

C(4)-C(3)-H(3A) 109.3

C(2)-C(3)-H(3A) 109.3

C(3)-C(4)-C(5) 109.24(18)

C(3)-C(4)-H(4A) 109.8

C(5)-C(4)-H(4A) 109.8

C(3)-C(4)-H(4B) 109.8

C(5)-C(4)-H(4B) 109.8

H(4A)-C(4)-H(4B) 108.3

C(9)-C(5)-C(6) 109.57(19)

C(9)-C(5)-C(4) 108.9(2)

C(6)-C(5)-C(4) 109.49(19)

C(9)-C(5)-H(5A) 109.6

C(6)-C(5)-H(5A) 109.6

C(4)-C(5)-H(5A) 109.6

C(1)-C(6)-C(5) 110.72(18)

C(1)-C(6)-H(6A) 109.5

C(5)-C(6)-H(6A) 109.5

C(1)-C(6)-H(6B) 109.5

C(5)-C(6)-H(6B) 109.5

H(6A)-C(6)-H(6B) 108.1

C(8)-C(7)-C(1) 110.27(17)

C(8)-C(7)-H(7A) 109.6

Page 247: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 237

C(1)-C(7)-H(7A) 109.6

C(8)-C(7)-H(7B) 109.6

C(1)-C(7)-H(7B) 109.6

H(7A)-C(7)-H(7B) 108.1

C(10)-C(8)-C(9) 109.6(2)

C(10)-C(8)-C(7) 109.44(18)

C(9)-C(8)-C(7) 110.0(2)

C(10)-C(8)-H(8A) 109.3

C(9)-C(8)-H(8A) 109.3

C(7)-C(8)-H(8A) 109.3

C(8)-C(9)-C(5) 109.09(17)

C(8)-C(9)-H(9A) 109.9

C(5)-C(9)-H(9A) 109.9

C(8)-C(9)-H(9B) 109.9

C(5)-C(9)-H(9B) 109.9

H(9A)-C(9)-H(9B) 108.3

C(3)-C(10)-C(8) 109.4(2)

C(3)-C(10)-H(10A) 109.8

C(8)-C(10)-H(10A) 109.8

C(3)-C(10)-H(10B) 109.8

C(8)-C(10)-H(10B) 109.8

H(10A)-C(10)-H(10B) 108.2

N(1')-C(11)-N(1) 75.1(6)

N(1')-C(11)-C(12) 123.0(7)

N(1)-C(11)-C(12) 112.37(14)

N(1')-C(11)-C(18) 117.4(7)

N(1)-C(11)-C(18) 112.01(15)

C(12)-C(11)-C(18) 111.27(15)

N(1')-C(11)-H(11A) 32.0

N(1)-C(11)-H(11A) 106.9

C(12)-C(11)-H(11A) 106.9

C(18)-C(11)-H(11A) 106.9

N(1')-C(11)-H(11B) 100.2

N(1)-C(11)-H(11B) 25.2

C(12)-C(11)-H(11B) 99.4

C(18)-C(11)-H(11B) 99.4

H(11A)-C(11)-H(11B) 132.1

C(13)-C(12)-C(17) 118.32(16)

C(13)-C(12)-C(11) 121.49(16)

C(17)-C(12)-C(11) 120.18(16)

C(12)-C(13)-C(14) 121.46(17)

C(12)-C(13)-H(13A) 119.3

C(14)-C(13)-H(13A) 119.3

C(15)-C(14)-C(13) 118.75(17)

C(15)-C(14)-H(14A) 120.6

C(13)-C(14)-H(14A) 120.6

C(14)-C(15)-C(16) 121.33(16)

C(14)-C(15)-Cl(1) 119.71(14)

C(16)-C(15)-Cl(1) 118.96(14)

C(15)-C(16)-C(17) 119.05(16)

C(15)-C(16)-H(16A) 120.5

C(17)-C(16)-H(16A) 120.5

C(16)-C(17)-C(12) 121.06(17)

C(16)-C(17)-H(17A) 119.5

C(12)-C(17)-H(17A) 119.5

C(19')-C(18)-C(23) 114.0(6)

Page 248: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 238

C(19')-C(18)-C(11) 121.4(6)

C(23)-C(18)-C(11) 111.3(5)

C(19')-C(18)-C(19) 20.9(4)

C(23)-C(18)-C(19) 109.7(4)

C(11)-C(18)-C(19) 108.2(2)

C(19')-C(18)-C(23') 111.6(9)

C(23)-C(18)-C(23') 3.3(14)

C(11)-C(18)-C(23') 111.7(11)

C(19)-C(18)-C(23') 106.7(9)

C(19')-C(18)-H(18A) 88.9

C(23)-C(18)-H(18A) 109.2

C(11)-C(18)-H(18A) 109.2

C(19)-C(18)-H(18A) 109.2

C(23')-C(18)-H(18A) 111.8

C(19')-C(18)-H(18B) 102.9

C(23)-C(18)-H(18B) 100.1

C(11)-C(18)-H(18B) 103.7

C(19)-C(18)-H(18B) 123.5

C(23')-C(18)-H(18B) 103.0

H(18A)-C(18)-H(18B) 14.4

C(20)-C(19)-C(18) 125.8(4)

C(20)-C(19)-H(19A) 117.1

C(18)-C(19)-H(19A) 117.1

C(19)-C(20)-C(21) 122.3(6)

C(19)-C(20)-H(20A) 118.8

C(21)-C(20)-H(20A) 118.8

C(22)-C(21)-C(20) 110.4(7)

C(22)-C(21)-H(21A) 109.6

C(20)-C(21)-H(21A) 109.6

C(22)-C(21)-H(21B) 109.6

C(20)-C(21)-H(21B) 109.6

H(21A)-C(21)-H(21B) 108.1

C(21)-C(22)-C(23) 111.6(6)

C(21)-C(22)-H(22A) 109.3

C(23)-C(22)-H(22A) 109.3

C(21)-C(22)-H(22B) 109.3

C(23)-C(22)-H(22B) 109.3

H(22A)-C(22)-H(22B) 108.0

C(18)-C(23)-C(22) 112.0(8)

C(18)-C(23)-H(23A) 109.2

C(22)-C(23)-H(23A) 109.2

C(18)-C(23)-H(23B) 109.2

C(22)-C(23)-H(23B) 109.2

H(23A)-C(23)-H(23B) 107.9

C(20')-C(19')-C(18) 116.7(10)

C(20')-C(19')-H(19B) 108.1

C(18)-C(19')-H(19B) 108.1

C(20')-C(19')-H(19C) 108.1

C(18)-C(19')-H(19C) 108.1

H(19B)-C(19')-H(19C) 107.3

C(21')-C(20')-C(19') 131.8(18)

C(21')-C(20')-H(20B) 104.3

C(19')-C(20')-H(20B) 104.3

C(21')-C(20')-H(20C) 104.3

C(19')-C(20')-H(20C) 104.3

H(20B)-C(20')-H(20C) 105.6

Page 249: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 239

C(20')-C(21')-C(22') 112(2)

C(20')-C(21')-H(21C) 109.2

C(22')-C(21')-H(21C) 109.2

C(20')-C(21')-H(21D) 109.2

C(22')-C(21')-H(21D) 109.2

H(21C)-C(21')-H(21D) 107.9

C(23')-C(22')-C(21') 121.5(18)

C(23')-C(22')-H(22C) 119.3

C(21')-C(22')-H(22C) 119.3

C(22')-C(23')-C(18) 125(2)

C(22')-C(23')-H(23C) 117.6

C(18)-C(23')-H(23C) 117.6

C(11)-N(1')-C(1') 118.1(11)

C(11)-N(1')-H(1'A) 121.0

C(1')-N(1')-H(1'A) 121.0

N(1')-C(1')-C(2') 115.2(13)

N(1')-C(1')-C(7') 97.8(11)

C(2')-C(1')-C(7') 111.4(14)

N(1')-C(1')-C(6') 112.0(12)

C(2')-C(1')-C(6') 109.8(14)

C(7')-C(1')-C(6') 110.0(13)

C(1')-C(2')-C(3') 107.9(12)

C(1')-C(2')-H(2'A) 110.1

C(3')-C(2')-H(2'A) 110.1

C(1')-C(2')-H(2'B) 110.1

C(3')-C(2')-H(2'B) 110.1

H(2'A)-C(2')-H(2'B) 108.4

C(4')-C(3')-C(10') 110.7(16)

C(4')-C(3')-C(2') 108.5(15)

C(10')-C(3')-C(2') 107.9(15)

C(4')-C(3')-H(3'A) 109.9

C(10')-C(3')-H(3'A) 109.9

C(2')-C(3')-H(3'A) 109.9

C(3')-C(4')-C(5') 110.1(14)

C(3')-C(4')-H(4'A) 109.6

C(5')-C(4')-H(4'A) 109.6

C(3')-C(4')-H(4'B) 109.6

C(5')-C(4')-H(4'B) 109.6

H(4'A)-C(4')-H(4'B) 108.2

C(9')-C(5')-C(6') 109.8(15)

C(9')-C(5')-C(4') 111.0(16)

C(6')-C(5')-C(4') 106.3(15)

C(9')-C(5')-H(5'A) 109.9

C(6')-C(5')-H(5'A) 109.9

C(4')-C(5')-H(5'A) 109.9

C(1')-C(6')-C(5') 108.1(12)

C(1')-C(6')-H(6'A) 110.1

C(5')-C(6')-H(6'A) 110.1

C(1')-C(6')-H(6'B) 110.1

C(5')-C(6')-H(6'B) 110.1

H(6'A)-C(6')-H(6'B) 108.4

C(8')-C(7')-C(1') 109.2(13)

C(8')-C(7')-H(7'A) 109.8

C(1')-C(7')-H(7'A) 109.8

Page 250: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 240

C(8')-C(7')-H(7'B) 109.8

C(1')-C(7')-H(7'B) 109.8

H(7'A)-C(7')-H(7'B) 108.3

C(7')-C(8')-C(10') 108.5(16)

C(7')-C(8')-C(9') 109.3(14)

C(10')-C(8')-C(9') 108.1(15)

C(7')-C(8')-H(8'A) 110.3

C(10')-C(8')-H(8'A) 110.3

C(9')-C(8')-H(8'A) 110.3

C(5')-C(9')-C(8') 111.0(14)

C(5')-C(9')-H(9'A) 109.4

C(8')-C(9')-H(9'A) 109.4

C(5')-C(9')-H(9'B) 109.4

C(8')-C(9')-H(9'B) 109.4

H(9'A)-C(9')-H(9'B) 108.0

C(3')-C(10')-C(8') 112.8(15)

C(3')-C(10')-H(10C) 109.0

C(8')-C(10')-H(10C) 109.0

C(3')-C(10')-H(10D) 109.0

C(8')-C(10')-H(10D) 109.0

H(10C)-C(10')-H(10D) 107.8

Figure 6.13: Crystal packing viewed along the crystallographic a-axis for 16b.

Page 251: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 241

6.6.8. Crystal data and structure refinement for 20

a) Hydrodimer structure from the cyclohexene addition reaction (20′)

Empirical formula C34H42Cl2N2

Formula weight 549.60

Temperature 100(2) K

Wavelength 0.71073 A°

Crystal system, space group Triclinic, P-1

Unit cell dimensions a = 6.4218(5) A° alpha = 84.03(2) °

b = 10.300(2) A° beta = 82.99(1)°

c = 10.942(1) A° gamma = 83.11(1)°

Volume 710.2(2) A°3

Z, Calculated density 1, 1.285 Mg/m3

Absorption coefficient 0.255 mm-1

F(000) 294

Crystal size 0.23 x 0.06 x 0.05 mm

Theta range for data collection 3.22 to 26.36°

Limiting indices -8 ≤ h ≤ 7, -12 ≤ k ≤ 12, -13 ≤ l ≤ 13

Reflections collected / unique 13053 / 2889 [R(int) = 0.0809]

Completeness to theta = 26.36 99.8 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 1.000 and 0.923

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 2889 / 0 / 235

Goodness-of-fit on F2 1.034

Page 252: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 242

Final R indices [I>2sigma(I)] R1 = 0.0522, wR2 = 0.1157

R indices (all data) R1 = 0.0864, wR2 = 0.1288

Largest diff. peak and hole 0.557 and -0.284 e.A°-3

_______________________________________________________________

x y z U(eq)

________________________________________________________________

Cl(1) -954(1) 6847(1) 9714(1) 28(1)

N(1) 3529(3) 6097(2) 3864(2) 17(1)

C(1) 3228(4) 7497(2) 3364(2) 13(1)

C(2) 3092(5) 7491(3) 1968(2) 19(1)

C(3) 2658(4) 8897(3) 1353(2) 21(1)

C(4) 4466(4) 9674(3) 1537(2) 21(1)

C(5) 4607(4) 9725(3) 2915(2) 19(1)

C(6) 5023(4) 8311(3) 3532(2) 18(1)

C(7) 1129(4) 8176(3) 3958(2) 17(1)

C(8) 714(4) 9585(3) 3336(2) 19(1)

C(9) 2518(4) 10370(3) 3507(3) 21(1)

C(10) 569(4) 9528(3) 1968(3) 21(1)

C(11) 4631(4) 5748(3) 4964(2) 21(1)

C(12) 3186(4) 6061(3) 6140(2) 21(1)

C(13) 1226(4) 5564(3) 6420(3) 24(1)

C(14) -48(5) 5784(3) 7522(3) 23(1)

C(15) 658(4) 6525(3) 8348(2) 21(1)

C(16) 2587(5) 7021(3) 8101(3) 25(1)

C(17) 3832(5) 6791(3) 6998(3) 24(1)

____________________________________________________________

Table 6.25: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters

(A2 x 103) for 20′. U(eq) is defined as one third of the trace of the orthogonalized Uij

tensor.

Page 253: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 243

Table 6.26: Bond lengths [A] and angles [°] for 20′.

Cl(1)-C(15) 1.749(3)

N(1)-C(11) 1.462(3)

N(1)-C(1) 1.487(3)

N(1)-H(1) 0.85(3)

C(1)-C(2) 1.541(3)

C(1)-C(6) 1.543(3)

C(1)-C(7) 1.544(3)

C(2)-C(3) 1.541(4)

C(2)-H(2A) 0.99(3)

C(2)-H(2B) 1.01(3)

C(3)-C(10) 1.529(4)

C(3)-C(4) 1.530(4)

C(3)-H(3) 0.96(3)

C(4)-C(5) 1.529(4)

C(4)-H(4A) 0.99(3)

C(4)-H(4B) 1.01(3)

C(5)-C(9) 1.524(4)

C(5)-C(6) 1.548(4)

C(5)-H(5) 0.93(3)

C(6)-H(6A) 1.01(3)

C(6)-H(6B) 1.04(3)

C(7)-C(8) 1.545(4)

C(7)-H(7A) 1.01(3)

C(7)-H(7B) 1.03(3)

C(8)-C(10) 1.519(4)

C(8)-C(9) 1.530(4)

C(8)-H(8) 0.93(3)

C(9)-H(9A) 0.93(3)

C(9)-H(9B) 0.98(3)

C(10)-H(10A) 0.93(3)

C(10)-H(10B) 1.03(3)

C(11)-C(12) 1.531(4)

C(11)-C(11) 1.553(5)

C(11)-H(11) 0.99(3)

C(12)-C(17) 1.391(4)

C(12)-C(13) 1.403(4)

C(13)-C(14) 1.394(4)

C(13)-H(13) 1.01(3)

C(14)-C(15) 1.390(4)

C(14)-H(14) 0.94(3)

C(15)-C(16) 1.382(4)

C(16)-C(17) 1.389(4)

C(16)-H(16) 0.94(3)

C(17)-H(17) 1.00(3)

C(11)-N(1)-C(1) 119.2(2)

C(11)-N(1)-H(1) 104(2)

C(1)-N(1)-H(1) 105(2)

N(1)-C(1)-C(2) 106.27(19)

N(1)-C(1)-C(6) 114.8(2)

C(2)-C(1)-C(6) 108.3(2)

N(1)-C(1)-C(7) 110.3(2)

C(2)-C(1)-C(7) 108.5(2)

C(6)-C(1)-C(7) 108.5(2)

C(1)-C(2)-C(3) 111.2(2)

Page 254: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 244

C(1)-C(2)-H(2A) 108.1(17)

C(3)-C(2)-H(2A) 109.5(17)

C(1)-C(2)-H(2B) 111.1(16)

C(3)-C(2)-H(2B) 109.1(17)

H(2A)-C(2)-H(2B) 108(2)

C(10)-C(3)-C(4) 110.2(2)

C(10)-C(3)-C(2) 108.6(2)

C(4)-C(3)-C(2) 108.5(2)

C(10)-C(3)-H(3) 112.5(18)

C(4)-C(3)-H(3) 109.6(17)

C(2)-C(3)-H(3) 107.3(17)

C(5)-C(4)-C(3) 110.2(2)

C(5)-C(4)-H(4A) 110.0(17)

C(3)-C(4)-H(4A) 107.6(17)

C(5)-C(4)-H(4B) 111.0(16)

C(3)-C(4)-H(4B) 109.1(16)

H(4A)-C(4)-H(4B) 109(2)

C(9)-C(5)-C(4) 108.9(2)

C(9)-C(5)-C(6) 109.2(2)

C(4)-C(5)-C(6) 109.3(2)

C(9)-C(5)-H(5) 110.4(17)

C(4)-C(5)-H(5) 110.2(18)

C(6)-C(5)-H(5) 108.7(18)

C(1)-C(6)-C(5) 110.4(2)

C(1)-C(6)-H(6A) 108.3(16)

C(5)-C(6)-H(6A) 108.8(16)

C(1)-C(6)-H(6B) 109.8(15)

C(5)-C(6)-H(6B) 108.9(16)

H(6A)-C(6)-H(6B) 111(2)

C(1)-C(7)-C(8) 110.0(2)

C(1)-C(7)-H(7A) 107.6(16)

C(8)-C(7)-H(7A) 111.5(17)

C(1)-C(7)-H(7B) 110.5(16)

C(8)-C(7)-H(7B) 110.4(16)

H(7A)-C(7)-H(7B) 107(2)

C(10)-C(8)-C(9) 110.0(2)

C(10)-C(8)-C(7) 109.4(2)

C(9)-C(8)-C(7) 109.3(2)

C(10)-C(8)-H(8) 109.4(18)

C(9)-C(8)-H(8) 107.6(17)

C(7)-C(8)-H(8) 111.1(18)

C(5)-C(9)-C(8) 110.2(2)

C(5)-C(9)-H(9A) 110.5(19)

C(8)-C(9)-H(9A) 112.1(18)

C(5)-C(9)-H(9B) 108.0(17)

C(8)-C(9)-H(9B) 108.9(17)

H(9A)-C(9)-H(9B) 107(2)

C(8)-C(10)-C(3) 109.8(2)

C(8)-C(10)-H(10A) 111.5(18)

C(3)-C(10)-H(10A) 109.1(18)

C(8)-C(10)-H(10B) 112.1(16)

C(3)-C(10)-H(10B) 108.1(16)

H(10A)-C(10)-H(10B) 106(2)

N(1)-C(11)-C(12) 111.2(2)

Page 255: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 245

N(1)-C(11)-C(11)1 108.3(3)

C(12)-C(11)-C(11)1 109.3(3)

N(1)-C(11)-H(11) 110.5(17)

C(12)-C(11)-H(11) 108.5(16)

C(11)1-C(11)-H(11) 109.0(18)

C(17)-C(12)-C(13) 117.9(3)

C(17)-C(12)-C(11) 120.8(2)

C(13)-C(12)-C(11) 121.3(2)

C(14)-C(13)-C(12) 121.6(3)

C(14)-C(13)-H(13) 117.0(17)

C(12)-C(13)-H(13) 121.3(17)

C(15)-C(14)-C(13) 118.4(3)

C(15)-C(14)-H(14) 119.6(18)

C(13)-C(14)-H(14) 122.0(18)

C(16)-C(15)-C(14) 121.2(3)

C(16)-C(15)-Cl(1) 119.8(2)

C(14)-C(15)-Cl(1) 118.9(2)

C(15)-C(16)-C(17) 119.4(3)

C(15)-C(16)-H(16) 119.3(19)

C(17)-C(16)-H(16) 121.3(19)

C(16)-C(17)-C(12) 121.4(3)

C(16)-C(17)-H(17) 118.3(17)

C(12)-C(17)-H(17) 120.3(17)

Page 256: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 246

b) Hydrodimer structure from cyclopentene or α-pinene addition reaction (20)

Empirical formula C34H42Cl2N2

Formula weight 549.60

Temperature 100(2) K

Wavelength 0.71073 A°

Crystal system, space group Orthorhombic, Pna21

Unit cell dimensions a = 11.276(1) A° alpha = 90°

b = 12.100(1) A° beta = 90°

c = 20.803(2) A° gamma = 90°

Volume 2838.4(4) A3

Z, Calculated density 4, 1.286 Mg/m3

Absorption coefficient 0.255 mm-1

F(000) 1176

Crystal size 0.32 x 0.28 x 0.25 mm

Theta range for data collection 3.61 to 27.88°

Limiting indices -14 ≤ h ≤ 13, -15 ≤ k ≤ 15, -27 ≤ l ≤ 27

Reflections collected / unique 35712 / 6674 [R(int) = 0.0452]

Completeness to theta = 27.88 99.5 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 1.000 and 0.968

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 6674 / 1 / 470

Goodness-of-fit on F2 1.025

Final R indices [I>2sigma(I)] R1 = 0.0390, wR2 = 0.0747

R indices (all data) R1 = 0.0611, wR2 = 0.0808

Absolute structure parameter 0.49(7)

Largest diff. peak and hole 0.348 and -0.270 e.A°-3

Page 257: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 247

________________________________________________________________ x y z U(eq) _______________________________________________________________ Cl(1) 5086(1) 2167(1) 6495(1) 25(1) Cl(2) 9809(1) 2200(1) 8386(1) 23(1) N(1) 6626(2) 7622(2) 6918(1) 11(1) N(2) 8280(2) 7595(2) 7960(1) 12(1) C(1) 6805(2) 8145(2) 6281(2) 13(1) C(2) 8045(2) 8625(3) 6255(2) 14(1) C(3) 8235(2) 9259(3) 5617(2) 20(1) C(4) 7334(2) 10207(3) 5575(2) 18(1) C(5) 6079(2) 9733(3) 5589(2) 14(1) C(6) 5905(2) 9093(3) 6226(2) 15(1) C(7) 6623(2) 7359(3) 5707(2) 14(1) C(8) 6793(2) 7996(3) 5069(2) 15(1) C(9) 5899(2) 8932(3) 5021(2) 14(1) C(10) 8058(3) 8473(3) 5055(2) 21(1) C(11) 7289(2) 6617(2) 7074(2) 11(1) C(12) 6714(2) 5527(2) 6887(1) 9(1) C(13) 7390(2) 4666(3) 6627(2) 15(1) C(14) 6902(2) 3637(3) 6513(2) 15(1) C(15) 5712(2) 3452(3) 6643(2) 16(1) C(16) 5015(2) 4293(3) 6903(2) 13(1) C(17) 5523(2) 5326(2) 7022(2) 14(1) C(18) 8109(2) 8131(2) 8595(2) 9(1) C(19) 6833(2) 8609(3) 8672(2) 16(1) C(20) 6696(2) 9221(3) 9309(2) 17(1) C(21) 7567(2) 10186(3) 9334(2) 20(1) C(22) 8843(2) 9748(3) 9259(2) 17(1) C(23) 8973(2) 9118(3) 8624(2) 14(1) C(24) 8372(2) 7360(3) 9164(2) 12(1) C(25) 8236(2) 7981(3) 9801(2) 16(1) C(26) 9113(2) 8973(3) 9818(2) 17(1) C(27) 6963(3) 8422(3) 9866(2) 18(1) C(28) 7543(2) 6616(2) 7818(2) 10(1) C(29) 8130(2) 5543(3) 8015(1) 11(1) C(30) 7463(2) 4670(2) 8257(2) 11(1) C(31) 7964(2) 3637(2) 8371(2) 14(1) C(32) 9157(2) 3496(2) 8239(2) 13(1) C(33) 9851(2) 4348(3) 8013(2) 17(1) C(34) 9337(2) 5362(3) 7897(2) 13(1) ________________________________________________________________ Table 6.27: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters

(A2 x 103) for 20. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Page 258: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 248

Table 6.28: Bond lengths [A] and angles [°] for 20.

Cl(1)-C(15) 1.735(3)

Cl(2)-C(32) 1.758(3)

N(1)-C(11) 1.464(4)

N(1)-C(1) 1.483(4)

N(1)-H(1N) 0.86(2)

N(2)-C(28) 1.477(4)

N(2)-C(18) 1.484(4)

N(2)-H(2N) 0.88(2)

C(1)-C(2) 1.515(4)

C(1)-C(6) 1.537(4)

C(1)-C(7) 1.539(4)

C(2)-C(3) 1.548(5)

C(2)-H(2A) 1.03(3)

C(2)-H(2B) 1.00(3)

C(3)-C(10) 1.520(5)

C(3)-C(4) 1.535(4)

C(3)-H(3) 0.99(3)

C(4)-C(5) 1.527(4)

C(4)-H(4A) 0.91(3)

C(4)-H(4B) 1.06(3)

C(5)-C(9) 1.541(5)

C(5)-C(6) 1.548(4)

C(5)-H(5) 0.92(3)

C(6)-H(6A) 1.05(2)

C(6)-H(6B) 0.98(3)

C(7)-C(8) 1.547(5)

C(7)-H(7A) 0.91(3)

C(7)-H(7B) 0.97(3)

C(8)-C(9) 1.519(4)

C(8)-C(10) 1.539(4)

C(8)-H(8B) 0.95(3)

C(9)-H(9A) 0.99(3)

C(9)-H(9B) 0.90(4)

C(10)-H(10A) 0.99(3)

C(10)-H(10B) 0.99(4)

C(11)-C(12) 1.521(4)

C(11)-C(28) 1.572(2)

C(11)-H(1) 1.01(3)

C(12)-C(17) 1.394(3)

C(12)-C(13) 1.399(4)

C(13)-C(14) 1.382(4)

C(13)-H(13) 1.01(3)

C(14)-C(15) 1.387(4)

C(14)-H(14) 1.06(3)

C(15)-C(16) 1.395(4)

C(16)-C(17) 1.397(4)

C(16)-H(16) 0.95(3)

C(17)-H(17) 1.00(3)

C(18)-C(24) 1.536(4)

C(18)-C(23) 1.543(4)

C(18)-C(19) 1.559(3)

C(19)-C(20) 1.525(5)

Page 259: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 249

C(19)-H(19A) 0.96(3)

C(19)-H(19B) 0.99(3)

C(20)-C(21) 1.527(4)

C(20)-C(27) 1.540(5)

C(20)-H(20) 0.99(3)

C(21)-C(22) 1.541(4)

C(21)-H(21A) 1.05(4)

C(21)-H(21B) 0.93(4)

C(22)-C(26) 1.525(5)

C(22)-C(23) 1.532(5)

C(22)-H(22) 1.04(3)

C(23)-H(23A) 1.04(2)

C(23)-H(23B) 0.98(3)

C(24)-C(25) 1.531(5)

C(24)-H(24A) 1.05(3)

C(24)-H(24B) 1.04(3)

C(25)-C(27) 1.537(4)

C(25)-C(26) 1.556(4)

C(25)-H(25) 1.00(3)

C(26)-H(26A) 1.02(3)

C(26)-H(26B) 1.07(3)

C(27)-H(27A) 0.97(4)

C(27)-H(27B) 1.00(3)

C(28)-C(29) 1.515(4)

C(28)-H(28) 0.98(3)

C(29)-C(30) 1.391(4)

C(29)-C(34) 1.401(3)

C(30)-C(31) 1.392(4)

C(30)-H(30) 0.92(2)

C(31)-C(32) 1.384(3)

C(31)-H(31) 0.85(3)

C(32)-C(33) 1.377(4)

C(33)-C(34) 1.379(5)

C(33)-H(33) 0.97(3)

C(34)-H(34) 0.90(3)

C(11)-N(1)-C(1) 118.9(2)

C(11)-N(1)-H(1N) 108.7(15)

C(1)-N(1)-H(1N) 111.9(15)

C(28)-N(2)-C(18) 117.1(2)

C(28)-N(2)-H(2N) 107.3(14)

C(18)-N(2)-H(2N) 104.1(14)

N(1)-C(1)-C(2) 108.8(2)

N(1)-C(1)-C(6) 107.1(2)

C(2)-C(1)-C(6) 108.7(2)

N(1)-C(1)-C(7) 114.3(2)

C(2)-C(1)-C(7) 109.4(2)

C(6)-C(1)-C(7) 108.4(2)

C(1)-C(2)-C(3) 110.4(2)

C(1)-C(2)-H(2A) 109.9(16)

C(3)-C(2)-H(2A) 102.2(19)

C(1)-C(2)-H(2B) 107.3(14)

C(3)-C(2)-H(2B) 109.2(17)

H(2A)-C(2)-H(2B) 118(2)

C(10)-C(3)-C(4) 109.7(3)

Page 260: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 250

C(10)-C(3)-C(2) 109.4(3)

C(4)-C(3)-C(2) 109.0(3)

C(10)-C(3)-H(3) 109.9(17)

C(4)-C(3)-H(3) 112.0(18)

C(2)-C(3)-H(3) 106.8(18)

C(5)-C(4)-C(3) 109.4(2)

C(5)-C(4)-H(4A) 110.2(18)

C(3)-C(4)-H(4A) 110.3(19)

C(5)-C(4)-H(4B) 107.6(14)

C(3)-C(4)-H(4B) 112.0(14)

H(4A)-C(4)-H(4B) 107(3)

C(4)-C(5)-C(9) 110.1(3)

C(4)-C(5)-C(6) 108.7(2)

C(9)-C(5)-C(6) 108.9(3)

C(4)-C(5)-H(5) 109.7(18)

C(9)-C(5)-H(5) 110(2)

C(6)-C(5)-H(5) 110(2)

C(1)-C(6)-C(5) 110.7(2)

C(1)-C(6)-H(6A) 109.9(17)

C(5)-C(6)-H(6A) 109.2(17)

C(1)-C(6)-H(6B) 110.3(15)

C(5)-C(6)-H(6B) 111.7(17)

H(6A)-C(6)-H(6B) 105(2)

C(1)-C(7)-C(8) 109.9(3)

C(1)-C(7)-H(7A) 105(2)

C(8)-C(7)-H(7A) 111(2)

C(1)-C(7)-H(7B) 107(2)

C(17)-C(12)-C(11) 120.6(2)

C(13)-C(12)-C(11) 120.9(2)

C(8)-C(7)-H(7B) 110.4(19)

H(7A)-C(7)-H(7B) 113(3)

C(9)-C(8)-C(10) 109.5(3)

C(9)-C(8)-C(7) 110.2(3)

C(10)-C(8)-C(7) 108.6(2)

C(9)-C(8)-H(8B) 111.7(17)

C(10)-C(8)-H(8B) 106.8(15)

C(7)-C(8)-H(8B) 109.9(18)

C(8)-C(9)-C(5) 109.4(2)

C(8)-C(9)-H(9A) 108.4(18)

C(5)-C(9)-H(9A) 110.4(17)

C(8)-C(9)-H(9B) 111.1(19)

C(5)-C(9)-H(9B) 107(2)

H(9A)-C(9)-H(9B) 111(3)

C(3)-C(10)-C(8) 110.0(2)

C(3)-C(10)-H(10A) 107.1(16)

C(8)-C(10)-H(10A) 112.0(16)

C(3)-C(10)-H(10B) 106.8(18)

C(8)-C(10)-H(10B) 109.6(17)

H(10A)-C(10)-H(10B) 111(3)

N(1)-C(11)-C(12) 116.5(2)

N(1)-C(11)-C(28) 108.2(3)

C(12)-C(11)-C(28) 109.3(3)

N(1)-C(11)-H(1) 105.3(16)

C(12)-C(11)-H(1) 111.1(16)

C(28)-C(11)-H(1) 106.0(17)

C(17)-C(12)-C(13) 118.3(3)

Page 261: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 251

C(14)-C(13)-C(12) 121.3(2)

C(14)-C(13)-H(13) 118.6(17)

C(12)-C(13)-H(13) 120.0(17)

C(13)-C(14)-C(15) 119.8(3)

C(13)-C(14)-H(14) 121.1(14)

C(15)-C(14)-H(14) 119.1(14)

C(14)-C(15)-C(16) 120.2(3)

C(14)-C(15)-Cl(1) 120.2(2)

C(16)-C(15)-Cl(1) 119.6(2)

C(15)-C(16)-C(17) 119.4(2)

C(15)-C(16)-H(16) 116.6(17)

C(17)-C(16)-H(16) 124.1(17)

C(12)-C(17)-C(16) 121.0(3)

C(12)-C(17)-H(17) 119.7(15)

C(16)-C(17)-H(17) 119.0(15)

N(2)-C(18)-C(24) 113.3(2)

N(2)-C(18)-C(23) 106.9(2)

C(24)-C(18)-C(23) 108.5(2)

N(2)-C(18)-C(19) 112.0(2)

C(24)-C(18)-C(19) 108.9(2)

C(23)-C(18)-C(19) 107.0(2)

C(20)-C(19)-C(18) 111.3(2)

C(20)-C(19)-H(19A) 114.9(19)

C(18)-C(19)-H(19A) 108.8(17)

C(20)-C(19)-H(19B) 111.7(18)

C(18)-C(19)-H(19B) 108.8(15)

H(19A)-C(19)-H(19B) 101(2)

C(19)-C(20)-C(21) 109.7(3)

C(19)-C(20)-C(27) 109.2(3)

C(21)-C(20)-C(27) 109.2(3)

C(19)-C(20)-H(20) 111.8(17)

C(21)-C(20)-H(20) 108.7(17)

C(27)-C(20)-H(20) 108.3(16)

C(20)-C(21)-C(22) 109.5(2)

C(20)-C(21)-H(21A) 110.9(17)

C(22)-C(21)-H(21A) 106.2(15)

C(20)-C(21)-H(21B) 105.7(17)

C(22)-C(21)-H(21B) 112.3(17)

H(21A)-C(21)-H(21B) 112(3)

C(26)-C(22)-C(23) 109.4(3)

C(26)-C(22)-C(21) 108.7(3)

C(23)-C(22)-C(21) 110.4(2)

C(26)-C(22)-H(22) 107.4(17)

C(23)-C(22)-H(22) 109.8(18)

C(21)-C(22)-H(22) 111.0(16)

C(22)-C(23)-C(18) 111.0(2)

C(22)-C(23)-H(23A) 110.4(17)

C(18)-C(23)-H(23A) 110.1(16)

C(22)-C(23)-H(23B) 106.7(16)

C(18)-C(23)-H(23B) 107.4(15)

H(23A)-C(23)-H(23B) 111(2)

C(25)-C(24)-C(18) 110.5(2)

C(25)-C(24)-H(24A) 111.6(18)

C(18)-C(24)-H(24A) 109.7(18)

C(25)-C(24)-H(24B) 109.2(18)

C(18)-C(24)-H(24B) 111.3(17)

Page 262: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 252

H(24A)-C(24)-H(24B) 104(2)

C(24)-C(25)-C(27) 109.9(2)

C(24)-C(25)-C(26) 109.5(2)

C(27)-C(25)-C(26) 108.9(3)

C(24)-C(25)-H(25) 107.0(18)

C(27)-C(25)-H(25) 115.9(15)

C(26)-C(25)-H(25) 105.4(16)

C(22)-C(26)-C(25) 109.3(2)

C(22)-C(26)-H(26A) 109.4(17)

C(25)-C(26)-H(26A) 111.5(17)

C(22)-C(26)-H(26B) 114.6(18)

C(25)-C(26)-H(26B) 107.8(17)

H(26A)-C(26)-H(26B) 104(2)

C(25)-C(27)-C(20) 109.5(2)

C(25)-C(27)-H(27A) 109.2(17)

C(20)-C(27)-H(27A) 111.8(18)

C(25)-C(27)-H(27B) 108.2(15)

C(20)-C(27)-H(27B) 115.1(15)

H(27A)-C(27)-H(27B) 103(2)

N(2)-C(28)-C(29) 112.8(2)

N(2)-C(28)-C(11) 107.4(3)

C(29)-C(28)-C(11) 110.3(3)

N(2)-C(28)-H(28) 115.3(17)

C(29)-C(28)-H(28) 105.6(17)

C(11)-C(28)-H(28) 105.3(17)

C(30)-C(29)-C(34) 118.1(3)

C(30)-C(29)-C(28) 120.9(2)

C(34)-C(29)-C(28) 120.8(3)

C(29)-C(30)-C(31) 121.6(2)

C(29)-C(30)-H(30) 117.9(17)

C(31)-C(30)-H(30) 120.1(17)

C(32)-C(31)-C(30) 118.1(3)

C(32)-C(31)-H(31) 124.1(17)

C(30)-C(31)-H(31) 117.8(17)

C(33)-C(32)-C(31) 121.9(3)

C(33)-C(32)-Cl(2) 119.3(2)

C(31)-C(32)-Cl(2) 118.8(2)

C(32)-C(33)-C(34) 119.2(2)

C(32)-C(33)-H(33) 120.0(18)

C(34)-C(33)-H(33) 120.9(18)

C(33)-C(34)-C(29) 121.1(3)

C(33)-C(34)-H(34) 116.4(17)

C(29)-C(34)-H(34) 122.3(17)

Table 6.29: Hydrogen bonds for 20 [A and °]. _________________________________________________________________________

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)

N(2)-H(2N)...N(1) 0.88(2) 2.36(2) 2.8589(19) 115.9(16)

_________________________________________________________________________

Page 263: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Chapter 6. Experimental 253

References:

[1] S. Gablenz, C. Damm, F. W. Müller, G. Israel, M. Rössel, A. Röder, H. Abicht, Sol.

State. Sci., 2001, 291.

[2] A. A. El-Emam, Chin. Pharm. J., 1990, 42, 309.

[3] R. D. Hinton, E. G. Janzen, J. Org. Chem. 1992, 57, 2646.

Page 264: opus4.kobv.de · Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter

Curriculum Vitae

MÜGE ALDEMIR

Personal Details .

Date - Place of Birth 17/05/1978 - Izmir-TURKEY

Citizenship Turkish

Marital Status Unmaried

Parents Kemale Aldemir (Daysal), Mustafa Aldemir

Education .

since 01/2003 Ph.D.: Friedrich Alexander University of Erlangen-Nürnberg

Erlangen, GERMANY

Title of Thesis: “Metal Oxide Supported Cadmium Sulfide for

Photocatalytic Synthesis of Homoallylamines”

Supervisor: Prof. Dr. H. KISCH

02/2000 – 08/2001 M.Sc.: Ege University Institute of Natural Science,

Izmir, TURKEY

Department of Chemistry, Organic Chemistry (02/2000 – 07/2001)

Department of Solar Energy (cont. 07/2001 – 08/2001)

Title of Thesis: “Organic Photosynthesis Studies with

Photoactivated Metal Sulfides by Sunlight”

Supervisor: Prof. Dr. S. ICLI

10/1995 – 08/1999 B.Sc.: Ege University Faculty of Science Department of

Chemistry, Izmir, TURKEY Option: Technological Chemistry

Diploma Project: “Photocatalytic Hydrogen Production”

1983 –1994 Elementary and secondary school in Urla-Izmir, TURKEY

Professional and Research Experience .

03/2002 – 08/2002 Scientific Research, University of Erlangen-Nürnberg, GERMANY

In The Research Group of Prof. Dr. H. Kisch

10/2001 – 10/2002 Research Assistant, Ege University, Institute of Solar Energy

Izmir-TURKEY

08/1998 – 09/1998 Apprenticeship, PETKIM Petrochemistry Holding Inc.

Aliaga-TURKEY